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Preface

This book is intended as an advanced undergraduate text, conveying the main ideas in the design and use of deductive
databases in information systems applications. It assumes that the reader is familiar with the main concepts of relational
databases. Some familiarity with Prolog is also an advantage, although not essential.

For those readers familiar with expert systems, a link is established between the production rule formalism and deductive
databases, opening the way for the employment of techniques derived from information systems in the development of expert
systems.

Major examples are drawn from bill of materials, CASE tool repositories, federations of databases, university course rules,
and semantic data structures encountered in information retrieval.

The text was developed for a third-year Information Systems subject offered in the Department of Computer Science at The
University of Queensland each year since 1991.

R.M.Colomb



CHAPTER ONE
Introduction

Deductive database technology is a name for a technology which lies between database and logic programming. It has a close
relationship with the production rule formalism used in expert systems. This chapter is an introduction to the field, with some
motivating examples sketched. Key terms are emphasized in bold; many are discussed in detail in the remainder of the book,
as outlined in the plan of the book in section 1.5.

1.1
THE ORIGINS OF DEDUCTIVE DATABASE TECHNOLOGY

Databases are at the core of Information Systems technology. Originally, the data in an information systems application was
held on decks of cards and on magnetic tape. The programs read the files, made changes in their contents, then wrote them
out again as a new version. When disk technology became available, it was possible to make changes to the files without
copying their entire contents. The structure of the files to achieve this updateability was still, however, embedded in the
programs which did the updates.

The next advance was the introduction of database technology, first hierarchical then network databases. This technology
provides a way to describe data independently of the application programs, so that the database can be seen as a separate
resource, and many details of the procedures required to access and update the data are hidden from the applications
programmer.

The most significant conceptual advance came with the introduction of relational database technology. With earlier
technologies, the structure and content of a database record is described independently from the way it is stored, accessed and
updated. However, the connections between records are represented essentially as pointers, so that the application programs
need to know how to navigate around these complex data structures. In relational database technology, all records are
identified by their contents. Furthermore, relational databases are organized according to the mathematical theory of relations,
which is very close to being a subtheory of the first-order predicate calculus.

Since the data in a relational database is organized according to a large-scale mathematical structure, it is possible to
transform queries from one expression to another, so that the second expression can be proved to have the same result as the
first. This algebra is the basis of query optimization. When a complex query is made using a navigation-style database, the
program must know the access paths, etc., and must contain a strategy to find the right data in a computationally economical
way. In an optimized relational database system, one of the tasks of the database management software (database manager)
is to construct a reasonably economical access strategy on the fly given the query expression and statistical information held
in the system catalogs.

A query processing program written in COBOL against a hierarchical database is a program, while the same query written
in SQL is essentially a specification of a program. The actual program is constructed by the database manager. Navigation-style
databases are more declarative than native file systems, because details of record structure and content are declared to the
database manager and managed independently of the applications programs. Similarly, relational database systems are more
declarative than navigational database systems, since access strategies are largely determined by the database manager rather
than the application programs.

The simple and regular structure of relational databases has led to a number of ancillary facilities, for example:

m Views, which are standard queries stored in the database rather than in application programs.

m Integrity constraints, which are enforced by the database rather than application programs (navigational databases also
support integrity constraints).

m Fourth generation languages, which take advantage of the structure of a relational database to make applications programming
much easier than with third generation languages such as COBOL.

m Triggers, which enable many business rules and more complex integrity constraints to be enforced by the database
manager irrespective of which application program makes the relevant update.
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Figure 1.1 A database system.

A view is a derived table. The database manager stores both the schema for the derived table and the rules by which that table
is derived. It is quite possible to have a large number of views, and to have views built upon views in complex ways, possibly
involving negation and aggregation. One deficiency of database technology is that a database can reason with views, but not
about views. One of the advantages of deductive databases is that metaprogramming techniques are available to reason
about views, and to rewrite them for various purposes, including optimization.

A second deficiency is that relational databases do not permit recursive view definitions (nor the recursive queries from
which views are constructed). This is a computational deficiency which prevents many interesting applications from
being implemented using relational database technology. Several such applications are discussed below. A very important one
is the bill of materials central to the manufacturing industries, which is a database of assemblies which are themselves
composed partly of assemblies. There are many bill of materials based software packages available, with the recursive
structures manipulated and managed by applications code written in third generation programming languages.

Integrity constraints supported by database systems are of two types:

m simple structural constraints such as keys, mandatory roles and foreign keys which are supported in the core of the
database manager;

m more complex constraints which are implemented by view definitions which must never generate any tuples. (If a tuple is
generated, then the constraint is violated.)

Since deductive database technology permits much better tools to manage views, and also permits much more powerful views
to be defined, it can do a much better job with complex integrity constraints, including optimizing their computation.

Fourth generation programming languages are used for two broad purposes: to implement user interfaces and to implement
business rules. Since deductive database technology is essentially a better means of building and managing views, it is just as
easy to incorporate a deductive database into a fourth generation language as it is to incorporate a relational database. In
addition, since it is easier to manage complex views, it may make it practical to remove some of the code from the application
program into the view definitions, thus simplifying the job of developing and maintaining the information system.

Finally, the power of triggers in current databases is limited by implementation considerations. The limited ability of a
relational system to reason about queries and views has meant that triggers can generally be defined only on base tables, and
generally only one trigger may be activated at a time. Deductive databases permit the implementation of the much more
powerful concept of active databases, in which triggers may be defined on views, and which have the ability to manage
many interacting triggers.

1.2
SKETCH OF THE TECHNOLOGY

Database technology may be caricatured as in Figure 1.1. A database system is intended to allow a user to store and retrieve
data. The data is organized into tables described by schemas. The user provides the schemas to the database system via a data
description language (DDL), and makes retrieval requests to the database system via a data manipulation language
(DML). Relational systems commonly use SQL DDL and DML respectively for data description and data manipulation.
Retrieval operations are complex, so the database system generally translates the user’s request from the high-level data
manipulation language into some lower-level host language for execution.

The integration of more aspects of the application into the database system, and particularly the new capability of recursive
views, introduces considerable complexity into the software which implements the deductive database. Deductive database
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Figure 1.2 A directory structure.

systems therefore focus more clearly on what is analogous to the host language in a database system. This software is referred
to as an inference engine.

The design, construction and maintenance of information systems is generally assisted by a number of modelling methods
supported by Computer-Aided Software Engineering (CASE) tools. From the database point of view, deductive database
technology presents a uniform formalism for expressing database schemas, queries and view definitions, integrity constraints,
and derived relationships. It also permits recursive views. These aspects of information can be modelled by natural extensions
of the modelling methods used in database systems such as Entity-Relationship Attribute analysis or Object-Role Modelling.

Quality of design is very important in any sort of system development. Since deductive database technology combines the
description of data with specifications of complex computations, quality criteria from database design and from software
engineering can be represented in a uniform manner.

With the publication of the recursive SQL3 proposals, the forthcoming availability of platforms such as Illustra
(POSTGRES) and STARBURST, and the extensions to CASE technology, it will be natural to build information systems into
a deductive database framework.

We can expect the trend towards replacement of procedural code with declarative statements in very-high-level
specification languages to continue. For example, updates are an aspect of an information system which is still outside the
scope of well-understood deductive database technology. An update may take the form:

If a query is successful, then construct some new tuples based on the results of the query. Taking the integrity
constraints into account, delete some tuples and add others.

Elements of the updates, such as the query and testing the integrity constraints, are part of the deductive database, but the whole
transaction is still somewhat problematic, so is still in the province of applications code.

1.3
SKETCH OF SOME APPLICATIONS

1.3.1
Information systems

Since recursive queries and views are the main increased expressive power of deductive databases, it makes sense to consider
some applications where recursion is an essential, or at least convenient, feature.

A familiar such application is based on a directory, as modelled in Figure 1.2. An entity colomb is a member of the information
systems group of the computer science department of the science faculty of the university.

This application might be implemented in two tables:

subgroup(Wider, Narrower)
member(Entity, Group)
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Both attributes of subgroup are drawn from the set of group names (science, physics, formal methods), as is the second attribute
of member. The first attribute of member is drawn from the population of individual members of staff. A recursive search
through the subgroup table is required to determine whether for example colomb is indirectly a member of the science
faculty. The X.500 standard is a net equivalent of the telephone white pages for the location of people and resources in a
large communication network. X.500 is a good example of a directory structure with a database flavour, since it is detached
from an individual operating system, and must be updated and searched by software which is visible to the user.

As noted above, the bill of materials application is a very common instance of a recursive data structure. An assembly is
composed of subassemblies, which are composed of subassemblies, etc. until the whole assembly is decomposed into its
elementary parts (screws, pieces of sheet metal, gear wheels, etc.). Typical queries which could usefully employ a recursive
strategy include

How many elementary parts are required for one instance of assembly X?
To what assemblies does subassembly Y contribute?

Bill of materials problems often require extensive use of aggregation (COUNT, SUM, etc.).

Both the directory and the bill of materials are examples of tree structures. The techniques used to structure and retrieve
information from tree structures can be generalized to graph structures, either directed or undirected. A clear example is given
by a rail system, where the main data structure might be the set of station adjacencies

adjacent(Line, Station 1, Station_2).

A query might be how to travel from one station to another, and would have in its response the lines used and the stations at
which the passenger would change lines. In general, any system of referential links can be modelled by a graph.

Another sort of graph structure is a subtype lattice, such as is commonly encountered in conceptual modelling. (Banks have
products, which may be deposit accounts or loan accounts. A deposit account may be a cheque account or a savings account.
A savings account may be a basic, classic or special account. And so on.) Subtypes and inheritance of properties are also
central to object-oriented technology. Since deductive database technology provides a coherent mechanism for representing
and reasoning with view definitions, it is a good formalism for defining subtypes with complex derivation rules. The
evaluation strategies used in deductive database technology are a good way of implementing the more straightforward aspects
of object inheritance which are supported in the proposed SQL3 standard.

CASE tools can be seen as information systems whose content is the specification of aspects of an application system
according to a particular method. Nearly all software engineering methods are based on visualizing the system in some way,
involving the connection of components in a graph structure. The core of a CASE tool is the data structures which store the
specification, and from which the visualizations are constructed. These structures are often called repositories, and can be
implemented as deductive databases.

The examples sketched so far are fairly explicit applications of graph or tree structures, and might seem to be fairly
specialized. This would be a misconception: the conceptual schemas of advanced information systems are generally becoming
more abstract in response to the need for flexibility. For example, organizational information systems often include many
similar kinds of relationships between similar kinds of entities, as in Figure 1.3.

A particular project is developed by one organizational unit and maintained by possibly a different unit, and is sponsored
by a responsible company officer. A particular instance of user training is conducted within an organizational unit by a
particular class of officer, and is authorized by a different company officer.

The abstract enterprise model of this kind of situation is often as in Figure 1.4.
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Figure 1.4 Role abstraction enterprise model.

In this more abstract model, the relationships of Figure 1.3 are recorded in the Role entity, the organizational units and
company positions generalized in the Party entity, and the projects and user training instances are generalized in the Activity
entity. The Party Involved entity is an association which ties all three together.

Using this kind of data structure, it is possible to formulate recursive queries, such as

List all the direct and indirect relationships between two organizational units Ul and U2

Using these generalized structures, it becomes necessary to remove constraints from the data model. For example, the
functional dependencies of Figure 1.3 disappear in Figure 1.4 if at least one possible relationship is many-to-many. It is much
more suitable to express constraints on, for example, the number and types of roles required for a particular kind of activity in
terms of rules in a deductive database.

A particular place where these constraints become visible is in federated databases, where an information system is
composed from the inter-operation of a number of autonomous information systems, either in different organizations or
different parts of a single organization. A widely used architecture for such systems is the five-schema architecture. These
schemas are

m local schema: the underlying schema of the component database system;

component schema: the translation of the local schema into the canonical data model of the federated system;

m export schema: the portion of the component schema which the component database chooses to make available to the
federation;

m federated schema: the integration of the several export schemas for the component databases;

m external schema: a view of the federated schema defined for a particular user or application.

The component schema is defined as a series of views on the local schema, and it is often necessary for the federated schema
to be constructed as a series of views on the component schemas. The federated database manager must translate queries on
the federated schema into a collection of queries on the component schemas, then assemble the results. It is necessary to check
these views for redundancy and for gaps in order to know how to process a query. Such systems invite recursive queries, such
as might be used to track a message through a number of information systems.

A federated database manager must enforce global integrity constraints. The constraints control not only updates to
individual information systems, and updates in one information system generated from another; but also the management of
the global state of the integrated system. In particular, the constraints are necessary for management to have a global view of
the organization.

Further, as information systems begin to inter-operate, often across organizational boundaries, it becomes necessary to
express constraints not as business rules but as restrictions on what kinds of programs the programmers are allowed to write.
For example, there may be data items which are not to be made available to queries which can go outside the organization. It
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is much safer if these constraints are managed by the database manager and by the CASE tools which support the development
of applications.

A closely related technology is data warehousing, where ad hoc reporting and computationally intensive processing such
as data mining is removed from the operational information systems of record, and performed on a derived database
containing all the globally relevant information. The derived database is called a data warehouse, and is conceptually very
similar to an eagerly computed federated database. (An eager computation is done as soon as its data is available, as opposed
to a lazy computation, which is done only when its result is required.)

The argument that these considerations are becoming important in information systems generally is strengthened by the
development of the SQL3 proposed extensions to SQL. The SQL3 proposal includes

temporary tables and views, so that more complex queries can be easily constructed;

inheritance, so that more specific data structures can share properties of more general data structures;

recursive expressions in joins, so that recursive queries and views can be described;

stronger quantifiers, both existential and universal, so that complex integrity constraints and conditions can be more easily
expressed.

One way to view this text is as suggesting how to both design applications for and to implement essential aspects of SQL3
systems, although for historical and practical reasons, the proposed SQL3 language is not used in it.

1.3.2
Knowledge-based systems

Artificial intelligence research has its origins in the early days of computing, contemporaneous with information systems. It
took many years for techniques to be developed with commercial significance. What emerged was expert systems. A major
technology used in expert systems is production rules, which considerably predate, but are very similar to, active database rules.
A production rule is a statement of the form “if the following set of conditions is true, then perform the following set of
actions”. The set of conditions is very similar to a view definition, and the action performed can use the tuples generated from
the view. As the technology has become better understood, much of its mystery has evaporated. At present, systems with
large numbers of rules are often referred to as knowledge-based systems, whether or not the system is intended to emulate the
behaviour of a human expert.

Classical production rule systems such as OPS-5 are grounded, although somewhat weakly, in the same logic from which
deductive database theory has arisen. Therefore, most of the facilities of production rule systems are available in deductive
database systems. This allows many expert systems to be expressed in a deductive database framework. The global
optimization, program analysis and transformation mechanisms from database and logic programming allow much more
reliable programs to be written and for programs to be executed orders of magnitude faster. This applies in particular to the
important class of expert systems which use propositional reasoning. A proposition is a statement which can be either true
or false, something like the WHERE EXISTS clause in an SQL query. These programs can be transformed to decision tables
and decision trees, simplified, verified, re-ordered, and made suitable for real-time execution; all using automatic
transformations which provably preserve their computational meaning.

A good example of a propositional expert system is Garvan ES1, which constructed clinical interpretations from the
results of thyroid hormone pathology tests. It was in routine clinical use from 1984 to 1990, generating more than 6000
interpretations per year. It was built as a propositional production system and was in fact a deductive database. It had 661
rules at the end of its life. Garvan ES1 has been replaced by a system called PEIRS, which generates interpretations for a
wider range of chemical pathology tests, and which has upwards of 1700 rules in a different structure which is equivalent to a
propositional deductive database.

SIRATAC is a non-propositional system which is used in Australia to give cot-ton farmers advice on pest management.
Each farmer periodically inspects his crop both for its stage of development and for the presence of 25 or so insect pests. This
information is entered into SIRATAC, which maintains a historical database of this information and also has a small database
of 25 or so chemicals used for pest control. Using pest and crop models and more than 100 production rules, it first
determines whether the reported insect infestation is economically worth controlling; and if so, with what chemicals.
SIRATAC could profitably be implemented using deductive database technology.

SIRATAC is an example of a class of expert system designed on the endorsements paradigm, in which there is a set of
possible treatments (the chemicals in this case) and a set of considerations (in this case, efficacy of the chemical in controlling
observed pests, cost, persistence in the environment, possibility of the pest developing resistance, etc.). Each consideration is
implemented as an agent, which computes an endorsement for each possible treatment. An endorsement is similar to a vote.
A supervisor agent combines the votes for each treatment from each of the endorsement agents, and selects the best endorsed
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treatments as the system’s recommendation. Endorsement-based systems can generally be implemented using deductive
database technology.

Garvan ES1 and SIRATAC are both classical expert systems which have many rules but relatively little data. There are
knowledge-based systems which have much more data, which can be implemented as deductive databases with a database
flavour. One such system is CAVS, which was a prototype system developed by the Australian Wool Corporation to
demonstrate the feasibility of computerized assistance to wool buyers to help them assess the stocks of wool offered at
auction.

The main database in CAVS is the sale catalog, which consists of a set of 80 or so measurements made on each of the
several thousand lots of wool offered for sale. It also had available the same measurements together with the sale price for the
50 000 or so lots of wool which had been sold in the previous year. The measurements provided by the Wool Corporation
were based on the properties of wool in its raw state. The buyers, on the other hand, act as agents for wool processors, and
make their assessment of the quality and value of wool offered for sale based on estimates of the properties of the wool after
various stages of processing into yarn.

CAVS contained knowledge about the relationships between the raw wool measurements and the processed wool
characteristics in the form of decision tables, regressions and price forecasts. It also contained a linear programming package.
A buyer purchases wool towards an order from a mill. This order is much larger than an individual sale lot, so that many sale
lots are needed to fill the order. The linear programming package allowed CAVS to accept a buyer’s requirement in processed-
wool terms and a required price and to suggest an optimum strategy for bidding on the wool offered at a particular sale.

There is also a very close relationship between active databases and production rule systems.

14
SKETCH OF THE MATHEMATICAL BASIS

Deductive database technology stands at the intersection of database, logic programming, and expert systems technologies. Its
unifying principle is logic. There are several logical systems which can be used for this purpose, notably

m the propositional calculus;
m first-order predicate calculus;
m higher-order logics.

Each of these logics is a language for expressing knowledge, but each also has a technology of automatic theorem proving so
that it can make deductions based on the knowledge. These theorem provers can be adapted to function as inference engines
in deductive database systems.

The relevant aspects of these logical systems are described formally and in detail throughout the text, but their main
structure is sketched below to give their flavour.

The propositional calculus is concerned with logical propositions, which are statements that can be either true or false.
Elementary statements are combined into complex statements using the connectives and, or, not and implication. The main
inference rule, called modus ponens, says that if we know the proposition p, and also that p implies the proposition ¢, then we
can conclude that we know ¢. The database in these systems consists of the truth values assigned to the various elementary
propositions known to the system.

The first-order predicate calculus is a propositional system with the addition of variables and quantifiers. The propositions,
which are analogous to the tuples in a relational database system, are grouped into predicates, analogous to relations.
Quantified formulas are analogous to queries or integrity constraints in relational databases.

First-order predicate calculus is a very powerful and somewhat unwieldy system, so various subsets of it are in use, notably
for our purposes Horn clause logic.

First-order inference is based on the principle of resolution, in which one disjunct of a true formula must be true if all the others
are false. Resolution applied to Horn clause systems leads to the various inference strategies used in logic programming,
including that used in Prolog.

Deductive databases are generally identified with dataleg, which is a restriction of logic programming to systems which
are much like databases, with possibly recursive views and integrity constraints. It is therefore much more computationally
tractable than, say, Prolog. It allows database-style set-at-a-time reasoning and consequently potentially very much faster
evaluation of queries. Since a deductive database program is a logical theory in the same way as a Prolog program, all of the
machinery available for reasoning about logic programs is available. In particular, this allows programs to be transformed into
forms more suited for execution purposes, while guaranteeing preservation of input/output behaviour.
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1.5
PLAN OF THE BOOK

The book first reviews Prolog (Chapter 2) and explores the relationship between Prolog and databases, including a discussion
of the properties of a number of standard complex data structures (Chapter 3). These chapters motivate and provide the
language for the description of datalog, the main technology used in deductive databases (Chapter 4).

Attention then turns to design issues. Chapter 5 presents a design method which is an extension of well-known information
systems design methods, and uses it to develop a small example. Chapter 6 serves two purposes: one is to show how a
deductive database can be designed with the support of a CASE tool, and the other is to examine the CASE tool repository as
a larger example of a deductive database. Quality of design is addressed in Chapter 7.

Having established what deductive databases are, and how they might be constructed, we consider some advanced aspects
of the technology. Query optimization is covered in Chapter 8, and a very useful metaprogramming technique in Chapter 9.
The metaprogramming technique is applied to the important special case of propositional expert systems in Chapter 10.

In Chapter 11, we examine the formulation and optimization of complex integrity constraints, while in Chapter 12, we consider
the problem of updates and of maintaining consistency in complex data structures.

There are exercises at the end of each chapter, with solutions provided at the end of the book.

1.6
FURTHER READING

The present book is intended as an introductory text in deductive databases and their applications. As such, it covers the main
points in an expository manner, omitting proofs. The interested reader will wish to explore the finer points, including the
mathematics. The first stage of this exploration will be the world of research monographs, which give a coherent view of
major segments of the field. Further exploration will bring the reader into the research literature: journal articles, conference
papers and compendia where specific results are presented and criticized. At the end of each chapter will be found a brief
sketch of the territory to be found in the next stage of exploration, with a mention of key references. These will be to
monographs generally, but where necessary, to the research literature. The monographs and papers in the references for this
text will open the deep literature to the keener student.

The reader is expected to have a good background in databases, such as would be gained in courses using Elmasri and
Navathe (1994) and Nijssen and Halpin (1989) or Halpin (1994). The reader is also expected to have some familiarity with
logic, and with Prolog, such as might be gained in a course based on Clocksin and Mellish (1987), Bratko (1986) or Sterling
and Shapiro (1986). It would be an advantage to have some awareness of knowledge-based systems, such as might be
obtained in a course based on Winston (1992), Genesereth and Nilsson (1987) or Rich and Knight (1991). Some of the issues
in generalized data structures mentioned in this chapter are addressed by Batini ef al. (1992). A widely cited survey on
federated databases is by Sheth and Larsen (1990). Finally, a contemporary survey of deductive database technology is given
by Ramakrishnan and Ullman (1995).

1.7
EXERCISES

The reader is expected to have a knowledge of relational database technology sufficient that these exercises be easy.
1.1 Given two relational tables:

A B B C
al bl bl cl
a2 bl bl c2
a3 b2 b2 cl

What is the schema and population of their natural join on the attribute B?
1.2 Add the table

A C
al cl
a3 c2

What is the schema and population of the natural join of AB, BC and AC on all shared attributes?
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CHAPTER TWO
Summary of Prolog

The reader is assumed to be familiar with Prolog to some extent. The purpose of this chapter is to summarize the material
about Prolog needed for the rest of the book.

2.1
BASICS

Prolog is a branch of logic programming. A Prolog program consists of a collection of logical formulas which form the set of
axioms of a formal system. The axioms are turned into a program procedure by the Prolog interpreter, or inference engine,
which is a type of theorem prover.

Formally, Prolog statements are Horn clauses. Horn clause logic is a subset of the first-order predicate calculus defined as
follows.

A constant is a string of characters beginning with a lower-case letter, a digit, or enclosed in quotation marks, for example

a alpha aNB_vx436 42 “Arbitrary text string"
A variable is a string of characters beginning with an upper-case letter or the underscore (_) character, for example
X _ Xact 43 _22

An n-ary function is a function symbol with n>0 arguments, each of which is either a constant, variable or function. A
function symbol is a constant beginning with a lower-case letter. A 0-ary function has no arguments, and is indistinguishable
from a constant. Examples of functions are

(@) X,y Z) fgX), Y), a) first_person

A term is either a constant, variable or function.

An atom is an n-ary predicate consisting of a principal functor and n arguments consisting of terms, with n>0. An atom
looks very much like a function. In fact, a predicate is a function whose range is the set {true, false}.

Predicates are sometimes described by their principal functor and arity. For example, the predicate p with arity 2 is
described as predicate p/2.

A literal is either an atom or the negation of an atom. An atom is sometimes called a positive literal, while the negation of
an atom is called a negative literal.

A clause is a disjunction of literals. It can be shown that any formula in the first order predicate calculus can be
transformed into a clause. We can eliminate existentially quantified variables by substituting unique constants for them. We
can then transform the formula into a clause in which all variables are universally quantified by quantifiers whose scope is all
the literals in the clause.

A Horn clause is a clause with at most one positive literal. Using the definition of implication 4 5B if the formula B or ~4
is true, and the identity ~4 or ~B= ~(4 and B), a Horn clause can be expressed as

Head :- Body.

where Head is a positive literal, Body is a conjunction of negative literals (with the negation signs removed), and “:-” denotes
that Body > Head. Head is called the clause head, Body the clause body.

A clause with an empty body is called a unit clause, a clause with an empty head is called a goal or query, while other
clauses are called general clauses.

A term containing no variables is said to be ground.

A ground literal is a proposition, in the sense of the prepositional calculus. A ground clause is therefore a prepositional
formula.

A collection of clauses with the same head predicate (same principal functor and arity) is called a procedure. The
procedure is called the definition of its head predicate.
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A unary predicate whose definition consists of ground unit clauses is sometimes called a type definition. A definition is
recursive if at least one of the clauses in its procedure is recursive.

A Prolog program is a collection of predicate definitions. Note that every clause in a program has exactly one positive
literal, so that every clause has a non-empty head. A general clause in a Prolog program is sometimes called a rule.

It is important to note that a variable in a Prolog program has a scope limited to the clause in which it appears. Therefore
variables with the same name appearing in different clauses are distinct. Most Prolog systems do not support the concept of a
global variable.

The variable “ ” is special. It is a shorthand notation for a variable name which occurs nowhere else in the clause. It is
called the anonymous variable.

We will illustrate the definitions with the well-known ancestor example.

@

Example 2.1: ancestor program
male(bob).
male(jim).
female(thea).
female(edwina).
parent(thea, edwina).
parent(jim, thea).
married(bob, thea).
mother(Mother, Child) :
female(Mother), parent(Mother, Child).
ancestor(Older, Younger) :
parent(Older, Younger).
ancestor(Older, Younger) :
parent(Older, Intermediate),
ancestor(Intermediate, Younger).

This example is a program consisting of definitions for the predicates male/1, female/1, parent/2, married/2, mother/2 and
ancestor/2. The definitions of male/l, female/l, parent/2 and married/2 are collections of ground unit clauses. The unary
predicates male/l and female/I are type definitions. The definition of ancestor/2 is recursive, while the definition of mother/2
is not.

2.2
COMPUTING WITH A PROLOG PROGRAM

2.2.1
Logical view

A Prolog program is a static object. Formally, it is a set of axioms, or theory, in the Horn clause subset of the first-order
predicate calculus. As a static object, it has much in common with a database. A database is turned into an information system
by a computer program called a database manager, which permits a user to make queries on the database. The analogous
computer program for Prolog is called a Prolog interpreter.

What a Prolog interpreter does is to attempt to prove theorems from the theory which is the conjunction of the clauses of
the Prolog program. Let us call the program P and the query, which is an atom, Q. A query is also called a goal (query is from
the point of view of the user, while goal is from the point of view of the Prolog interpreter). Formally, the interpreter attempts
to prove that the conjunction P and ~Q is false.

Since the program P is a conjunction of axioms, each of which is assumed to be true, then P must also be true. Therefore, in
order for the formula P and ~Q to be false, we must have ~Q false, and therefore Q true.

For example, suppose we have a query on the program of Example 2.1

male(bob)? 2.1
If we call the conjunction of the clauses of Example 2.1 the program 4, then the interpreter attempts to prove false (disprove
or refute) the formula
A and ~male(bob) (2.2)
One of the axioms of 4 is the clause male(bob). We can make this explicit by expressing the program 4 as
A = male(bob) and B (2.3)
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where B is the conjunction of the remaining clauses of Example 2.1. We can therefore express the formula (2.2) as
male(bob) and B and ~male(bob) 2.4)

which must be false, since for any formula F, the conjunction F and ~F is always false. We have therefore proved the query
(2.1).

This may seem a roundabout way of doing things, and for prepositional queries like (2.1), it is. However, the same
procedure can be used for first-order queries, that is queries containing variables. For example, consider the query (in
Example 2.1)

female(X)? 2.5)
By inspection of the program, we would accept as an answer
female(thea). (2.6)
or alternatively
female(edwina). (2.7)

Recall that, formally, a Prolog query is an atom all of whose variables are existentially qualified. (A query was defined above
as a clause consisting entirely of negated universally quantified atoms, and we have the identity V X ~p(X) = ~3 X p(X).))
Formally, then, the Prolog interpreter attempts to prove query (2.5) by attempting to disprove the formula

A and ~3 X female(X) (2.8)
Now the program contains as axioms formulas (2.6) and (2.7). Therefore, the formula
~3 X female(X) 2.9

must be false, since we can exhibit either formula (2.6) or (2.7) as counterexamples. We have therefore not only proved the
formula

3 X female(X) (2.10)
but also identified two specific instances of X, namely
X = thea
X = edwina 2.11)

These specific instances are called answer substitutions.
On the other hand, sometimes the interpreter may not be able to find a counterexample, and the query is disproved. For
example, the query
married(edwina, X)? (2.12)
is false.
The task of a Prolog interpreter is therefore

m if the query is ground, produce the answer yes if it can prove the query, no if it cannot;
m if the query contains variables and if the interpreter produces the answer yes, also exhibit an answer substitution for each
variable.

Note, by the way, that this behaviour is exactly that expected of a database manager when presented with similar queries. For
this reason, a database manager will sometimes be referred to as an inference engine, as will sometimes a Prolog interpreter.
If an answer substitution can be found for a goal, the goal is said to be satisfiable. If there is a conjunction of subgoals, and
mutually compatible answer substitutions can be found for all of them, then the conjunction of subgoals is said to be
satisfiable.
So far, we have considered only queries which depend on procedures consisting only of unit clauses. We would also like to
put forward queries which would require general clauses, such as those in the definitions of mother and ancestor.
Consider first the propositional query
mother(thea, edwina)? (2.13)
As in the sequence (2.1)—(2.4), we can express the program A4 as
A = (mother(M, C) :- female{M). parentiM, C)) and
female(thea) and parent(thea, edwina) and B
where B is the remainder of the clauses in 4. If we substitute the constant thea for the variable M, the constant edwina for the
variable C; and make the conjunction of the negation of the query with the result, we obtain the formula
~mother(thea, edwina) and
(mother(thea, edwina) :-
female(thea), parent(thea, edwina) ) and
female(thea) and parent(thea, edwina) and B
Applying the definition of implication, (2.15) becomes

(2.14)

(2.15)
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~mother{thea, edwina) and
(mwther(thea, edwina) or

~female(thea) or ~parent(thea, edwina)) and (2.16)
female(thea) and parcnt(thea, edwina) and B
Using the boolean algebra identity
(A or B) and ~B = A and ~B (2.17)
formula (2.16) reduces to
~mother{thea, edwina) and
mother{thea, edwina) and
female(thea) and (2.18)

parent(thea, edwina) and B

which is always false, for the same reason as (2.4). We have therefore established the truth of the formula (2.13), and the
Prolog interpreter would answer yes. When the interpreter reports yes, the goal is said to succeed, otherwise the goal is said to
fail.

A first procedural description of the behaviour of the Prolog interpreter is Prolog Interpreter (First):

1 Attempt to find a clause in the program whose head can be made the same as the goal by substitutions for variables. If
unsuccessful, report no.

2 If the clause is a unit clause, report yes and the substitutions made for any variables in the query.

3 Otherwise, repeat steps 1 and 2 for all the predicates in the clause body (called subgoals) with the substitution applied to
their variables. Report yes if the interpreter reports yes for all subgoals. Report also the final substitutions for variables in
the goal. If the interpreter reports no for any of the subgoals, report no.

In the example (2.13)—(2.18), the interpreter reports yes, but there are no variables in the goal, so that no substitutions are
reported.

If we process the query

mother(thea, Child)? (2.19)
Step 1 finds the clause defining mother, and finds that if it makes the substitution Mother = thea, the clause head is the same
as the goal (2.19). The clause is not, however, a unit clause, so that step 2 does not apply and we must proceed with step 3,
obtaining the two subgoals
female(thea), parent(thea, Child) (2.20)

The first is a unit clause in the program, so the interpreter reports yes for this subgoal. The second can be made the same as a
unit clause in the program by the substitution Child = edwina, so the interpreter reports yes for this subgoal also. All of the
subgoals having succeeded permits the goal to succeed as well, with the substitution Child = edwina being reported for the
variable present in the goal.

Step 3 of the Prolog interpreter procedure is called expanding the goal, or if the goal is a subgoal of a previous goal,
expanding the subgoal.

The process of finding substitutions for variables so that a goal can match a clause head is called unification. The
substitution with the fewest constants which makes the goal and the clause head the same is called the most general unifier,
or mgu for short. The mgu is not the only possible substitution: for example in step 1 following (2.19), it would have been
possible to substitute a constant for the variable Child as well as for the variable Mother. The substitution

Mather = thea

Child = edwina (2.21)
would lead to the subgoals (compare (2.20))
fernale(thea), parent(thea, edwina) (2.22)

which would have succeeded since both subgoals are unit clauses in the program. However, an equally valid substitution
would be

Mother = thea

Child = jim (2.23)
which would produce the subgoals

female(thea), parent(thea, jim) (2.24)
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Figure 2.1 Simple proof trees.

mother(thea, edwina)?
|
Mother = thea
Child = edwina
|
mother{Mother, Child)

Sl

female(thea) pareni(thea, edwina)
female(thea) parentithes, edwina)
succesd succeed

Figure 2.2 Proof tree with a goal having multiple subgoals.

which fails because the second subgoal fails. Since at the time of unification the interpreter does not know which of the
substitutions (2.21), (2.23) or other possible substitutions will lead to success, it follows the safest path of choosing the most
general unifier.

Consider now the query

ancestor(thea, edwina)? (2.25)
The Prolog Interpreter (First) procedure will report yes, in much the same way as for the query (2.13). However, for the query
ancestor( jim, edwina)? (2.20)
we note that step 1 has a choice of clauses. If the first is chosen, the query will fail. If the second is chosen, the subgoals
parent(jim, I), ancestor(I, edwina) 2.27)
will result. The first succeeds with the substitution / = thea, while if step 1 chooses the first clause of ancestor for the second
subgoal, the further subgoal
parent(thea, edwina) (2.28)
results, which will succeed.

The point is that the procedure Prolog Interpreter (First) must be modified to take into account that there may be several
choices at step 1, and that there is not enough information available at that time to decide which to make. The algorithm must
make one choice, then if that choice fails, make another; reporting failure upwards only if all choices lead to failure.

We are led to the concept of a proof tree. Its root is the original goal. We establish a set of branches leading from the root,
one for each clause head which will unify with the goal. Each branch is labelled with the mgu of the goal with the associated
clause head. If there are no clauses which will unify with the goal, a single, unlabelled, branch is created, leading to a node
labelled fail. If there are branches, any associated with a unit clause are made to lead to a node labelled succeed. Figure 2.1
shows sample trees for these situations. The node female(X) on the left is called an or-node, because it has more than one
successor to choose from.

In most cases a goal will be expanded by a clause with more than one subgoal. The arcs from the node associated with the
clause head to the nodes associated with the subgoal are tied together. The node associated with the clause head is called an
and-node. Figure 2.2 shows a proof tree of this kind. The node labelled mother(Mother, Child) is an and-node.

Figure 2.3 shows a proof tree for a goal on the ancestor predicate. Note that the tree expands to the right without limit,
reflecting the recursive clause in the predicate definition. Also note the arcs marked with thick lines. These arcs start with
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Figure 2.3 Proof tree for ancestor.

succeed nodes, and propagate up the tree. When an and-node is reached, the thick arc propagates upward only if all of the arcs
leading to its subgoals have thick arcs. If at least one arc leading to the original goal at the root of the tree has a thick arc, then
the goal succeeds. The portion of the tree whose arcs are thick designates the subgoals which have succeeded in order for the
goal to succeed. This subtree may be called the success subtree.

A Prolog interpreter can be seen as a strategy searching the proof tree looking for success subtrees. The standard strategy
used in Prolog implementations is a depth-first search, which traverses the proof tree from left to right, expanding the left-
most subgoal until reaching either succeed or fail. If succeed is reached, the search returns to the nearest and-node and takes
the next branch to the right. If fail is reached, the search returns to the nearest or-node, and takes the next branch to the right
(this is called backtracking). The tree is laid out so that the branches in an and-node are left to right, as are the subgoals in
the clause body, while the branches in an or-node are left to right, as the clauses appear in the program text. Examples of
these appear in Figure 2.3.

Besides this theorem-proving style of query evaluation, Prolog interpreters generally have special predicates called built-in
predicates, or built-ins. These can be syntactic shortcuts such as the if-then-else construct p—¢q; r, which is interpreted as “if
p is true then the expression is true if ¢ is true. If p is false, then the expression is true if 7 is”. Built-ins can also take semantic
shortcuts, perform computations, or carry instructions to the interpreter to perform some special action. Built-ins are essential
for the employment of Prolog for practical applications. For our purposes, however, most of the built-ins are inessential, so
that those needed will be described at the relevant point.

Prolog programs can be used to construct and process complex data structures, such as lists. Lists are so common that there
is a special syntax for list structures:

[1is the empty list

[a, b, c] is the list consisting of a, followed by b, followed by ¢

[H|T] is a list whose first element (called the sead) is any substitution for the variable H. The remainder of the list (called
the tail), which might be empty, is any substitution for the variable T.

The data structures represented in unit clauses are often trees or more general graphs. The ancestor example (Example 2.1)
can be viewed as a directed acyclic graph, whose nodes are the populations of male/I and female/I, and whose arcs are the
population of parent/2. The source of an arc is the Older argument, while the target is the Younger argument. The predicate
ancestor/2 is the transitive closure of the graph. This issue is discussed further in Chapter 3.
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We sometimes want to know not only that one node is transitively connected to another, e.g. ancestor(jim, edwina), but
also what path the connection takes (in this case [jim, thea, edwina]). An adaptation of ancestor/2 to this task is anc path
(Older, Younger, Path), where Path will be bound to a list containing the path of relationships:

anc_path(Older, Younger, Path) :- a_p{Older, Younger, [Younger], Path).

I. a_p(Older, Younger, Path_so_far, |Older | Path_so_far]) :
parent(Older, Younger).

2. a_p(Older, Younger, Path_so_far, Path) :- (2.29)
parent{Intermediate, Younger),
a_p(Older, Intermediate, [Intermediate | Path_so_far], Path).

anc_path( jim, edwina, Path)?

In the first execution (of clause 2), Path so_far = [edwina]. In the second execution (of clause 1), Path_so far = [thea,
edwina]. Upon success, Path = [jim, thea, edwina].

The transitive closure with path example (2.29) is a graph where there is only one path between any two nodes. If there are
several paths, then the predicate will find all of them via backtracking. If the graph is cyclic, then backtracking can generate
an indefinite number of solutions. Consider:

node{a). node(b), node{c).
edge(a. b).  edge(b, c).  edge(c, a).

closure(Source, Target, Path) :- cl(Source, Target, [Target], Path).

1. cl(Source, Target, Path_so_far, [Source | Path_so_far]) -

edge(Source, Target). (2.30)
2. cl(Source, Target, Path_so_far, Path) :

edge(Intermediate, Target),

cl(Source, Intermediate, [Intermediate | Path_so_far], Path).

closure{a, c, Path)?
which will generate the series of solutions Path = [a, b, ¢], Path = [a, b, ¢, a, b, ], etc.
To correct this problem, clause 2 of (2.30) can be modified to check for cycles:
2. cl{Source, Target, Path_so_far, Path) :-
edge(Intermediate, Target),
nol member(Intermediae, Path_so far),
cl{Source, Intermediate, [Intermediate | Path_so_tar]. Path).

2.31)

The added clause not member/2 expresses the predicate “the intermediate node has not been encountered yet”. It uses a
negation construct, which will be discussed below, and a predicate member/2, which is true if its first argument is an element
in its second, which is a list. The definition of member/2 is left to the reader.

2.2.2
Implementation view

It will be useful to know about some of the high-level data structures and operations used in implementing a Prolog
interpreter. Examples refer to Figure 2.3.

A goal calls a procedure which returns if it succeeds and backtracks if it fails. A procedure consists of a number of
clauses the heads of which are unified in turn with the goal. The set of clause heads comprises the branches of an or-node of
the proof tree. An unsuccessful unification is a fail branch. An or-node is called a choice point. A pointer called the alternate
keeps track of the first clause in the choice point which has not yet been tried (nil if none left at the current or-node). For
example, when node (1) is the current node, node (2) is the alternate. When node (2) is the current node, the alternate is nil.

Unification consists of matching constants and binding variables. A variable is either free or bound to a constant (one free
variable may be bound to another). Bound variables encountered in the process are dereferenced (all operations are performed
on the ends of chains of bound variables). Data structures needed to support unification include a variable-binding frame,
which keeps track of which variables are bound to what; and a series of trail frames which keep track of variables which are
bound to constants or other variables occurring higher in the proof tree.

Both of these data structures are associated with each clause in the current potential success subtree. These and other
structures are held in a frame on a stackorganized storage called the environment stack. The environment frame holds the state
of the system. It includes an alternate, described above. As well, it includes a continuation, which is the next goal to be
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executed if the subgoal succeeds. The continuation is the next subgoal in the nearest higher and-node. When node (1) or (2) is
being executed, the continuation is ni/, while when node (3) is being executed, the continuation is node (4).

For convenience, the interpreter keeps a record of the last choice point, which is the alternate in the nearest or-node which
has a branch not traversed (alternate not nil). The value of the last choice point at the time a clause is being executed is kept in
the environment stack frame in a slot called the backtrack point. At node (1), the last choice point is node (5); at node (3),
the last choice point is node (2), while at nodes (2) or (4), the last choice point is nil.

Working storage associated with processing the clause is organized in stack form, so the tops of the stacks used are also
kept in the environment frame.

If a clause head unifies with the goal, its body, if any, becomes a new goal (or goal sequence). The leftmost subgoal is
called and the continuation pointer is set to the next subgoal to the right if there is more than one subgoal. Otherwise the
continuation remains pointing to the next subgoal in the nearest and-node containing a subgoal not yet expanded. If the current
subgoal succeeds, the subgoal pointed to by the continuation is called. If the continuation is nil, the original goal must have
succeeded. In the sequence of nodes (4), (6), (7), (8), the continuation is nil, since if that path succeeds, the goal (5) has
succeeded.

If the current subgoal fails, then the environment associated with the last choice point is restored, and execution proceeds with
the clause pointed to by the alternate. If the last choice point is nil, then there is no success subtree in the proof tree, and the
original goal fails. The process of restoring the environment at the last choice point is called backtracking, and it involves
undoing all the variable bindings made in traversing the proof tree below that node. Some of the variable bindings are stored
in the part of the stack discarded when the environment is restored, but binding information for variables which occurred in the
part of the current tree still active must be removed. The information kept in the frail is used to clear these bindings. When
goal (9) fails, the bindings (10) must be undone when execution returns to the last choice point (5).

Variables are bound to terms. If a variable is bound to a term other than a variable, it is said to be instantiated to that term.
The term may be another variable, a constant or a function. Arguments of a function may be variables, constants or other
functions. When a variable is bound to a constant or function, the binding is a pointer to some constant text. In particular, any
constant or function symbol in a term to which a variable is bound must appear somewhere in the program text. The program
text is stored in data structures available to the Prolog interpreter.

Two basic strategies of implementation are commonly used: structure-sharing in which a variable binding is a pointer to a
section of the program text as stored by the interpreter, and copying, where the text to which variables are bound is copied
from the program stored in the interpreter to a copy stack. In copying, structures already on the copy stack are simply pointed
to.

We summarize below the discussion of a Prolog interpreter:

1 Start: put the goal onto the empty goal stack.

2 Choose subgoal: Get the next goal for processing by popping the goal stack. If the stack is empty, then report yes and the
substitutions made for any variables in the query. Otherwise, create a new choice point, and set alternate to the beginning
of the program.

3 Expand the goal: starting from alternate, attempt to find a clause in the program whose head can be made the same as the
goal by substitutions for variables. If unsuccessful, report no and backtrack (step 6). If successful, record the first clause
not tried in alternate.

4 Check for success: if the clause is a unit clause, proceed to step 2.

5 Save subgoals: push the subgoals onto the goal stack from right to left. Proceed to step 2.

6 Backtrack: restore the state of execution of the last choice point. If there is no choice point, then report no. Otherwise,
there is a choice point, so proceed to step 3.

An actual interpreter would be much more elaborate than this sketch, of course. In particular, the choice of subgoal and setting
of the alternate pointer would be restricted to the definition of the procedure defining the goal’s predicate. Furthermore, a
Prolog program may have many possible solutions, and this interpreter produces only one. Practical interpreters often force
failure after the goal so that all possible solutions are produced by backtracking.

2.3
NEGATED GOALS

So far, we have considered Prolog as a Horn clause system. This means that all goals must be positive. Such a program is
called a definite program. Database systems, on the other hand, allow negative queries, and we would like Prolog to do
something similar.
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We can begin by considering a collection of relational expression built-ins which test numbers or character strings for
equality, greater than, less than, etc. One of these is not equals (!=). We could express the query “does edwina have any
ancestors other than thea” by the query

ancestor(X, edwina), X != thea? (2.32)
There is a stronger form of equality derived from the properties of Prolog which is implemented in the unit clause
equals(X, X). (2.33)
The goal
equals(X, Y)? (2.34)

succeeds if X and Y unify, i.e. a substitution exists which makes them the same. Examples of goals where equals succeeds are
equals(a, a)?
equalsia, X)?
X=a

equals(F(X, a). f(b, Y))? (2.35)
X=b
Y=a
and examples where equals fails are
equals(a, b)?
(2.36)

cqualsif(X, a, Y), fib, c. d))?

The predicate equals fails if it is impossible to find a substitution unifying its two arguments. It makes sense, therefore, to
have a predicate not_equals, which is true if equals fails.

A simple generalization is to allow a goal which succeeds if the interpreter fails to find a solution. It is usual to implement
this via a modal operator not. (A modal operator is a meta-predicate which expresses some property of the logical system in
which the following formula is embedded, in this case failure to prove.) We augment the logic with the additional axiom

not F > ~F (2.37)
for a formula F.
We could therefore express the query “bob is not an ancestor of edwina” by
not ancestor{(bob, edwina)? (2.38)
Unfortunately, there are restrictions on the use of not. Consider the program
convicted({bob).
Job_applicant(terry).
honest(X) :- not convicted(X). (2.39)
mistrust{X) - not honest(X),
reject_applicant(X) :- mistrust(X), job_applicant(X).
and we wish to get the list of job applicants which we will reject, using the query
reject_applicant(X)? (2.40)
To process the query (2.40), we first process the subgoal mistrust(X), which succeeds if honest(X) fails. The subgoal honest
(X) fails if convicted(X) succeeds, which it does with X=>bob. The first subgoal therefore succeeds with X still a free variable.
The interpreter progresses to the second subgoal, which succeeds with X=terry, so the query (2.40) succeeds, with X=ferry. We
therefore conclude that we should reject Terry’s application because Bob has a conviction.

The problem is that success of the goal mistrust(X), with X a free variable, is interpreted that everyone is mistrusted on the
grounds that at least one person is not honest, which is not a valid logical conclusion, even though sometimes people behave
that way.

If, however, the reject_applicant clause were altered to

reject_applicant(X) :- job_applicant(X), mistrust(X). (2.41)
the first subgoal would succeed with X=ferry, so the second would fail, since honest(terry) succeeds because convicted(terry)
fails. We would not therefore reject Terry’s application, which is the correct behaviour.

The precise conditions under which it is logically valid to use not are somewhat technical. It is common to restrict the use of
not to predicates which are ground at the time of their execution, permitting for example (2.41) since the left-to-right
execution will produce a binding for X from job_applicant before mistrust is called. The same predicate in (2.39) would not
be valid unless the variable X in the query (2.40) is ground, so that mistrust is called with its argument bound.

We will call standard Prolog goals positive subgoals. Correspondingly, a negative subgoal is a goal preceded by not.

This type of negation is called negation-as-failure, since a goal is taken as false if it cannot be proven true. This is similar
to the way negative queries are handled in database systems. Therefore, as in database systems, the question arises as to when
it is semantically valid to use this kind of negation.
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In a database system, it makes sense to make a negative query only if the database is assumed to contain all information
relevant to the query. For example, a person may not be considered to be enrolled for a particular subject in a university
unless the university database says so. If a query shows that a student’s identifier is not in the database associated with a
particular subject, then it is safe to assume that the student is not enrolled in that subject. On the other hand, the student record
table may have an attribute containing the student’s telephone number, if available. A query might show that a student has no
telephone on record, but it would not be safe to conclude from that result that the student does not have a telephone.

The assumption that a database table contains all relevant information is called the closed world assumption. Whether the
closed world assumption can be made is part of the information analysis from which the specification of the database is
derived.

A similar assumption is relevant to Prolog. A negative query is semantically valid only if the closed world assumption has
been made for the predicates relevant to answering the query. In our example (2.39), the closed world assumption holds for
both the convicted predicate and for the job applicant predicate. It may not hold for the mistrust predicate since there may be
other potential reasons to mistrust someone.

Some applications of negation to the ancestor example are:

Person X is the sister of a different person Y if X is a female and they have a parent in common:

sister(X, Y) - female(X),
parent(Z, X), parent(Z, Y), (2.42)
not equal(X, Y).

Person X is childless if X is married but has no children:
is_marnied(X) - married(X, ).
is_married(X) - marmed(_, X).
has_children(X) .- paremt(X, _).
childless(X) - is_married(X), not has_children{X).

We have carlier defined a definite program to be a program all of whose goals are positive and each clause of which has a
head predicate. A normal program may have negated goals, but each clause must still have a head predicate.

(2.43)

2.4
UPDATES

Prolog, as so far described, is a system for answering complex queries on a sort of database. It is a static system, since it has
no means of changing the database. Database systems, on the other hand, are generally intended to model aspects of
a changing world, so they accept updates to their tables. In most systems, one can add tuples to a relation, delete tuples from a
relation, or modify existing tuples.

There is a conceptual difficulty with admitting updates to a Prolog program. Prolog is descended from a logical theorem-
proving system, with a Prolog program conceptually a set of axioms. In standard logic, a set of axioms never changes. Not
only that, if a logical theory is consistent, once a theorem is proved it always remains valid: no further theorem can be
inconsistent with it. Logical systems with this property are called monotonic.

However, since Prolog is intended to be a practical programming language, and since many problems require programs to
model systems with changing state, a number of features are generally available in Prolog systems to allow clauses to be updated.
These and other features with no foundation in logic, which bend Prolog to practical purposes, are implemented using built-in
predicates which are called extralogical.

A clause may be added to a procedure using the built-in assert(X). The variable X is bound to a function. The function is
added as a predicate to the Prolog database. Recall that functions and predicates are syntactically indistinguishable. Since a
standard Prolog interpreter considers clauses in lexical order, there are frequently three built-ins related to assert:

asserta(X): adds X as the first clause in its procedure
assertz(X): adds X as the last clause in its procedure
assert(X): adds X to its procedure wherever the implementation finds most convenient.

6, 9

Note that general clauses may be asserted as well as unit clauses, since the turnstile “:-” is considered to be a function (:-/2) ,
as is the conjunction connective “,” (,/2). It is only necessary to construct such a function using the built-in which converts a
list of characters to an atom.

A clause may be removed from a procedure using the built-in refract/I. The argument of retract has the form of a
(positive) goal (recall again that predicates and functions are syntactically indistinguishable). The built-in unifies its argument
with the head of a clause in the same way as a goal, then removes that clause from its procedure. The clause may be either a
unit clause or a general clause. If no clause head unifies with its argument, then retract fails.

If there are several clauses which must be removed, they can all be removed by the program
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retract(X), fail? (2.44)

using the built-in fail, which always fails. This is the same strategy as described earlier by which a Prolog interpreter finds all
the answer substitutions which allow it to succeed for a goal.

Most implementations provide a built-in retractall/l, which performs the same function as (2.44).

Most Prolog systems do not provide direct support for modification of a clause: it is necessary to first retract the clause,
binding it to the function which is retract’s argument. The program constructs a new function, possibly using part of the
retracted function, then asserts it. For example, a count can be updated with the program

retract(count(N) ), M is N + |, assert(count(M) ). (2.45)
Note: arithmetical computation is performed by the built-in is. In the term X is Y+Z, the variable X is instantiated to the sum
of the terms to which Y and Z are bound. The latter terms must therefore be numerical constants of the appropriate type.

Here, the predicate count/I would have a single clause in its definition. The retract deletes that clause. The argument for
assert is a similar clause, which is constructed with the variable M bound to the value of the argument of the retracted clause
incremented by 1. At the end of (2.45), there is again one clause in the definition of count/I, with an updated argument.

A Prolog system with assert and retract is no longer monotonic. Obviously the clauses in its procedures may change, but
the theorems which are results of queries in clause bodies will also change. Monotonic logic is an area of much research, but
is not well understood at present. The issue is treated in more depth in Chapter 12.

2.5
ALL SOLUTIONS

Database systems typically allow the user to obtain and work with the set of tuples which responds to a query. Prolog, as
described so far, only allows individual solutions, each with its corresponding set of variable instantiations.

Since it is often convenient to reason about the set of solutions to a goal, most Prolog systems provide built-ins to compute
them. We will discuss two: bagof and all_solutions.

First, recall the conventional way of getting a Prolog interpreter to find all the variable instantiations which satisfy a goal.
This requires simply conjoining the goal with the built-in fail, which always fails. For example

ancestor(X, edwina), fail? (2.46)
in Example 2.1 will return the binding X=thea, then the binding X=jim, before responding no, since there are no more
solutions to the ancestor goal.

Recall that the list of atoms a, b followed by c is [a, b, ¢/, that the notation /H/T] is a list function where the variable H is
bound to the first element of the list and the variable 7 is bound to the remainder of the list, and that the empty list is
designated /].

The built-in bagof simply collects all these variable bindings into a list. The syntax is

bagof(<term>, <goal>, <list>)? (2.47)
where <goal> is a goal, either simple or compound, and <term> is a term whose variables are drawn from those appearing in
<goal>. The token <list> may be a variable which will be instantiated by the built-in to a list of terms, each of which is an
instantiation of the variables in <term> from one solution to <goal>. It may also possibly be a constant list of such terms. If
there are no solutions to <goal>, then <list> will be empty. For example, bagof applied to the goal in (2.46) would be

bagof(X, ancestor(X, edwina), L)? (2.48)
which succeeds with L=/jim, thea].

An example where <list> is a constant is

bagofi X, ancestor(X, Y), |7 (2.49)
which succeeds for those persons who have no ancestors in the database (Y=jim, Y=bob) and fails for those persons who do
(Y=thea, Y=edwina). Note that these results are for cases in which Y is bound to the indicated constant before the execution of
bagof. If bagof is executed with Y free, it will succeed with Y=jim only, since the others fail and bob is not in the parent
predicate.

If there are several solutions to a goal which have the same variable instantiations, then bagof will return a list with
duplicate entries, since it simply collects these solutions into a list. For example

parent{ jim, thea).

parent{dorothy, thea), (2.50)

bagof(X, parent(_, X), Children)?
will instantiate the variable Children to [thea, thea].
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Often the object of the query is to obtain the set of distinct solutions. This can be obtained by applying a simple program
which removes duplicates from the result of bagof, but some implementations provide a built-in called all solutions, with the
same syntax as bagof (2.49).

In reality, bagof and all solutions are not as simple as described here. First, there may be either an infinite number of
solutions or the goal may go into an infinite loop in searching for a solution, so that the predicate will not terminate normally.
Secondly, solutions may contain variables. While this is not a problem for bagof, it is not clear how to interpret the set of such
solutions. For example

p(X).
p(a). 2.51)
all_solutions(Y, p(Y), L)?
Should L be bound to /X, a/, or simply /X], since X and a unify? It is probably best to restrict the use of all solutions to
situations where the result will always be ground. We return to this issue in Chapter 4.

Finally, we note that we can compute aggregations, such as the number of solutions, by processing the lists produced by

bagof'or all_solutions. For example, if we want to know the number of solutions to the query (2.48), we could use
bagof(X, ancestor(X, edwinu), L), countiL, N)?

count([], O). (2.52)
count{[AIT), M) - count(T, N). M is N + 1.

The issue of aggregation is treated in much more depth in Chapter 4.

2.6
DISCUSSION

From a database perspective, Prolog can be seen as a system which manages stored facts, with a similar function to databases,
but which also manages derived facts and views. The correspondence between databases and Prolog is detailed in Chapter 3.

Database systems typically allow their users to update relations and to make queries, possibly through views. Not all views
can be updated. Since systems implemented in Prolog can have very complex derivation rules, it makes sense to consider whether
a given predicate can be updated by the user, in which case the predicate is called an update type. In the same way, not all
predicates may be available to the user for making queries. Those which are available for queries are called query types.
Predicates can be both update and query types, or sometimes neither (in which case they are called intermediate types).
These issues are considered in more detail in Chapters 5 and 6.

We have dealt so far in this chapter with unit clauses and general clauses, both of which have one positive literal (the clause
head). Clauses with no positive literals (goals or queries) have been treated as something external to the program. It is,
however, common for an application to have a set of integrity constraints, which are implemented as a set of queries which
must be satisfied for any valid instance of the system. In our formalism, these integrity constraints are clauses with no positive
literal, which are stored and manipulated in much the same way as the other clauses. An integrity constraint is thus similar to
a goal, in that a goal is a clause with no head predicate. A program with integrity constraints is not a normal program. Further
consideration of integrity constraints is deferred until Chapter 11.

2.7
SUMMARY

We have presented in this chapter the main definitions about Prolog needed for the remainder of the book. These include

the elements of Prolog;

the basics of a Prolog interpreter and its implementation;
negation and the closed world assumption;

updating procedures;

obtaining all solutions to a predicate.

2.8
FURTHER READING

The reader can find a much fuller exposition of Prolog as a programming language in Clocksin and Mellish (1987), Bratko
(1986) or Sterling and Shapiro (1986). The classic formal treatment of Prolog is given in Lloyd (1987). A treatment oriented
more towards deductive databases is given by Das (1992).
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2.9
EXERCISES

Data consists of several extensional predicates:
male(Person) : true if Person is male.
female(Person) : true if Person is female.
parent(Parent, Child) : true if Parent is a parent of Child.
married(Husband, Wife) : true if Husband is married to Wife.
Implicitly male(Husband), female(Wife).

2.1 Write a predicate same_generation(Personl, Person2), which is true if Personl and Person2 are the same number of
generations away from some common ancestor. Note that a person is considered to be the same generation as him/
herself.

2.2 Write a predicate great grandparent(Ancestor, Child), which is true if Ancestor is a great-grandparent of Child.

2.3 Write a predicate ancestors(Child, List_of female ancestors), which is true if List_of ancestors is a list containing only
ancestors of Child in the direct female line.

2.4 Write a predicate second _cousin(Personl, Person2), which is true if Personl and Person2 share a great-grandparent but
no nearer ancestors. Note that a person is NOT his/her own second cousin.

2.5 Write a predicate same_sex_children(Woman), which is true if Woman has more than one child, and all of these children
are the same sex.

2.6 Write a predicate most_children(Parent, Number of children), which is true if Parent has at least as many children as
any other parent, and Number of children is the number of children Parent has. (NOTE: this problem is a little trickier
than the others.)

Hint: if any problem requires more than 20 clauses, it is almost certainly wrong. My solutions have no more than 4
clauses for any of the problems.

2.7 Adapt the solution to Exercise 2.3 so that List of female _ancestors is bound to a list containing all ancestors of Child in
the direct female line.



CHAPTER THREE
Prolog and databases

There is a very close relationship between Prolog, as described in Chapter 2, and the relational algebra, with which the reader
is assumed to be familiar.

31
PROLOG AND THE RELATIONAL ALGEBRA

We have seen that a Prolog program consists of a collection of clauses, which are classified as either unit clauses or general
clauses. A database system consists of a schema and a number of relations, together with a query language based on the
relational algebra. The query language supports at least the relational operations select, project and join, as well as the set-
theoretic operation union. In this chapter, we examine the relationship between the two systems.

3.1.1
Relations

First of all, a Prolog procedure consisting of ground unit clauses is the same thing as a database relation. A clause in the
procedure is equivalent to a tuple in the relation. A tuple consists of a set of attributes together with a value for each. A
schema is essentially the relation name together with the attribute names, including a type for each.

A relation is frequently represented as a table with the attributes appearing as column headings and a row representing a
tuple. A single tuple in this representation is simply a sequence of values, with the ith value being the value of the attribute
appearing in the ith column heading. This tuple is represented as a unit clause by equating the relation name with the principal
functor, and placing the value of the ith attribute in the ith argument position.

There is in Prolog no explicit representation of the schema. It is, however, common to document the procedure with a
template, consisting of a clause with the principal functor of the procedure, having as arguments variables whose names are
suggestive of the attributes. Figure 3.1 contains an example of this correspondence. It shows a relation named student, its
representation as a table, and its representation as a Prolog procedure. Note that the “%” appearing in the template is a
common identifier for a comment in Prolog, indicating that the template is part of the documentation, not of the procedure.

3.1.2
Select
A relational selection is represented as a Prolog query or goal, The selection
Tsvgen sk STUDENT ) (3.1)
in SQL
SELECT * FROM STUDENT WHERE SNO = 013540 (3.2)
has as its value the relation consisting of the single tuple
<SNO=013540, SNAME=Smith, SUBJ=cs383> (3.3)
The corresponding Prolog query would be
student(013540, Surname, Subject)? (3.4)

where the selection criterion from (3.1) is expressed by the first argument position of the goal being instantiated to the
constant 0/3540. More complex selection criteria are implemented by relational expression built-ins in Prolog. For example,
if we wanted all students whose surname came after “V” in alphabetical order, we would have the SQL query

SELECT * FROM STUDENT WHERE SNAME > “V" (3.5)
and the corresponding goal
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Relation name: STUDENT Relation

Allributes: SNO - 324522
SNAME — Wong

student mumber: SNO: integes SUBJ - ¢cs317

sumame: SNAME: ext

subject enrolled in: SUBJ: texe SNO - 013540
SNAME — Smith
SUBJ - ¢s383

Represented as table

Table: STUDENT

P

/ (sno SNAME SUBJ
(124522 Wong mn)\

\\UI 3540 Snnth cs3R3 '

Represented as Prolog procedure

~
Template / )

‘ % student( Student_No, Sumame, Subject).

K procedure ,’l—/’/

O/—-

stilent (324522, wong, cs217).
sudent( 013540, smith, cs283).

Figure 3.1 Correspondence between a relation and a Prolog procedure.

student(013540, Sumame, Subject),
Surngme > “V" 1
The Prolog interpreter would instantiate the variables to
Sumame = wong
Subject = cs317
This example brings up an important difference between Prolog and the relational algebra: Prolog’s inference engine operates
tuple-at-a-time, computing bindings of the query variables to terms occurring in a single clause of the procedure; while a
database manager, the relational algebra’s equivalent of an inference engine, identifies the subset of the relation which
satisfies the selection conditions: it operates set-at-a-time.
To get a Prolog system to compute the equivalent of the relational algebra select operation, we need to use the all_solutions
built-in. In this example

(3.6)

(3.7)

all_solutions{
student(Student#, Surname, Subject),
student(013540, Surname, Subject),
Students)?

would instantiate the variable Students to a list of terms of the form student(Student#, Surname, Subject), which corresponds
exactly to the solution to the relational select (3.1).

(3.8)

3.1.3
Project

The relational operation project is performed in Prolog by choice of the variables of interest. For example, the projection
which computes the set of subjects in which the students in the STUDENT table have enrolled is
Tqup(STUDENT) (3.9)
in SQL
SELECT SUBJ FROM STUDENT (3.10)
which for our example table would be {cs317, ¢s383).
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The corresponding Prolog goal which would have these values as solutions would be
subjects(Subject) - student(_, _, Subject).

subjects(Subject)? (3.11)

As before, the solution to the relational operation (3.9) must be accumulated using the all_solutions built-in
all_solutions(
Subject,
subjects(Subject),
Subjects)?
The variable Subjects is instantiated to the list /cs317, cs383].

(3.12)

3.14
Join

The relational algebra join operation is represented in Prolog using conjunction of goals. In the common natural join, the join
condition is specified by shared variables. For example, suppose in addition to the STUDENT relation of Figure 3.1, we have
an additional SUBJECT relation whose attributes are subject code (SUBJ) and subject title (TITLE). We wish to join the two
relations

STUDENT e SUBJECT (3.13)

« SURS
in SQL
SELECT * FROM STUDENT, SUBJECT
WHERE STUDENT.SUBJ = SUBJECT.SUBI
If the SUBJECT relation were represented by the procedure
subject(Subject_Code, Title) (3.15)

then the individual solutions to the join (3.13) would be expressed in Prolog as

siudeni(Stedent_No, Surmame, Code),

subject(Code, Title)? (.16)
where the variable Code expresses the natural join condition. As in the examples (3.8) and (3.12), the whole relation must be
collected using the all-solutions builtin, which we will leave as an exercise for the reader.

(3.14)

3.1.5
Combinations

In a typical join query, the user is interested in a subset of the attributes. A join is therefore typically combined with a
projection. In query (3.13), we might be interested only in student surname and subject title, so the query would be

Tyuam. 1iny. STUDENT p< SUBJECT (.17)

in SQL
SELECT STUDENT.SNAME SUBJECT.TITLE
FROM STUDENT, SUBJECT (3.18)
WHERE STUDENT.SUBJ = SUBJECT.SUBJ
The corresponding Prolog goal (3.16) would be modified into a clause with subgoals
taking(Sumame, Title) :-
student(Student_No, Surname, Code), (3.19)
subject{Code, Title),
with the query goal
taking(Surname, Title)? (3.20)

The Prolog clause (3.19) can also be considered to be the definition of a view, corresponding to the relational algebra view
definition

TAKING = XKNAMF_ TITLE 51 UDh}:ﬁl:lll;Ib.‘éil_‘sﬂPBJE(:r (321)

in SQL
CREATE VIEW TAKING(SNAME, TITLE)
SELECT STUDENT.SNAME SUBJECT.TITLE (3.22)
FROM STUDENT, SUBJECT '
WHERE STUDENT.SUBJ = SUBJECT.SUBJ
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The union of two relations in the relational algebra is expressed in Prolog by the use of several clauses to define a procedure.
For example, if we wanted the union of the surname and subject title for students who are enrolled in subject ¢s3/7 or who
have student number beginning with “0”, we would define the procedure want
want{Surname, Title) :-
student(Student_No, Surmame, ¢s317),
subject{cs317, Title),
want{Sumame, Title) :- (3.23)
student{Student_No, Sumame, Code),
Student_No < “100000",
subject(Code, Title).

Finally, it is often convenient to think of relations as defined in terms of domains and roles rather than attributes of
elementary types. Domains are expressed in Prolog as predicates, defined by extension. The defining predicate of a domain
can be a predicate used for some other purpose, or can be a unary type predicate as in the person predicate used in the
ancestor examples in Chapter 2. These definitions in the relational system would be tables with a single column. For
example, we could define a view classmate which had two roles, both with the domain STUDENT:
classmate(Stwdent_1, Student_2) -
student(Student _1, _, Subject),
student(Student_2, _. Subject),
Student_1 # Student_2.

(3.24)

3.1.6
Prolog and relational algebra in a nutshell

We have so far in this chapter indicated the syntactical relationships between databases and Prolog. At the level of
representation:

m any relation can be expressed as a procedure consisting of ground unit clauses;
m any procedure consisting of ground unit clauses can be expressed as a relation;
m any view can be expressed as a procedure consisting of general clauses.

At the level of inference, Prolog has a tuple-at-a-time solution strategy, while the relational algebra is implemented using
database managers with a set-at-a-time solution strategy. Prolog needs the all_solutions built-in to compute the set of tuples
which are answers to a relational query.

Prolog with all_solutions therefore includes the relational algebra. On the other hand, there are constructs in Prolog which
cannot be expressed in the relational algebra:

m unit clauses containing variables or functions;
m procedures with recursion, either direct or indirect.

Chapter 4 considers in more detail the logical integration of Prolog with database. The remainder of this chapter looks at the
integration of database technology with Prolog implementation technology. The aim is to have a practical environment
allowing large procedures which persist between invocations of a program, which can be updated, and which can be shared
among several users.

3.2
PERSISTENT PROLOG IMPLEMENTATION

Having established that there is a close formal relationship between Prolog and the relational algebra, the question arises as to
how to build a piece of software which has the expressability of Prolog but the persistent data store capability of a relational
database.

At first glance, it would appear that a solution might be to take a good Prolog and a good database manager and couple
them together. Upon investigation, however, it turns out that the problem is not so easy. The basis of the problem is that a
Prolog interpreter is designed around efficient tuple-at-a-time reasoning, while a database is designed around efficient set-at-a-
time reasoning. This mismatch, sometimes called impedance mismatch, leads to severe difficulties in obtaining a good
persistent Prolog.
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From the point of view of a Prolog interpreter, the problem is that the database manager generates a set of solutions all at
once. If the Prolog system accepts the entire set, then it has the problem of storing what could be a large number of possibly
irrelevant tuples—irrelevant since it is common for only a few alternatives in a procedure to be satisfiable at the same time as
the other subgoals in its clause body.

If the database manager retains the set of results, it can release them one at a time to the Prolog system using the cursor
mechanism used in embedded database applications. However, a database manager is typically equipped with only a few (say
8) cursors, while a recursive Prolog procedure can easily generate a very large number of calls which are simultaneously active.
Furthermore, a Prolog program can generate updates on database predicates while they are being queried. This means that the
database must keep track of the tuples which responded to a query in the state as they were at that time. If any change is made
after the query is initiated, it is not visible to that query. Another way of stating this requirement is that the database must
initiate a transaction when the database goal is initiated, and this transaction endures until the Prolog exhausts all its
alternatives, possibly by a cut. (A cut is a Prolog built-in which tells the interpreter to ignore all further alternatives to the
current goal.)

On the other hand, a database manager is designed to perform query optimization. It takes a complex query all at once,
performs analysis on it and its system catalogs, and decides an execution strategy which requires close to a minimum
computation cost. A straightforward coupling of a Prolog interpreter to a database will only issue simple, selection-type
queries on the database manager. All the joins are performed by the Prolog interpreter. As we have already noted, this can
result in a large number of unnecessary tuples in the Prolog system. Furthermore, the query optimization facilities in the
database manager are not used, possibly resulting in greatly excessive execution costs.

Some implementations have altered the Prolog interpreter to delay execution of queries on database predicates so as to
accumulate as large a join as possible, then issuing them as a single complex query. This can require a complex and subtle
modification to the Prolog system.

Most databases are designed to store simple atomic data values, while Prolog systems are designed to store and manipulate
complex structures. A database manager requires some subtle modification to be able to store arbitrary structures while
retaining the indexing and other capabilities upon which its query execution strategy is based.

Practical database systems support transactions (with a commit/rollback protocol), whereby a series of updates can be
guaranteed to be applied either simultaneously or not at all. The tuple-at-a-time nature of Prolog reasoning makes it difficult
to support transactions, since a goal may remain active for a long period of time as its various alternatives are tried. Database
systems also generally support multiple user access, with a concurrency control mechanism based on the transaction. To
support concurrency control, a transaction first locks the resources it needs, performs its calculations and updates, then either
commits or rolls back and releases its resources. Again, the diffuse nature of Prolog, with long-lasting goals and tuple-at-a-
time reasoning, makes it difficult to determine in advance what resources are likely to be needed and also may require
resources for an unpredictable length of time. Most Prolog systems therefore do not support either transactions or multiple
access, and it is difficult to integrate them with database systems which do have these features.

The most common approach to integrating databases with logic programming, as we will see in Chapter 4, is to augment a
database manager with a restricted subset of Prolog which preserves set-at-a-time reasoning. This admittedly partial solution
has required substantial research into optimization techniques, some of the results of which are contained in Chapters 8 to 12.
This solution, based on set-at-a-time reasoning, also makes it practicable to support transactions and concurrency control,
since these features can be inherited from database technology.

3.3
RELATIONAL REPRESENTATION OF COMPLEX DATA TYPES

A relational database system is based on a class of operators which take relations as inputs and produce relations as outputs. A
relation is a complex data object. A single relation may consist of many millions of individual data items with specified
relationships between them. Think of the relation which stores information about a bank’s customers. Each customer may be
described by dozens of attributes, and there may be millions of customers:

A relation may be a complex data structure, but information systems applications often require data structures which are
even more complex. Consider a system involving students, subjects and enrolments as shown in Figure 3.2. An instance of
enrolment requires an instance of both student and subject. The purpose of recording instances of either student or subject is
to support possible instances of enrolment. The population of this data structure can be seen to be essentially a collection of
instances of one complex type of object in the universe of discourse.

A data structure represented in a conceptual modelling language can also be represented equivalently as a system of
relations and constraints, the most important of which from the present point of view is the foreign key constraint.

The ERA model of Figure 3.2 is represented in the relational model as a set of relations:
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Figure 3.3 Sample hierarchical data structure.

student(ID#, Sname, Course).

subject(ID#, Title). (3.25)
enrolment(StudentID#, SubjectIDW, Grade).
The relation enrolment has two foreign key constraints: enrolment.StudentID#=  studentID# and

enrolment.SubjectID#=subject.ID#.

It is possible to construct a great variety of data structures by this method. There are, however, some special kinds of data
structures which have useful properties. It is useful for a system designer to be able to recognize these special data structures,
so as to take advantage of standard representations and queries which exploit their special properties.

3.3.1
Hierarchical data structures

One useful data structure is the hierarchy. A familiar example is shown in Figure 3.3. Each customer possibly has several
invoices, and each invoice consists of possibly several line-items. As with the previous example, this structure is represented
in a relational system by three relations: customer, invoice and line-item. The hierarchy is represented by two foreign key
constraints: the identifier for an instance of customer must be stored with an instance of invoice, and the identifier for an
instance of invoice must be stored with an instance of /ine-item. The dashed relationship between line-item and customer is a
derived relationship which will be discussed below.

This system is again a single complex type of object in the universe of discourse. An instance of /ine-item makes sense only
if there is an instance of invoice, and an instance of invoice makes sense only if there is an instance of customer which has
made that purchase. Instances of customer exist only to support potential instances of invoice, and an instance of invoice
cannot exist without an instance of /ine-item (indicated by the mandatory constraint).

The rules of ERA allow us to construct derived fact types. The derived fact type in Figure 3.3 is possible because the entity
types customer and line-item each participate in a fact type with invoice. This derived fact type is the join of the two has fact
types, with the join role invoice projected out. Constraints can also be derived. The uniqueness constraint on the /ine-item role
of the derived fact type is derived from the uniqueness constraints on the two Aas fact types. The mandatory constraint on the
same role is derived in a similar way. Recall that the uniqueness constraint identifies the role as the domain of a functional
association, so that the uniqueness constraint on the derived fact type comes from the derivation being by functional
composition.

Derivation of fact types in this way may or may not make sense in the universe of discourse. In the case of Figure 3.3, the
derived relationship has a sensible interpretation: the set of line-items associated with all invoices for a particular customer.
The user of the system might like to compute this derived fact type, which can be represented using a view, say
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customer-has-line-item(CustID#, Line#) :-
customer-has-invoice(CustIDH, InviD#), (3.26)
invoice-has-line-item(InvID#, Linc#).
A similar derivation could be made from the two fact types in Figure 3.2 having enrolment as a role. This derived fact type is
essentially the same as the enrolment entity type, so that the derived fact type would be redundant in that universe of
discourse. A user in the system of Figure 3.2 would not be likely to request the described derivation.

We have established so far that complex data structures can be described using conceptual modelling tools, and that these
complex data structures can be represented as collections of relations linked together by foreign key constraints. Furthermore,
the relationships described in the conceptual model can be augmented by derivations made possible by the rules of the conceptual
modelling language used. Derived relationships may or may not be useful in the universe of discourse. If a derived
relationship is useful, it can be represented by a view definition in the relational implementation.

One of the properties of conceptual modelling tools such as NIAM or entity-relationship modelling is that a reasonably
good relational implementation of an application can be automatically computed from its description in the modelling
language. It is also possible to automatically compute the view definitions of useful derived relationships. However, the
CASE tool implementing the modelling method does not know which derived relationships to implement unless instructed by
the user. A large conceptual model may have very many possible derived relationships, only a few of which are useful.

One way for the user to instruct the CASE tool as to which derived relationships might be useful is via the names given to
the fact types. One often finds fact types given generic names (the two named fact types in Figure 3.3 are both has). We
might be able to recognize generic names which tell us whether derived relationships are useful. The name has is probably
not strong enough to make this inference. For example, the unnamed fact types of Figure 3.2 having a role enrolment could
easily have been named has.

There are generic terms which do have implications for structure. Consider that the fact types of Figure 3.3 might, instead of
has, be named names-a-set-of. This name would not make semantic sense without a functional association from a member of
the set to its name. If the two base relationships had this name, then the same name could be inferred for the derived
relationship, on the basis that an instance of customer names a set of instances of /ine-item which is the union of the sets of
instances of /ine-item named by each of the set of invoice instances in the set of instances of invoice named by the instance of
customer. (This is a re-statement of the derivation rules in the diagram of Figure 3.3.) Names which have semantic
implications can be used to derive other names and their semantic implications.

Note that in this example, the domains of the three relationships are different. This limits the derived relationships to
derivations which can be accomplished by a fixed number of joins—essentially the derivations which can be accomplished
using the relational algebra. We have seen in the present chapter that a relational algebra expression can be represented as an
expression in Prolog. Prolog permits recursive relationships. Anticipating Chapter 4, we would like to be able to have
recursive joins in our query language. The remainder of the present chapter describes some complex data structures for which
recursive derived fact types are not only possible, but essential.

3.3.2
Homogeneous relationships

Sometimes in information systems relationships (typically binary) are found in which all domains are the same. Several of these
have been encountered in Chapter 2. The parent relationship is shown in Figure 3.4. The relational representation of this
relationship is the predicate parent(Older, Younger), both of whose arguments are from the domain person. This type of
relationship is called a homogeneous relationship.
A homogeneous relationship offers more possibilities for derived relationships than a heterogeneous system, since there can
be an indefinite number of compositions. Our predicate parent supports
parent(Older, Intermediate), parent(Intermediate. Younger) (3.27)
parent(Older, Intermediate-1),
parent{Intermediate-1, [mermediate-2),
parent({Intermediate-2, Younger)
elc,
The semantics of the relationship name parent are not preserved under these compositions. The compositions do, however,
make semantic sense: projections from them are given names:
grandparent(Older, Younger) :
parent(Older, Intermediate), parent{Intermediate, Younger)

(3.28)

(3.29)
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great-grandparent(Older, Younger) :-
parent(Older, Intermediate-1),
parent(Intermediate-1, Intermediate-2), (3.30)
parent(Intermediate-2, Younger)
ctc.

forming the structure shown in Figure 3.5.
Some relationship names do persist under composition. Following the parent example, we have seen in Chapter 2 the use
of the ancestor relationship, which is transitive:
ancestor(Older, Younger) :-

anceston{Older, Intermediate), (3.31)

ancestor{Intcrmediate, Younger).
The predicate ancestor is derived from the predicate parent by the clause

ancestor(Older, Younger) :- parent(Older, Younger) (3.32)

These clauses (3.31) and (3.32) are combined in the usual definition of ancestor seen in Chapter 2, and illustrated in
Figure 3.6
ancestor(Older, Younger) :- parent(Older, Younger)
ancestor(Older, Younger) :-
parent(Older, Intermediate),
ancestor(Intermediate, Younger).

(3.33)

333
Transitive data structures and graphs

Any data structure equivalent to that of Figure 3.6 and (3.33) is equivalent to a directed graph and its transitive closure. By
equivalent to, we mean that there is an entity type substituted for the person type, and two homogeneous binary predicates, one
whose name is substituted for parent and the other substituted for ancestor. The prototypical such predicate substitutes arc for
parent, and derived-arc for ancestor. In this way a graph data structure can be represented in a relational database, and its
transitive closure can be represented as recursive joins using Prolog. Any type can serve as a node type, and hence the domain
of the homogeneous relationship. An arc has a direction. Its source is its first argument, and its target its second.
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Figure 3.9 Directed acyclic graph object type, with two DAGs.

There are many special forms of graphs. The special forms can be specified using a combination of integrity constraints on
the conceptual model (analog of Figure 3.6) and by additional predicates. We will consider a few generally useful cases:
chain, tree, directed acyclic graph, directed graph and undirected graph.

Chain

A chain is a graph in which each node is connected by an arc to at most one other, and which has no cycles, as in
Figure 3.7. The chain condition is enforced by the uniqueness constraints on the arc relationship. Notice that the derived
relationship is many-to-many even though the arc relationship is one-to-one.

A graph is cyclic if there is a derived arc from any node to itself. A Prolog representation of this condition is

cyclic :- derived-arc(X, X). (3.34)
so that the criterion for a chain is both the uniqueness constraints of Figure 3.7 and the lack of solutions to the predicate (3.
34). A concrete example of a problem modelled as a chain is a sequence of messages, where each message may be in reply to
at most one other message. The nodes are of type message, the edges are named reply-to(MessagelD# Reply-to-
messagelD#), and the closure, say, linkedto(MessageA, MessageB), where MessageA is a reply to MessageB, either directly or
indirectly. Note that the population of the fact type can be several distinct chains, as illustrated in Figure 3.7.

Tree

A tree is a graph in which every node is the target of an arc from at most one source, and which is not cyclic, as in
Figure 3.8 where predicate (3.34) has no solutions. As before, the derived-arc relationship is many-to-many.

A familiar example of a tree in the computing field is a directory structure, where the nodes are of type directory, an arc is a
subdirectory relationship, and a derived arc is an access path. Note again that a population of a tree fact type may contain
several distinct trees.

Directed acyclic graph

A directed acyclic graph (DAG) is a graph for which there are no solutions to predicate (3.34), as illustrated in Figure 3.9.

The ancestor predicate with which we started is a typical example of a DAG. Note that it is possible for the population to
include several distinct DAGs. Note also that there is no requirement for a DAG to be connected, so a single DAG may have
several disconnected components.
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Figure 3.11 Undirected graph.

Directed graph

A graph with no other constraints is called a directed graph, as shown in Figure 3.10.

A computing example of a directed graph is where the nodes are procedures and the derived-arcs are call relationships
(source predicate calls target predicate). The graph is cyclic if the procedures can be recursive. A more outward-looking example
is where the nodes are street intersections and the derived-arcs are blocks in a one-way street network. Note that, like the
DAG, a directed graph type may have several instances, and an instance may consist of several disconnected components.

Undirected graph

Figure 3.11 illustrates an undirected graph. An undirected graph is a graph where for each arc there is another arc with
source and target reversed. The combination of an arc between two nodes and its reverse is often called an edge.
The edge of an undirected graph can be derived from the underlying arc
edge(A, B) i~ arc(A, B).

edge(A. B) - arc(B, A). (3.35)
and this derived predicate can be used to construct the criterion predicate for undirected graphs
undirected :- not(arc(A, B), not edge(A, B)). (3.36)

in other words, that there is an edge between any two nodes between which there is an arc.
A two-way street network, where the nodes are street intersections and the edges are blocks, is an example of an undirected
graph. Another example is an electric circuit, where the nodes are circuit elements and the edges are conductive paths.

334
Elementary graph functions

Graphs are a very important and widely used data structure. There is a welldeveloped theory of graphs, with many important
conceptual constructs supported by good algorithms. This material is beyond the scope of the present work. However, some
elementary graph functions are often useful in deductive database applications. One of these is the concept of cycle, which
was defined in (3.34).
Two useful concepts in directed graphs are source and sink. A source is a node which is the source of arcs but the target of
none, while a sink is a node which is the target of arcs but the source of none. They are defined
source(A) :- arc(A, _), not arc(_, A). (3.37)
sink(A) :- arc(_, A), not arc(A, _). (3.38)
In a chain, there is only one source and sink, both of which are referred to as anchors (a and d of Figure 3.7 are anchors of
one chain, while e and g are anchors of the other). In a tree, there is one source (the root) and possibly many sinks (the
leaves). In Figure 3.8, node a is a root, while nodes ¢, e and f'are leaves. Similarly, node g is a root, and nodes / and 7 are leaves.
A DAG also has possibly many sources. In Figure 3.9, a, & and i are sources, while ¢, e and f are sinks of one graph, while
nodes j and k are sources of the other, whose only sink is node /. The concepts apply to general graphs (nodes 4 and i of
Figure 3.10 are sources, ¢ and e are sinks), but not to undirected graphs, since every node in an undirected graph is part of a
cycle.
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The first special case considered above, the chain, is not commonly found as an independent data type, but is very often
constructed in the course of processing more complex graphs. A path from one node to another is a chain. We have seen in
Chapter 2 that it is often convenient to represent a path as a list of nodes. Furthermore, in most applications a given node can
appear only once in a path. If the path represents a cycle, generally at most one node appears twice. The following predicates
illustrate how a path is formed in the various special cases of graph which we have considered.

In the acyclic cases (chain, tree, DAG), where (3.34) has no solutions, one definition of path is (3.39). The path is
initialized in the goal, such as (3.40).

path(A, B, PathSoFar, [A | PathSoFar]) :- arc(A, B).
path(A, B, PathSoFar, Path) :-

arc(A, 1), (3-39)
path{l, B, |A | PathSoFar|, Path).
path(A, B, [], Path)? (3.40)

In the cyclic cases, the predicate must test the constructed path to avoid cycles, so (3.39) is modified to something like (3.41)
path{A, B, PathSoFar, [A | PathSoFar]) :- arc(A, B).
path{A, B, PathSoFar, Path) :-
arc(A, 1), (3.41)
not member(l, PathSoFar),
path(l, B, [A | PathSoFar], Path).

where the predicate member is true if I is a member of the list PathSoFar.

It will be instructive for the reader to apply the path predicate to the examples of Figures 3.7-3.10.

One of these special graph structures, the tree, is an example of a (homogeneous) hierarchical data structure. As in the
example of Figure 3.3, if we start with a node instance R which is the root of a (sub)tree, then R can be interpreted as the name
of a set of nodes which are the target of arcs whose source is R. (In a tree, these nodes are often called children of R.)

children(R, C) :- arc(R, C). (3.42)
The children of the children are a set of nodes two steps removed from R. The children of those nodes are a set of nodes three
steps removed from R, etc. A predicate which identifies the nodes N steps removed from R is given in (3.43). Note that the
node R is considered to be 0 steps removed. (3.43) is defined for N>0.
nodes.-removed-level(R, R, 0).
nodes-removed-level(R, C, Nj :-
N >0,
MisN-1I.
arc(R, 1),
nodes-removed-level(l. C, M).
In the example in Figure 3.8, if R=a, then the solutions of (3.43) for N=0 are {a}, for N=1, {d, b}, and for N=2, {c, e, f}.

(3.43)

335
Identifying graph data structures in conceptual models

We have established that applications often require complex data structures, and that conceptual models in modelling
languages like NIAM or entity-relationship modelling provide good descriptions of these complex data structures. We have
also established that it is possible to have reserved generic names for fact types which can be used to infer that derived fact
types are useful. Finally, we have established that homogeneous fact types can be used to model graph data structures.

Graph data structures need both arcs and derived arcs. It would be convenient if the modelling language allowed us to
indicate which homogeneous fact types were intended to model graph structures, and to name both the arc and derived-arc.
For example, Figure 3.12 is a representation of Figure 3.6, where the fact type is annotated with — to indicate that it models a
graph data structure. The role at the shaft of the arrow is the source of the arc, and the role at the head of the arrow is the target
of the arc. Two names are given. The first (parent) is the name of the arc fact type, and the second (ancestor) is the name of
the derived-arc fact type. The further annotation @ indicates that the graph is acyclic. This annotation shows in a compact way
that the parent relation is a collection of directed acyclic graphs, whose transitive closure view is named ancestor. Adding the
uniqueness constraints of Figure 3.7 would make the graphs acyclic chains, while adding the uniqueness constraints of
Figure 3.8 would make the graphs trees.
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Figure 3.12 Alternative representation of Figure 3.6, using graph annotations.

3.4
SUMMARY

This chapter has described the relationship between the relational algebra/SQL and Prolog, and has considered the design
problems involved in implementing a shared persistent Prolog environment. Finally, a database-oriented Prolog representation
is given for several special cases of data structures, including graph data structures, together with some elementary predicates
for processing them.

3.5
FURTHER READING

A much more extensive discussion of the relationship between logic programming and databases is contained in Ullman
(1988), Ceri et al. (1990) and Li (1984). The material on the implementation of a database-like Prolog system is taken largely
from Colomb (1990). There are many good texts about graphs.

3.6
EXERCISES

Consider the relational data schema below, with the attribute names defined in the following data dictionary. The schema
describes a universe of discourse relating to a University department.

Department(deptname, heademp#, extgrant, intgrant, fax# OP)

Academic(emp#, empname, deptname, status, ext#, chair OP)

Award(emp#, degree, uni, yr)

Phone(ext#, room)

Department: attributes of a University department

deptname: name of department, e.g. Computer Science

heademp#: employee number (emp# from Academic) of the Head of Department

extgrant: dollar value of external grants awarded to department last financial year

intgrant: dollar value of internal grants awarded to department last financial year

fax#: telephone number of departmental fax machine

Academic: attributes of an individual University academic staff member

emp#: employee number

empname: name of staff member

deptname: department which employs the staff member (from Department)

status: one of Lecturer, Senior Lecturer, Associate Professor, Professor

ext#: telephone extension on the University PABX (from Phone)

chair: if status=Professor, the name of the Chair the professor occupies (e.g. Professor of Information Systems, Professor of
Software Engineering)

Award: attributes of an academic’s professional qualifications

emp#: employee number (from Academic)

degree: degree awarded (e.g. B.E., Ph.D., M.Sc.)

uni: university which awarded the degree

yr: year in which the degree was awarded

Phone: attributes of the telephones used by academics

ext#: telephone extension on the University PABX

room: room number in which the phone is located
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3.1 Translate the following from SQL to Prolog
(a) create view Occupies(emp#, room)=select emp#, room

from Academic, Phone
where Academic.ext#=Phone.ext#

(b)
select Academic.emp#, empname, degree
from Department, Academic, Award
where Department.deptname=Academic.deptname
and Academic.emp#=Award.emp#
and empname not="Cantor”
and fax# is not null
and yr between 1965 and 1985

(c)
select deptname, empname, degree
from Academic, Award
where Academic.emp#=Award.emp#
and status="Professor”
and uni=“UQ”
union
select deptname, empname, “nil”
from Academic
where status="Professor”
and emp# not in

(select emp# from Award where uni="“UQ”)
3.2 Translate the following from Prolog to SQL

(a) telephone_directory(Emp#, Empname, Deptname, Ext#, Room) :-
academic(Emp#, Empname, Deptname, , Ext#, ),
phone(Ext#, Room).

(b) share office(Emp#) :-
academic(Emp#, , , , Ext#, ),
academic(Emp# 2, , , ,Ext# 2, ),
phone(Ext#, Room),
phone(Ext# 2, Room),

Emp# |=Emp# 2
academics_sharing_offices(List_of academics) : -
all solutions[Emp#, share office(Emp#), List of academics).

3.3 Apply the path predicate (3.39) to the example in Figure 3.9, starting with node /. Show all solutions.

3.4 Apply the path predicate (3.39) to the example in Figure 3.10, starting with node 4. What happens when you attempt to
compute all solutions?

3.5 Apply the path predicate (3.41) to the example in Figure 3.10, starting with node 4. Show all solutions.

3.6 Consider the following application model, which is based on the way manufacturing organizations manage their
inventories.

Manufacturer M makes products that require assembly of parts. An assembly (e.g. automobile) may be made up of
several subassemblies (e.g. chassis, body, engine, carburettor) and parts (e.g. bolts). Each subassembly is made up of
further subassemblies and parts. The lowest-level subassemblies are made entirely of parts. A bill of materials keeps track
of how many of each lower level subassembly and part is required to build each (sub)assembly. A unit (product, part or
subassembly) has an indentification number and a description. It is not possible for a unit to be directly or indirectly a
component of itself.
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Describe the data structures needed for this application in a conceptual model, using the methods of this chapter. If a
graph structure is suitable, name the most specific relevant structures considered in the text, and include it in the
conceptual model using the conventions of Figure 3.12.



CHAPTER FOUR
Datalog and bottom-up evaluation

This chapter describes a subset of Prolog which forms a natural extension to the relational algebra.

4.1
DATALOG

4.1.1
Motivation and definition

We have seen some of the difficulties in integrating Prolog with databases. Not only are the difficulties practical, there are
also substantial theoretical issues. Horn clause logic, upon which Prolog is based, is a subset of the first-order predicate
calculus, but one which preserves much of its power. Horn clause logic also inherits some of the theoretical problems of
predicate calculus.

One of these difficulties is non-termination. Although it is possible to build automatic theorem provers for the first-order
predicate calculus, and indeed there are many quite useful theorem provers, if a formula is true there are algorithms which
will find a proof in a finite number of steps; but if there is no proof no algorithm will terminate on all formulas. In addition, there
may be an infinite number of solutions. For these reasons, it is not in general possible to do set-at-a-time reasoning in Prolog.
Even if, in fact, there are a finite number of solutions, one cannot guarantee that the theorem-proving algorithm has found
them all after any finite time.

A relational database, on the other hand, is decidable and finite, with set-at-a-time reasoning the preferred method of
inference. Its main theoretical deficiency is lack of computational power due to absence of recursion. What is needed is a
subset of logic weaker than Horn clause logic but stronger than relational database theory, which preserves finiteness and
therefore set-at-a-time reasoning.

Such a subset has been developed: it is called datalog. It is Prolog with the restrictions:

m unit clauses are always ground;
m function symbols are not allowed;
m it is negation-free.

In practice, most deductive database implementations permit carefully circumscribed relaxations of these restrictions,
particularly negation, as we will discuss later. An additional technical property required to support the restriction that unit
clauses be ground is that any variable which appears in the clause head also appears in the clause body (a clause with this
property is called safe).

The unit clauses are a relational database. The subset of unit clauses of a datalog program is called its extensional
database, or EDB. The other clauses are called its intensional database, or IDB. The IDB contains all the views, derived facts
and integrity constraints of relational databases, but also permits recursion. Datalog is therefore strictly more powerful than
relational databases. A datalog program, possibly with some carefully defined extensions, is frequently called a deductive
database, or ddb.

The IDB is analogous to the set of views in a relational database. One of the important characteristics of views is that to a
user, a view is indistinguishable from a table, at least for queries. A table is represented as its set of tuples. It therefore makes
sense to characterize the IDB as a set of tuples.
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4.1.2
Naive algorithm for bottom-up evaluation

Calculation of the set-of-tuples representation of an IDB is done using a technique called bottom-up evaluation. The
simplest implementation of bottom-up evaluation is called the naive algorithm, which is based on the way in which views are
computed in relational databases. A view is defined by a relational algebra expression. The view is materialized starting from
the database tuples and performing the selections, joins and projections in some appropriate order. We can consider this
computation as an operation 7 starting from one set of tuples (which we will call a database) and yielding another. If we
denote the population of all views by ¥, we have
T:EDB—-V

If we then combine the EDB with the view population, we have the database EDB V. We can, if we like, apply T to EDB
w V, but we will still obtain ¥, since views in the relational theory cannot be recursive.

We saw in the last chapter that a clause in Prolog can be seen as a relational algebra expression, where the clause head
determines the attributes onto which the result is projected. The object of the evaluation algorithm is to find sets of tuples for
each relation corresponding to a clause head in the IDB. Initially, all the IDB relations are empty. We have only the EDB
relations. If we consider the IDB as a set of view definitions, then we can apply the T operator. In this case, however, the views
may be recursive, so that if we apply 7 to the database EDB  V, we can obtain some additional tuples, since the IDB may
contain joins involving relations defined in the IDB. We formalize this situation by considering a series of applications of 7:

My=EDB

M;=M, L T(M,)

My=M; LU T(M,)
and so on

For example, consider a variation of the ancestor database seen in Chapter 2, which performs transitive closure on a
directed acyclic graph, without taking account of paths, as in Example 4.1.

Example 4.1
EDB:
person(bill). parent(bill, peter).
person(mary). parent(bill, paul).
person(peter). parent(mary, peter).
person(paul).  parent(mary, paul).
person(john).  parent(paul, John).
person(sue).  parent(paul, sue).
person(alice). parent(sue, alice).
person(eva).  parent(sue, eva).
IDB:
Al: ancestor(Older, Younger) :- parent(Older, Younger).
A2: ancestor(Older, Younger) :- parent(Older, Middle),
ancestor(Middle, Younger).
We have
M=
person(bill).  parent(bill, peter).
person(mary). parent(bill, paul).
person(peter). parent(mary, peter).
person(paul).  parent(mary, paul).
person(john).  parent(paul, John).
person(sue). parent(paul, sue).
person(alice). parent(sue,alice).
parent(eva). parent(sue, eva).
T(My)=
ancestor(bill, peter).
ancestor(bill, paul).
ancestor(mary, peter).
ancestor(mary, paul).
ancestor(paul, John).
ancestor(paul, sue).
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ancestor(sue, alice).
ancestor(sue, eva).
M;=M, u T(My)
T(M))=

ancestor(bill, John).
ancestor(bill, sue).
ancestor(mary, John).
ancestor(mary, sue).
ancestor(paul, alice).
ancestor(paul, eva).
plus the tuples in T(M,)
My=M,; u T(M;)
T(M,)=

ancestor(bill, alice).
ancestor(bill, eva).
ancestor(mary, alice).
ancestor(mary, eva).
plus the tuples in T(M;)
M;=M, LU T(M,)

T(Mj3) is only the tuples in T(M,)
M;=M3 U T(M;)=M;

Notice that in the example we eventually reach a point where 7 does not add any tuples to the database. The database in the
sequence where 7" does not add any new tuples is called the fixed point of the operator 7. (Naturally, this depends on the
initial EDB and on the IDB.) The successive M; are called partial materializations of the view. The fixed point can be
considered as the infinitely-repeated application of the 7 operator, denoted 77 w.

A very important property of datalog is that the operator 7 has a fixed point for any EDB and any IDB. This is because datalog
has been carefully defined to remove any sources of infinity. The EDB and IDB are both finite. Since there are no function
symbols, there is no way of creating any new attribute values, so that there are only a finite number of possible tuples in the
relations defined by the IDB.

That is to say that given any EDB and IDB, the sequence of databases M, M,;, M,,..., defined by successive application of
the T operator, will always contain an index i such that M;=M; for j>i and M; is a strict subset of M; for j<i. We call this
database M; the perfect model of program P=EDB  IDB, and will designate it by M. The perfect model has the useful
property that if we view P as a Prolog program, every tuple in it will give the answer yes if presented as a query goal. Not
only that, any ground query goal which would give the answer yes is a tuple in the perfect model. This property can be
verified for our ancestor example (Example 4.1), whose perfect model is

person(bill). parent(bill, peter). ancestor(bill, peter).
person(mary). parent(bill, paul). ancestor(bill, paul).
person(peter). parent(mary, peter). ancestor(mary, peter).
person(paul). parent(mary, paul). ancestor(mary, paul).
person(john). parent(paul, John). ancestor(paul, John).
person(sue). parent(paul, sue). ancestor(paul, sue).
person(alice). parent(sue, alice). ancestor(sue, alice).
person(eva). parent(sue, eva). ancestor(sue, eva).
ancestor(bill, John). ancestor(bill, alice).

ancestor(bill, sue). ancestor(bill, eva).

ancestor(mary, John). ancestor(mary, alice).
ancestor(mary, sue). ancestor(mary, eva).

ancestor(paul, alice).
ancestor(paul, eva).

The fact that a perfect model exists is important because it confirms that we can think about datalog programs in the same sort
of way as we think about databases: as sets of tuples. It thus confirms our hopes that datalog, although more powerful than
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database theory, is still similar enough so that most of what we know about database theory will carry over. Note that the
requirement that all datalog clauses be safe ensures that the perfect model is ground.

4.1.3
Propositional systems

The reader will recall from their study of logic that the propositional calculus is a subset of the first-order predicate calculus. A
propositional system has no variables, so that all clauses are ground; consequently there is no quantification. This means that
there is no method of grouping unit clauses or of analysing the internal structure of a ground formula. A proposition is
therefore generally regarded as a sentence which can either be true or false. Because any internal structure of a sentence is
invisible to the propositional calculus, a generic sentence is frequently represented as a single character, e.g. p, g.
A propositional IDB is a collection of formulas such as

Pi-qT,s.

Pt 4.1)
A propositional EDB is simply a collection of proposition symbols. For example (4.2) could be an EDB corresponding to the

IDB (4.1)
T.

‘. 4.2)
The perfect model for the DDB (4.1) + (4.2) is
r.
t. 4.3)
p.

This example illustrates that an EDB predicate in a propositional system can have at most one tuple. The propositional
calculus is usually formulated so that each elementary proposition (unit clause) has a truth value, either true or false. The
propositional DDB models this structure, using negation as failure, by

presence of tuple = wruth value frue

absence of wple = ruth value false (4.4)

A propositional EDB can therefore be seen as an assignment of truth values to the elementary propositions. Computation of
the perfect model can be seen as the assignment of truth values to the propositions which are defined in the IDB. These
propositions are the consequents of IDB clauses. The perfect model computation is equivalent to propagating the truth values
of the EDB propositions through the IDB rules. A query is the determination of the truth value of a proposition.

Propositional systems are therefore much easier to work with than first-order systems, but are less expressive. Their
practical importance comes from the fact that most expert systems encountered in practice are essentially propositional Horn
clause systems. They are also important from a theoretical point of view, since there are a number of issues which do not
depend upon variables and quantification, notably stratification, described below.

4.14
Bottom-up versus top-down

From a practical point of view, the existence of a valid bottom-up evaluation scheme presents different ways of processing
queries. A deductive database is a Prolog program, so that the standard top-down, depth-first search method will solve a
query. As we saw in Chapter 2, the depth-first search method is space-efficient: it takes only one stack frame per level of
recursion; and in some common special cases may take only one stack frame for an entire query evaluation. The method is
also quite general: it works for full Prolog as well as the restricted datalog. It is probably the method of choice if a single
solution is desired for a query.

On the other hand, depth-first search has some disadvantages, some of which are especially serious in a datalog program.
First, the order of subgoals matters in depth-first search. For example, if the IDB in the ancestor example (Example 4.1) were
altered to that given in Example 4.2, a query like ancestor(alice, bill)? would never terminate. (Note that the query has no
solutions.)

Example 4.2
A1’ ancestor(Older, Younger) :- parent(Older, Younger).
A2' ancestor(Older, Younger) :- ancestor(Older, Intermediate),
parent(Intermediate, Younger).
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Rule 41" would fail, and rule 42" would generate the subgoal ancestor(alice, Intermediate)? Rule A1' would fail on the
subgoal, then rule 42’ would generate again the subgoal ancestor(alice, Intermediate 1)? and so on. In databases, the order of
terms in a join is irrelevant. This means that if depth-first search is used to evaluate goals, some IDBs which would make
sense from a database viewpoint will not work properly.

Secondly, the top-down approach makes use of the powerful method of unification to create the variable bindings from
which the solution is built. The joins on which the bottom-up method is based require only matching, the ability to tell
whether two constants are the same. Matching is a much less expensive operation than unification, so that the elementary
operation on which bottom-up evaluation is based is computationally simpler than that for top-down.

Thirdly, joins in bottom-up are evaluated all at once, while in top-down the joins are evaluated one solution at a time.
Evaluation all at once presents opportunities for using the join optimization technology developed in the database world. This
faster computation of joins is especially valuable if the set of solutions to a query is desired, which is characteristic of
database applications.

We would therefore like to be able to use bottom-up evaluation as a method of processing queries. Unfortunately, the
algorithm we have is not very practical (which is why it is called the naive algorithm). In particular, each application of the T’
operator repeats all the computation of the previous application. Not only that, the termination condition requires testing the
equality of two possibly very large sets of tuples.

The simplicity which makes the naive algorithm valuable for proving the desirable properties of the perfect model makes it
a poor basis for constructing a practical deductive database system.

4.2
SEMI-NAIVE BOTTOM-UP ALGORITHM

A little thought will reveal that the naive algorithm can be greatly improved by removing redundant computation. We want to
evaluate IDB rules only if there is a chance that they will generate new tuples.

First, we note that an IDB rule can generate tuples in the first application of 7 to the EDB only if all of its subgoals are EDB
relations. No rule with a subgoal defined entirely in the IDB can generate any tuples since all the IDB relations are empty at
this stage. (Note that, as we will see in Chapter 8, it is sometimes reasonable to have procedures defined partly in the EDB
and partly in the IDB.)

Secondly, no rule all of whose subgoals are defined entirely in the EDB can generate any new tuples after the first
application of T.

Generally, no rule in the i+1st application of 7' can generate any new tuples unless one of its subgoals is an IDB relation which
had new tuples generated in the ith application of 7.

More formally, if we have the sequence EDB = My, M, ..., M, = M, we can identify the new tuples at each stage as
Ay, Ay, ..., A, where

A, = M, difference M,
4A; = M, difference M,

A = M. difference M. .,

When we apply T to M, we only consider the rules in IDB all of whose subgoals are defined in EDB. When we apply 7 to
M,, >0, we only consider the rules in IDB at least one of whose subgoals is a relation which has tuples in 4;. A rule which
generates new tuples in a particular application of T is said to fire on that application.

The calculation of 4, is reminiscent of the calculation of derivatives using the product rule in the differential calculus. The first
step is to compute a superset of new tuples, which we will designate 4'. If a clause / has only one IDB subgoal p, and a
conjunction of EDB subgoals e, then the new tuples of / are

A'h - Ap, e.
If & has several IDB subgoals py, p,,..., p, then the new tuples of / are
Ah - Ap, Pay i oo P B
Ah - pys Apsa - -, Pe ©-
Ah - py, Pas - s Ap,, €.

At each stage, only the clauses of 4% for which Ap, is non-empty need be evaluated. Further, the other subgoals have all their
relevant tuples already computed in the accumulating perfect model, so can be treated similarly to EDB predicates. Finally, it
is possible that A4 contains some tuples which were already computed, so that we must remove them:

Ah = A’h difference M,
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To summarize, we have

A, = T(M)
M, =4 uM,
A, = AT(M,)
M,=4,UM
clc.

The algorithm terminates at step n when 4, is empty.

This modified algorithm, called the semi-naive algorithm, produces the same result as the naive algorithm.

We show in Example 4.3 the results of the semi-naive algorithm applied to the program of Example 4.1. 4, is produced
entirely by rule 4/, which has only EDB relations in its subgoals. All the rest are produced entirely by rule A2.

Example 4.3
IDB:
Al: ancestor(Older, Younger) :- parent(Older, Younger).
A2: ancestor(Older, Younger) :- parent(Older, Middle),
ancestor(Middle, Younger).
A=
ancestor(bill, peter).
ancestor(bill, paul).
ancestor(mary, peter).
ancestor(mary, paul).
ancestor(paul, John).
ancestor(paul, sue).
ancestor(sue, alice).
ancestor(sue, eva).
A, =
ancestor(bill, John).
ancestor(bill, sue).
ancestor(mary, John).
ancestor(mary, sue).
ancestor(paul, alice).
ancestor(paul, eva).
Ay =
ancestor(bill, alice).
ancestor(bill, eva).
ancestor(mary, alice).
ancestor(mary, eva).
A4 is empty, so the semi-naive algorithm terminates.

Example 4.4 shows that when there is more than one IDB subgoal in an IDB rule, one rule can generate more than one
contribution to 4. Generally, there can be a contribution to 4 from an IDB rule for each IDB subgoal in that rule.

Example 4.4: IDB rule

The rule is true if two people are allied by marriage, i.e. they have descendants who are married to each other. (The
predicate is-married is an example of an undirected graph.)

allied(Person_1, Person_2) :-

is_married(Spouse 1, Spouse_2),

ancestor(Person_1, Spouse 1),

ancestor(Person_2, Spouse_2).

is_married(Spouse 1, Spouse_2) :-

married(Spouse 1, Spouse 2).

is_married(Spouse 1, Spouse_2) :-

married(Spouse 2, Spouse 1).

Assume that married is an EDB relation, and that ancestor is as defined in Example 4.3. If M; (ancestor) is the ith
materialization of ancestor (the entire ancestor relation as computed at the end of the ith application of 7), and
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A;(ancestor) are the tuples for the ancestor relation computed during the ith application of 7, then the new
tuples in the i+1st application of T for the allied relation are

Aiy (allied)=

allied(Person_1, Person_2) :-

is_married(Spouse 1, Spouse_2),

A;(ancestor(Person_1, Spouse 1)),

M;(ancestor(Person_2, Spouse_2)).

,

allied(Person_1, Person_2) :-

is_married(Spouse_1, Spouse_2),

M;(ancestor(Person_1, Spouse 1)),

A;(ancestor(Person_2, Spouse 2)).

The main point of Example 4.4 is that a step of the semi-naive algorithm generates new tuples for an IDB rule only if the previous
step generated new tuples for at least one of its subgoals. Therefore we must consider new tuples generated for each of its
subgoals in turn.

We conclude that the semi-naive algorithm is a practical method for computing the perfect model of a deductive database
program. Unfortunately, for practical sys-tems the perfect model is often extremely large and the user is only concerned with
a small part of it. In Chapter 8 we look at ways to transform rules so that the seminaive algorithm can form the basis for a
deductive database system useful in practice.

4.3
NEGATION AND STRATIFICATION

The definition of datalog given at the beginning of this chapter excluded negation. Negation is an important feature of
databases, and its inclusion in datalog is necessary for it to be a superset of database theory. The problem with negation is that
the naive algorithm is not entirely satisfactory for queries with negative subgoals. (Consequently, neither is the semi-naive
algorithm, which gives the same result.)

Example 4.5
EDB
a.
IDB
R1:p:-notq.
R2:q:-a.

If we evaluate rule R/ before rule R2 we obtain the model {p, ¢, a}, since when we evaluate R/ there are no tuples in the
relation g. On the other hand, if we evaluate R2 first we obtain the model {g, a}, since R2 places a tuple in g before R/ is
evaluated. (Recall that the model {p, g, a} is interpreted as “the propositions p, ¢ and «a are all true”, and that the model {g, a;
is interpreted as “the propositions ¢ and a are both true, but the proposition p is false”.)

Intuitively, it seems unreasonable to evaluate R/ first, since we are not giving the rest of the program the chance to put
tuples into relation g (determine the truth or falsity of proposition g). In the depth-first top-down evaluation, the interpreter
would exhaust all means of proving ¢ before allowing p to succeed. We can express this preference for a reasonable order of
execution as

Rule: Compute negatives before using. Evaluate all rules producing instances of a relation before any rule having that
relation negated in its body.

Unfortunately, it is not possible to follow this rule for all IDBs. Consider the program given in Example 4.6.
Example 4.6

R1:p:-notq.
R2: q :- not p.
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On the other hand, we can prove that if it is possible to apply the “Compute negatives before using” rule at all, any sequence
of execution which follows the rule gives the same result. If it is possible to follow the rule, we say that the program is
stratified. In a datalog program with stratified negation, the model computed using the above rule is the perfect model.

There is a simple algorithm for determining whether an IDB is stratified. It uses a graph whose nodes are the rules of the
IDB. There is an arc from a source rule to a target rule if the source rule is part of the definition of a predicate which is a
subgoal in the target rule. Each arc is labelled positive if the subgoal in the target rule is positive and negative if the subgoal in
the target rule is negative. This graph is called the dependency graph of the IDB.

Stratification theorem: A program is stratified if its dependency graph has no cycles with a negative arc.

Figure 4.1 illustrates several dependency graphs. Programs 4 and D are stratified while programs B and C are not. In
program 4, R2 is evaluated before R/. In program D, either both p and g are true or both p and ¢ are false. If some other rule allows
us to put a tuple in one or the other, then program D says that they both should have a tuple. On the other hand, in programs B
and C we cannot decide whether to evaluate R/ or R2 first, since in either case the results are different if we start with R/ than
if we start from R2.

It is of course possible to have non-stratified first-order programs as well as propositional programs. We will use an
example from a hypothetical federated database system.

Example 4.7
Let us assume that there are three sites, A, B and C. Site A is responsible for sales, and maintains a subtype structure on
the organization’s customers, which includes a predicate identifying standard-customers and returns the
discount allowed for each such customer. Site A has a view definition
standard-customer(C#, Discount) :-
customer(C#, Discount),
not special-discount(C#, Special-type, Special-Discount).

The export schema for site A includes only the view, not its definition.
Site B supports a sales analysis department, one of whose tasks is to identify “good” customers, who might be candidates
for favoured treatment. Site B has a view
good-customer(C#, Revenue) :-
standard-customer(C#, Discount),
sales(C#, Revenue),
good-customer-revenue-threshold(T),
Revenue>T.
Again, only the view is exported.
Finally, site C supports the marketing department. One of the tasks of the marketing department is to offer special discounts
to customers under certain conditions. One of its views is
special-discount(C#, good-customer, Disc) :-
good-customer(C#, Revenue),
good-enough-threshold(T),
Revenue>T,
good-customer-discount-rate(Disc).
As usual, only the view is exported.

In the federated database, the views of Example 4.7 interact. The dependency diagram is given in Figure 4.2.

There is a cycle in the diagram: standard-customer — good-customer — special-discount — standard-customer, and the
arc special-discount — standard-customer is negative. Our example is not stratified. Looking at it carefully, you can see that
if a customer does not have any special discounts, but generates enough revenue, they will be given a special discount, which
will result in their not being eligible for a special discount.

Looking at the situation even more carefully, you can see that the difficulty does not affect every customer. Customers whose
revenue is not high enough will be represented in standard-customer and possibly good-customer, but not in special-discount.
The concept of stratification is a little stronger than necessary.

In fact, it is possible for a program not to be stratified but to be satisfactorily computable. Notice that at site C, all tuples
put into special-discount give the attribute Special-type the value good-customer. Suppose that the view at site A were
modified to exclude the special discounts of type good-customer. 1If this were done, then no customer tuple would ever
encounter the entire cycle of Figure 4.2. Site C would only consider a customer for a special discount of type good-customer
if they did not already have such a discount, and the granting of such a discount would not prevent site A from classifying the
customer as a standard customer.



DATALOG AND BOTTOM-UP EVALUATION 45

A Rl p:notg
. (Example 4.3)
R2 q:-a
No cycles

(stratified)

R R2

B Rl pi-noly

(Example 4.6)
R2 q:-notp P

Cycle with two negative arcs

//
I I -
\ J (ot stratified)

R

C Rl p:-nptq
R2 q:-p
-+
——
v e
Rl/ \;{) Cyele with one negative arc
/- (not stratificd)
\\L__’//
D Rl p:=-q
R2 q:-p
e
//f-" _"--._\\\
C 4 salive Arce
Rl R2 ’dc_ with no negative arcs
'\ / (stratified)
A .

Figure 4.1 Sample dependency graphs.

The concept of stratification is therefore a sufficient condition for a program to have a well-defined model, but is not
necessary. More stringent conditions have been proposed, but they tend to suffer from computational difficulties. However, it
is often possible to modify a program with a well-defined model, but which is unstratified, to obtain a stratified version. For
example, if the different types of the predicate special-discount were given different names, then the cycle in Figure 4.2 would
disappear, as in Figure 4.3. There is now no cycle, so that the modified program is stratified.

Because the definition of stratification is easily verified and covers most of the applications appearing in practice, deductive
database theory is generally restricted to stratified programs.

A stratification of a program P is a partition of its IDB into sets of rules P, P,,..., P, with no negative arcs between them
in the dependency graph. Moreover, if i < j, no negative subgoal in P; is defined in P;. Any stratified program has at least one
stratification. For example, the stratified programs in Figure 4.1 have the stratifications:

A: stratum 1 contains R2, stratum 2 contains R1.
D: there is one stratum, containing both R1 and R2.
The stratified program in Figure 4.3 has the stratification:
Stratum 1: customer, special-discount-other
Stratum 2: standard-customer, good-customer, special-discount-good-customer
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Figure 4.2 Dependency diagram for federated database (Example 4.7).

_—~ Customer

standard-customer w-—__
“ ——
Y —_—

\' special-discount-other

R special-discount.
>

gmnl-cl.:‘:t\uma e good-customer

.,

e

Figure 4.3 Program of Figure 4.2 modified so as to be stratified.

sales

We modify the naive and semi-naive algorithms to compute the perfect model first for Py, then for P,, and so on. The perfect
model for P is the union of the perfect models for the partitions. Any stratification of P produces the same perfect model for P.
This modification of the naive algorithm is the formal equivalent of the “Compute negatives before using” rule, and will be
assumed in the following.

4.4
AGGREGATION

Database systems typically allow aggregation functions in their query languages. For example SQL provides COUNT, SUM,
MAX, MIN and AVERAGE, as well as GROUP BY. Since aggregation is closely related to the set of solutions of a
predicate, it is reasonable to base the syntax for aggregation functions on the syntax for a set of solutions. Recall that for
datalog the set of solutions for a predicate is finite and computable.
In Chapter 2 we presented the following syntax for the set of solutions built-in:
solutions(f(X), p(X. Y), L) 4.5)

where X and Y are disjoint sets of variables. The product is a list (bound to L) of f{X) for each distinct X which is a solution to
pX ).

In datalog, we do not need a special facility for set of solutions, since the computational model of datalog is view
definition, which is the materialization of the set of tuples defined by the view. Every predicate in datalog computes the set of
solutions. However, aggregation generally results in a scalar value. A workable syntax for aggregation is

aggregate(V = aggregate_function(X), p(X, Y)} (4.6)
where X is a single variable, Y is a set of variables not containing X, and aggregate function is the name of the aggregation
function. The variable V' is bound to the value of the aggregation function applied to the instantiation of the variable X over
each distinct instantiation of X and Y which is a solution to p. An exception is the function count which has no arguments, and
which binds to ¥ the total number of distinct solutions to the predicate p. This syntax is exactly equivalent to the
corresponding syntax in SQL, taking into account the relationship between SQL and Prolog developed in Chapter 3.

Group by, on the other hand, produces a set of tuples. A syntax for group by is

group_by(Z, V = aggregate_function(X), p{X, Y, Z)) 4.7
where Z is the collection of variables on which to group, and X and Y are as for aggregate. For each distinct combination of
values of the group-by variables, V' is bound to the value of the aggregate function for p(X, Y, Z) where the variables in Z are
restricted to that combination of values. Again, this syntax corresponds exactly to GROUP BY in SQL.
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Figure 4.4 Dependency diagram cycle involving aggregation.

Example 4.8
Assume the predicate sale(Customer, Date, Amount), which records sales of amount Amount in dollars to customer
Customer on date Date.
Customer Date  Amount

1 3/5  $100
2 4/6  $150
3 4/6  $100

aggregate(V=count, sale(_, , ))binds V to 3.

aggregate(V=sum(Amount), sale(_, , Amount)) binds V to 350.

aggregate(V=sum(Amount), sale(_, 4/6, Amount)) binds V to 250.

group by(Date, V=sum(Amount), sale(_, Date, Amount)) produces the tuples

<3/5, 100>, <4/6, 250>.

group_by(Amount, V=count, sale(_, , Amount)) produces the tuples

<100, 2>, <150, 1>.

Recursion can introduce problems in computing aggregations analogous to the problems with negation, which resulted
in the introduction of the concept of stratification.

Example 4.9

Consider another hypothetical federated database situation, where site A is the sales analysis department and site B is
the marketing department. The sales analysis department has the task of determining the profitability of a
customer, which it does using the predicate

profit(C#, Profit) :-

aggregate(Profit=sum(Revenue), revenue(C#, Product, Revenue)).

where

revenue(C#, Product, Revenue) :-

sales(C#, Product, Number),

list-price(Product, List-Price),

discount(C#, Product, Disc),

cost(Product, Cost),

Revenue is Number*(List-Price*(100—Disc)/100—Cost).

The predicate discount implies that a customer has a possibly different discount rate for each product.

The marketing department has the task of determining the discounts to be offered to each customer for each product,
using the predicate

discount(C#, Product, Disc) :-

profit(C#, Profit),

discount-threshold(T),

Profit>T = standard-discount(P, Disc);

Disc is 0.

so that a customer is offered a standard discount on each product only if their profitability is greater than a given
amount.

The problem with Example 4.9 is that the profit is calculated using an aggregation which requires knowing the profit. We can
adapt the dependency diagram to show this phenomenon, as in Figure 4.4. If we adopt the annotation « to an arc if the source
predicate appears in an aggregation in the target predicate, we see that there is a cycle in the dependency diagram which
includes an aggregation arc: discount — revenue — profit — discount.

We say that a program is aggregation stratified if its dependency diagram has no cycles involving aggregation.
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If a program is aggregation stratified, the aggregation can in principle be evaluated after the perfect model has been
computed, even if the predicate being aggreg-ated is recursive. For example:
aggregation{NChildren = count, ancestor(Parent, Child)) (4.8)
if Parent is bound in the query, computes the number of children of that parent.
As with (negation) stratification, the definition of aggregation stratification is somewhat stronger than necessary. Consider
Example 4.10.

Example 4.10
This is from a bill of materials application. The EDB includes the predicates
% true if a unit is atomic (has no parts)
part(ID#)
% true if a unit is not atomic
assembly(ID#)
% a part is obtained from a supplier at a cost
supplies(PartID#, Supplier, Cost)
% assembly ID# is made up of Qty of the immediate component identified by
ComplID#. This relation defines arcs in a directed acyclic graph.
made-up-of(ID#, ComplID#, Qty)
% assembly IID# costs CA currency units to assemble, irrespective of the cost of its components.
cost-to-assemble(ID#, CA)
The IDB consists of two predicates:
% the cost to manufacture one of unit ID#. If the unit is a part, then the cost of that part from its supplier, otherwise, the
cost of each component of the assembly plus the cost of making the assembly.
cost-to-mfg(ID#, Cost) :- part(ID#), supplies(ID#, Supplier, Cost).
cost-to-mfg(ID#, Cost) :-
assembly(ID#),
aggregate(ComponentCost = sum(CostCont),
cost-contribution(ID#, _, CostCont)),
cost-to-assemble(ID#, CA),
Cost is ComponentCost + CA.
% the cost of a component of an assembly.
cost-contribution(ID#, CostCont) :-
made-up-of(ID#, ComplID#, Qty),
cost-to-mfg(CompID#, CompCost),
CostCont is CompCost*Qty.

This straightforward formulation of the problem builds up the cost of an assembly from the bottom up. The cost to
manufacture a part (cost-to-mfg) is its purchase cost, while the cost to manufacture a subassembly is the cost of its parts plus
the cost to assemble it. Naturally, the cost of a subassembly (cost-contribution) depends on the cost to manufacture each of its
parts. Even though the aggregation is well defined, this formulation is not aggregation stratified (the loop cost-contribution —
cost-to-mfg — cost-contribution involves aggregation).

In some cases, it is possible to reformulate the problem as an aggregationstratified program. For the cost-to-mfg example
(Example 4.10), we note that we do not actually need to know the component costs of a subassembly to know how many
times its assembly cost contributes to the cost of the product. We can use a transitive closure predicate to calculate how many
of each part and subassembly are required to make one unit of a product. Each part contributes its cost, and each subassembly
contributes its cost to assemble. A suitable transitive closure predicate might be

all_componenisiWholelD#, [PartiD#], PantiD#, Qty) :-
made-up-off WholeID#, PartID#, Qty).
all_components{WholelD#, [SublD# | Path], PartlD#. Qty) -
made-up-of( WholelD#. SubID#, QW), (4.9)
all_components(SubID#, Path, PartID#, QP),
Quy is QW # QP
where Qfy units of component PartID# are needed to make one unit of WholelD# via the derivation path Path. We need the
derivation path because it is quite possible for the same part to contribute to a product via several different subassemblies.
Consider how many components of an aircraft contain rivets, for example. Without the derivation path, the semi-naive
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algorithm would remove duplicates, so that if the same part were needed in the same quantity from two different paths, only
one tuple would be computed.
Given this definition of all components, the predicate cost-to-mfg can be reformulated as in Example 4.11.

Example 4.11
cost-to-mfg-a(ID#, Cost) :-
aggregation(CompCost=sum(PartCost),
cost-contribution-a(ID#, PartID#, PartCost)),
cost-to-assemble(ID#, CA),

Cost is CA+CompCost.
cost-contribution-a(ID#, PartID#, Cost) :-
all_components(ID#, Path, PartID#, Qty),
part(PartID#),

supplies(PartID#, Supplier, UnitCost),
Cost is UnitCost * Qty.
cost-contribution-a(ID#, PartID#, Cost) :-
all_components(ID#, Path, PartID#, Qty),
assembly(PartID#),
cost-to-assemble(PartID#, CA),

Cost is CA*Qty.

This second formulation is aggregation stratified.
We will assume in the following that if a deductive database supports aggregation that all programs are aggregation
stratified.

4.5
TOP-DOWN REVISITED

So far, we have seen that datalog with stratified negation is a reasonable extension of relational database technology into Horn
clause logic. The extension is reasonable because it gives us a system more powerful than relational database technology; but
which is finite and preserves the ability to think of the program in terms of the set of tuples defined by any relation, whether
the relation is stored (EDB) or derived, perhaps recursively, with integrity constraints (IDB).

In our comparison of top-down with bottom-up execution of a deductive database query, we noted that the bottom-up
approach was superior when the entire perfect model is required. Later (Chapter 8) we will see that the semi-naive algorithm
is a basis for effective computation of most queries where the set of responses is required. On the other hand, we noted that
top-down computation is superior in some circumstances, especially when a single tuple is required.

We have an algorithm for top-down computation: the depth-first search inference engine of Prolog. However, we have
noted that this algorithm is somewhat deficient, in that, unlike relational database theory, it is sensitive to the order of
subgoals in the IDB. The wrong order can produce an infinite loop, even though the solution exists and is finite. When top-
down computation is appropriate, we would like an algorithm which gives the same result as the bottom-up algorithm.

Such an algorithm is a queue-based Prolog interpreter, which proceeds by breadth-first search.

Recall the description in Chapter 2 of the Prolog inference engine. At step Choose subgoal, the interpreter chooses a
subgoal to expand by passing control to the first subgoal in the current clause. This choice was described as constituting depth-
first search, since the interpreter always proceeds deeper into the proof tree until it comes to a leaf node in the form of a unit
clause.

This depth-first strategy is responsible for the possibility that the interpreter will get into an infinite loop in situations such
as Example 4.2. This sort of behaviour is tolerated in Prolog because there are other sources of infinity: some goals have an
infinite number of solutions, while others can proceed indefinitely without finding a solution. Both of these are consequences
of the semi-decidability of Horn clause logic, and so are fundamental. The simplicity and space-efficiency of depth-first
search is therefore sufficiently beneficial that some additional possibility of falling into an infinite loop is tolerated.

We have seen earlier in this chapter that in datalog there is no fundamental source of infinity, so that the infinite loops
introduced by depth-first search are a more serious disadvantage.

Fortunately, there are other ways to choose subgoals. It is possible to think of all the subgoals which have been reached but
not yet expanded as being held in a data structure by the interpreter. It makes no logical difference which subgoal is chosen
for expansion at the Choose_subgoal step: all the subgoals must succeed for the goal to succeed. In the standard depth-first
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search strategy, the data structure has the form of a stack (the goal stack). When a clause body is entered, the subgoals are
pushed onto the goal stack from right to left. The action of the Choose_subgoal step is to pop the goal stack.

Another strategy is to hold the goals in a queue (the goal queue). When a clause body is entered, the subgoals are queued
from left to right. The Choose _subgoal step is now to dequeue the first goal from the goal queue. This strategy is
breadthfirst, since all the goals in a clause body are expanded before any of the subgoals arising from any of them. This
strategy will never loop in a datalog program, and will find all and only the solutions in the perfect model on backtracking.

We will look at the breadth-first execution of Example 4.2, which looped indefinitely using depth-first search.

Example 4.12
IDB:
A1’ ancestor(Older, Younger) :- parent(Older, Younger).
A2’ ancestor(Older, Younger) :- ancestor(Older, Intermediate),
parent(Intermediate, Younger).

EDB as in Example 4.1.

Given the query ancestor(alice, bill)? As in Example 4.2, rule 41" fails, since parent(alice, bill) is not in the EDB. Rule 42’

generates the two subgoals
ancestor(alice, Intermediate),

parent(Intermediate, bill).
which are queued. Since the goal queue was empty, the first choice is to expand ancestor(alice, Intermediate)? Since there is
no tuple in the parent relation with first argument alice, this subgoal is also expanded using rule 42, making the goal queue
now

parent(Intermediate, bill).

ancestor(alice, Intermediate 1).
parent(Intermediate 1, Intermediate).

The goal parent(Intermediate, bill)? is dequeued next. This subgoal fails, since there is no tuple in the parent relation with bill
as its second argument. Since parent(Intermediate, bill)? is one of the top-level subgoals of the query goal ancestor(alice,
bill)?, the query goal fails, as it should.

We can see that the breadth-first search terminates while the depth-first search does not, since the recursive subgoal
ancestor(Older, Intermediate) in clause A2'is expanded only if the EDB predicate parent(Intermediate, Younger) succeeds.

The actual operation of a queue-based interpreter is of course more complex than this. For example, mechanisms are
needed for managing alternatives and for discarding the remaining subgoals in a conjunction if one of the conjuncts fails.
Nevertheless, the main cost of the breadth-first interpreter is additional storage. The depth-first algorithm needs to maintain
only as many choice points as required to get to the deepest leaf of the proof tree. Since the breadth-first algorithm expands
all branches of the proof tree one step at a time, it needs to store many more choice points. Also, a variable-binding frame and
copy stack is needed for each clause body which is open, and there are many more open clause bodies.

Whether this additional storage cost is practical depends greatly on the computing equipment available and on the problems
to be solved in a particular application being attempted. Notwithstanding practical considerations, we will assume in the
following that a top-down evaluation of a query is done using the breadth-first interpreter algorithm.

Even with the breadth-first top-down interpreter, there is a difference in behaviour between top-down tuple-at-a-time
evaluation of a program and bottom-up set-at-atime evaluation. The difference occurs in predicates involving cyclic data
structures. If the parent relation defines a cyclic graph, then the top-down tuple-at-a-time evaluation will generate an infinite
number of solutions. (More exactly, the set of solutions is finite, but it will generate some of them an infinite number of
times.) This is because there are an infinite number of derivation paths in a cycle. The bottomup set-at-a-time evaluation looks
only at the solutions, and will terminate when no new solutions are generated. This is generally an issue with tuple-at-a-time
evaluation strategies.

4.6
THE ARTIFICIAL INTELLIGENCE PERSPECTIVE: PRODUCTION RULES

We have so far looked at deductive databases as a generalization of the relational database tool of the database community,
and as a specialization of the Prolog tool of the logic programming community. Besides these two, a similar technology called
production rules is in use in the artificial intelligence community. They appear in a variety of guises in many systems and
platforms, but most of the instances are variations on the OPS-5 programming language.
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For historical reasons, the syntax of OPS-5 is very different from both SQL and datalog. To avoid confusing the present
reader, we will use an artificial syntax closely related to datalog. Anyone who pursues the expert systems literature should
expect to encounter a wide variety of syntaxes expressing similar concepts.

Data in an OPS-5 program is held in what is called working memory. The element of data, called appropriately a working
memory element or wme, is essentially a collection of EDB tuples. For our purposes, we can take a wme element to be the
same as a database tuple.

The computation in an OPS-5 program is specified in a set of production rules.

A production rule has a left-hand side (LHS) and a right-hand side (RHS). The left-hand side is a conjunction of
conditions on wmes, rather like a datalog clause body. A production rule is said to be capable to fire if there exists a set of
wmes which can simultaneously satisfy all the conditions in its LHS. This is exactly the situation in which a datalog rule can
fire during bottom-up evaluation. If a rule is capable to fire, all of its variables are instantiated to ground values, and one of
the possible sets of wmes satisfying its conditions is selected. This set is called the instantiation of the LHS.

The right-hand side of a production rule specifies one or more actions. One possible action is to add a new wme (make).
The new wme can be of any class, and can have any attributes. A value is either a constant in the text of the RHS or the
instantiation of a variable which has appeared in the LHS. No variables can appear in the RHS which have not already
appeared in the LHS. Make is essentially the same as creating a tuple for the head predicate in a datalog IDB rule during
bottomup evaluation.

The other possible actions are deletion (remove) or modification (modify) of one of the wmes in the rule’s instantiation.
Modify is implemented as remove followed by make. The processing is tuple-at-a-time, so that there may be additional sets of
wmes which satisfy the constraints in the left-hand side. The action is exactly that produced by the retract built-in in Prolog,
which has no counterpart in datalog. The datalog example (Example 4.1) is re-expressed in a production rule form in
Example 4.13.

Example 4.13
Initial wmes
person(bill).  parent(bill, peter).
person(mary).  parent(bill, paul).
person(peter).  parent(mary, peter).
person(paul).  parent(mary, paul).
person(john).  parent(paul, John).
person(sue).  parent(paul, sue).
person(alice).  parent(sue, alice).
person(eva).  parent(sue, eva).
Rules
Al: parent(Older, Younger)=make ancestor(Older, Younger).
A2: parent(Older, Middle) & ancestor(Middle, Younger)=
make ancestor(Older, Younger).

A very common special case of an expert system is a classification-type system, which uses propositional reasoning. These
systems generally monitor a situation and assign it to a class. Examples are diagnostic systems, which monitor a set of
symptoms and assign a diagnosis, systems which determine eligibility for social security benefits, and systems which
determine credit-worthiness in financial institutions. These sorts of systems are discussed in more detail in Chapter 10. They
are rarely non-monotonic.

The more general first-order expert systems mainly construct a solution of some kind given a set of data input. Examples
are systems which construct a computer system configuration given an order for the main components, systems which
construct a pest management strategy given the state of a crop and the presence of a pattern of pests, and systems which assist
a student to construct a feasible and suitable program of study within a collection of subject offerings and degree rules.

The production rules, like the IDB in datalog, form a static description of the program. The static description is turned into
action by an inference engine, in the same way that one of the datalog inference engines (top-down depth-first or breadthfirst;
bottom-up naive or semi-naive) is needed to process a query in a deductive database. Recall that we have considered that the
top-down strategies are tuple-ata-time, and the bottom-up strategies are set-at-a-time.

In OPS-5, the inference engine operates according to a bottom-up tuple-at-a-time procedure called the recognize/act cycle,
which has three steps:

1 Find all rules whose left-hand side can be satisfied, selecting for each such rule a particular instantiation. This set of rules
is called the conflict set.
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2 Select one of the rules (with its instantiation) to fire. The process by which this selection is made is called conflict
resolution.
3 Perform the actions specified by the right-hand side of the selected rule with its instantiation.

Once a rule has been selected and its actions performed, a new conflict set is computed and the process repeats. The OPS-5
interpreter terminates when the conflict set is empty.

Production rule inference engines differ mainly in their conflict resolution strategy. Many systems allow the programmer to
choose a strategy. A typical strategy performs the selection through a number of nested criteria. For example:

m most specific: Choose the rule with the most conditions in its left-hand side.

m most recent: If there is more than one rule with maximum specificity, then choose the rule with the most recently created
wme in its instantiation. To implement this criterion, each wme must have attached to it a time-stamp of some kind. Also,
when one set of wmes is being selected to be the instantiation for this firing of the rule, the most recent wmes must be
selected.

m arbitrary: If there is still more than one rule in the conflict set, then choose one arbitrarily, for example by the order of its
appearance in the program text (lexical order).

Once a rule is fired, the associated instantiation is marked so that it cannot cause that rule to fire again. This is called
refractoriness.

We illustrate the recognize/act cycle from Example 4.13. With the initial set of wmes, there are several instantiations of
rule 41/, but no instantiations of rule 42. The conflict set consists therefore only of A7, so an instantiation for A7/ is selected.
The only criterion which applies is arbitrary, so the lexically first is chosen: Older =bill, Younger=peter. The RHS of A/
inserts the wme ancestor(bill, peter). There are now instantiations for each of the conjuncts in the LHS of 42, but no
combination of them which satisfies the conjunct. The conflict set still contains only A/. This situation continues, with wmes
ancestor(bill, paul), ancestor(mary, peter), ancestor(mary, paul) and ancestor(paul, John) inserted.

At this point, besides 4/, the LHS of rule 42 is satisfied, with Older=bill, Middle=paul, Younger=John, and also with
Older=mary, Middle=paul, Younger=John. Since A2 is more specific than 41, A2 is selected. The most recent instantiation is
that with Older=mary, so the wme ancestor(mary, John) is inserted, then ancestor(bill, John). Neither of these new wmes
generate any instantiations for 42, so A continues, generating ancestor(paul, sue). A2 then generates ancestor(mary, sue),
then ancestor(bill, sue) before its instantiations are exhausted.

Rule 41 now generates ancestor(sue, alice), so that rule A2 can generate successively ancestor(paul, alice), ancestor(mary,
alice), and ancestor(bill, alice). Finally rule A1 generates ancestor(sue, eva), and A2 generates ancestor(paul, eva), ancestor
(mary, eva), then ancestor(bill, eva). At this point, neither rule has any instantiations, so the conflict set is empty and the cycle
terminates.

The resulting set of ancestor wmes is the same as that generated by datalog from Example 4.1. Notice how the sequence of
generation is determined by the conflict resolution strategy.

From a database or logic programming perspective it might seem strange that production rule systems place such
importance on conflict resolution. Other than the obvious fact that tuple-at-a-time processing must be done one tuple at a time
on a serial computer, it doesn’t make any difference to the final result in either database, datalog or pure Prolog which rule is
selected to fire at any time, since the entire equivalent of the conflict set will eventually fire; and if the system is stratified, any
sequence of firing gives the same result.

Conflict resolution is important in OPS-5 because it is possible for a rule action to remove wmes, therefore remove
instantiations from rules, and therefore to remove rules from the conflict set without their having fired. Rules whose action
removes instantiations from rules in the conflict set are called non-monotonic rules. (Non-monotonicity is discussed in more
detail in Chapter 12.) The programming model for OPS-5 thus allows operations which the deductive database programming
model does not.

The important thing for our purpose is that the programming model for OPS-5 includes everything which the deductive
database model does. In other words, it is possible to use OPS-5 and other production rule systems as platforms on which to
implement deductive databases, so long as the problem is of a suitable size, and a bottom-up, tuple-at-a-time computation rule
is sufficient. (Note that the problem of generation of the same solution an infinite number of times occurs with this
computation rule, since it is tuple-at-a-time.)

Computation of the conflict set is the most expensive part of the recognize/act cycle. The problem is essentially the same as
evaluating a datalog program tupleat-a-time, and the formulation above is similar to the naive algorithm. Practical systems
incorporate a number of optimizations for computation of the conflict set, which are very similar in philosophy to the semi-
naive algorithm.
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Expert-system style problems are often capable of solution by deductive database techniques. They typically do not require
a large EDB. Even if they do, it is often the case that they need to make queries on large databases, but have relatively few
tuples in the perfect model other than the EDB. It is not difficult generally to access databases from production rule systems.
SIRATAC, mentioned in Chapter 1, is an example of an expert system which can be implemented as a deductive database.
Some of its rules have conditions which are queries on a relational database.

Of course, since production rule systems offer non-monotonic facilities, such facilities are often used in the formulation of
expert systems solutions. Production rule systems often do not support aggregation, so one very common use of non-
monotonicity is to compute aggregations. Most of the non-monotonicity in the SIRATAC system is used for this purpose.

Other uses of non-monotonicity are to switch between generation of a potential solution and testing the solution in a
generate-and-test paradigm, and to switch between processes when some event occurs. Non-monotonicity in production rule
systems is revisited in Chapter 12.

4.7
ACTIVE DATABASES

Active database technology is a blend of deductive database technology and production rules. Active databases are built
around the concept of trigger. In standard SQL databases, the programmer can specify a program to be executed whenever
one of the EDB predicates is updated in a particular way. For example, suppose an organization has two distinct information
systems containing information about its employees: one supporting the personnel department and the other the telephone
directory in the PABX. It is essential that every employee whose telephone number is in the PABX system also appears as a
current employee in the personnel system. The personnel system therefore has a trigger, activated when an employee is
deleted from the personnel system, which sends a message to the PABX system requesting the PABX system to delete the
employee’s telephone number from its directory.

The activation of a trigger is analogous to the detection of a ready-to-fire condition in the left-hand side of a production
rule, and the program run is analogous to the production rule’s right-hand side. The machinery of production rule systems is
not very useful in SQL-92 database systems, since the rules for triggers (updates on base tables only) are so restrictive that it
would be unusual for more than one trigger to be active at one time, and the conditions under which a trigger is activated are
easy to compute.

In active databases, the antecedent of a trigger can be expressed in terms of changes in the population of views, instead of
simply updates to base tables. For example, in the bill of materials application described in Examples 4.10 and 4.11, an active
rule could send a message to the marketing department whenever a change in either the cost of a part or a cost of assembly
changes the manufacturing cost of a product by a nominated percentage.

It is possible for there to be a large number of such rules, in the same way that an expert system often has many rules. The
problems of implementation of active databases therefore include the problem of implementing a recognize/act cycle. In
addition, there is potentially a large amount of computation needed to propagate a change to a base table sufficiently to detect
a change in the population of a possibly recursively defined view.

Active databases, therefore, are related to deductive databases both in their rule structure and in the processes to detect
changes in populations of views. The latter problem is closely related to the maintenance of integrity constraints, developed in
Chapter 11.

4.8
STRUCTURE

Datalog was developed as a decidable subset of Prolog suitable for extending database systems by recursive views. The need
for decidability is the reason for the exclusion of function symbols. This can, however, be a serious limitation.

For example, we saw in Chapters 2 and 3 that a common use of recursive views is to perform operations on graphs, notably
transitive closure. Example 4.14 illustrates this situation. We saw further that one often needs not only the pairs of nodes
transitively connected but also the path by which they are connected. Two Prolog procedures were given in Chapter 3, one for
directed acyclic graphs and the other for general directed graphs. The first, in Example 4.14 below for acyclic graphs, poses
difficulties for bottom-up evaluation. The first tuple in ¢/ is generated by clause 1, and has a free variable Path_so_far in the
structure bound to Path. It would take a very sophisticated evaluation strategy to compute this predicate correctly in datalog.

Example 4.14
closure(Source, Target, Path) :- cl(Source, Target, [Target], Path).
1. cl(Source, Target, Path_so_far, [Source | Path_so_far]) :- edge(Source, Target).
2. cl(Source, Target, Path so far, Path) :-
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edge(Intermediate, Target),
cl(Source, Intermediate, [Intermediate | Path so far], Path).
closure(a, ¢, Path)?

An alternative formulation of this predicate suitable for a bottom-up evaluation strategy is given in Example 4.15. Here, the
path is built up from ground structures starting with the edges by the execution of clause 1, and successively longer chains by
the successive executions of clause 2. Note that the datalog predicate in Example 4.15 generates a perfect model giving all
possible paths. A query such as closure (a, ¢, Path)? will select those paths from the perfect model with source a and target c.

Example 4.15
closure(Source, Target, [Source]) :- edge(Source, Target).
closure(Source, Target, [Source | Path_so_far]) :-
edge(Source, Intermediate),
closure(Intermediate, Target, Path _so_far).

The predicate in Example 4.15 clearly offers no theoretical problem: the potential issues are computational. First, the
implementation must be able to store the structures in a persistent medium. The second issue is one of computational
efficiency, since the test whether an iteration of the semi-naive algorithm has produced new tuples must test the list Path in
addition to the atomic attributes Source and Target.

If the graph contains cycles, we showed in Chapters 2 and 3 that the preceding procedure would not terminate. A revised
procedure was introduced which adds the subgoal not member/2 to the second clause of closure in Example 4.16. The effect of
this new subgoal is to prevent a node from occurring more than once in Path. The difficulty introduced is that member/2 is
not usefully regarded as an IDB predicate. Its function is to perform a test on two bound variables. The deductive database
must therefore have the facility to define predicates which are neither EDB nor IDB. If this facility is available, then the issue
reverts to computational efficiency.

Example 4.16
closure(Source, Target, [Source]) :- edge(Source, Target).
closure(Source, Target, [Source | Path_so_far]) :-

edge(Source, Intermediate),
not member (Source, Path so_far),
closure(Intermediate, Target, Path _so_far).

A different problem with structure occurs in the hierarchical search of a tree-data structure, as described in Chapter 3. The
approach described in Chapter 3, repeated here for convenience, involves a computational built-in to increment a level
counter.

Example 4.17
nodes-removed-level(R, R, 0).
nodes-removed-level(R, C, N) :-
N>0,
M is N-1,
arc(R, 1),
nodes-removed-level(l, C, M).

This formulation of the problem is predicated upon a top-down evaluation strategy, since the computation of M, the lower-
level number, depends on N, the higher-level number. A more natural formulation assuming a bottom-up evaluation strategy
is
nodes-removed-level(R, R, 0).
nodes-removed-level(R, C, N) :-
N is M+1,
arc(R, I),
nodes-removed-level(I, C, M).
It is possible in principle for the deductive database to automatically reformulate at least this specific example so that it could
be executed properly using either strategy, but the problem for arbitrary computational predicates is extremely difficult.
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We conclude that there is no reason in principle not to allow predicates with function symbols in deductive databases, so
long as they are known to terminate for bottom-up evaluation and they are computationally practicable. However, in pure datalog
the same formulation of the IDB will serve both in bottom-up and topdown evaluation; whereas if structures are added the
design of the IDB predicates must take the evaluation strategy into account.

4.9
SUMMARY

This chapter has developed the definition of datalog, a subset of first-order predicate calculus suitable as an extension of the
relational algebra to systems requiring recursive views. We have examined theoretical and computational issues. Theoretical
issues include the notions of perfect model, stratification for systems involving negated subgoals, aggregation functions and
the use of function symbols. Computational issues include the semi-naive algorithm for practical computation of the perfect
model, the breadth-first or queue-based Prolog interpreter, the use of production rule systems to implement deductive
database applications, and active databases.

4.10
FURTHER READING

The material on datalog is taken mainly from Ullman (1988, 1989), and is also largely contained in Ceri et al. (1990). An
introduction to this material may be found in Elmasri and Navathe (1994). A good introduction to OPS-5 is Brownston et al.
(1985). The syntax of aggregation is loosely based on the Aditi system, developed at the University of Melbourne, Victoria,
Australia.

4.11
EXERCISES
Consider the following EDB:
parent(jim, jimmy). parent(christine, jake). parent(christine, adam).
parent(heather, christine). parent(jimmy, jake).

and the ancestor IDB:
ancestor(Older, Younger) :- parent(Older, Younger).
ancestor(Older, Younger) :- parent(Older, Middle),
ancestor(Middle, Younger).

4.1 Compute the perfect model of the ancestor relation given this EDB.
4.2 Add the rules

unrelated(P1, P2) :- person(P1), person(P2), not related(P1, P2).

person(P) :- parent(P, ).
person(P) :- parent(_, P).
related(P, P) :- person(P).

related(P1, P2) :- ancestor(P2, P1).

related(P1, P2) :- ancestor(P1, P2).

related(P1, P2) :- ancestor(Al, P1), ancestor(A2, P2), related(A1, A2).
to the IDB. Consider the program P=EDBUIDB.

(a) Stratify the program P making use of the dependency graph.
(b) Compute the perfect model for P.
(c) Compute an interpretation for P by executing the strata in reverse order. Discuss the difference.

4.3 Add the rule
num-relations(P, N) :- aggregation(N=count, related(P, )).
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(a) Is the program aggregation stratified? Make use of the dependency graph.
(b) Evaluate num-relations where P=jim.

4.4 Construct the dependency graphs for Examples 4.10 and 4.11. Discuss the difference with respect to aggregation
stratification.
4.5 Compute and comment on the bottom-up evaluation of

successor(s(0), 0).
successor(s(s(X)), s(X)) :- successor(s(X), X).



CHAPTER FIVE
Knowledge design

In this chapter, we look at adapting proven tools used in designing database systems to the problem of designing deductive
database systems: both advanced information systems and expert systems.

51
DATA, INFORMATION AND KNOWLEDGE

The readers of this text are assumed to be familiar with conventional database technology, and also with modelling techniques
enabling them to apply database technology to the design of information systems. The material in this and the following
chapters is independent of the particular information modelling technique employed, but we will use examples drawn from
the variety known as entity-relationship modelling (ERA). This text so far has concentrated on the technology of deductive
databases, so that the reader should have a clear idea of how deductive database technology relates to and differs from
conventional relational database technology. We now turn our attention to design methods to assist in applying deductive
database technology to the design both of information systems and also to a large class of knowledge-based systems,
including expert systems.

As noted in Chapter 1, a deductive database can be seen as an extension of relational database theory to include a number
of aspects which are part of an information system but not generally integrated with the database schemas:

m view definitions;
m integrity constraints;
m derived facts.

In addition, deductive database technology allows recursively defined views.

Deductive database technology also provides a framework for investigation of the properties of updates, although there is
much more research needed before a sound treatment of the problem is available. Chapter 12 covers some aspects of updates.

Recall from Chapter 3 that a relation is a predicate definition, a simple query is a goal, and a complex query (which is the
same thing as a view definition) is a Horn clause. Most of the commonly encountered integrity constraints can also be
expressed as Horn clauses, as will be seen in Chapter 11. Most of the commonly occurring rules for deriving facts can also be
expressed as Horn clauses. This chapter and the closely related Chapters 6 and 7 concentrate mainly on view definitions and
definitions of derivation rules: those parts of the deductive database which are expressed as general Horn clauses.

5.1.1
Functional associations

A fundamental notion in database theory and in information analysis is that of functional association: set A is functionally
associated with set B if there is a correspondence between members of A and members of B such that a member of A
corresponds to exactly one member of B. There may be many functional associations between two sets: each correspondence
is given a name. A functional association is said to map members of A into members of B.

A familiar example is that a relation can be considered as a set of mappings between the key domain(s) and the non-key
attribute domains. This kind of functional association, where the correspondence between the two sets is stored in a table, will
be called an implicit functional association: for example in an orderentry application the correspondence between a part
number and its selling price.

Another familiar example is a computation rule, where the member of set B corresponding to a particular member of set A
can be determined by a mathematical formula, or some other computation rule, and need not be stored. This kind of
functional association will be called an explicit functional association: for example if the relationship between selling price
and cost price for a product is determined by a markup rate:
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Explicit functional association given by (5.3)

ordérfcost e+———  — onderfifem item/coslt
I 100 i 123 123 55
-— ] 345 345 45
2 T2 2 G492 992 72

Implicit [unctional association given by tables

Figure 5.1 Derived fact may be seen as either explicit or implicit functional association.
selling_price(Cost_price) = Cost_price x 1.25 (5.1)
The predicate definition relating cost price to selling price can be expressed as a Horn clause:
cost/sell(Cost_price, Sell_price) :~ Sell_price is Cost_price * 1.25. (5.2)

as can the predicate definition relating an order for parts to its total price:
ordetfcost(Order#, Cost) -
aggregate{sum(Price),
(order/item(Order#, ltem#),
item feost(ftem#, Cost_price),
cost/seli(Cost_price, Price)),
Cost).

(5.3)

which is an aggregation based on a join.

The functional associations represented in (5.2) and (5.3) are both explicit functional associations. It is worth noting,
however, that the clause in (5.3) is a view definition. Its perfect model is a set of tuples for the order/cost relation. There is an
implicit functional association between the space of possible populations of the two body predicates item/cost and order/item
and the tuple space for the head predicate, which contains the perfect model. Recall that a join between two relations is a
subset of their Cartesian product. This relationship is illustrated in Figure 5.1. Note that the functional association is between
the entire population of the body predicates and the entire perfect model. Crudely, a given database state functionally
determines the population of a given view.

We now have the vocabulary to define what we will refer to as data, information and knowledge.

Data will refer to the collection of indivisible objects which are stored in the information system. From the point of view of
logic, data is the set of constants of Chapter 2. From the point of view of ERA modelling, data is the set of members of the
value sets for the attributes.

Information will refer to the implicit functional associations between items of data. These are the unit clauses of logic or
the relations of database technology. The definitions of information predicates (EDB) will be taken as equivalent to database
schemas.

Knowledge will refer to the explicit functional associations involving data and information. These are the Horn clauses of
logic, or the view definitions and derivation rules (IDB) of database technology. Note that the head predicate of a Horn clause
predicate definition is also a database schema, due to the perfect model semantics, as illustrated in Figure 5.1. The predicate
order/cost can be seen as either a relation or as a derivation rule.

51.2
Classifying objects

Our task is to build an information system. This system is intended to be used by a person or organization as a tool in their
activities. As such, it will make reference to aspects of objects in the person’s or organization’s environment. The information
system is built from data, information and knowledge. The first problem, therefore, is how to classify the objects: is a
particular object data, information or knowledge?

We emphasize that the object classification problem is a design problem, not a problem of scientific discovery. An object is
not intrinsically data, information or knowledge. The design question is rather “How is it most useful for the purpose of
constructing the information system we have in mind to classify this object?”. Figure 5.2 shows how a simple object can
plausibly be classified as data, information in three different ways, and as knowledge in two different ways. The
representation as data is simply a labelled constant. The first information representation assumes that there are several account
types, each with an interest rate. The first representation as knowledge is very similar. In both cases, the value “5” is
functionally dependent on the string “savings”. The second representation as knowledge computes the interest rate from the mean
balance. The second representation as information represents the interest rate implicitly: it can be computed from the balance
and interest. Finally, the last representation as information removes the intermediate account type, making the interest rate
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The Object Classification Problem
Is a partcular object data, information or knowledge?

The interest rate on savings gecounts is 5%

Data
interest_rate_on_savings_accounts:% = 5
Informaltion
account_type/imercat_rate:5o( "savings", §)
Knowledge
account/interest_rate (X, 5) -
account faccount_type(X, “savings”).
account/interest{ A, 1):-
accountfaccount_type{A, “savings"),
account/mean_balance(A, B),
Lis B * (5/100).
Information

account/accouni_type(*1234", “savings").
account/mean_balance{™ 1234, 200).
accountfinterest("1234", 10).

account/inierest_rate(“1234", 5).
account/interest_rate(“4567", 5).

Figure 5.2 The object classification problem.

directly dependent on the account code. Choice between these different ways of classifying the object is based on the role the
object plays in the information system, whether it is a specific instance of a more general concept, how often it changes, what
sorts of changes can be expected, etc.

513
Goal dependency

An important aspect of the representation of knowledge is the use to which the knowledge is to be put. In particular,
information and knowledge express functional associations: how are these functional associations to be used? For example,
consider the relationship between interest rate, balance of account and interest payment given by the mathematical expression

interest = balance X rate 5.4
Mathematically, knowledge of any two of these variables is sufficient to determine the third.

The representation of relationship (5.4) depends on the computational properties of the knowledge representation scheme
used. For example, suppose (5.4) were to be used for two purposes: given balance and rate, determine interest;, and given
interest and balance, determine rate. In the knowledge representation scheme used in Pascal program statements, relationship
(5.4) would be expressed as

interest == balance * rate;

rate = interest [ balance; (-5

Given representation (5.5), we are unable to use (5.4) to determine balance given interest and rate. In order for this representation
to be acceptable, the application’s requirements must be limited to the computations available.

This property of knowledge representation schemes is called goal dependency: an expression is goal dependent if it has
distinct inputs and outputs. Relationship (5.4) can be expressed in a good implementation of Prolog in a non-goal dependent
form:

Interest is Balance * Rate. (5.6)
since the Prolog interpreter can instantiate any of the variables given instantiations for the other two.
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Database relations and Prolog predicates are not in principle goal dependent. The relationship between account type and
interest rate given by the table
account_typefinterest_rate{A_type, Rate) 5.7)

can be used to determine the interest rate for a particular type of account or all the accounts which have a particular interest
rate. Indeed, (5.7) can be used to verify that a particular account type has a particular interest rate, or to list all the account
types with their interest rates. Similarly, the predicate defined by (5.8) can be used in four possible ways:
account/interest_payment{ Account#, Interest) -

account faccouni_type(Account#, A_type),

accouni_type/interest_rate(A_type, Rate), (5.8)

account/balance(Account#, Balance),

Interest is Balance * Rate.
In practice, however, it is often useful to introduce goal dependencies. For example, if we wished to use (5.7) only to find the
interest rate for a given account type, we might introduce an index on the attribute account_type. In (5.8), if we wished to only
use the predicate for computing the interest payable for a given account, we might stipulate that the first argument Account# will
always be bound but that the second Interest will always be free, then use the magic sets transformation as described in
Chapter 8 to get a faster implementation of the knowledge represented.

We have been considering goal dependency between the attributes of a relation or a predicate. This kind of goal
dependency relating to functional dependencies is called information goal dependency. There is another kind of goal
dependency called knowledge-goal dependency which relates to the expression of the relationships in the bodies of the
clauses used to define the predicates. If (5.8) is an expression in Prolog, it is knowledge-goal dependent, since the
computation must proceed from the predicates in the clause body to the clause head. We cannot compute the body clauses
given instantiations of the head variables. For example, the predicate account type/interest rate is not defined by clause (5.
8). If we wished to derive tuples from that predicate, we would need the additional predicate definition:

account_typefinterest_rate(A_type, Rate):-

account/interest_payment(Accountd, Interest),

account/account_type{ Account#, A_type}, (5.9)

account/balance{ Account#, Balance),

Interest is Balance * Rate,
Representations in Prolog and its derivatives are always knowledge-goal dependent, since the Horn clauses used allow
expression only of if relationships between predicates. Expression in a stronger form of logic using if and only if relationships
would not be knowledge-goal dependent. However, the theorem provers available for these stronger forms of logic are
typically much slower in execution than good Prolog or datalog systems. The additional generality of knowledge
representation gained is typically not worth the penalty in execution speed. The issue of knowledgegoal dependency is raised
again in Chapter 11, in the context of integrity constraints.

When representing knowledge, we must take into account how it is to be used.

514
Update/query types

An important aspect of the information system we build is the identification of those things in it which the user is able to see
and those things in it which a user is able to change. From the user’s point of view, this is the essence of the information
system. Many systems have several classes of user, with different privileges. For a given class of user, we call those types of
object in the information system the user can see query types, and those types of object the user can change update types.
We have encountered these terms in Chapter 2, and have seen that objects can be query types, update types, both or neither.
The last are called intermediate types, and are artifacts of the implementation.

The scope of an update type is

m data if change to labels;
m information if change to tuples;
m knowledge if change to clauses.

An example of data as update type is the global search and replace common in word processing systems. In information
systems, data is rarely in the scope of the update types.
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The main purpose of database systems is to record changes in the universe of discourse, so that most EDB predicates are in
the scope of update types. Not all, however. Information about the structure of the universe in which the information system is
used is often recorded as information which the user is not allowed to change: for example the table of valid account types.
Introduction of a new account type would probably require new applications software, so would be done only by the
programming staff, not by the user.

Knowledge in information systems is generally business rules, for example the details of how interest is calculated for different
types of accounts or when a customer is eligible for a certain kind of discount, so is historically not in the scope of the update
types, since a change is a change to business practice which may have wide ramifications in the information system. One of
the benefits of the specification of information systems as deductive databases is that the scope of the update types can often
be extended.

The knowledge in expert systems is often updated by a particular class of user, so is an update type for that class of user. In
particular, the University Calendar deductive database found in the exercises for this chapter has the IDB subject prerequisite
rules in the update types for the academic management class of user, but not for the student class. On the other hand, the EDB
predicate containing the subjects in which a student is enrolled is an update type for the student (generally via a University
administrative clerk) but not for the academic staff.

The form of a query type is

m data if the user wants values of certain labels;
m information if the user wants certain tuples;
m knowledge if the user wants certain rules.

An example of data as a query form is that the user might want to know the different account type codes, say during data
entry. This example would be a query type but not an update type.

As with update types, the purpose of most database systems is to allow the user to keep track of the state of the universe of
discourse, so that most EDB predicates are query types. Not all, however. Implementation-specific information is often held
in the database for convenience. For example, many fourth generation languages store programs in database tables. These
tables are neither query nor update types for the user. In particular, the magic predicates of Chapter 8 are update types but not
query types.

Knowledge is often the form of a query type. The user may wish to query business rules. Expert systems often have an
explanation facility, which is essentially a query on the knowledge base. In the University Calendar example, both students
and academics need query access to the subject prerequisite structure and to the course rules, all of which are stored as
knowledge.

When representing knowledge, we must consider who can access it and who can update it.

5.2
MODELLING KNOWLEDGE

There are many tools used by systems analysts to assist them in the construction of database-oriented information systems.
These tools include Entity-Relationship Attribute (ERA) analysis, and Binary-Relationship analysis in many forms. A major
component of a knowledge-based system or deductive database is a relational database. Further, knowledge consists of
relationships between information and between information and data. One would therefore expect that these information
design tools would be applicable in part to the construction of knowledge-based systems.

Modelling tools generally involve two aspects: data structures, which are a bridge between the natural language
descriptions of the universe of discourse and the formal representations in the ultimate implementation; and a graphical
representation of the data structures, which is intended to facilitate understanding of the model both by the domain expert and
by the systems analyst or knowledge engineer. Typically some of the detail of the data structure is represented in graphical
form and some is represented in more or less formal textual languages.

We have suggested that Horn clause logic is a convenient way of representing knowledge. It is not the only way. Although
we will assume Horn clause knowledge representation, the material is generally applicable to, for example, production rules.

5.2.1
Information modelling

From the point of view of Horn clause logic, the data consists of a set of labels (the constants) and the information consists of
a set of predicates whose definitions consist entirely of unit clauses (the EDB). The knowledge consists of a set of
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Clause group

spare_part/sale_price(S, P) :-
spare_part/fcost_price(S, C),
C<20,PisC* 13

spare_part/sale_price(S, P) :
spare_partfcost_price(S, C),
C>=20,PisC* 1.25.

Modelled as

spare_part/sale_price spare_part/cost_price
range domain

Figure 5.3 Modelling knowledge.
predicate definitions which include general clauses: clauses with subgoals in their bodies (the IDB). Modelling of knowledge
will start from the result of data and information analysis: the populations of labels and the EDB database schemas.

The method of knowledge modelling described is independent of any method of information modelling: we are concerned
only with the product of the information analysis. However, we will have occasion to exhibit information modelling. When
we do so, we will use the notation of ERA modelling, including its enhancement to represent subtypes.

The entity types, value sets of attributes, and subtype relationships are the product of data analysis, while the associations
between entities and attributes, the relationships and constraints are the product of information analysis.

5.2.2
Knowledge diagrams

What remains to model is the knowledge: the IDB predicate definitions and the integrity constraints. We focus on the IDB
predicate definitions, and begin by recalling that the predicate being defined (head predicate) looks to the user exactly like an
EDB predicate. It therefore makes sense to include these predicates in the information analysis, noting that they are derived
types.

The derivation rules are left. In most information analysis methods, derivation rules are represented textually: as statements
in natural language, statements in SQL, mathematical formulas, etc. In the exposition of the information modelling
techniques, derivation rules play a very minor part: the examples presented will typically have only a few derivation rules in a
diagram with many entities. In practice, the derivation rules are not modelled at all: they are recorded in the specification and
translated directly into code.

The purpose of knowledge-based systems or deductive databases is explicitly to represent derivation rules in a form
compatible with the representation of information structures. We would therefore expect that a knowledge design method
would incorporate mechanisms to help the domain expert and the systems analyst/knowledge engineer to visualize a large set
of derivation rules, and to keep track of a large number of relationships between predicates.

The detail of the knowledge is represented as Horn clauses. There appears to be no particular advantage in representing the
detail in a graphical language. However, the process of knowledge acquisition can require many interviews with domain
experts and will generally require much revision before it can be regarded as satisfactory. There is an advantage in a graphical
model which represents the knowledge coarsely: it gives an overview and allows annotations which can guide the knowledge
acquisition process.

The granularity of the knowledge diagram will be the clause group (the set of clauses defining an IDB predicate). In
modelling a clause group, we wish to keep track of which predicates are used to define the head predicate, without particular
concern for the nature of the relationship. We use a graphical language, as illustrated in Figure 5.3. The predicates are
represented as small solid circles, with their names in close proximity. The head predicate (the range of the functional
association) is indicated by a thick line with an intermediate arrowhead. The domain predicates are associated with the head
predicates by thin lines terminating at the base of the thick arrow. The resulting picture is intended to give an indication of a
flow of tuples from the domain predicates to the head predicate: the perfect model relationship. Since computational predicates
are neither EDB nor IDB, they are indicated by a clear circle (see Figure 5.6). These knowledge diagrams are exactly the
dependency diagrams of Chapter 4 expressed in a richer notation.

There can be several body or domain predicates, and the head predicate may appear in the body as a recursive subgoal.
Figure 5.4 contains a model of the knowledge in Examples 4.1 and 4.4.
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Figure 5.4 Further example of knowledge model.

The models illustrated are complete. The IDB predicates are those to which a thick arrow points. The EDB predicates have
no arrow pointing to them. In addition, the relationships shown are categorical: the head predicate is completely defined in
terms of the body predicates shown (possibly in more than one clause, and possibly not all body predicates appear in the same
clause). In addition, the definition of each predicate is unique. Recall from Chapter 4 that the materialization of the view
defined by an IDB predicate is computed as a series of partial materializations. Each partial materialization is computed from
the previous one by the T operator. A predicate definition is unique if during one iteration of the 7 operator a particular set of
tuples in the current partial materialization instantiating one of the clause bodies will generate at most one additional tuple in
the next partial materialization. In other words, each instantiation of the body predicates of all clauses defining an IDB
predicate is functionally associated with a single tuple in the perfect model. This condition is stronger than the population-to-
population functional association defined by the perfect model, and noted earlier in this chapter.

During the course of knowledge acquisition, it is often the case that the knowledge gathered so far is not complete. Some
examples of incompleteness are:

m [DB predicate noted but not yet defined;

m non-categorical definition (clause bodies so far do not define all possibilities). (Note that if only the first clause of the
example predicate had been supplied, the predicate would be undefined for cost price less than 20);

m non-unique (defines possibilities in more than one way. If the first clause of the example predicate had the relation C<20,
then both clauses of the example predicate would apply if the cost price is 20).

We have noted that the knowledge diagram is essentially the same thing as the dependency graph described in section 4.3. It
would therefore make sense to annotate the knowledge diagram to indicate dependence of the head predicate on a predicate
appearing in a negative subgoal. In this way the knowledge diagram will indicate whether the knowledge base is stratified.
Similarly, it makes sense to annotate the knowledge diagram to indicate the dependence of the head predicate on a predicate
appearing in an aggregation, so that it is easy to see whether the system is aggregation stratified. We will adopt the convention
of a single I for negation, and a double II for aggregation. The knowledge diagram for the non-stratified example from
Figure 4.2 is shown in Figure 5.5.
The Horn clause representation of the knowledge of Example 4.7 is repeated here for convenience:
standard-customer(C#, Discount) :-
customer(C#, Discount),
not special-discount(C#, Special-type, Special-Discount).
good-customer(C#, Revenue) :-
standard-customer(C#, Discount),
sales(C#, Revenue),
good-customer-revenue-threshold(T),
Revenue>T.
special-discount(C#, good-customer, Disc) :-
good-customer(C#, Revenue),
good-enough-threshold(T),
Revenue>T,
good-customer-discount-rate(Disc).
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customer

standard-customer

sales
good-customer
Figure 5.5 Knowledge diagram for non-stratified Example 4.7 from Figure 4.2.
7N
L |} calculate-discount

discount Ve ;
- proht

revenue

Ccost

Figure 5.6 Knowledge diagram for non-aggregation-stratified Example 4.9 from Figure 4.4.

The non-aggregation-stratified example of Figure 4.4 is shown in Figure 5.6. Note the computational predicate calculate-
discount.

The Horn clause representation of the knowledge in Example 4.9 is repeated here for convenience. Note that the
computational predicate calculate-discount has been introduced, its contents having been removed from the predicate
discount.

profit(C#, Profit) :-
aggregate(Profit = sum(Revenue), revenue(C#, Product, Revenue)).
revenue(C#, Product, Revenue) :-
sales(C#, Product, Number),
list-price(Product, List-Price),
discount(C#, Product, Disc),
cost(Product, Cost),
Revenue is Number*(List-Price*(100—Disc)/100—Cost).
discount(C#, Product, Disc) :-
profit(C#, Profit),
calculate-discount(Profit, Disc).
calculate-discount(Profit, Disc) :-
discount-threshold(T),
Profit>T —standard-discount(P, Disc);
Disc is 0.
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5.3
DESIGNING A KNOWLEDGE BASE

A knowledge-based system in general incorporates a database system. Some aspects of knowledge bases are formalizations of
things appearing in database applications, so that the knowledge-specific portion of the knowledge-based system includes
some things which appear also in database systems, notably constraints. We have seen that a knowledge-based system
contains data, information and knowledge, and that the problem of design of a knowledge base is seen as the problem of
classifying aspects of the application model as data, information or knowledge. Data is represented as labels in populations,
information as tuples in relations, while knowledge is represented as Horn clauses.

The specifications for a system are derived from a natural language description of the system’s context and requirement.
The resulting knowledge model is a statement in the first-order predicate calculus, whose principal interpretation is in the
natural language description, i.e. the meaning of the symbols and formulas in the knowledge model is determined by referring
to the natural language description. There is a large difference in structure and degree of formality between the natural
language description and the knowledge model. It is convenient to bridge that gap with a semi-formal set of natural language
statements called the application model. This concept is familiar in conceptual modelling of information systems, and in
particular is central to the NIAM method and its relatives. The application model is either produced explicitly from the
natural language description by the systems analyst in the process of creating the conceptual model, or is perhaps more
commonly generated from the conceptual model to make the model more easily understood by the domain experts.

Statements in the application model are assertions restricted to the following types of sentences:

m an individual exists and is of a type
Clyde is an elephant.
X is a bird.
m two or more objects exist in a relationship
Sylvester and Tweety are antagonists
The Broncos and X played in the final.
m a population exists
There are students.
m arelationship exists
Lecturers are assigned to classes.
m an association exists between relationships
Selling price is determined by cost price and markup factor.
m quantified statements
All classes have lecturers assigned.

Some facts are particular facts, in that they make specific statements about specific objects: for example bob is assigned to
lecture c¢s317. Some facts are general facts, in that they describe relationships between populations, for example lecturers are
assigned to classes. The distinction is similar to the distinction in ERA modelling between entity or relationship types (general
fact), and population of instances (particular facts).

Statements in the application model must, as well as being assertions of the nominated kinds, satisfy a number of individual
requirements:

m Uniqueness of wording. Each use of the same word refers to the same object in the system’s environment. Each instance of
a given object in the system’s environment is referred to by the same word.

m Type identification. Every atomic object is identified as a label or a population. Every label is identified as a member of a
population (type).

m Atomic requirement. A statement contains at most one functional association.

For example, the statement:
“#234 is a spare part number; these are the part numbers which lie between #100 and #999”
should be decomposed into four statements:
“#234 is a spare part”
“Spare part numbers are less than 1000”
“Spare part numbers are greater than 99”
“All spare part numbers are part numbers”
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The reader is assumed to be familiar with the creation of application models of this sort, and used to extracting from them
data and information models.

We focus in deductive database technology on representation of knowledge in the form of Horn clauses. Application model
statements which become represented as knowledge typically are complex sentences describing associations between
relationships, containing phrases such as “is determined by”, “if”, “if...then”. For example:

An applicant can be admitted for the degree of Bachelor of Science if that student has attained a grade of high achievement
in Senior English and Senior Mathematics, and has an overall QTAC score of 900 or greater.

might be translated into Horn clause form as
eligible for(bs, Applicant) :-
secondary_result(Applicant, senior_english, SER),
SER > high achievement,
secondary_result(Applicant, senior_math, SMR),
SMR > high achievement,
qtac_score(Applicant, S), S>900.
Another example is:
A person is eligible for entrance to the electoral roll if that person is a citizen of Australia, is at least 18 years of age, and is
not judged to be legally insane or is not serving a prison sentence in respect of a felony.
which might be translated into Horn clause form as:
potential_voter(Person) :-
citizen_of australia(Person),
age(Person, Age), Age>18,
not legally insane(Person),
not imprisoned for felony(Person).
These statements are considered to be atomic in the sense of the individual requirements.
Note that the potential voter example is essentially propositional. The four body predicates are essentially properties of
Person. In a propositional expert system shell, the knowledge might appear as
potential_voter :-
citizen of australia,
age>18,
not legally insane,
not imprisoned_for felony.
where the propositions in the clause body are set true or false by, for example, interviewing the user.
An important class of knowledge which is considered in more detail in Chapter 11 is constraints. Constraints can apply to:

m data: e.g. size, type and range of label;

m information: e.g. subtype, foreign key and inter-value constraints;

m knowledge: e.g.
selling price must depend on buying price
certain variables must be bound (an expression of information-goal
dependency)
if a rule is changed, all cases which were previously correctly classified are
still so

Statements containing phrases like all...must, or no...may are generally profitably classified as constraints. Constraints on
data and information are generally represented as Horn clauses that define views which must remain empty. A convenient
way to do this is for the deductive database system to have a reserved predicate name, say bad, and for the constraints to be
expressed as clauses in its definition. If after an update the deductive database system finds that the predicate bad is true, it
will reject the update. Integrity constraints appear in the example of section 5.4. They are covered in much more detail in
Chapter 11.

Constraints on data and information can generally be represented as first-order logic statements, but constraints on
knowledge generally cannot. However, as we will see in Chapter 6, the IDB of a deductive database can be stored in the repository
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supporting a CASE tool, which is essentially a relational database. The knowledge constraints become in many cases first-
order statements about the representation of the IDB in the repository.

It is useful to identify examples of the standard complex data structures outlined in Chapter 3. It is generally much easier to
adapt a standard predicate to a specific situation than to develop a complex search predicate from scratch. Besides the generic
complex structures given in this text, an organization may have additional standardized structures in its software library.

5.4
HIERARCHICAL THESAURUS EXAMPLE

This section contains an extended example, which may help the reader integrate the various aspects of the method. The
domain of the example is the field of indexing documents for information retrieval, and describes a hierarchical thesaurus.
The application model is divided into sections, and each ‘sentence’ in each section is numbered. This identification system
will help relate the knowledge design constructs back to the application model.

5.4.1
Application model

1 'A document is indexed by possibly several index terms. Index terms are related to each other in a number of ways. 2An
important relationship is broader term/ narrower term. >A broader term than a given term, when used in a search, will
always retrieve documents indexed by the given term, and possibly others. *A narrower term than a given term will, when
used in a search, retrieve only some of the documents indexed by the given term. °In addition to the general broader/
narrower term, there are a number of specific classes of broader term/narrower term relationships which have specific
additional properties. ®In particular, if a term is the name of a set of objects, then the name of a superset is a broader term,
and the name of a subset is a narrower term (is-a). ’Also, if a term is the name of a set of objects, the name of one of its
members is a narrower term (instance-of). $Conversely, the name of a set of objects is a broader term than the name of one
of its members (set-of). *Finally, if a term names an object, then the name of an ingredient for the object is a narrower
term (ingredient-of), and the converse relationship is a broader term.

2 'Besides the broader term/narrower term relationship, there are terms which are related to a given term in such a way that
documents retrieved by the related term are sometimes relevant to a search using the given term, but not in a systematic
way (related terms). *As for broader term/narrower term, there are a number of specific classes of related term
relationships which have specific properties: 3in particular, a term which names a source for the object named by the
given term (source-of); *and a term which names an object similar to the given object (similar-to).

3 'No term can be a broader term than itself, either directly or indirectly. ?No term can be a related term to a term which is
broader or narrower than itself, either directly or indirectly.

4 '"We would like to be able to make the following queries on this system:

m ’Find all objects having is-a relationships either directly or indirectly (subtypeof)

m If an object has narrower terms of class ingradient, find all sources for all ingradients, nothing that some source-of
relationships are associted with supertypes (sources-of-ingradient);

m “Find all set objects having at least one instance having ingradient which is similar to given term (possible-use-for) For
example possible-usefor(leek, Use)?

5.4.2
Sample population

Term prepared food Term onion soup
Broader term nil Broader term
Narrower term instance-of soup
is-a soup Narrower term
cake ingredient-of onion
bread butter
Related term meal water

Term soup Term onion
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Figure 5.7 Data/information model for hierarchical thesaurus example.
Broader term
is-a prepared food
Narrower term
ingredient-of onion soup
Term
dairy food Term
Broader term
is-a food product
Narrower term
instance-of butter
Related term
source-of dairy
vegetable Term
Broader term
is-a food product
Narrower term
instance-of onion
Related term leek
source-of greengrocer
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bold fact type is derived
Broader term
instance-of vegetable
ingredient-of onion soup
Related term
similar-to leek
butter
Broader term
instance-of dairy food
ingredient-of onion soup
food product
Broader term: nil
Narrower term
is-a vegetable
dairy food
Related term
source-of supermarket
leek
Broader term
instance-of vegetable
Related term
similar-to onion

The data structures involved here are interlocking graphs. The nodes are terms. One set of arcs, forming a directed acyclic
graph, is provided by the broader term relationships. The other set, forming an undirected graph, is provided by the related
term relationships. The types of broader and related terms select subgraphs. Note in particular that the is-a broader term forms
a transitive subgraph of the broader term directed acyclic graph.

543

Data/information model

An information model for the above example is shown in Figure 5.7, using the ERA method. Each construct in the data/
information model is labelled with the sentence in the application model from which it is derived. Note that the derived
relationships source-of-ingredient, possible-use-for, and subtype-of appear in the information model. Note also that the
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derived relationship subtype-of is indicated to be a transitive directed acyclic graph whose arc type is broader, using the
notation of Chapter 3.

5.4.4
EDB definition

broader(Broader, Narrower)
related(Term1, Term?2)
typed-broader(Broader, Narrower, Type)
typed-related(Term1, Term2, Type)
This EDB definition has a predicate for each base type in the data/information model. Other formulations of the EDB are
possible. For example, if an additional label “unspecified” is added to both entity types broader type and related type, then the
predicates broader and related could be collapsed into typed-broader and typedrelated, respectively. This design choice can
be considered as an implementation decision. The information and knowledge model are part of the specification of
the system, and a major goal of the specification of the system is a clear understanding of its behaviour, both to ensure its
correctness and to determine its suitability for the user’s purpose. For this reason, it is probably better to develop the
knowledge model from a sub-optimal table design which is closely related to the representation of the information in the
information modelling method chosen. When the system is eventually implemented, a more efficient table design can be
chosen and the knowledge design adapted.
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Figure 5.8 Knowledge model for hierarchical thesaurus example.

54.5
Knowledge model

A knowledge diagram for this example is given in Figure 5.8. As with Figure 5.7, the update types and query types are
annotated with the number of the sentence in the application model from which they are derived. Note the two predicates
broader-related and cyclic, which implement the two integrity constraints from paragraph 3 of the application model. These
do not appear in the information model, since they generate no tuples in the perfect model. There are a number of other
predicates in the knowledge model which do not appear in the information model: generally-broader, is-a, has-ingredient,
instance-of, source-of and similar-to. These predicates are intermediate types introduced to simplify or clarify the expression
of the knowledge. Intermediate types have no annotation, since by definition they do not appear in the application model,
being instead artifacts of the design. (These intermediate types may be used for improving the quality of the knowledge
representation, as described in Chapter 7.) It is not necessary to show all such predicates on the knowledge diagram (or any for
that matter). In this instance they appear on the diagram since they have some meaning in the application domain, and they

make the knowledge diagram clearer. Most of these are used in more than one predicate definition.

5.4.6
Horn clause representation of knowledge

Integrity constraints
% Example of closure of directed acyclic graph, path not important
generally-broader(T1, T2) :- broader(T1, T2).
generally-broader(T1, T2) :- broader(T1, T), generally-broader(T, T2).
cyclic :- generally-broader(T, T).
broader-related :- generally-broader(B, N), related(N, B).
broader-related :- generally-broader(B, N), related(B, N).
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2 The intermediate predicate does not appear on the knowledge diagram. It is introduced to simplify the expression of the
knowledge, but is not used in any other predicate definitions. It was therefore omitted from the knowledge diagram.

Other IDB
is-a(Superset, Subset) :- typed-broader(Superset, Subset, is-a)
has-ingredient(Total, Ingredient) :-
typed-broader(Total, Ingredient, ingredient-of).
instance-of(Set, Instance) :- typed-broader(Set, Instance, instance-of).
source-of(Item, Source) :- typed-related(Item, Source, source-of)
similar(Item1, Item2) :- typed-related(Item1, Item2, similar-to).!?
similar(Item1, Item?2) :- typed-related(Item2, Item1, similar-to).
% Example of closure of undirected graph, path not important
similar-to(Item1, Item?2) :- similar(Item1, Item?2).
similar-to(Item1, Item?2) :- similar(Item1, I), similar-to(I, Item?2).
% Example of closure of directed acyclic graph, path not important
subtype-of(Supertype, Subtype) :- is-a(Supertype, Subtype).
subtype-of(Supertype, Subtype) :-
is-a(Supertype, Term), subtype-of(Term, Subtype).
source-of-ingredient(Total, Source) :-
has-ingredient(Total, Ingredient),
source-of(Ingredient, Source).
source-of-ingredient(Total, Source) :-
has-ingredient(Total, Ingredient),
one-of(Ingredient, Set),
source-of(Set, Source).
% Example of hierarchical data structure based on a tree
one-of(Ingredient, Set) :- instance-of(Set, Ingredient).”
one-of(Ingredient, Superset) :-
instance-of(Set, Ingredient),
subtype-of(Superset, Set).
possible-use-for(Term, Use) :-
similar-to(Term, Term1),
has-ingredient(Total, Term1),
instance-of(Use, Total).
This extended example has demonstrated the flow of the problem solution through the several tools recommended in this
chapter. Starting with the application model, we first construct an information model incorporating both the base predicates
and the derived predicates. Having now all the predicates which are either query types or update types, we construct a
knowledge diagram which shows the relationships between them. In addition, we name predicates defining the integrity
constraints from the application model, and show how these predicates relate to the query and update types. In addition, we
may define some intermediate predicates which may help to simplify the diagram or make it clearer. Finally, we show the
EDB predicate schemas and the detailed representation of the knowledge as IDB predicates. We may introduce some
additional intermediate types at this stage, which we may not wish to show on the knowledge diagram. Note that the
knowledge model contains three close analogs of the ancestor predicate (subtype-of, generally-broader and similar-to).

55
OTHER FORMS OF KNOWLEDGE: PRODUCTION RULES

The knowledge design and diagramming techniques advocated in this chapter have been specific to datalog. They can,
however, be adapted to other forms of knowledge representation, in particular to production rules. Since this text does not

! The predicate similar has two clauses, since there is no constraint that if one term has a related term of type similar-to, the second
term has the first term as a related term.
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contain a thorough development of the production rule formalism and mechanisms, we do not develop the knowledge design
techniques in much detail, but simply sketch the adaptations which might be required.

First, the building block of datalog knowledge representation (an atom) is essentially a database schema. This is why we
advocate the use of a standard information analysis method. The analogous part of the production rule mechanism is the
working memory element (wme), which can also be represented as a database schema. Therefore an information analysis
method would also be useful in a production rule environment.

Secondly, the knowledge diagram shows the relationships between clause heads and the subgoals and computational
predicates in the clause bodies. A similar technique could show the relationships between the conditions of the left-hand side
and the actions in the right-hand side. The diagramming language would have to be altered, since there can be several actions
in the right-hand side, but this would not affect its spirit.

Thirdly, the annotations on the knowledge diagram would be somewhat different, depending on the capability of the
production rule system intended as the implementation platform. Production rule systems generally support negation in the
lefthand side, so the | annotation would remain, but most do not support aggregation. On the other hand, the action can delete
(or update) a wme as well as add one. A || annotation on the action would be useful to assist in detection of the production rule
equivalent of non-stratification.

5.6
SUMMARY

One of the main themes of this text is that there is a very close relationship between information systems and expert systems,
which is made apparent by the deductive database formalism. An information system is traditionally built by carefully
modelling the data then leaving the processing, including the business rules, to the programmers. An expert system is
traditionally built as a model of the rules, leaving the definition of the terms involved implicit.

We have attempted to show in this chapter that knowledge is based on data and information, and therefore knowledge can
be modelled by extensions of techniques used for modelling information and data. In particular, knowledge can be acquired
by an extension to the commonly-used systematic methods for developing a specification for an information system.

We therefore not only have a uniform language for representing both information systems and expert systems, but a
uniform set of conceptual tools to assist in their construction.

5.7
FURTHER READING

The material in this chapter is drawn largely from Debenham (1989). ERA modelling is described, for example, in Elmasri
and Navathe (1994). Object-role modelling or NIAM is described, for example, by Halpin (1994). Advanced information
modelling from the entity-relationship perspective is described, for example, by Batini et al. (1992).

5.8
EXERCISES

5.1 Simple expert system: Given below is a simple propositional expert system. Select the data and information using an
appropriate information analysis technique, then model the knowledge.
Example 10.1 (from Chapter 10 pp. 181-182): Barbecue planner expert system
rain_forecast — call off
bob — all foods
mary — vegetarian_fish
jim — meat
vegetarian_fish & not meat — lentil burgers
meat & not vegetarian_fish — steak
meat & vegetarian_fish — fish
all foods — hot dogs
The update types, with their intended interpretations, are
rain_forecast—the weather forecast is rain
bob—Bob has accepted an invitation to the barbecue
mary—Mary has accepted an invitation to the barbecue
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Jjim—IJim has accepted an invitation to the barbecue

The query types, with their intended interpretations, are

call_off—the barbecue is to be called off

lentil_burgers—Ilentil burgers will be served

steak—steak will be served

fish—fish will be served

hot_dogs—hot dogs will be served

The intermediate types, with their intended interpretations, are

vegetarian_fish—someone has been invited who is a vegetarian but will

tolerate fish

meat—someone has been invited who prefers meat but will tolerate fish

all _foods—someone has been invited who has no strong food preferences
The perfect model is intended to contain at most one of the query types other than call off: in other words, the person
planning the barbecue is expecting to serve only one type of food.

5.2 Commercial example: The following is a fragment of a specification of an information system which includes some
knowledge. Your task is to select the data and information using an appropriate information analysis technique, then to
model the knowledge. You should select the portions of the specification which contain the knowledge, and turn them
into an application model satisfying the individual requirements. Use the application model to construct a model of the
knowledge using the diagrams indicated, then translate the knowledge into clauses using the relations and data labels
identified in your preliminary information analysis.

Specification: The fragment is part of the process of preparation of invoices by a costume jewellery wholesaler, CIW
Pty Ltd (CJW). CJW is able to enforce retail price maintenance, so all outlets retail the product at the same price. We
want to be able to produce an invoice for a particular customer who has ordered a number of items of a single product.
The invoice will include the retail price, wholesale price, sales tax and cost. Cost is the total of wholesale price and sales
tax.

Wholesale price and sales tax are determined in two different ways. For boutique customers, wholesale price is the list
price of the product less a discount depending on the class of customer. Sales tax is a percentage of the wholesale price
depending on the class of the product. For department stores, the order is placed at retail price. The wholesale price is
computed by first getting a cost which is a discount from the retail price, depending on the class of the customer. The
wholesale price and sales tax are then computed such that the cost is the total of the wholesale price and sales tax as for
the boutique customers.

A printed invoice would include
Customer number, product number, quantity ordered, retail price per unit, discount rate, total wholesale price,
total sales tax and total cost.

If a boutique, the invoice would also include list price per unit. Total wholesale price is computed from the list price
times the quantity less the discount.
If a department store, total wholesale price is computed from the retail price times the quantity less the discount less
provision for sales tax, as described above.
5.3 Data structures: Draw a graphical representation of the data in the hierarchical thesaurus example (section 5.4). Discuss
which types of arc should be considered to be transitive and which not.

Major exercise

Consider the following application model.

A university offers to students courses leading to degrees. A course is offered by exactly one faculty. To qualify for a
degree, a student must pass a number of subjects. Each course has two schedules, or lists of subjects: a compulsory schedule
and an elective schedule. A student qualifies for a degree if he/she passes all the subjects in the compulsory schedule and
obtains a nominated number of credit points from the elective schedule. No more than a nominated number of credit points
can be obtained from subjects whose result is “conceded pass”. Both the elective credit points and the “conceded pass” credit
points can vary between courses.

Subjects are offered by departments which are attached to the faculties. A subject has the characteristics described in the
Department Handbook. A student enrolled in a subject can obtain three possible results: “pass”, “conceded pass” or “fail”.

>

The student is enrolled in a subject before the result is available: the enrolment record will have a result “not available” during
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this period. (Note that the student may enrol for subjects to be studied in subsequent semesters. For example, a student may
enrol in the entire sequence of subjects necessary for a degree at the beginning of the first semester.)

A student is eligible to enrol in a subject if she/he has enrolled in its prerequisite and co-requisite subjects, provided that the
result is neither “fail” nor “conceded pass”, and is not enrolled in an incompatible subject.

A subject is a “foundation” subject if it appears as a prerequisite to a subject which is itself a prerequisite for a subject. A
subject is a “service” subject if it appears on a schedule for a course offered by a faculty other than the faculty to which the
department offering it is attached. A subject is “obsolete” if it appears on no schedule. One subject “contributes to” another if
it is a prerequisite or co-requisite to the second subject, either directly or indirectly.

No subject may be a prerequisite for itself, either directly or indirectly. If a subject is on a schedule, all of its prerequisites
must be on the schedule as well. The total number of credit points on a compulsory schedule for a course must not exceed the
total number of credits points to qualify for the course. The total number of credit points in the compulsory and elective
schedules for a course must be sufficient to qualify for the degree.

There may be ambiguities or incompleteness in this model. If so, make reasonable assumptions based on your knowledge
of university procedures. Document these assumptions.

1 Make an information analysis of the model, using either NIAM or ERA. Include in the diagram all fact types, including
derived fact types. Indicate derived fact types by “*” or other suitable means.

2 Make knowledge diagrams of all derived facts. Indicate whether any facts are non-categorical or incomplete. Integrity
constraint violations will cause the predicate bad to be true.

3 Express the derived facts in Horn clause form.

4 Populate the tables and update type procedures with the subject cs317 and its prerequisites, below. Some tables may be
empty.

5 Ensure that the quality rules of Chapter 7 apply to all derived facts, where possible. If impossible in a particular case,
explain why.

Extract from the student handbook. All these subjects are compulsory for the course B. Inf. Tech.
CS114 Introduction to Information Systems
#8 (2L1T1P) 1st [For BA Pre: Sen Math 1]
Overview of Information Systems, etc.
CS115 Relational Database Systems
#8 (2L2P/2T) 2nd Pre: CS114
Further aspects etc.
CS213 Information Systems Design
#8 (2L1T) Ist Pre: (CS113 or CS115)+(ME205 or MT108) Inc. CO865
Life cycles of information systems, etc.
CS317 Advanced Database Systems
#8 (2L1T) 2nd Pre CS213+(i) CS225 or (ii) (CS102+CS226)
Overview of advanced architectures etc.

Abbreviations:
#8 the subject has 8 credit points
L lecture hours per week
T tutorial hours per week
P practical session hours per week
Ist, 2nd first or second semester, respectively
Pre prerequisite
Inc incompatible subject
Notes:

(a) Don’t show integrity constraints on the ERA diagram.

(b) Show integrity constraints on the knowledge diagram. Give each a meaningful name. Indicate which predicates in the
knowledge diagram are ICs.

(c) Do not show intermediate types on either the ERA or knowledge diagrams. Indicate which predicate definitions in part
3 are intermediate.

(d) Show course rules for B Inf Tech only. Note that the actual rules are considerably more complex than the rules in the
assignment. Use the rules in the assignment with parameters elective subjects at least #144, maximum conceded pass #30.
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CHAPTER SIX
Building a knowledge base

In this chapter, we look at methods and tools to assist in building a knowledge base, with emphasis on the design and use of a
computer-aided software engineering tool based on a repository implemented as a deductive database, i.e. use of a deductive
database to help build a deductive database.

6.1
KNOWLEDGE ACQUISITION

A knowledge-based system, be it an information system or an expert system, is generally constructed by computer specialists
in order to meet the needs of a separate user community. The requirements for the system, including the knowledge it
contains, are provided by specialists from the user community, which we will call domain experts. The domain experts
communicate with computer specialists to produce the requirements in a form which can be understood by both parties. The
computer specialist is called a systems analyst by the information systems community and a knowledge engineer by the
expert systems community. We will call the practitioner a knowledge engineer, and the process knowledge acquisition.

The knowledge engineer has access to a number of sources of knowledge, including interviews with domain experts and
documents used by the client organization. This knowledge is usually incomplete, inconsistent, and not structured in a way
useful for computer implementation. The knowledge acquisition task is to assemble the knowledge in an implementable form,
suitably structured, complete and consistent. The usual procedure is to gather the knowledge informally at first, then to
formalize it with the aid of various tools. During the formalization process, the knowledge engineer will usually find gaps and
inconsistencies, and will resolve these in discussion with the domain experts. A systematic approach is essential to achieve a
suitable representation in a reasonable time.

The first product of knowledge acquisition is the requirements specification, which is a natural language, and therefore
informal, statement of what is expected of the system. Part of the requirements specification is the application model, which
was described in Chapter 5. The application model goes through several drafts. The first draft is fragmentary and extremely
informal. The final draft is in the semiformal language of Chapter 5, and is in essence a natural language representation of the
formalized knowledge.

The ultimate system is an implementation of the requirements specification, so that each element of the final formal
knowledge structure must be tied to something in the application model. To facilitate this linkage, the requirements
specification is divided into fairly small sections with identifiers. The sections of the application model will be called bundles
(of statements), and each bundle will be identified by a bundle identifier. A bundle therefore is an interrelated collection of
application model statements. The hierarchical thesaurus example of Chapter 5 has four bundles.

The formalization process works from (drafts of) bundles in the application model. The knowledge engineer should work
systematically. Starting from a given fact in one of the bundles, the engineer should:

make sure all thing populations have identifying name populations;
identify the population for all labels;

generalize particular facts;

if a fact is derived, determine how it is derived;

define subtype relationships between the populations.

For example, the hierarchical thesaurus application is about relationships between words or phrases, which are labels. Therefore,
all the thing populations are also name populations and are identified by themselves. In bundle 1, the labels broader term and
narrower term are names of populations. The labels is-a, instance-of and ingredient-of are instances of the population broader
type. The definition of the isa relationship is a particular fact, which is generalized by the fact that there are a number of
specialized broader term classes, whose names are instances of the population broader type. These specialized broader term
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classes are subtypes of the general broader term. In this bundle, there are no instances of derived facts. Bundle 3 has two
derived facts and sufficient information about how they are derived to produce a formal specification.

A systematic approach is to clarify all the statements in a bundle before proceeding to others. Within a bundle, find out all
you can about one thing before moving to another.

This chapter shows how some of the tools of information and knowledge analysis can be used to assist knowledge
acquisition, and also demonstrates one way to build an information system to implement the tools.

Table 6.1 Product of information analysis: data

Properties Sample data terms
Thing population term related type broader type
Name population term related type broader type
Subtype of Labels source-of is-a
similar-to instance-of

ingredient-of
Fixed labels? no yes yes
Pop. constraints none defined defined
Label constraints none none none
Bundle 1 2 1

6.2

PRODUCT OF DATA AND INFORMATION ANALYSIS

6.2.1
Data

The information analysis produces a set of facts about the data and information in the application. This set of facts is
frequently represented as a diagram, such as an Entity/Relationship/Attribute diagram or a NIAM diagram such as Figure 5.7.
The facts about the data and information can be expressed in a tabular form, which is interchangeable with the diagrammatic
form.

The data is described in terms of:

m thing population (entity type);
m name population (identifying label type);
m subtype relationships.

In addition, we need to record whether the name population is fixed or variable, and in some cases exhibit the name
population. The labels may be constrained (for example they must be positive integers, or must consist entirely of upper case
alphabetic characters). The user may or may not be allowed to update the name population. Finally, the bundles in the
application model from which the facts about the data are derived should be recorded.

Table 6.1 shows the data analysis product of information analysis for the hierarchical thesaurus example (section 5.4).
There are three thing populations, each of which is its own name population. There are no subtype relationships in the data as
represented. (Note that the application model could have been represented with typed broader term and typed related term as
subtypes of term. The design choice made was to not employ subtyping in this instance.) The populations related type and
broader type both have known sets of labels, which are defined, that is they are the only labels allowed, and the user is not
allowed to update them. (They are built into the knowledge, so that a change to the labels for those two populations
would require changes to the knowledge, which we assume the user is not permitted to do.) We impose no constraints on any
of the labels: in other words, any string of characters is a valid label. This by default applies only to the population term, since
the other two populations are pre-defined. Finally, the populations ferm and broader type are derived from bundle 1, while
related type is derived from bundle 2.
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6.2.2
Information

The same information analysis provides facts about the predicates relevant to the application, what is called in this text the
information. The information is described as a set of relational schemas, containing

name of the relation;

key and other domains;

possible tuple population;

any relational constraints, such as foreign keys;

any tuple constraints, such as maximum number of tuples;
whether derived or not;

related bundle.

Some of the relation schemas derived from Figure 5.7 are shown in Table 6.2. Illustrated are two base relations related and
broader term_has_type; and one derived relation subtype_of. All three describe relationships between terms, so each has as
compound key two attributes from the ferm domain. The base relation broader term has type has in addition a non-key
attribute from the domain broader type. These key and non-key attributes are derived from the transformation of the
information model to a relational schema. The transformation is not necessarily complete or optimal, but just sufficient to find
the identification scheme for each fact type. In this way, the information predicates are as close as possible to the information
model. Neither base relation has any constraints on its population or on the content of its tuples shown on the information
model. However, the many-to-many relationship

Table 6.2 Product of information analysis: information

Properties Sample relation schemas

Relation related broader term_has_type subtype of
Key domains termxterm termxterm termxterm
Other domains nil broader_type nil
Derived? no yes no

Tuples

Relation constraints term X term in broader

Tuple constraints
Bundle 2 1 4

from which broader term has type is derived implies that every key for that relation is also contained in the relation broader
(foreign key). The predicate related derives from bundle 2 in the application model, broader _term _has_type from bundle 1,
and subtype_of from bundle 4.

6.3
BUILDING THE KNOWLEDGE MODEL

A knowledge engineer will typically use an information analysis tool to assist in constructing the data and information
models. The information analysis tool will generally include diagrammatic representations of aspects of the model. The
diagrams help to visualize the various constructs and to record various constraints such as mandatory relationships. The
diagrams are also used to suggest possible questions of the domain experts: for example, an entity participating in several non-
mandatory roles might have a useful subtype structure.

Knowledge in this text consists of derived facts and integrity constraints. Chapter 5 suggests that a suitable way of
recording knowledge is as Horn clauses: a textual representation rather than a graphic representation, since the details of
derivation rules are potentially complex and diverse in structure. It, however, suggests a coarse representation of the
relationship between derived and base predicates, such as is shown in Figure 5.8. In that chapter, it was suggested that the
knowledge diagram was a suitable place to record whether a predicate was computational or not, and whether a clause body
predicate was either negated or used in an aggregation. The knowledge diagram can be annotated with negation and
aggregation, and can be used to identify knowledge structures which are not stratified.

The structure of the knowledge diagram can also suggest possible redundancies. Figure 6.1 shows two fragments which
might have appeared on earlier drafts of the knowledge diagram of Figure 5.8. The upper fragment shows two predicates,
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Figure 6.1 Use of knowledge diagram to show possible redundancies.

broader and narrower, which are defined solely in terms of each other. This suggests that they might be equivalent, which is
in fact the case. The redundant predicate narrower was discarded in favour of broader. The lower fragment shows the
predicates source-of-ingredient and possible-use-for. Each of these predicates depends on both instance-of and has-
ingredient. The possibility is that there is a concept expressed in the knowledge which is being computed redundantly, for
example aningredient-of-one-of-the-members-of-a-set. (See Chapter 7 for further discussion of this point, particularly the
discussion of knowledge quality principles K.3 and K.4.) We investigate the detail of the definitions of the two consequent
predicates (from Chapter 5), and see that in fact the two consequent predicates depend on the two antecedent predicates in
different ways, so that there is in fact no redundancy.

When we complete the knowledge model, we have a representation of the knowledge in terms of groups of clauses. Some
of these groups are integrity constraints. We identify the update and query types. Finally, we classify the knowledge groups
according to whether they are update types, query types or integrity constraints. (Recall that a predicate can be both a query
and update type.) Some of the knowledge may not be in any of these classifications. Knowledge which the domain
expert wants neither to change or to view, and which does not constrain the system, is knowledge which is not required for the
immediate purpose, so we will classify it as dormant. This is kept in the model for possible future use.

6.4
CASE TOOL FOR THE KNOWLEDGE MODEL

6.4.1
Overview

We have seen that development of a model for a knowledge-based system requires the knowledge engineer to keep track of a
large amount of complexly structured data. It therefore makes sense to consider providing an information system to assist:
after all, that is what an information system is for, to help people keep track of large amounts of complexly structured data.

A computer system to support software engineers in constructing systems is generally called a Computer-Aided Software
Engineering (CASE) tool. CASE tools generally will do things like draw information model diagrams, maintain control of
different versions of an evolving software product, and integrate documentation with the design. The core of a CASE tool is
generally a database, which is frequently called a repository. We will show the main features of a repository which can be the
basis of a CASE tool to help the knowledge engineer build and maintain a knowledge-based system along the lines described

in this text.
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Figure 6.2 Model for data and information.

6.4.2
Information repository

An early stage in the design of an information system is construction of an informa tion model. Figure 6.2 shows an
information model which describes the main features of data and information as they are represented in the knowledge model.
The key structures are that a predicate definition has roles, a predicate definition has instances, and tuple instances have roles.
Note that not all predicate definitions need to have roles: prepositional predicates do not.

Expressed as a relational predicate, the fact type predicate definition has role is

pred/role(Predicate, Role, Domain, Type) 6.1)
while the fact type tuple has role is
tuple/role(Predicate, Tuple, Role, Instance) (6.2)

A population of pred/role based on the EDB definitions broader and typed-broader from the EDB derived from Figure 5.7 is
given in Table 6.3. There is one row in the table for each role in each predicate definition.

Table 6.3 Sample population of pred/role

Predicate Role Domain Type
broader broader term key
broader narrower term key
typed-broader broader term key
typed-broader narrower term key
typed-broader type broader-type non-key

Table 6.4 Sample population of #yped-broader

Broader Narrower Type

food product dairy food is-a

dairy food butter instance-of
vegetable onion instance-of

onion soup onion ingredient-of
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Table 6.5 Sample population of tuple/role
Predicate Tuple Role Instance
typed-broader food product/dairy food broader food product
typed-broader food product/dairy food narrower dairy food
typed-broader food product/dairy food type is-a
typed-broader dairy food/butter broader dairy food
typed-broader dairy food/butter narrower butter
typed-broader dairy food/butter type instance-of
typed-broader vegetable/onion broader vegetable
typed-broader vegetable/onion narrower onion
typed-broader vegetable/onion type instance-of
typed-broader onion soup/onion broader onion soup
typed-broader onion soup/onion narrower onion
typed-broader onion soup/onion type ingredient-of

A sample population for the predicate typed-broader from the hierarchical thesaurus example of section 5.4 is given in
Table 6.4. This population is used to populate the predicate fuple/role in Table 6.5.
Notice that there is a row in Table 6.5 for each label in each tuple in Table 6.4. The entries in the Tuple column of
Table 6.5 are identifiers of the tuples (in this case the key, which is concatenated).
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6.4.3
Repository for knowledge

Our repository information system at this point has the capability to store the information model for an application. We will
now extend it to be able to store the knowledge model. The information model for the repository able to store the knowledge
model is shown in Figure 6.3. The new elements include a new subtype of label (variable label) and the structures needed to
represent the body of a clause. A clause head is a subtype of predicate definition, which is in the model of Figure 6.2. The
entity type literal includes both the clause head literal and the literals in the clause body, so that /iteral is an optional role in
the calls fact type (the clause head does not call a subgoal). However, each literal argument corresponds to a role in a
predicate definition. For the head predicate, the correspondence is with the group’s predicate definition, whereas for a body
literal, the correspondence is with the definition of the group called by the subgoal.

In addition to the relational predicates (6.1) and (6.2), there are two important predicates defined by the information model
for knowledge: literal/calls which gives the predicate dependency relationship (refer to Chapter 4), and literal/argument,
which stores the labels contained in the predicate definition. The schema for literal/ calls is

literal/calls{Group. Clause, Literal¥t, Called_Predicate, Negative) (6.3)

while the schema for literal/argument is
literalfargument(Group, Clause, Literal#, Argument#,
Label, Called_Predicate, Role) 6.4)
In definition (6.4), the attributes Called Predicate and Role have a referential integrity constraint to the corresponding key
attributes of pred/role (6.1). The information in literal/calls is used to construct the knowledge diagram.

Table 6.6 contains a population for the predicate literal/calls derived from the Other IDB definitions of the hierarchical
thesaurus example of section 5.4. Notice that we only store body literals, since head literals do not particpate in the calls fact
type. We will identify the head literal as literal# 0, and number the body literals from 1. Notice that some of the predicates are
recursive (Group has the same value as Called Predicate), and that there are no negative literals. Some of the predicates have
only one clause in their definition and some two. The number of body literals ranges from one to three.

We show in Table 6.8 a population for literal/argument (6.4) derived from the predicate subtype-of from the hierarchical
thesaurus IDB of Chapter 5, repeated in (6.5) for convenience:

subtype-of{Supertype, Subtype) - is-a(Supertype, Subtype),
subtype-of{Supertype, Subtype) :- (6.5)
is-a(Supertype, Term), subtype-of(Term, Subtype)

We first exhibit in Table 6.7 some additional tuples for the predicate pred/role of Table 6.3 which represent the schema for
the definition of the clause group subtypeof. Recall that a clause head is the schema of a view definition, and is therefore a
relation schema.

Table 6.8 shows that there are two variable labels used in the first clause of subtype-of, namely Supertype and Subtype,
while the second clause has three labels: Supertype, Subtype and Term. The join between is-a and subtype-of in the second
clause is shown by the second argument of literal 1 and the first argument of literal 2 both having the label Term. That the two
arguments are join compatible is shown in the population of pred/role. The value of the attribute Domain is term in the row
where Predicate is is-a and Role is narrower, and also in the row where Predicate is subtype-of and Role is supertype.

Table 6.6 Sample population of /iteral/calls for hierarchical thesaurus application

Group Clause Literal# Called_Predicate Negative Aggregate
is-a 1 1 typed_broader no no
has-ingredierit 1 1 typed_broader no no
instance-of 1 1 typed broader no no
source-of 1 1 typed_related no no
similar 1 1 typed_related no no
similar 2 1 typed_related no no
similar-to 1 1 similar no no
similar-to 2 1 similar no no
similar-to 2 2 similar-to no no
subtype-of 1 1 is-a no no
subtype-of 2 1 is-a no no
subtype-of 2 2 subtype-of no no
source-of-ingredients 1 1 has-ingredient no no
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Group Clause Literal# Called_Predicate Negative Aggregate
source-of-ingredients 1 2 source-of no no
source-of-ingredients 2 1 has-ingredients no no
source-of-ingredients 2 2 one-of no no
source-of-ingredients 2 3 source-of no no
one-of 1 1 instance-of no no
one-of 2 1 instance-of no no
one-of 2 2 subtype-of no no
possible-use-for 1 1 similar-to no no
possible-use-for 1 2 has-ingredient no no
possible-use-for 1 3 instance-of no no
Table 6.7 Additional sample population of pred/role

Predicate Role Domain Type
subtype-of supertype term key
subtype-of subtype term key

Recall that the reason we need both literal/calls and literal/argument is that propositional predicates cannot have any
arguments. A fully propositional knowledgebased system will have an empty literal/argument. Table 6.9 contains the
population of literal/calls for the barbecue planner application in Example 10.1. Note that some of the body predicates are
negative. Note that literal/argument does not

Table 6.8 Sample population of /iteral/argument

Group Clause Literal# Arg# Label Called Predicate Role
subtype-of 1 0 1 Supertype — —
subtype-of 1 0 2 Subtype — —
subtype-of 1 1 1 Supertype is-a broader
subtype-of 1 1 2 Subtype is-a narrower
subtype-of 2 0 1 Supertype — —
subtype-of 2 0 2 Subtype — —
subtype-of 2 1 1 Supertype is-a broader
subtype-of 2 1 2 Term is-a narrower
subtype-of 2 2 1 Term subtype-of supertype
subtype-of 2 2 2 Subtype subtype-of subtype

Table 6.9 Sample population of literal/calls for barbecue planner application

Group Clause Literal# Called_Predicate Negative Aggregate
call_off 1 1 rain_forecast no no
all foods 1 1 bob no no
vegetarian_fish 1 1 1 mary no no
meat 1 1 jim no no
lentil burgers 1 1 vegetarian_fish no no
lentil_burgers 1 2 meat yes no
steak 1 1 meat no no
steak 1 2 vegetarian_fish yes no
fish 1 1 meat no no
fish 1 2 vegetarian_fish no no
hot_dogs 1 1 all foods no no

contain sufficient information to support aggregations and other built-ins. These and other necessary facilities have been
omitted in the interests of clarity.
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6.4.4
Repository for application model

Finally, everything in the knowledge and information models for an application must refer back to the application model for
that application. It is therefore a good idea to store the application model in the repository so that the links between the parts of
the other models and the application model can be represented. An information model for the area of the repository which
holds the application model is shown in Figure 6.4. The central fact type is statement establishes/derived from model entity.
The entity type model entity is a supertype (strictly, a generalization) of all of the entities in the repository which could be
derived from the application model. These subtype entities include group, relation, role and instance label, among others.

Table 6.10 Sample population for establishes

Bundle Statement Model_Entity Type

4 1 subtype-of group

1 3 broader predicate role
1 2 term population

A predicate containing the establishes/derived from relationship is
establishes{Bundle, Statement, Model_Enrity, Type) (6.6)
Table 6.10 shows the connection to the application model for three of the model entities in the hierarchical thesaurus example
(section 5.4), namely the group subtypeof, the predicate role broader, and the population term.

6.4.5
Discussion

In the previous sections, we have described the main outlines of a repository for storing the knowledge model for an
application under construction. The repository will store

the application model;

schemas for the EDB,;
populations for EDB predicates;
the IDB.
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Figure 6.5 The knowledge analyst’s assistant.

It should be clear that it is not difficult to extend the model to store all the material in Tables 6.1 and 6.2. For example, to
better manage foreign key constraints the predicate/role relation needs to distinguish between different concatenated
candidate keys, and to be able to group together attributes which are concatenated foreign keys. It is also not difficult to
extend the model to store structures, which would be required for knowledge bases which included paths in transitive closure
predicates, for example.

We should note that the repository so far defined does not help at all with the information modelling part of the knowledge
acquisition task: information in the model is represented as relational schemas. A similar exercise must be undertaken to
construct a repository suitable for managing an ERA diagram or a NIAM diagram.

We should also note that although the repository allows us to store and make enquiries about a deductive database, it is
itself only a database, at least at this stage. So far, we have designed a database to help us manage a deductive database.
Below, we will sketch some of the ways in which the repository can be extended to be a deductive database, and what
benefits that extension might bring.

6.5
THE CASE TOOL

The repository described in the previous section is the core of the CASE tool. The tool itself consists of a set of applications
built on the repository. Figure 6.5 illustrates a prototype tool, called the Knowledge Analyst’s Assistant or KAA, designed to
support construction of knowledge base systems using the methods of this text. The user has access to three classes of
functions:

m model definition, through which the repository is populated and updated;
m browser, through which the structure of the application can be explored and the possible effects of changes examined;

m program generator, through which the knowledge base can be turned into executable programs, for example in Prolog or
SQL embedded in C.

The model definition functions of the KAA make use of the repository’s data structure given in Figures 6.2—6.4 to make sure
that the application specification is valid, mainly by enforcing foreign key dependencies between the repository’s tables.
These structural dependencies, illustrated in Figure 6.6, are employed by the browser to permit the knowledge engineer user
to formulate queries, such as

m label occurrence: Where does a given label appear in the specification? This can be interpreted as “what structures in the
application would be affected if that label were removed?”. The first step in this query would be to find out what type the
label is, then to search the tables containing labels of that type. If the label were a population label, then it might be found
in the Domain attribute of the pred/role relation. If it were an instance label, it might be found in the Label attribute of the
literal/argument relation.

m predicate relationship: What attributes in one given derived predicate are dependent on which attributes from another
given base predicate? This would involve joining literal/argument with the tuples of pred/role containing the EDB
predicate schema, where the join attributes are Predicate and Role in pred/role and Called Predicate and Role in literal/
argument.
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Figure 6.6 Some structural dependencies in the repository.

m grounding: From what statements in the application model does a given label derive? To answer this query, one would
first find out what model entities contain that label, then query the predicate establishes.

m join populations: What populations appear as join attributes? This query requires a self-join on literal/argument to
identify predicates and roles used as join attributes, then a join with pred/role to identify the populations via the Domain
attribute.

Code can be generated from the repository by traversing the data structures and performing appropriate transliterations, or
translations in some cases. For example, generation of Prolog code for the IDB can be done by a simple process from literal/
argument. A prepositional expert system shell can be populated from literal/calls. SQL CREATE TABLE statements can be
generated from pred/role. Information necessary to generate SQL view definitions is contained in literal/argument, but
creation of the SQL statements requires a more complex process than that which creates statements in Prolog. All of these
translators are applications in the CASE tool which work from the repository.

Having a CASE tool based on a rich data structure such as we have described is a great advantage to the knowledge
engineer. The application can be specified in the tool, and the tool’s browsing and query capabilities used to ensure the
consistency of the specification. When the engineer is satisfied with the specification, the code generator can produce a
version of the system which can run in the appropriate execution environment.

Further, since the knowledge is represented in a Horn clause form, one of the applications in the CASE tool can be a Horn
clause interpreter such as described in Chapter 2 or Chapter 4, which can execute the specification. The interpreter can be
instrumented to allow the knowledge engineer to follow the dynamic behaviour of the specification in some detail. The system
can be not only developed, but largely tested in a maintenance environment using the CASE tool.

Since the code executed in the production environment is derived from the same data structures as used by the interpreters
in the maintenance environment, accuracy of testing can be ensured. Further, the maintenance environment can be used to
help identify errors discovered in the production environment, without requiring the knowledge engineer to examine the
production code. It is necessary only to populate the maintenance environment with sufficient data to reproduce the problem.

6.6
REPOSITORY AS A DEDUCTIVE DATABASE

The repository described so far in this chapter has been a database, used to assist in building a deductive database application.
However, a CASE tool is an information system, and, like any other, can be at least partly specified as a deductive database,
using the methods of Chapter 5.

First, the queries of the previous section can be pre-packaged for the knowledge engineer as view definitions, rather than
having the knowledge engineer use the query language to pose them as ad hoc queries. The views label occurrence, predicate
relationship, grounding, and join populations could be expressed in SQL in the conventional way, or alternatively in datalog.

Secondly, the repository has recursive data structures, including subtype/supertype and the calls relationship, so that a
recursive view definition would be needed, for example, to determine whether two roles were join compatible or what predicates
were dependent directly or indirectly on a given predicate.

Finally, there are a number of important integrity constraints which are naturally expressed in a deductive database. One is
the requirement that the IDB be stratified. This constraint can be expressed on the transitive closure of the literal/calls predicate
as
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calls_closure(Predicate, Clause, Literal, Called, Negative) :-
literal /calis(Predicate, Clause, Literal, Called, Negative).
calls_closure(Predicate, Clause, Literal, Called, Negative) :-
literalfcalls(Predicate, Clause, Literal, Intermediate, Negativel ),
calls_closure{Intermediate, Clausel, Literall, Called, Negative2),
negation_dominates(Negativel, Negative2, Negative). (6.7)
negation_dominates(yes, _. yes).
negation_dominates(_, yes, yes).
negation_dominates(no. no, no).

non_stratified :- calls_closure(Predicate, _, _, Predicate, yes)
The predicate calls closure of (6.7) is the transitive closure of the literal/calls predicate. Since in the definition of
stratification given in Chapter 4, an arc in the dependency graph is negative if any of the occurrences of the second predicate
are in negative literals in the body of any of the clauses of the first predicate, the recursive clause for calls closure uses the
subsidiary predicate negation_dominates to ensure that the variable Negative is bound to no only if neither arc is negative.
Finally, the integrity constraint predicate non_stratified is true only if a predicate appears negatively in its own definition,
directly or indirectly.
Other integrity constraints, all of which involve recursive predicates, include:

joins must be on type-compatible roles;

subgoal literals must agree in number and type-compatibility of argument roles;

clauses must be numbered consecutively in a group and literals numbered consecutively in a clause;
stratification for negation and aggregation.

6.7
SUMMARY

This chapter has argued that a systematic approach to knowledge acquisition is made easier by the use of a CASE tool. It has
then sketched a CASE tool to support the knowledge representation strategy of Chapter 5. This CASE tool is an information
system which is a tool for building information systems. More particularly, the CASE tool sketched is a deductive database
which is a tool to help build a deductive database.

6.8
FURTHER READING

The material in this chapter is drawn partly from Debenham (1989), and partly adapted from Debenham and Lindley (1990),
Lindley (1990) and Lindley and Debenham (1990).

6.9
EXERCISES

6.1 What fact types in the model for data and information of Figure 6.2 have roles which can be populated by entities of type
label?

6.2 Create a relational scheme for the entity type label of Figure 6.2 which supports the indicated subtype structure, showing
the attributes from which the definitions of the subtypes are derived.

6.3 Write down a datalog query and the corresponding SQL query which will identify all tuples stored in the repository
derived from Figure 6.2 which contain entity instances of type label.

6.4 Populate the schema of literal/argument (Table 6.8) with the predicate definition

ancestor(Older, Younger) :- parent(Older, Younger).
ancestor(Older, Younger) :-
parent(Older, Intermediate),
ancestor(Intermediate, Younger).

6.5 Translate the following population of /iteral/argument to standard Prolog notation:
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Group Clause Literal# Arg# Label Called Predicate Role

sg 1 0 1 X — —

sg 1 0 2 X — —

sg 2 0 1 X — —

sg 2 0 2 Y — —

sg 2 1 1 P parent older

sg 2 1 2 X parent younger
sg 2 2 1 Q parent older

sg 2 2 2 Y parent younger
sg 2 3 1 P sg person-1
sg 2 3 2 Q sg person-2

6.6 How would you identify a join in literal/argument?
6.7 Write a query in datalog and in SQL which would identify the populations which appear as join attributes. How would
you test for join compatibility?



CHAPTER SEVEN
Knowledge quality

In this chapter, we look at knowledge-based systems from a software engineering viewpoint, emphasizing factors which make
them easier to maintain over the entire software life cycle. These factors are organized as a number of quality principles.

71
QUALITY AND MAINTAINABILITY

As engineers, we wish to construct information systems which are of high quality. There are several aspects to quality. First
of all, it must be suitable for its purpose. Suitability for purpose depends on understanding the work processes of the
organizations and people who are intended to use the system, and is captured in the system specifications. This aspect of
quality is addressed by the systematic procedures recommended in Chapters 5 and 6 for constructing the application model. An
important aspect closely related to suitability for purpose is ease of use. Ease of use is largely in the province of human-
computer interaction (HCI). HCI principles are generic across information technology, and are not addressed specifically in this
text.

Once a system has been specified, then it must be constructed. Quality in this aspect is manifested as correctness of
implementation—the system actually behaves as the specification says it should. An important way to achieve correctness is
to implement the system using high-level data structures, with a rich set of mathematically well-understood operations on
them. The use of deductive database technology assists correctness in this way. Further assistance is provided by the use of
software tools (CASE) to assist in the construction and verification of the implementation. A good high-level language
supported by a good CASE tool can automatically generate the lower-level implementations needed actually to execute the
application on the chosen platform, so that the object program is correctly derived from a high-level description. A second
aspect of quality closely related to the implementation is resource consumption. A system to be effective must respond
quickly enough and consume an economically justified amount of memory and computing power. The long-continued decline
in costs of computing power has meant that resource consumption, particularly response time, is relevant for only a small
fraction of the functions of the application. Often the programs which convert the high-level specification to a low-level
implementation can be instructed to optimize the implementation. For example, database systems can construct indexes to
speed processing of certain classes of queries.

A system which passes the suitability for purpose and correctness/efficiency quality criteria is then subject to the problem of
maintainability. It is well-established that a successful computer system becomes deeply embedded in the organization using
it, and therefore must adapt as the organization evolves. Even if it does not change in functionality, it must adapt as the
underlying technology changes. A major thrust of the discipline of software engineering is the design of systems in such a
way as to facilitate change. This chapter is devoted to quality principles related to maintainability.

A piece of knowledge from the application domain is frequently represented as a complex object in the computer domain,
for example as a group of clauses or even several inter-defined predicates, each of which is a group of clauses. In the computer
domain, a complex object is represented by a set of structural links between primitive objects. Primitive objects are things
like predicate names, roles, subgoals, variable names; while the structural links are given by the syntax of the knowledge
expressions: the predicate name in the clause head determines the predicate being defined, variables of the same name in the
same clause show equality relationships between roles, the predicate name in a subgoal is a link to the predicate definition.
The syntactic structure for Horn clauses is detailed in Chapter 2. A more detailed representation of this syntax as a relational
schema is given in Chapter 6.

The operator of a knowledge-based system, or any system for that matter, performs operations whose meaning lies in the
application domain. The objects in the computer domain upon which the operator acts therefore take their meaning from the
application domain, and the application domain determines a set of semantic relationships or semantic links between the
computer objects. A change in the computer system originating in a change in the organization will be expressed in terms of
the application domain, while a change originating in a change of technology must preserve the semantic relationships
between the computer objects.
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The programmers who create and change computer systems have the assistance of computer-based tools which help
manage the structural links between the primitive computer objects. These tools are at least editors and compilers, and can be
very elaborate integrated programming support environments, such as described in Chapter 6.

If changes are requested in terms of semantic links and the programmer has tools to manage structural links then the
potential for error is high where there are semantic links not represented by structural links. We will call such semantic links
unsupported. Unsupported semantic links are a maintenance hazard. We will say that knowledge is of high quality from a
maintainability point of view if it has no unsupported semantic links. The general principle is:

Represent one piece of knowledge in one structure and in one structure only.

7.2
NORMALIZED INFORMATION

The reader is assumed to be familiar with the concept of normalized relational schemas. Relational schemas are normalized to
avoid update anomalies, in which an update to the relational tables fails to preserve semantic properties of the data. We will
review the standard normal forms for information as an introduction to the concepts of this chapter. These normal forms are
properties of the relational schema, which in a CASE tool are represented by (are stored in) tables in the repository. The
functional associations are between what are called domains in Chapter 6, and the structures which represent the functional
associations are stored in the EDB predicate pred/role.

7.2.1
First normal form: an association must be functional

A table is in first normal form if it is flat. The primary key determines exactly one value for each of the attributes. For
example, if a student has grades for several subjects, each subject is represented in the table. The schema

student(Student#, List_of_Grades) (7.1)
is not in first normal form. A first normal form representation is
student(Student#, Subject, Grade) (7.2)

If an object in the application domain is represented as a set of functional associations, then each of these associations must be
explicitly represented in the tables. The semantic links represented by the functional associations between computer objects
are therefore supported by the table structure. The semantic object in (7.1) and (7.2) is the relationship between students and
their grades, which in (7.2) is supported by the Subject attribute being part of the relation’s primary key.

7.2.2
Second normal form: no sub-functional associations

A relational schema is in second normal form if every non-key attribute is functionally dependent on the entire primary key.
This normal form is of course relevant only to relations whose primary key is composite. For example, the schema
studeni(Student#, Student_Name, Subject, Grade) (7.3)
has the composite key (Student#, Subject), but the attribute Student Name is functionally dependent only on Student#. A
second normal form representation of (7.3) is
student(Stedent?, Student_Name)
studies(Student#, Subject. Grade)

The relevant semantic link is that, for a given student identified by Student#, there must be a unique value for Student Name.
In the unnormalized form (7.3), there may be several instances of Student Name associated with a single value of Student#.
The requirement that these instances all be the same is not supported by structural links in the relational model. In (7.4), there
is only one instance of Student Name for each instance of Student#.

(7.4)

7.2.3
Third normal form: no transitive dependencies

A relational schema is in third normal form if there are no functional associations between non-key attributes. For example,
consider the schema
enrolled(Student#, Subject, InCharge) (7.5)

where InCharge indicates the lecturer-in-charge. There may be many students enrolled in a subject, but only one lecturer-in-
charge. An equivalent normalized schema is
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enrolled(Studens#, Subject)
inCharge(Subject, Lecturer) (7.6)

The semantic link in (7.5) is that there is only one lecturer-in-charge for a subject, which is unsupported by structural links
since there are many copies of it which are unconnected in the relational model. In (7.6), there is only one copy, so the

semantic link is supported by a structural link.

7.2.4
Fourth normal form: no multi-valued dependencies

A relation is in fourth normal form if it has a composite key and its key attributes have no multi-valued dependencies. This is
equivalent to saying that the projection of the relation onto its key attributes cannot be decomposed into the join of two
relations. For example, suppose in an educational establishment we were to build a database allowing us to contact a student at
any hour of the day if an emergency occurs. This relationship might be expressed as a ternary fact type in NIAM as Student
might be found at Hour attending Subject. Suppose in addition that we knew the hours that the student was attending and the
subjects in which the student was enrolled, so that for each hour the student was in attendance we generated a tuple for each
subject in which the student was enrolled. This situation could arise in early stages of scheduling tutorial groups for a group
of subjects: the students would nominate hours they are available for tutorials in the subjects in which they are enrolled, but
the subjects have not yet been allocated to tutorial hours. This relation could be expressed as
(Student, Hour, Subject) = (Student, Hour) ta (Student. Subject) (7.7)

and if it could be so expressed, it should be.

Here, the semantic links are that for each student and hour there must be a tuple with that student, hour and each different
subject, which is clearly easily violated on update. In the decomposed form, this semantic link is supported by a structural
link: any update to either of the two relations will preserve the semantic property.

7.2.5
Fifth normal form: eliminate join dependencies

Fifth normal form is a generalization of fourth normal form. A multiple-valued dependency is a join dependency between two
relations. Some relations exist which can be decomposed into the join of three or more relations, but not two. The example in
(7.7) can be extended. Suppose that in addition to the hours the student is available and the subjects in which the student is
enrolled, we know what hours each subject is scheduled. For example, we may have now allocated tutorial times to subjects
by choosing schedules which satisfy as many students as possible, but have still not allocated students to tutorial sessions. The
example is now decomposed as:
(Student, Hour, Subject) =
(Student, Hour) >
(Student, Subject) o<
(Subject, Hour)
Fifth normal form states that if a relation can be decomposed into the lossless join of several relations, then it should be so
decomposed. It is thus a generalization of fourth normal form.
The semantic links are constraints on student, hour and subject: not all populations for the table are permissible. The
structural links provided by the decomposition support the semantic links in the same way as those in fourth normal form do:
any update to the decomposed relations will preserve the semantic constraint.

(7.8)

7.3
QUALITY PRINCIPLES FOR DATA, INFORMATION AND KNOWLEDGE

Deductive database technology is an extension of relational database technology with respect to aspects which are
conventionally implemented in imperative programming languages. Design for maintainability in the world of programming
is part of the discipline of software engineering. There is a variety of principles in software engineering which are analogous
to normalization in the database world. These principles can be applied to the design of knowledge bases. Some of them are
like data normalization in that they are syntactic representations of constraints imposed by the application on the primitive
computer objects (data normalization is largely about design of tables to take into account functional associations). Others are
more semantic in nature: making sure that a concept in the application domain is supported in the computer domain.
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In Chapter 5, we described the design of an information system in terms of data, information and knowledge. In this section,
we look at software engineering aspects of this design, under the guise of principles for quality of data, information and
knowledge.

7.3.1
Quality principles for data

Principle D.1: One object, one label

An object in the application domain should be represented in the computer domain by a single label, or a unique structure
of labels if the object is not represented primitively. Conversely, a label or structure of labels in the computer domain should
always refer to the same object in the application domain. This principle applies to relation and predicate names, as well as
instance labels. The semantic link supported by this structure is the preservation of the correspondence between the computer
objects and the domain objects.

Principle D.2: Labels should be minimal

The primitive labels used should not be decomposable into semantically meaningful parts. For example, if a university
subject code is CS317, where the parts have the meaning
CS—Department of Computer Science
3—third-year subject
l—information systems subject
7—identifier
the code should be represented as a tuple of the more primitive labels.
The same principle applies to relation and predicate names. If a predicate has one form which applies to undergraduate students

and (possibly) other forms applying to other types of student, it should be called something like
pname(undergraduate, . . . ) (7.9)

rather than something like
undergraduate_pname (7.10)

The situation illustrated in (7.9) and (7.10) is similar to the justification for tagged variant records in Pascal.
The semantic link supported by this structure is that primitive objects in the application domain are represented by
primitive objects in the computer domain.

Principle D.3: Compound keys should be minimal

If there are several candidate keys for a relation, unless there is compelling reason to the contrary, the one with fewer
attributes should be chosen. The semantic link supported here is economy of object representation.

7.3.2
Quality principles for information

Besides the principle that all relations should be normalized according to the standard normal forms, there are several
additional, more semantic, principles.

Principle 1.0: Labels and population names satisfy data quality principles

We must get the data right before we can design the information.

Principle I.1: No redundant domains

The head of a clause in a predicate definition should contain no variables which do not appear in its body. In Chapter 4, a
clause fulfilling this principle was called safe. Most of the results in deductive database theory assume that the predicates are
all defined using safe clauses. This ensures that any tuples generated for that predicate in its bottom-up evaluation have
ground values for all attributes.

More prosaically, predicates should follow the second standard normal form in their arguments. This is not a hard and fast
rule, since predicate definitions are frequently used to define views, which are often not normalized. However, in this case the
definition of the predicate should reflect the joins made in the definition of the de-normalized view. For example, the relation
schema

student/resultiSt#, Sname, Sub#, Grade) (7.11)
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would be rejected in the information model as it is not in second normal form (Sname is functionally dependent only on St#).
On the other hand, that set of attributes would naturally appear on an output report. Suppose that schema (7.11) were a
predicate whose definition is
student/resuli(S1#, Sname, Subll, Grade) :-
student(St#, Sname),
result(St#, Sub#, assignment, Mark1), (7.12)
result(St#, Sub#, exam, Mark2),
Grade is Mark| + Mark2.
Definition (7.12) should be rejected in favour of
student/resuli(St#, Sname, Subfl, Grade) :-
student{St#, Sname), (7.13)
total_result{St#, Sub#, Grade),

total_result{St#, Sub#, Grade] :-
resulti{St#, Sub#, assignment, Mark(),
result(St#, Subdr, exam, Mark2),
Grade is Mark! + Mark2,
The semantic link supported here is that relationships which are meaningful in the application domain are explicitly
represented in the computer domain. This principle is closely related to the knowledge quality principle K.4 described below.

Principle I.2: Real object represented once only

This principle is an elaboration of principle D.1 (one object/one label). Its point is that if there is a semantic relationship
between labels, it should be explicitly represented. For example, in a payroll application, it is usually necessary to deduct
income tax from a person’s wage. This leads to an output report defined by a predicate looking something like

empipay(Emp#, Gross_pay, Tax, Net_pay) (7.14)
In a manual payroll system, the tax is frequently (at least partly) calculated using a table whose schema is something like
pay/tax(Gross_pay, Tax) (7.15)

Table (7.15) is created from a rule provided by the taxation office which involves application objects such as thresholds and
marginal tax rates. This rule expresses the implicit functional association between Gross_pay and Tax. In the sense of this
principle, Gross_pay is represented twice, the second time in the value of Tax.

If one of the underlying application objects changes, the table must be re-created. There is much less possibility of error if
the knowledge used in calculating tax is explicitly represented as a computation rule. If for reasons of computational
efficiency in the final implementation the tax is computed using a table such as in (7.15), this table should be computed from
the knowledge in the rule. The table thus does not appear in the conceptual design of the system as considered in this text.

This principle applies to complex structures such as the ancestor relation described in Chapter 2 as the transitive closure of
the parent relation. Even if in the final implementation the tuples of ancestor are explicitly represented, the predicate should
be expressed in the manner described in Chapter 2.

Principle I.3: Predicate should not be semantically decomposable

In the relational schema, it sometimes happens that there are attributes from semantically different classes which are
functionally associated with one attribute. For example, the University information system might have both academic and
extracurricular information about a student. It is better to represent the student in two distinct tables, one for each class of
attribute. There may, of course, be query-type predicates which combine information from these semantically different
classes. These predicates should be represented as joins, in a similar way to the illustration in principle I.1 above. The
semantic link supported is that distinctions visible in the application domain should be explicitly represented in the computer
domain.

Principle 1.4: Keep subtypes separate

An entity type frequently has a relationship with another entity type, but only a subset of the population named by the entity
type can participate. This situation is recognized in conceptual modelling by the use of subtypes to designate the relevant
populations. For example, a University database may have an entity type Person, which has subtypes Student and Staff. Those
persons who are students have, for example, course enrolment, while those persons who are staff have, for example, academic
rank. It is common in the relational implementation of conceptual models to absorb subtypes into the supertype, resulting in
optional attributes. For example, the situation described in this paragraph might result in the schema

person(iD#, Stucdent/Staff, Course, Academic_Rank) (7.16)
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where Course and Academic Rank are both optional.

This procedure results in a predicate definition which contains an implied ifthen-else. Recall that the concern of this chapter
is not the implementation of the knowledge-based system, but its specification. We are therefore essentially extending the
conceptual model. The EDB predicate definitions used in the knowledge analysis are condensations of the conceptual model,
not proposed implementations. We would therefore not use a representation like (7.16), but rather keep the subtypes separate,
as in

person(student, ID#, Course)

personistaff, 1D#, Academic_Rank) (7.17)
Most database systems permit view definitions, so that even if the internal scheme of person is (7.16), its external scheme can
be (7.17).

In general, under this principle predicate definitions should not contain optional arguments which have any systematic
basis. However, similarly to the other information quality principles, a query type may contain systematic optional arguments,
but its definition should reflect the semantically significant structure.

This principle is related to data quality principle D.2. The semantic link supported is that distinctions important in the
application domain are explicitly represented in the computer domain.

7.3.3
Quality principles for knowledge

Knowledge is represented as predicate definitions which consist of clause groups. There are several kinds of functional
associations connected with knowledge, so that there are several different sorts of quality principles.

First, the predicate has a perfect model, so can be viewed as a relation.

Secondly, we saw in Chapter 5 that the predicate defines a function from the tuple spaces of the predicates occurring in the
clause bodies into the tuple space of the clause head. This is the function computed by the semi-naive algorithm in the course
of computing the perfect model, as described in Chapter 4.

Thirdly, a theorem proving mechanism based on, for example, the resolution principle, of which the Prolog inference
engine described in Chapter 2 is a specialization, can map one expression of a clause group into another. Some of these are
considered systematically in Chapters 8, 9 and 10.

Knowledge quality principles are divided into two classes: one relating to individual clauses (principles K.0-K.4) and one
relating to clause groups (principles G.0-G.4).

Principle K.0: Predicates should satisfy information quality principles

Since a clause head defines a relation and can therefore be viewed as information, all the information quality principles
apply.

Principle K.1: No “magic number” labels

A fundamental principle of programming is that a constant should be assigned to a variable with a descriptive name whose
scope is co-extensive with its scope in the application domain. All uses of that constant should be instances of that variable
label. This is recommended even if the constant is used only once. The possibility always exists that as the software changes,
it may need to be altered, or used again.

For example, the clause (7.18) expressing the relationship between selling price and buying price:

item/sell([tem#, Sclling_Price) :-
item/buy(Item#, Buy_Price), (7.18)
Selling_Price is Buying _Price * 1.2
should be expressed as
stem/sell(Ttem#, Selling_Price) :-
item/buy(Item#, Buy_Price),
markup_factor(Markup),

Selling_Price is Buying Price * Markup (7.19)

markup_factoe(1.2).
The constant 1.2, which is the markup factor, is globally available in (7.19), and is also clearly documented.
There is sometimes a need for constant labels in clause definitions, however, as the clause may be functionally dependent
on the label. In (7.20), the clause is specific to the class of product designated by the label spare_part:
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item/sell(ltem#, Selling Price) -
item /type(ftem#, spare_pan),
item/buy(ltem#, Buy_Prnce),
markup_factor{Markup), (7.20)
Selling_Price is Buying_Price * Markup

markup_factor(1.2).

Other types of product may have different formulas for computing selling price. This use is analogous to the use of tags in variant
types in Pascal.
The semantic link supported is the explicit representation of application domain semantics in the computer domain.

Principle K.2: No redundant predicates

A typical clause body consists of several goal predicates. It is possible that some of them are redundant in the sense that their
removal has no effect on the perfect model. This redundancy can have several sources. One predicate may be implicit in
another. For example, in (7.21) the type predicate student(Student#) is implicit in the predicate studies(Student#, cs317) if
there is a referential integrity constraint on the Student# attribute of the studies relation. The expression in (7.22) is preferred:

my_student(Student#) :-
student(Student#), (7.21)
studies(Student#, cs317).
my_student(Student#) :-
studies(Student#, cs317).
A predicate may be semantically redundant. For example, in (7.23) if the studied predicate is true, it is expected that both of
the other predicates are true. Furthermore, it would be expected that if someone understood perfect models and magic sets,
then that person would be able to pass the subject cs3/7. Although there is no logical necessity, the studied predicate
contributes nothing from the domain point of view. The form (7.24) is preferred:
understands_deductive_database(Student#) :-
studied(Studenth, cs317)
understands_perfect_models(Student#), (7.23)
understands_magic_sets(Studentff),
understands_deductive_database(Swudent#) :-
understands_perfect_models(Student#), (7.24)
understands_magie_sets(Student#).

(7.22)

The principle is to avoid representing semantic links which are redundant in the application domain.

Principle K.3: Use defined knowledge where it exists

In a complex application domain, knowledge is generally built up by aggregating elementary knowledge into larger and
larger chunks. Particularly if the knowledge comes from a number of different sources it often happens that the same
aggregate is defined several times, sometimes explicitly and sometimes implicitly. Care should be taken to ensure that each
definition appears once only. As knowledge is added to the model, the analyst should take advantage of already existing
definitions. In particular, a complex aggregate of knowledge might be suspected to have sub-aggregates which are already
defined. For example, if we have the definition (7.25), then the knowledge (7.26) should take advantage of (7.25), resulting in
the preferred definition (7.27):

account/balance{ Account¥, Balance) :-
account/revenue( Account#, Revenue),

account/expenses(Account#, Expenses), (7.25)
Balance is Revenue - Expenses.
account/tax(Account#, Tax) &
account/revenue( Accountl, Revenue),
(7.26)

accountfexpenses{ Account#, Expenses),
Tax is (Revenue — Expenses) * Rate,
accountftax(Accountl, Tax) :-
account/balance({Account#, Balance), (7.27)
Tax is Balance * Rare.
The principle is that each semantic link should be supported once only.
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Principle K.4: Express implicit knowledge

It often happens in a complex application domain that a piece of knowledge is expressed as an aggregate of a large number
of smaller pieces. It is common in this situation that the aggregate has sub-aggregates which are meaningful in the application
domain, but which have not been articulated by the domain experts. Since changes in the application domain are generally
expressed in terms of existing knowledge, it is an advantage if the meaningful sub-aggregates are made explicit. For example,
if we have the expression (7.26), it is probably better to create the subaggregate (7.25) so that (7.26) can be expressed as (7.27).
This differs from principle K.3 in that the sub-aggregate (7.25) must have already been recognized in order to apply principle
K.3, whereas to use principle K.4 the knowledge expressed in (7.25) must not have been explicitly recognized previously.

The principle is that every semantic link should be made explicit and supported.

Principle G.0: The clauses in a group satisfy the knowledge clause quality principles

This and following principles apply to the entire clause group comprising a predicate definition. Each clause in the group
should satisfy all the previous quality principles.

Principle G.1: No redundant clauses

If a clause in a group can be removed without changing the perfect model, then it should be removed. For example, consider
the definition (7.28) of the same_generation predicate, which is true if two persons are the same distance from a common
ancestor, with the proviso that a person is of the same generation as him/herself:

same_ generation(Person, Person) - person(Person),
same_generation(Personl, Person2) -

parent(P, Personl),

parent(P, Person2).
same_ generation(Personl, Person2) .-

parent(P1, Personl),

parent(P2, Person2),

same_ generation(P1, P2).

(7.28)

Some reflection should satisfy the reader that the second clause is redundant. Bindings of Personl, Person2 and P satisfying
this clause will also satisfy the third clause, taking into account the first. The knowledge in (7.28) should therefore be
expressed as:
same_ generation(Person, Person) - person(Person).
same_ generation(Personl, Person2) :-
parent(P1. Personl), (7.29)
pareati(P2, Personl),
same_ generation(P1, P2),
This sort of situation often occurs in the early stages of expressing knowledge involving navigation through complex
structures. When an expression is found which is correct, it should be examined for redundancy.
The principle is that each piece of domain knowledge should be supported once only in the computer domain.

Principle G.2: Each tuple derived from the group should have a unique derivation

Recall that the perfect model of a predicate is a relation, each of whose tuples is a set of bindings of the variables in the
head predicate. If each set of bindings is generated in only one way (has only one proof tree), then the built-in bagof described
in Chapter 2 returns a set of solutions, so has the same effect as all_solutions.

One way in which a tuple could have several derivations is if the group violates principle G.1. We have already noted that
every solution for the second clause of (7.28) is also a solution for the third. Principle G.1 is not strong enough, however. Consider
(7.30), which might be used to generate a mailing list for a University library combining the student and staff databases:

library/mail(Name, Address) -
student(_, Name, Address).

library/mail{Name, Address) .
staff(_, Name, Address).

(7.30)

Neither clause can be removed, so principle G.1 is satisfied. However, if a person happens to be both a student and a member
of staff, then that person will receive the mailing twice, since that person’s name and address is derived from each clause. In
practice, violation of this principle is often subtle and frequently due to semantic redundancies. One way to resolve the
problem in (7.30) is shown by
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library/mail(Name, Address) -
student(_, Name, Address),
library/mail(Name, Address) :- (7.31)
staffi X, Name, Address),
not student(X, Name, Address).
Principle G.2 applies only in groups in which, for each clause, all variables occurring in the clause are functionally dependent
on the variables occurring in the clause head. For example, if each person has exactly one parent, then (7.29) satisfies
principle G.2. Otherwise, (7.29) is a projection onto non-key attributes, and one would expect that a tuple would occur more
than once. Principle G.2 does not apply.
Principle G.2 always applies to negative predicates, since a negative predicate in a clause contributes to the perfect model
only if it has no solutions at all. Negative predicates therefore always satisfy principle G.2 vacuously.
The principle is similar to the principle governing G.1, i.e. that each piece of domain knowledge should be supported once
only in the computer domain.

Principle G.3: Group should be logically irreducible

A group could satisfy principle G.1 but still be logically redundant. A clause group is a statement in the first-order predicate
calculus, and there are many ways of simplifying such statements using automatic theorem proving principles, usually based
on a more general form of the resolution principle touched on in Chapter 2. A clause group satisfies principle G.3 if it cannot
be transformed into another equivalent group with fewer clauses.

This principle should be thought of as an in-principle rather than in-practice rule, since there does not exist any general
method guaranteeing to prove that a group cannot be simplified. There are a number of specific classes of transformation, for
which it is possible to prove that a group cannot be simplified by that particular class. Many of these classes require an
exponential amount of computation, however, and in any case most of them are outside the scope of this text.

One useful and fairly straightforward class of transformations is folding and unfolding, described in Chapter 9. By way of
illustration, we show the simplification of a different representation of the same generation predicate. The representation in
(7.32) assumes that there are at most three generations, and is non-recursive:

1. same_ generation(Person, Person) - person(Person).
2. same_generation(Personl, Person2) -

parent(P, Personl),

parent(P, Person2),

(7.32)

3. same_generation{Personl, Person2) :-
grandparent(P, Personl),
grandparent(P, Person2).

4, grandparent{Older, Younger) :-
parent{Older, Intermediate).
parent(Intermediate, Younger),

The principle of unfolding allows us to replace clauses 3 and 4 of (7.32) by
5. same_generation(Personl, Person2) :-
parent(P, Intermediate_1), parentiIntermediate_1, Personl), (7.33)
parent(P, Intermediate_2), parent(Intermediate_2, Person2)

The principle of folding then allows us to combine (7.33) with clause 2 of (7.32), resulting in the group (7.34), which is
logically equivalent to (7.32), but has fewer clauses:
l. same_generation(Person, Person) :- person(Person).
6, same_generation(Personl, Person2) |-
parent(Intermediate_1, Personl), (7.34)
parent(Intermediate_2, Person2),
same_generation(Intermediate_I, Intermediate_2).

Note by the way that (7.34) is exactly the same as (7.29), except that the variables have different names. The logical
transformations have changed a non-recursive definition into a recursive one.

The principle is similar to that governing G.1 and G.2, i.e. that each piece of domain knowledge should be supported once
only in the computer domain.

Principle G.4: A group should be semantically coherent
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This principle is analogous to principles K.4, 1.3 and 1.4. If a predicate definition has a number of clauses, it is often the
case that the clauses form semantically significant subgroups. For example, in (7.35) two of the clauses relate to students and
the other two to staff:

library_loan_term(ID#, Weeks) :-
studen(ID#, undergraduate), Weeks = 2.
library_loan_term(1D#, Weeks) :-
student(ID#, graduate), Weeks = 4.
library_loan_term(ID#, Weeks) :- (7.35)
staff{ID#, academic), Weeks = 13.
library_loan_termi(ID#, Weeks) -
stafT(ID#¥, general), Weeks = 2.

The fact that the subgroups are semantically significant indicates a semantic link. This link should be supported by expressing
(7.35) as, for example, (7.36), where the subgroups are explicit:
library_loan_term(ID#, Weeks) :-
loan_term{student, 1DV, Weeks).
library_loan_term(ID#, Weeks) :-
loan_term(staff, 1D#, Weeks).

loan_termistudent, TD#, Weeks) -
student(ID#, undergraduate), Weeks = 2.
loan_termistudent, TD#, Weeks) -
student(ID#, graduate), Weeks = 4.
loan_term(staff, ID#, Weeks) -
s1aff(ID#, academic), Weeks = 13.
loan_term(stafl, TD#, Weeks) :-
staff(ID¥, general), Weeks = 2,
The principle is that semantic links should be supported. Note that the revision of (7.35) has also altered the predicate names
to satisfy principle D.2.

(7.36)

7.4
EXAMPLE

The hierarchical thesaurus example of section 5.4 satisfies these quality principles. Some comments on it may make the
principles clearer.

First, the data. Even though the data labels are sometimes phrases (e.g. onion soup), they are treated as atomic by the
system, so satisfy principle D.2.

Most of the information quality principles, especially principles 1.2 and 1.3, tend to be satisfied because the information
modelling methods encourage simple and non-redundant representations. Principle 1.4 is the reason why the design kept the
typed broader and related terms separate from the general untyped broader and related terms.

The only labels which appear in the knowledge are the type names which appear in is-a, has-ingredient, etc. These
predicates make the data labels more accessible for the construction of more complex knowledge. The definitions are
functionally dependent on them, so the knowledge satisfies principle K.1.

These predicates, as well as the predicates similar and one-of which do not appear on the knowledge diagram, are needed to
satisfy principle K.4. Further, generally-broader, has-ingredient and instance-of appear on the knowledge diagram since they
satisfy principle K.3, being actually used more than once. The predicates is-a, source-of and similar-to appear on the
knowledge diagram even though they are used only once since they are conceptually so similar to has-ingredient and instance-
of that it seems natural to represent them in the same way. On the other hand, similar and one-of seem to be specific to the
definition of similar-to and source-of respectively, so they were left off the knowledge diagram to avoid clutter.

7.5
DISCUSSION

Maintainability quality is a process occurring logically after knowledge has been acquired and verified: a system must be
suitable and correct before maintainability is a problem. In addition, most of the principles D.x, I.x, K.x and G.x are not
algorithmically verifiable. Like most principles of software engineering, their satisfaction is a matter of judgment by the
analyst or knowledge engineer with the cooperation of the domain experts where semantic issues are relevant.
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As a rule of thumb, one should be suspicious if any of the following situations is observed in the evolving knowledge base
(relevant principles indicated):

complicated labels for data, relations or predicates (D.2);
relations with lots of attributes (1.3, 1.4);

lots of relations with similar attributes (1.3, 1.4);

labels appearing in clauses (K.1);

clauses with lots of subgoals (K.3, K.4);

collections of subgoals appearing in more than one clause (K.4);
groups with lots of clauses (G.1, G.4).

All of these situations can be identified in the CASE tool by queries on the repository, so that although the quality principles
cannot be applied automatically, the tools used to assist the knowledge engineer in designing a knowledge-based system can
be of some help in achieving a high-quality design.

Keep in mind that knowledge (and information) modelling is the representation of functional associations between
populations of atomic data.

m The atomic data should be simple, otherwise they are likely not to be atomic.
m Domains of functions should be minimal. This is supported by a type hierarchy on the populations.
m If a functional association can be derived, it should be.

In general, avoid redundancy.

Note that quality principles may be incompatible. Improving quality of information often complicates data by introducing
identifiers which have no meaning to the users. Improving quality of knowledge often complicates information by introducing
predicates (intermediate types) which may be seen as unnecessary by the users. The predicates similar and one of in the
hierarchical thesaurus application of section 5.4 are examples of this phenomenon.

Maintainability quality requires design trade-offs.

7.6
SUMMARY

Knowledge is represented as complex structures. There are semantic links between the objects in the application domain.
Each object in the application domain is represented in some way in the computer domain. The semantic links between the
domain objects therefore induce semantic links between the computer objects. The computer objects are linked in the
computer system by structural links. Every semantic link should be supported by structural links. Moreover, a semantic link
should be supported in only one way.

Unsupported links are a maintenance hazard.

Redundantly supported links are a maintenance hazard.

7.7
FURTHER READING

The material in this chapter is taken largely from Debenham (1989). There are many books on software engineering
principles. Yourdon and Constantine (1978) is a classic which considers concepts relevant to this chapter.

7.8
EXERCISES

Consider some plausible changes to the hierarchical thesaurus example from section 5.4. Sketch their implementation.
Discuss whether and how the quality principles make these changes easier to make.



CHAPTER EIGHT
Magic sets

In this chapter we describe optimization techniques which make the semi-naive algorithm a practical basis for deductive
database system applications.

8.1
BOTTOM-UP EVALUATION AS A PRACTICAL METHOD

The bottom-up evaluation of a datalog program gives a definite meaning to any program, and also provides a decision
procedure for any query. To have a decision procedure means firstly that we can always tell whether a statement in datalog is
a conclusion of a given program by testing whether it is present in the perfect model computed by the semi-naive bottom-up
algorithm starting with the given EDB. Secondly, for an algorithm to be a decision procedure, it must always terminate. The
semi-naive bottom-up algorithm for datalog always terminates.

Unfortunately, the semi-naive algorithm can perform a large amount of unnecessary computation. For example, consider a
bill of materials database for an aircraft carrier, which would have an IDB with ancestor-style predicates, as were described in
Chapter 4. There are tens of millions of parts in tens of thousands of subassemblies. The depth of sub-sub-...-subassemblies
might be as many as 20. Suppose we wish to find out how many of a particular chip are used in a radar unit on one of the types
of aircraft on board. Say there are four levels, each with 20 parts. To answer this query by top-down inference, we would need
to examine up to 20*=160 000 tuples, while the perfect model for the ancestor predicate might have billions of tuples.
Selecting a result from the perfect model might in this case involve 10 000 times more work.

In order to make the perfect model semantics for datalog into a useful deductive database system, we must have ways to
compute only as much of the perfect model as is required for a particular query. After all, we can’t actually look at billions of
tuples, so it makes sense to compute the perfect model /azily, that is only the parts needed when they are needed. The
fundamental tool to this end is the magic sets transformation of the IDB.

If the query is unrestricted (all its variables are free), then the result is the entire perfect model. We can only gain from lazy
evaluation if there are some selection conditions in the query (some of the variables in the query are bound). In the terms of
Chapter 5, we can give up information goal independence in order to gain speed of execution. The magic sets transformation
essentially makes the bound variables in the query part of the EDB. Magic sets is a generalization of the database optimization
technique of pushing selections and projections into relational expressions so as to evaluate them as soon as possible.

We will describe the transformation after reviewing the relationship between the datalog syntax and the relational algebra.
Part of this review will be the introduction of some necessary concepts.

8.2
DATALOG AND RELATIONAL ALGEBRA REVISITED

The bottom-up computation strategy treats a datalog program as a set of (possibly recursive) database views. We saw in
Chapter 3 that the prolog syntax expresses operations which are equivalent to expressions involving the relational operations
select, project and join. For example, consider the clause
pX, Y) - q(X, W), i(W, Z), s(Z, Y). (8.1)

Assume that when clause (8.1) is evaluated, the variable in the goal corresponding to X will always be bound to some
constant ¢, while the variable in the goal corresponding to ¥ will always be bound to a constant only on completion of the
computation.

The Prolog syntax is expressed in the relational algebra as follows, following the correspondence established in Chapter 3:
There are four relations, P, O, R and S with names p, ¢,  and s, respectively. Each relation has two roles. Relation P has roles
which we will call p/ and p2, Q has roles g/ and g2, R has roles r/ and 2, S has roles s/ and s2.
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The predicate p(X, Y) refers to the relation P. The argument positions of p refer to the roles p/ and p2: the first position
refers to the role p/ and the second to the role p2. Similarly for O, R and S. The variables ¥, X, Y, Z take values from the
domains from which the populations are drawn which fill the various roles. The variable X therefore takes values from the
domain from which role p/ of relation P is drawn, and also from the domain from which role ¢/ of relation Q is drawn. That
the variable is used in both roles expresses the condition that the two roles must be domain-compatible. Similarly for Y.

The variable ¥ takes values from the domain from which role g2 of relation Q is drawn and also from the domain from
which role r/ of relation R is drawn. The two roles must therefore be domain compatible. Also, the presence of the same
variable in both relations denotes that the two relations participate in an equijoin, with the join condition being g2 = rI.
Similarly for Z.

The symbol “:-” denotes that the relation P is computed as the join of the relations O, R and S. Finally, the fact that the
relation P has only two roles indicates that the join must be projected onto the roles g/ and s2.

The relational algebra equivalent to (8.1) is therefore

IR el lohds e (82)
The fact that the join operator commutes means that we can permute the predicates in the body of a clause, so that (8.1) is
equivalent, for example, to

pX, Y) - t(W, Z), s(Z, Y), q(X, W). (8.3)
A join operation involves selection. We can therefore use joins to perform selections. A selection on a role of a relation
defines a subset of the tuples in the relation for which the value of the role for that tuple meets the selection criterion. We can
define a new selection relation having only one tuple and a role for each selection criterion involving a constant. The value of
each role for the tuple in the selection relation is the corresponding constant in the selection criterion. The selection can be
computed by joining the original relation to the new single-tuple selection relation. For a selection involving equality tests
only, the join condition is that the roles in the selection relation are equal to the corresponding roles in the relation upon which
the selection is to be performed. Accordingly, if we define a selection relation C having only one role ¢/, and agree to
populate it with the constant ¢ supplied for the selection, then (8.1) is also equivalent to

P=Cr=<QraR =S [ql,s2]

ci=gl qlerl rlmi (84)
In practice we compute a sequence of joins one pair at a time. If we follow the convention that we compute the joins from left
to right, we can assign names to the partial results, as follows:
suph = C
supl = sup0 pa Q
sup2 = supl =< R [ql, r2)
P = sup2 =4 S [gl. s2]

(8.5)

The projection in the computation of sup?2 expresses the fact that we only require distinct pairs of values from the roles ¢/ and
r2 in the subsequent join.

This relational algebra set of partial solutions is expressed in Prolog syntax as follows: We define a predicate sup0(X)
which has a single solution X=c. The partial results for clause (8.1) become

supl(X, W) - sup0(X), q(X, W),

sup2(X, Z) - supl(X, W), n{W, Z). (8.6)

p(X, Y) - sup2(X, Z), s(Z, Y).
The partial results are called supplementary predicates. Supplementary predicate sup0 carries the bound variables from the
head of the clause, while supj is the result after evaluating the jth predicate in the clause body. Supplementary predicates are
an important part of magic sets, and will be defined formally below.

If we have query (8.4) reformulated as (8.6), then it should be apparent that the bottom-up computation strategy will generate
only tuples for p having the first argument bound to the constant c¢. Therefore, all the tuples generated will satisfy the
selection. No superfluous tuples will be generated.

The tricky part is how to establish the predicate sup0. This predicate is inserted into the program as part of the processing
of the query p(c, Y)? using extra-logical means, for example by creating the predicate and inserting the tuple into it by an
update. Since this process is outside the logic implemented by the interpreter, it is referred to as magic. The machinery used
to do this is referred to as magic sets.
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8.3
PRELIMINARIES: TRANSFORMING THE DDB INTO CANONICAL FORM

The magic sets transformation of a DDB is a syntactic transformation of the clauses. It assumes that the clauses have two
properties: subgoal-rectified and unique binding, which we define in this section. Any datalog program can be transformed by
syntactic methods into a program with these two properties, so there is no loss of generality. Recall that we require that all
datalog clauses be safe.

8.3.1
Subgoal rectification

A clause is subgoal-rectified if no variable occurs more than once in a subgoal predicate. For example, in the clause

pX, Y) = qX, X), (X, Y) (8.7)
the variable X appears twice in the subgoal g. Assume that the definition of g is
qX, Y) - s(X, Z), t(Z, Y). (8.8)
We can subgoal rectify clause (8.7) by defining a new predicate
qxx(X) :- s(X, Z), UZ, X). (8.9
and modifying clause (8.7) to
pX, Y) - gxx(X), r(X, Y). (8.10)

The general principle is to identify any subgoals in which a variable occurs more than once, then replace it with a new predicate
with fewer arguments, one for each distinct variable. The definition of the new predicate is obtained from the original
definition by equating the variables which were repeated in the subgoal. This definition may, in turn, not be subgoal-rectified
even if the original definition was, since formerly distinct variables have been identified. The process repeats until all
subgoals are rectified.

8.3.2
Unique binding property

We have said that the magic sets transformation is useful only if there is selection imposed on the goal. In Prolog terms, this is
to say that the goal predicate will have some (possibly all) of its variables bound to constants. A specification that a particular
set of arguments of a goal be bound is called a binding pattern. For example, we could specify that the first and third
arguments be bound. This is a different binding pattern from the specification that the second and third arguments be bound.
We denote a binding pattern by a sequence of letters from the set {b, f}, one letter for each argument of the goal (b stands for
bound, while f'stands for free). This sequence is called an adernment for the goal. That the first and third of four arguments
be bound is expressed by the adornment b £ f, while that the second and third of four be bound is expressed by the adornment
fb b f Two binding patterns are the same if their adornments are the same.

The binding pattern of the goal induces a binding pattern in each subgoal appearing in the definition of the goal’s predicate.
For example, consider the following DDB, relating to the ranks of members of a hierarchical organization. (This predicate
searches a tree.)

EDB relations

belongs(Member): true if Member is a member of the organization.
reports_to(Subordinate, Superior): true if both Subordinate and Superior are
members of the organization and Subordinate is immediately supervised by
Superior.
IDB predicate
same_rank(Member 1, Member_2): true if Member I and Member 2 are the
same number of reporting levels away from a common supervisor. (Compare
with nodes-removed-level of Chapter 3.)
same_rank(Member, Member) :- belongs{Member).
same_rank(Member_1, Member_2) :-
reports_to(Member_1, Superior_1), (8.11)
same_rank(Superior_|, Superior_2),
reports_to(Member_2, Superior_2).
Binding pattern: f'» induces the following adornments in the definition:
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f b b
same_rank(Member, Member) :- belongs(Member). (8.12a)
f b

same_rank(Member_1, Member_2) :- (8.12b)

f f
reports_to(Member_1, Superior_l), (8.12¢)

b f
same_rank(Superior_1, Superior_2), (8.12d)

b b
(8.12¢)

reponts_to(Member_2, Superior_2).

Strictly speaking, no clause should have a duplicated variable in its head. This condition is called rectification. Accordingly,
line (8.12a) should be

f b
same_rank(Member_1, Member_2) :- (8.13a)
b
belongs(Member_2), (8.13b)
f b
Member_1 = Member 2. (8.13¢)

Note that the original form does not interfere with the magic sets transformation, so we do not always rectify the clause head.

In the top-down method, the predicates are evaluated from left to right. When the predicate belongs is executed at line (8.
13b), its argument Member 2 is bound, since it was bound in the clause head. When the predicate=is executed at line (8.13c),
the argument Member 2 is bound for the same reason, while the argument Member 1 is free, since it was free in the clause
head and has not been bound by any previous subgoals. The action of the=predicate is to bind Member 1 to Member 2.

We look now at the recursive clause starting at line (8.12b). In the first subgoal, line (8.12¢), both arguments are free:
Member 1 since it was free in the clause head and Superior I since this is its first occurrence. If the subgoal succeeds, it will
generate bindings for both arguments, so any later subgoal will see them as bound. In the second subgoal, line (8.12d), the
first argument Superior I is bound, since it was bound during the computation of the preceding subgoal, while the second,
Superior_2, occurs first in this subgoal, so is free. The induced binding pattern for a subgoal is the state of binding of its
variables immediately before its execution. The last subgoal, line (8.12¢), has both its arguments bound: Member 2 in the
clause head, Superior 2 by the preceding subgoal.

To make the magic sets transformation, we require that the IDB have the unique binding property i.e. that all instances of
an IDB predicate have the same binding pattern with respect to a given adornment of the goal. Our example same rank does
not have that property with respect to the given adornment f'b: the instance of same rank as a subgoal at line (8.12d) has the
adornment b f. Note that the binding pattern of EDB goals does not matter.

We can transform an IDB to have the unique binding property in two different ways. The easiest way arises from the fact
that the join operation is commutative. This means that we can permute the subgoals in a clause without changing the result of
the computation, as we did to get from (8.1) to (8.6). If we exchange the subgoals at lines (8.12c) and (8.12¢), we obtain the
induced binding pattern

f b

same_rank(Member_1, Member_2) :- (8.142)
b I

reports_to(Member_2, Superior_2), (8.14b)
f b

same_rank(Superior_1, Superior_2). (8.14¢)
f b

(8.14d)

reports_to(Member_1, Superior_1).

which does have the unique binding property (note that reports_to is an EDB predicate).

This transformed clause is superior in another way. The EDB predicate in line (8.12¢) had the adornment f'f, while in the
transformed clause, one instance of reports to has adornment b f and the other /' 5 (lines 8.14b and 8.14d). Recall from
database query optimization that we prefer to have all relations participating in a join to have some restriction, and we are able
to permute the factors of a join to achieve this.

The first rule for transforming an IDB clause to achieve the unique binding property is therefore:
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If you can permute the subgoals so that the IDB subgoals have the unique binding property without increasing the number
of EDB predicates with all variables free, then do so.
There are cases in which it is impossible to achieve the unique binding property by permuting the subgoals. Consider the
predicate middle defined in terms of the IDB predicate controlled by
middle(Subordinate, Superior, Middle) ;-
controlled_by(Subordinate, Middle),
controlled_by(Middle, Superior).

controlied_by(Subordinate, Superior) = (8.15)
reports_to(Subordinate, Supenor).

controlled_by{Subordinate, Superior) :-
reports_to(Subordinate, Intermediate),
controlled_by(Intermediate, Superior).

The predicate controlled by is true if Superior supervises Subordinate, either directly or indirectly, while middle is true if
Middle supervises Subordinate and is supervised by Superior, either directly or indirectly.
If middle has the adornment b b f, the binding pattern induced on the subgoals of (8.15) is
b b f
middle(Subordinate, Superior, Middle) ;-
b f
controlled_by(Subordinate, Middle), (8.16)
b b
controlled_by(Middle, Superior),

A transformation which always results in the unique binding property defines a new predicate for each instance of an old
predicate having a different adornment. For example, (8.15) would be transformed to
middle{Subordinate, Superior, Middle) ;-
controlled_by_bf(Subordinate, Middle), (8.17)
controlled_by_bb(Middle. Superior).

controlled_by_bf(Subordinate, Superior) :-
reports_to(Subordinate, Superior).

controlled_by_bf(Subordinate, Superior) :-
reports_to{Subordinate, Intermediate),
controlled_by_bf{Intermediate, Superior).

controlled_by_bh({Subordinate, Superior) :-
reporis_to{Subordinate, Superior).
controlled_by_bb(Subordinate, Superior) :-
reports_to{Subordinate, Intermediate),
controlled_by_bb(Intermediate, Superior).
Note that the controlled by subgoals in the recursive clause for controlled by have also been replaced by the appropriate new
version.
The principle is:

If you can’t get the unique binding property by permuting subgoals without increasing the number of EDB predicates
with all variables free, then replace the predicates with new predicates specialized to the binding patterns which occur.

The unique binding property is relative to a particular predicate. More exactly, its scope is limited to the predicates necessary
in evaluation of a particular class of query. Independent occurrences of the predicate need not be considered.

8.4
MAGIC SETS TRANSFORMATION

If our IDB is subgoal-rectified and has the unique binding property (possibly having been transformed to this canonical form),
and we are given an adornment of the toplevel goals, then it can be converted by the magic sets transformation into an IDB
which gives an efficient bottom-up computation for the given binding pattern.
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We first need to formalize the notion of supplementary predicates sketched in (8.6) above. We begin by assigning a
number to each clause of the IDB, and by obtaining an adornment for each predicate, either from the user for the highest-level
query types or induced via the process exemplified in (8.12)—(8.14) and (8.16).

There will be a number of supplementary predicates for each clause: one for the clause head and one for each subgoal
except for the last. The supplementary predicate associated with the head of clause i is called sup;, and it has as arguments
those variables which are bound in the adornment for the predicate. For example, the clauses for same_rank from (8.12) and
(8.14) are reproduced

] b b
L. same_rank(Member, Member) ;- belongs(Member).
i b
2. same_rank(Member_1, Member_2) :- (8.18)
b f

reports_to{Member_2, Superior_2),

f b
same_rank(Superior_|, Superior_2),
f b

reports_tolMember_|, Supenor_1),
The supplementary predicates associated with the clause heads (also called the zeroth supplementary predicates) are

s“pr Ll( N!ﬂl'lbel',l 1
sup, (Member_2) (8.19)

There are no other supplementary predicates for clause 1, since it has only one subgoal and there are therefore no intermediate
results in the computation of the join. Clause 2 is the join of three relations and the bindings from the clause head, so has two
supplementary predicates associated with its body (other supplementary predicates). These supplementary predicates carry
the binding information from left to right. The jth supplementary predicate for rule i represents the situation after the
execution of the jth subgoal. It carries the binding information to the next subgoal. This passing of binding information from
one subgoal to the next is sometimes called sideways information passing.

The supplementary predicate sup;; has variables from two sources:

m variables bound in the clause head;
m variables bound in subgoals up to and including the jth subgoal which appear either in subgoals after the jth or in the clause
head (variables needed later).

Variables which are bound in the subgoals up to the jth and not needed later are not included. Recall that the entire clause is a
join which is projected onto the variables in the clause head, and that supplementary predicate sup;; is the jth partial result of
the join projected onto the variables needed either for subsequent joins or for the final projection onto the variables in the clause
head.
For the IDB (8.18) the other supplementary predicates are
sup, (Member_2, Superior_2)

sup.,(Member_2, Superior_1) (8.20)

All the supplementary predicates for (8.18) are shown below:
I. same_rank{Member, Member) :- belongs{Member).
sup, [Member)
2. same_rank{Member_1, Member_2) :-
sups f Member_2)
reports_to{Member_2, Superior_2), (8.21)
sup, (Member_2, Superior_2)
same_rank(Superior_1, Superior_2),
sup, SMember 2, Superior_1)
reports_to{Member_1, Superior_1).

Besides the supplementary predicates, the magic sets transformation defines a new “magic” predicate which carries the
binding from the goal to the zeroth supplementary predicate. This is in two parts: an extension which contains the bindings
from the query goal, and an intension: a set of clauses which transmit the bindings for IDB predicates occurring as subgoals.
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We generate a name for the magic predicate for an IDB predicate by adding m_ to the front of the name of the predicate. Thus
the magic predicate for controlled by is m_controlled by, and the magic predicate for same _rank is m_same_rank.

The magic predicate has one argument for each variable which is bound in the adornment. It is therefore very similar to the
zeroth supplementary predicate. The magic predicate transformation is an implementation of the relational algebra
equivalence of selection with join as illustrated in (8.4).

The concept of magic predicates, although not difficult, is a little strange, and will be discussed in more detail after the
transformation is described and the definitions of the magic predicates are presented.

The magic sets transformation of an adorned IDB has five parts:

1 Magic predicate extension

2 Magic predicate intension

3 Zeroth supplementary predicates
4 Other supplementary predicates
5 IDB predicates

We will illustrate the transformation by the same rank IDB (8.21).

8.4.1
Magic predicate extension

The extension carries the constants provided by the user in the query, which are inserted into the tuple by the system. If there
are k variables bound in the adornment, then the extension of the magic predicate for predicate p has a single tuple
m-p(&1, &2, ..., &k). (8.22)

Example from (8.21):
m_same_rank(&1).

where &i is the notation used for procedure parameters in some implementations of SQL.

8.4.2
Magic predicate intension

New tuples are added to the magic predicate whenever its IDB predicate occurs as a subgoal. If predicate p occurs as the jth
subgoal in clause i, we must create a tuple containing the bindings carried from the j-1st supplementary predicate which
are used by the subgoal. Note that there may be variables in the supplementary predicate which are used by later subgoals or
which appear in the clause head, so not all of the variables in the supplementary predicate appear in the magic predicate. On
the other hand, all the variables in the magic predicate are bound, so must be among the variables in the supplementary
predicate. If Xj,..., X,, are the variables occurring in the j-1st supplementary predicate, and X;i,..., X}, the k variables from
those occurring in the subgoal, then we add the clause
m_p(X,;, ..., Xy = sup; (X, .-, X (8.23)

Example from (8.21): The IDB predicate same_rank occurs as the second subgoal of rule 2:
m_same_rank(Superior_2) :-
supp: (Member_2, Superior_2),
There is one magic predicate clause for each occurrence of the corresponding predicate as a subgoal in the IDB. In the case of
(8.21), the predicate same_rank occurs only once as a subgoal, so there is only one clause in the intension for the magic
predicate m_same_rank.

8.4.3
Zeroth supplementary predicates

The zeroth supplementary predicate carries the bindings from the goal into each clause in the goal’s predicate. It has the same
variables as the magic predicate. If clause i is a clause of predicate p, then its zeroth supplementary predicate is
sup, o(Xiy, - -+, Xy - m_pX,, . . ., Xy (8.24)
There is one zeroth supplementary predicate for each clause in the IDB. Example from (8.21):
sup, (Member) :- m_same_ranki{Member),
sup, (Member_2) - m_same_rank(Member_2).
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Figure 8.1 A sample EDB for reports_to.

Note that the variable names Member and Member 2 have only mnemonic significance. Recall that the scope of a variable is
the clause in which it occurs. The important thing is that both variables in each clause have the same name. The actual name
is immaterial. For convenience, we choose the names which appear in the clauses from which the new clauses are derived.

8.4.4
Other supplementary predicates

Clauses for the other supplementary predicates are taken directly from their definition. There is one clause for each subgoal in
the IDB other than the last in its clause. The jth supplementary predicate (7>0) in clause i is the join of the j-1st supplementary
predicate with the jth subgoal. A variable in the jth supplementary must therefore also be a variable appearing in either the
j-1st supplementary or the jth subgoal. The j-1st supplementary and the jth subgoal will usually have some variables in
common, though not all. They may possibly have no variables in common.

Assume there are m distinct variables in the two subgoals, and collect their names in the list Xj,..., X,,. All the variables in
the two supplementaries and the jth subgoal will be in this list. If the j-1st supplementary has ms<m variables, the jth subgoal
is predicate p with mg<m variables, and the jth supplementary has mh < m variables, then the jth supplementary is defined by
the clause

sup (X, ..., X))
sup; (Xpwo oo X p(Xygs -0 X)) (8.25)

where all the X; are selected from the list X7, ..., X,
Example from (8.21):
sup, (Member_2, Superior_2) -
sup, ,(Member_2),
reports_to(Member_2, Superior_2).

sup, (Member_2, Superior_|} :-
sup, .(Member_2, Superior_2),
same_rank(Superior_|, Superior_2).

8.4.5
IDB predicates

The IDB predicates, like the other supplementary predicates, generate clauses directly from their definition. The variables are
named in a way similar to the other supplementary predicates. There is one clause generated for each clause in the IDB. If the
IDB predicate for the ith clause is p, there are j+1 subgoals and the last subgoal is predicate g, then
P(Xr--n X0
sup, (Xju oo X, b q(Xyesx Bl (8.26)

¥ -y
Example from (8.21):
same_rank(Member, Member) :-
sup, ,(Member),
belongs{Member),

same_rank(Member |, Member_2} :-
sup, (Member_2, Superior_1),
reports_to(Member_1, Supenior_1).

Comments
The complete magic sets transformation of the same_rank predicate from (8.21) is
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1. m_same_rank(&1).
2. m_same_rank(Superior_2) i
supp, (Member_2, Superior_2).

. sup, s(Member) - m_same_rank(Member).

. sup; (Member_2) - m_same_rank(Member_2).

. sup, (Member_2, Superior_2) :-

sup, {Member_2),
reports_to{Member_2, Superior_2).

6. sup, (Member_2, Superior_1) :- (8.27)
sup, (Member_2, Superior_2),
sarne_rank(Supericr_1, Superior_2).

7. same_rank{Member, Member) :-
sup, o Member),
belongs(Member),

8. same_rank{Member_I, Member_2) -
sup, {Member_2, Superior_|),
reports_to[Member_I, Superior_1).

LY I -]

Consider what happens to this IDB when evaluated bottom-up using the semi-naive algorithm. At the first step all the IDB
predicates except for m_same_rank are empty. These include same rank and all the supplementaries. The magic predicate
m_same_rank has one tuple, clause 1, placed in the predicate by the query processor. The only clauses which can generate tuples
at the first stage are those all of whose subgoals are EDB predicates. Only clauses 3 and 4 meet this criterion: they each have
one subgoal, m_same_rank, which has one tuple as we have seen.

After these clauses fire, we have one tuple each in sup; 4 and sup, Clauses 5 and 7 can now fire, putting tuples in sup,
and same_rank. Clauses 2 and 6 can fire, and after 6, clause 8. If we keep clause 2 from firing, we see from the example below
that we will fairly quickly reach a point where no new tuples can be generated.

Consider the reporting structure in Figure 8.1, assuming that the bound variable in the query is /, i.e. we want all people
with the same rank as /. Looking at the graphical representation, we can see intuitively that the desired response is the bottom
line, which is {D, E, F, G, H, I}. If we take the evaluation strategy of refraining from firing clause 2 until no other clause can
fire, we can divide the

Table 8.1 Generation of the perfect model for same_rank

Iteration m_same_rank sup2,1 sup2,2 same_rank

<> <[, C> <1, I>

2 <C> <C, A> <[, C> <C, C>
<H, I>
<G, I>

3 <A> <I, B> <A, A>
<B, C>
<D, I>
<E, I>
<F, I>

evaluation into a number of iterations, one for each time clause 2 is allowed to fire. Note that these iterations are different
from the T operator, and at a coarser grain. A fundamental result of deductive database theory is that any sequence respecting
stratification yields the same perfect model.

In iteration 1, we first get the tuple </, I> for same rank from clause 7 via clause 3 from the initial tuple </> in
m_same_rank. Clause 8 cannot fire since, although clauses 4 and 5 produce the tuple </, C> for sup, ;, clause 6 cannot fire as
there is no tuple <C, C> in same_rank as yet. We have no alternative but to complete iteration 1 by firing clause 2, obtaining
the tuple <C> in m_same_rank.

In iteration 2, we immediately obtain the tuple <C, C> in same rank via clauses 3 and 7, which allows clause 6 to fire,
producing the tuple </, C> for sup,,. This tuple allows clause 8 to generate the tuples <G, I> and <H, > for same_rank.
Neither of the new tuples in same_rank allows clause 6 to fire, since none of them have Superior 2 bound to C. No other clause
can fire, so we must end iteration 2 by allowing clause 2 to generate the tuple <4> for m_same_rank.
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Figure 8.2 Flow of data through the generated IDB.

As before, in iteration 3 clauses 3 and 7 generate the tuple <4, 4> for same_rank. Also, in the previous iteration, clauses 4
and 5 have generated the tuple <C, 4> for sup, ;, which with the new tuple <4, 4> in same_rank allows clauses 6 and 8 to
generate the tuple <B, C> for same_rank. We already have the tuple </, C> in sup,;, so that the new tuple <B, C> in
same_rank allows clause 6 to generate the tuple </, B> for sup, ,, which now allows clause 8 to generate the remaining tuples
<D, I>, <E, I> and <F, [> for same_rank. At this point, none of the other clauses can fire, nor can clause 2, so the fixed
point has been reached and the perfect model is complete.

Table 8.1 shows the tuples generated in the perfect model in each iteration. The zeroth supplementaries are omitted for
clarity. The flow of data through the clauses is shown in Figure 8.2. There are two cycles: one, labelled A, from clause 8 to
clause 6 via the predicate same rank; and one, labelled B, from clause 2 to clauses 3 and 4 via the magic predicate
m_same_rank. As we have seen, loop B (C2—C4—C5—C2) extends the search by taking one step up the hierarchy, while
loop 4 (C6—C8—C6) fills in those solutions available at a given level.

Complications

The magic sets transformation always works if the IDB meets its conditions. There can, however, be some surprising
situations arising from special cases in the supplementary predicates.

First of all, the arguments of a supplementary predicate are those variables either bound in the clause head or bound in the
body and needed later. In the examples given, variables which are free in the clause head are not bound until the last subgoal.
It is quite possible for a variable to be free in the clause head and bound earlier than the last subgoal. For example, if the
predicate same_rank from (8.12) is changed slightly, reversing the order of arguments in the subgoal same rank in line (8.
12d), the predicate already has the unique binding property. Its supplementary predicates are shown in (8.28) in interspersed
italics. A supplementary predicate records the results of a partial computation. The supplementaries in (8.28) appear below the
last predicate included in the partial result which it summarized.

1. same_rank(Member, Member) :- belongs(Member).
sup, (Member)
2. same_rank(Member_1, Member_2) :-
supy o Member_2)
reports_to(Member _1, Superior_l), (8.28)
sups (Member_1, Member_2, Superior_1)
same_rank(Superior_2, Superior_l),
sup, Member 1. Member 2, Superior 2)
reports_to(Member_2, Superior_2).
Note that the binding for Member_2 in sup, , is not used in the immediately following subgoal, but is passed on in sup, ; and
sup, > to the final subgoal, where it is used. The middle predicate (8.16) also has a variable free in the clause head which is
bound before the final subgoal.

It is also possible for a supplementary predicate to have no arguments. Suppose same_rank has the adornment /. IDB (8.

28) would need to be modified to have the unique binding property, becoming
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I. same_rank_ff(Member, Member) ;- belongs(Member).
SHP
2. same_rank_ffiMember_|, Member_2) :-
SR
reports_to(Member_ [, Supenor_I), (8.29)
sup, {Member_1, Superior_|)
same_rank_fo(Supenor_2, Superior_l),
sup, AMember _I, Superior_2)
reports_to{Member_2, Supenor_2).
The magic predicate for same_rank_ff' would also be simply a proposition m_sr_ff. Note that the subgoal same_rank now has
a different binding pattern from its clause head, so has been renamed same_rank_fb.

Although strict datalog does not permit functions as arguments to predicates, we have seen in Chapter 4 that functions are
useful in practice, and that deductive database systems often accommodate them in limited ways. This means that a magic sets
transformation algorithm may be called upon to transform procedures which have structures. This does not, in fact, introduce
any additional complexity in the transformation, since the supplementary predicates are employed to pass variable bindings
only. The structures remain part of the original program text and are carried along with it during the transformation.

We illustrate this by transforming the transitive closure procedure for directed acyclic graphs given in Chapter 3:

l. path(Source, Target, PathSoFar, |Source | PathSoFar]) :-
arc{Source, Target).

2. path(Source, Target, PathSoFar, Path) :- (8.30)
arc{Intermediate, Target),
path(Source, Intermediate, |Intermediate | PathSoFar], Path).

with the adornment /b b f.
The supplementaries are
sup, (Target, Path_so_far),
sup. i Target, Path_so_far). (8.31)
sup, (Target, Path_so_far, Intermediate).
Notice that the structure does not appear.

The transformation is
L m_path(&1, &2),

1. m_path{Intermediate, |Intermediate | Path_so_far]) -
sup, (Target. Path_so_far, Intermediate).

NI sup, (Target, Path_so_far) :- m_path(Target, Path_so_far). (8.32)
sup,{Target, Path_so_far) :- m_path(Target, Path_so_Far).

IV. sup. (Target, Path_so_far, Intermediate) :-
sup,,(Target, Path_so_far), arc(Intermediate, Target).

V.  paiSource, Targer, Path_so_far, [Source | Path_so_far]) :-
sup, o Target, Path_sa_far), arc(Source, Target).
path(Source, Target, Path_so_far, Path) :-
sup, (Target, Path_so_far, Intermediate),
path(Source, Intermediate, [Intermediate | Path_so_far|, Path).
Notice that the structure appears in II, where the bound variable in the magic predicate is constructed from two of the bound
variables in sup, ;, and in V, where structured literals are carried from the original predicate definition.

Another common use of structure appears in the nodes-removed-level predicate from Chapter 3, which performs a
hierarchical search on a tree data structure. Assume the binding pattern b f'b. In other words, we are looking for the set of
nodes at a given distance from a given node. Note that the constant has been removed from the head of clause 1 to an
equivalent formulation:
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b f b
1. nodes-removed-level(R, R, N) - N = (.
sup AR, N)
b f b
2. nodes-removed-level(R, C. N} :-
sup: AR, N)
f b
N >0, MisN-1, (8.33)
sup, (R, M, N)
b f
are(R, 1),

sup, (R, N, M, I)
bfb
nodes-removed-level{l, C, M).
The transformation is:
L m_n(&l, &2).

I m_n(l, M) :- sup. (R, N, M, I).

L sup R, N) == m_n(R, N).
sups R, N) == m_n(R, N).

8.34
IV. sups (R, M, N) :- sup, /R, M), N>0, M is N - 1. (8.34)

sup; (R, N, M, 1) - sup, (R, M, N), arc(R, D).

V. nodes-removed-level(R, R, N) :- sup, 4R, N), N = 0.
nodes-removed-level(R, C, N) - sup.,(R, N, M, 1),
nodes-removed-level(l, C, M),
We first observe that the transformation is performed on the formulation of the problem suited to top-down evaluation, rather
than its reformulation for bottom-up evaluation as shown in Chapter 4. The magic sets transformation can therefore be seen to
preserve the top-down structure of predicates, but allow them to be efficiently computed bottom-up. Secondly, we observe
that the computational predicate in the second clause functions as an EDB predicate. We can conclude that the presence of
computational predicates does not affect the validity of the magic sets transformation.
Consider, however, what happens if the binding pattern of (8.33) is b f'f, so that the level is not known beforehand. The
magic sets transformation is now
L m_n(&l).

I mondl) - sup, AR, T).

M. sup; (R) - m_n(R).

sup, (R) == m_n(R). (8.35)

IV, sup;, (R) i sup;u(R), N>0, Mis N - .
sups AR, I} :- sup, (R), arc(R, ).

V. nodes-removed-level(R, R, N) :- sup,.{R), N = 0.
nodes-removed-level(R, C, N} :- sup, (R, I), nodes-removed-level(l, C, M).

The computation of sup, ; in IV does not give bindings for N and M, since there is insufficient information available for the
computational predicate to proceed. The point here is that a computational predicate must have its input arguments bound, so
that it behaves as an EDB predicate, otherwise the magic sets transformation is not valid. For a binding pattern where the
level is unspecified, it is necessary to use the formulation of Chapter 4, and not the magic sets transformation.

8.5
LINEAR RECURSION

There are a number of special cases where it is possible to do better than the standard magic sets transformation. We will consider
a very common case: right linear recursion, where there is a single recursive subgoal which can be the rightmost subgoal.
There are a number of other kinds of linear recursion with their own special transformations, which will not be considered.
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Consider the predicate controlled by (8.15), with binding pattern b f:
L. controlled_by(Subordinate, Superior) -
sup, [Subordinate)
reports_to(Subordinate, Superior),

2. controlled_by(Subordinate, Superior) :- (8.36)
sup; o Subordinate )
reports_to{Subordinate, Intermediate),
sups (Subordinate, Intermediate)
controlled_by(Intermediate, Superior).

Its magic sets transformation is
m_e{&1).

m_c(Inmermediate) :- sup, (Subordinate, Intermediate).

sup, (Subordinate} :- m_c(Subordinate),
sup, ,(Subordinate} :- m_c(Subordinate).

sup, (Subordinate, Intermediate) :-
sup; {Subordinate),
reponts_to(Subordinate, Intermediate). (8.37)

controlled_by(Subordinate, Superior) :-
sup, ,(Subordinate),
reports_to(Subordinate, Superior),

controlled_by(Subordinate, Superior) :-
sup, (Subordinate, Intermediate),
controlled_by{Intermediate, Superior).

It is difficult to see the contribution of each of the transformed clauses to the result of the query, since there are so many. The
IDB can, however, be simplified by the method of unfolding and folding (to be discussed in Chapter 9), to
1. m_c(&]),

2. m_c{Intermediate) ;- controlled_by(Subordinate, Intermediate).

3. controlled_by(Subordinate, Superior) :-
m_c(Subordinate), (8.38)
reports_to{Subordinate, Superior). '

4. controlled_by(Subordinate, Superior) :-
controlled_by(Subordinate, Intermediate),
controlled_by(Intermediate, Superior).

To convince yourself that the simplified clauses are equivalent to the original, compute the perfect model for both IDBs using
the EDB in Figure 8.1. You will see that the same tuples are generated in each case for the predicate m_c and, as well, for the
predicate controlled by.

What we are looking for in the query controlled by(&1, Superior) is the set of bindings for Superior such that the tuples
controlled by(&1, Superior) are in the perfect model. When you evaluate the IDB (8.38) using the semi-naive algorithm, you
can see that the bindings for Superior are generated by repeated executions of clauses 3 and 2 after the initial seeding of m_c¢
in clause 1. This corresponds to searching the tree in Figure 8.1 from one of the leaves towards the root.

Notice that we have not needed clause 4 in this computation. What clause 4 does is to compute the transitive closure of the
path from a leaf to the root, which is irrelevant to this particular class of query.

The class of query we have just identified is called right linear recursive. It is called /inear because the only IDB
predicate appearing in the clause body is the recursive appearance of the predicate defined by the clause head. It is called
right linear because the recursive subgoal can appear as the rightmost subgoal and the clause still has the unique binding
property. For contrast, the predicate middle (8.15) is not linear, while the predicate controlled by (8.15) is right linear, as are
the predicates controlled by bf and controlled by bb in (8.17). The predicate same rank in (8.21) is linear, but not right
linear with respect to the adornment b f, because with this adornment the recursive subgoal cannot be the last subgoal and still
have the unique binding property. Right linear clauses are very common in practice.

An IDB predicate p with adornment a is right linear if it meets the following three conditions:
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1 Max I Recursive: all clauses contain either no IDB subgoals which depend on the predicate being defined, or exactly one
occurrence of the predicate p being defined as a subgoal.

2 Recursive Last: the recursive subgoal p can be the last subgoal without violating the unique binding property.

3 Recursively Computed Output: the free variables in p indicated by the adornment @ are also the free variables in the
recursive subgoal p, and these variables occur nowhere else in the clause.

A clause which contains no IDB subgoals is a basis clause for the recursion. The condition Recursively Computed Output
means that the computation consists of several iterations of recursive clauses followed by a single basis clause. The bindings
for the free variables in the original goal come from the basis clause, and are passed up to the original goal through the
recursive clauses unchanged. The examples of right linear recursive systems noted above all have these three properties.

An example having properties Max [ Recursive and Recursive Last but not Recursively Computed Output is the predicate
live defined in (8.39) below. The EDB is a relation connected(Nodel, Node2), which describes an electrical network with a
number of nodes and wires connecting some of the pairs of nodes. Nodes a and b have a wire between them if connected(a, b)
is in the EDB. There is a distinguished node powerpoint which is a source of power for the network. A wire between two
nodes is /ive if there is a path from it to powerpoint. Assume that the wires transmit power only from the right node to the left
node in a connected pair of nodes. The IDB is

live(A, powerpoint) ;- connected(A, powerpoint),
live(A, B) :- connected(A, B), live(B, C).
with the adornment b f. In other words, the query is to identify any live wires that terminate at node A.

We can take advantage of not needing to compute the transitive closure for right linear predicates by making a special case
in the magic set transformation. In particular, we do not need to consider supplementary predicates. Assume that the predicate
p has n+m variables, and that the first n>0 of them are bound in the adornment, leaving the last m>0 variables free. A
particular recursive clause for p will have a number of subgoals, with the recursive subgoal p at the end. Assume there are k>0
subgoals other than p. Let the free variables in the clause head and the recursive rules be Xj, ..., X,,. Let the bound variables in

(8.39)

the clause head be T7,..., T, and the bound variables in the recursive subgoal be S, ..., S,. The general form of a right linear
recursive clause is then
p(T, ..., T, X .., X)) -G, ..., G, PGSy, -0, S XL XD (8.40)
A basis clause has a number, say j>0, of non-recursive subgoals, and has the general form
p(Ty,.... T, X,..., X)) :-By,...,B,. (8.41)
We still need a magic predicate for each IDB subgoal, so that each recursive clause will produce a single magic predicate:
m_pS,...,S) -m_p(T,..., T), G,..., G (8.42)

We also need the EDB clause for the magic predicate, having a single tuple whose arguments are the bound variables from the
query

m_p(&l, ..., &n). (8.43)
The bindings for the free variables X}, ..., X, come from the basis rules. We therefore create a new answer predicate a_p from
each basis clause

a_pX,..., X)) -m_p(T,,...,T.), B,..., B, (8.44)
Finally, the answer to the query can be constructed from the answer predicate
p&l, ..., &n, X,,..., X)) -a_pX,,..., X, (8.45)

In summary, if the basis clauses of a right linear predicate are of form (8.41) and the recursive clauses are of form (8.40), then
the magic sets transform consists of

Recursive: for each recursive clause a magic predicate of the form (8.42)
Start: an EDB tuple for the magic predicate of the form (8.43)
Basis: for each basis clause an answer predicate of the form (8.44)
Answer: the query answer of the form (8.45)

For example, consider the predicate controlled by (8.15), (8.33), with adornment b f:
1. controlled_by(Subordinate, Superior) ;-
reports_to(Subordinate. Superior).

2. controlled_by(Subordinate, Superior) :- (8.46)
reports_to(Subordinate, Intermediate),
controlled_by(Intermediate, Superior).

Recursive: clause 2 is the only recursive clause, so the magic predicate is
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m_controlled_by(Intermediate) :-
m_controlled_by(Subordinate), (8.47)
reports_to(Subordinate, Intermediate),

Start: the EDB clause for the magic predicate is
m_controlled_by(&1). (8.48)

Basis: clause 1 is the only basis clause, so the answer predicate is
a_controlled_by(Superior) :-
m_controlled_by(Subordinate), (8.49)
reports_to(Subordinate, Superior).

Answer: the query predicate is
controlled_by(&1, Superior) - a_controlled_by{(Superior). (8.50)
The completed right linear magic sets transformation is therefore
L. m_controlled_by(Intermediate) -
m_controlled_by(Subordinate),
reports_to{Subordinate, Intermediate),
2. m_controlled_by(&1).
3. a_controlled_by(Supenor) :-
m_controlled_by{Subordinate),
reports_to{Subordinate, Superior).
4, controlled_by(&1. Superior) :- a_controlled_by(Superior).
This should be compared with the magic sets transform of the same predicate in (8.38). Clause (8.51.1) is clause (8.38.2).
Clause (8.51.2) is clause (8.38.1). Clauses (8.51.3) and (8.51.4) are clause (8.38.3). The unnecessary clause (8.38.4) does not
appear in (8.51).

(8.51)

8.6
SUMMARY

We have in this chapter described the magic sets transformation which makes the semi-naive algorithm for bottom-up
computation of deductive database queries a practical method. This transformation requires that a program first be
transformed into a canonical form having subgoal rectification and the unique binding property, then further transformed into
an equivalent program which requires much less computation to evaluate. There are common special cases where it is possible
to do better than magic sets. We described in particular the improved transformation for right linear recursion.

There is much more to this topic than has been covered in this book. For example, there are extensions to magic predicate
transformations for predicates containing function symbols and for constraints other than a query variable bound to a
constant. There are adaptations for predicates containing negation or aggregation. Many of these, and other topics still the
subject of active research, would be needed to construct a fully optimized deductive database query evaluation system.

8.7
FURTHER READING

The material in this chapter is based largely on Ullman (1989). Similar material is given in Ceri ef al. (1990). There is a large
and active literature in this area.

8.8
EXERCISES

8.1 Transform the rules below using the magic set algorithm:
red blue path(X, Y) :- red(X, Y).
red_blue path(X, Y) :- red_blue path(X, U), blue(U, V),
red blue path(V,Y).
assuming a query with adornment b f
(Find paths in a coloured graph consisting of a red arc possibly followed by alternating blue and red arcs.)
8.2 Repeat Exercise 8.1 for the rules
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expression(plus(E, T)) :- expression(E), term(T).
expression(E) :- term(E).
term(times(T, F)) :- term(T), factor(F).
term(T) :- factor(T).
factor(parens(E)) :- expression(E).
factor(F) :- identifier(F).
with the query goal bound (adornment b).
These rules represent the construction of arithmetic expressions with the operators + and x, using parentheses.
8.3 Consider a system based on a suburban rail network. The EDB is
station(Line, Station). Station is a station on line Line.
leg(Line, Station_1, Station_2). Station_2 immediately follows Station 1
on line Line.
interchange(Station, Line 1, Line 2). Station is a station at which one
can transfer from line Line 1 to line Line 2.
IDB: trip(Line, Start, End) is true if a trip is possible starting at station
Start on line Line, ending at station End (possibly on another line). The
first two arguments are bound, the last free.
trip(Line, Start, End) :- station(Line, Start), Start = End.
trip(Line, Start, End) :- leg(Line, Start, Int), trip(Line, Int, End).
trip(Line, Start, End):- interchange(Start, Line, Line 1), trip(Line 1, Start,
End).
Perform the magic sets transform on this IDB, taking advantage of linear recursion if applicable.
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CHAPTER NINE
Unfolding and folding

In this chapter we examine some techniques for simplifying IDBs.

9.1
UNFOLDING

Computing the perfect model for a deductive database consists of populating the IDB relations starting with the EDB and
iterating until a fixed point is reached. Following the definitions in Chapter 2, the EDB relations are normally update types,
and at least some of the IDB relations are query types. It is frequently the case that some of the IDB relations are neither
update nor query types. We called these intermediate types.

Recall that update types are relations whose contents can be changed by the user, and that query types are relations whose
contents may be queried by the user. Intermediate types are relations which can neither be updated nor queried: what use are
they? Consider the following program, which is a magic sets transformation of the ancestor relation with binding pattern f'b:

1. m_a(I) :- sup, (D, I).
- sup, £D) = m_a(D),
. supy (D) - m_w(D).
. supy,(D, 1) - sup,,(D), parl, D). (9.1)
. anc(A, D) :- sup,4(D), par(A, D).
. anc(A, D) :- sup, (D, I), anc(A, 1),
.m_a(&l),
The update types are the EDB relations par and m_a. The former is also a query type. The latter is updated from the user-
supplied constant in the query, so is an update type even though it is not a query type. The IDB relations are anc and the sup
predicates. The former is a query type, while the latter are all intermediate types. The magic predicate m_a is both an EDB
and IDB predicate, and is an update type.

In summary, the predicates added by the magic sets transformation to the anc predicate are of no direct interest to the user.
Why can’t we just throw them away?

Consider DDB (9.1) with the definitions of the intermediate types discarded:

1. m_a(l} :- sup. (D, I).

5. anc(A, D) - sup, (D), parlA, D),

6. anc{A, D) :- sup,,(D. I), anc{A, 1).

7. m_a(&l).
The sup relations are all empty, so that we can compute no tuples for the anc relation. The intermediate types convey bindings
from the EDB predicates to the IDB query types, so they are essential to the computation of the perfect model and therefore
essential to the operation of the deductive database.

On the other hand, since the function of the intermediate types is to convey bindings, the deductive database can sometimes
be transformed to eliminate them. Consider

q(X) :- i(X).

iX) - w(X).
where ¢ is a query type, u is an update type, and i is an intermediate type. Bindings for X are derived from u, and conveyed to
q through i. We can eliminate the middleman, replacing the DDB (9.3) with

qX) :- uX). 9.4)
It should be clear that the perfect model for g in DDB (9.4) is the same as the perfect model for g in DDB (9.3).

This type of transformation is called unfolding. In general, unfolding can be applied in the following circumstance: we
have a clause with head predicate / and a predicate a of intermediate type in its body

h(...):-a(...),r(...). (9.5)

= W

9.2)

(9.3)
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where r is a possibly empty conjunction of predicates. We will call (9.5) the target clause. The definition of a is the clause

group
l.a(...):==b(...).
- (9.6)
n.a(...):-by(...).

where the b; are possibly empty conjunctions of predicates.

Let 5; be the most general unifier (mgu) between the predicate a in the body of the target clause and the head of the ith
clause in the definition of a. It is possible that some of the clauses in the definition of a will not unify with the goal a in the
target clause. If none of them unify with the goal, then the target clause can never generate any tuples, since no tuple in the a
relation will ever be selected in the target clause. In this case the target clause can simply be removed from the DDB
(more properly, the programmer should be informed, as this situation is a possible error). If clause i in the definition of a does
not unify with the goal in the target clause, then the mgu s; does not exist. We will assume that at least one of the s; exists.

We will denote the k£ mgus which exist by i/ = 1. .., Kiwhere. 1 < k < n.To perform the unfolding transformation, we
replace the target clause by & clauses:

Loh(s,...) = by(s--.)ns...).
s .7
K. h(sg...) = bp(sy.- o MSg-..)
where s, ...in a predicate is the result of applying the substitutions in the mgu s;; to the variables in that predicate.
For example, we can elaborate the DDB of (9.3)
QX, Y) - iZ, X), f(X, Y)
il W) oo u(l, W), 9.8)
(2, W) - u(2, W)
Here we have the mgus
sl = [1/Z, WIX]
$2 = (2/Z, W/X| ©9)
and the target clause becomes
Q(W. Y) - u(l, W), r(W, Y).
AW, Y) - u2, W), /W, Y). (9.10)
If DDB (9.8) were instead
q(X, Y) - i(2, X), (X, Y).
i(1, W) - o(l, W). 9.11)
102, W) - u(2, W),
we would have only one mgu
s2 = {2/Z, W/X} 9.12)
and the target clause becomes
q(W, Y) - u2, W), 1(W, Y). (9.13)
Finally, if DDB (9.8) were
q(X, Y) = i(3, X), (X, Y).
i1, W) - ull, W) (9.14)
i(2, W) - u(2, W).
there would be no mgus and the target clause would not contribute to the computation of the perfect model.

The implication of (9.5)—(9.7) is that intermediate predicates can always be eliminated from a DDB by unfolding. This
brings us to the question: when is it a good idea to unfold a predicate?

The major cost in a DDB computation is the evaluation of a join. We therefore need to be very careful about making
transformations which increase the number of joins. The magic sets transformation itself increases the number of joins, but
the benefit of the transformation is to reduce greatly the number of tuples generated, so the benefit outweighs the cost. When
we unfold a predicate, we eliminate a step of copying bindings. DDB (9.4) is simpler than DDB (9.3) in that the binding for X
is passed directly from EDB predicate e to the IDB predicate ¢ rather than being copied through the intermediate predicate .
Since the computational cost saving is low, we generally avoid creating additional joins when unfolding.

Rule of thumb: unfold only when the number of joins is not increased.



118 DEDUCTIVE DATABASES AND THEIR APPLICATIONS

9.2
FOLDING

Folding is the opposite of unfolding. It is related to common subexpression elimination in arithmetic. Suppose we have the
DDB

L. p(X, Y) - a(X, Z), b(Z, Y).

2. q(W, U) == a(W, V), bV, U). ©.15)
Clauses 1 and 2 compute exactly the same join. It therefore makes sense to compute the join once and copy the result to the
other clause, so that we get the equivalent DDB

1. piX, Y) - a(X, Z), b(Z, Y).

2. q(W, U) - p(W, U). (9.16)
We need to be careful that the subexpressions are really the same. Consider the DDB

L p(X, Y) - a(X, 2), b(Z, Y), c(Z).
2. q(W, U) :- a(W, V), &V, U). 9.17)
In this case, the subexpression a(X, Z), b(Z, Y) in clause 1 is different from that in clause 2 since there is an additional
constraint on the bindings for the variable Z coming from the predicate c¢(Z), which are not constraints on the variable 7 in
clause 2.
In general, we consider folding if we have a DDB of the form

lLa(...) - k(...), r(...).

2.b(...):—k’(...).( ) (9.18)
where k and k' are conjunctions of predicates with the same principal functors. In the example (9.15):

kis a(X, Z), bZ, Y).
K is alW. V), &V, U), ©.19)

These predicates will be called the common predicates. We will call clause 1 of (9.18) the target clause and clause 2 the
folding clause. The predicate » in the target clause is a conjunction of predicates, which may be empty, and is called the
remainder of the target clause body. We can perform unfolding if additional conditions F/—F3 are met:

F1: There must exist a most general unifier s between the common predicates & and . If, for example,

k(...)=a(l.Z), b{Z, Y).
K'(...) = a(W, V), bV, 2). (9:20)
then the mgu s is
s={W/l, Z/V, Y/2} (9.21)
whereas if
K(...)=a(l, Z), biZ, Y).
K(... ) =al2, V), bV, 2). ©-22)
there is no mgu.

F2: We have to consider the internal variables of the folding clause. These are the variables which occur in the clause
body but not in the clause head. In DDBs (9.15) and (9.17), the only internal variable is Z. Generally, if {X}, ..., X} is the set of
internal variables of the folding clause, then we have two conditions on the set of internal variables with the substitution s
applied, denoted {X\s,..., X,s}. These conditions are:

m no X;s appear in either the head or the remainder of the target clause;
m the Xjs are distinct.

Each of these conditions guards against one way in which extra constraints can be placed on the common part in the target
clause. In DDB (9.17), clause 2 has the internal variable / in the folding clause. It would unify with the internal variable Z in
the target clause, which has an additional constraint that Z must satisfy c¢(Z). This is an example of the first situation F2
guards against. An example of the second is

L p(X, Y) - a(X, A), b(A, A), c(A, Z).

2. q(W, U) :- a(W, B), b(B, C), o(C, ). ©.23)
Clause 2 of (9.23) is the folding clause, while clause 1 is the target clause. The two arguments of b in the target are the same,
which is a constraint not present in the folding clause.

F3: If the clause group to which the folding clause belongs has more than one member, then the head of no other clause in

the group unifies with the head of the folding clause with the substitution s applied. In the example
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L p(X, Y) :- a(l, Z), bZ, Y).
2. (W, U) - a(W, V), b(V, 2). 9.24)
3.q(l, Ty :- a(T, T).

unfolding cannot be performed, since the head of clause 3 unifies with the head of the unfolding clause 2 under the
substitution (9.21). On the other hand, in the example

1L p(X, Y) i a2, 2), b(Z, Y), Y, S).

2. g(W, U) - a(W, V). bV, U (9.25)

3. q(1, T) = a(T, Th

the mgu between the common parts of clauses 1 and 2 is

s" = {2/W, Z/V, Y/U) (9.26)
The substitution s’ applied to the head of the folding clause gives
q(W, U)s" = q(2, Y) 9.27)

and the clause head (9.27) does not unify with the head of clause 3 from DDB (9.25).
If these three conditions hold, then the common part of the target clause can be replaced by the head of the folding clause with

the substitution s applied. DDB (9.15) transforms to
L p(X, Y) = g(X, Y).

2. (W, U) == aiW, V), &V, U). (9:28)
while DDB (9.25) transforms to

I P(x- ‘lf) - q(2: Y’* c("v SL

2. q(W, U) :- a(lW, V), |V, U). (9.29)

3. g(1. T) :- a(T. T

Rule of thumb: Folding always reduces the number of joins to be computed, so can be performed whenever possible.

9.3
EXAMPLE OF FOLDING AND UNFOLDING

We can use unfolding and folding to simplify the magic sets transformation of the ancestor relation, with binding pattern f'b:
anciA, D) - par(A, D).
anc(A, D) :- par(l, D). anc(A, I). (9-30)
where par is the EDB relation and anc is a query type. The magic sets transformation (9.1) is copied for convenience:
- m_a(l) = sup, (D, 1).
- sup D) - m_aD).
- sup, D) = m_sD).
- supy, (D, 1) i~ sup, (D), partl, D). 9.31)
. anc(A, D) - sup, (D), pariA, D),
6. anc{A, 1) - sup, (D, 1), anciA, T).
.m_ald&l).

N fe L b e

-J

The magic predicate m_a is an update type, but not a query type; while the predicates sup; o, sup, sup,; are intermediate
types.
We first note that the predicates sup; y and sup, , in clauses 2 and 3 are intermediate, and have only one predicate in their
bodies. We can therefore unfold clause 2 into clause 5 and unfold clause 3 into clause 4, resulting in the equivalent DDB:
1. m_a(l) :- sup, (D, I).
4. sup, (D, 1) - m_a(D), par(l, D).

5. anc(A, D) :- m_a(D), par(A. D). (9.32)
6. anc(A, D) :- sup,,(D, I}, anc{A, 1).
7. m_a(&l).

Clause 4 could be unfolded into clauses 1 and 6, but since clause 4 has two predicates in its body, unfolding it in this way
would increase the number of joins, so we do not unfold it.

On the other hand, we notice that clauses 4 and 5 have identical bodies. Conditions F'/, F2 and F'3 are trivially satisfied, so
we can fold clause 5 into clause 4, obtaining the equivalent DDB:
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. m_ail) :- sup, (D, I).

1

4. sup, (D, T) :- anc(l, D).

5. anc(A, D) :- m_a(D), par(A, D). (9.33)
6. ancl{A, D) - sup, (D, 1), anc(A, I).

T:m_al&l).

We could equally well have folded clause 4 into clause 5 in (9.32). We chose anc as the target clause since anc is a query type
and must be computed in any case, while sup, ; is an intermediate type.

Clause 4 0f (9.33) now has only one body predicate, so the unfolding proposed for DDB (9.32) can now be performed, resulting
in the equivalent
.m_a(l) - ancil, D),

wn —

canc(A, D) - m_a(D), par(A, D). 934
6. anc{A, D) ;- anc(l, D), anc(A, ). ©:34)
7. m_a(&l1).

There are no more intermediate types, so there are no more opportunities for unfolding. There are no common subexpressions
in the clause bodies, so therefore no more opportunities for folding.

Compare the transformation of this section to the transformation of (8.34) to (8.35). Note also that the example in this
section is in fact right linear, so the right linear recursion specialization of magic sets from Chapter 8 is appropriate, and gives
a better result.

9.4
SUMMARY

Folding and unfolding are transformation techniques which can be used to simplify IDB predicates by elimination of
intermediate types or elimination of common subexpressions. We will see in Chapter 10 that unfolding is particularly
productive when applied to propositional systems.

9.5
FURTHER READING

The further reading on this topic is unfortunately not very easy. The material in this chapter is taken largely from Seki (1989).
A more complete, but much more abstract, treatment of the material is given by Sato (1992). A good exposition of the closely
related topic of partial evaluation is given by Lakhotia and Sterling (1990).

9.6
EXERCISES

9.1 Use unfolding to simplify the magic sets transformation of the same generation predicate from 7.32.
9.2 Use unfolding and folding (if possible) to simplify the magic sets transformation of the expression predicate from
Exercise 8.2. (Work from the published solution.)



CHAPTER TEN
Prepositional deductive databases

Unfolding is especially productive when applied to propositional deductive databases. There are other methods which can be
applied to these systems, and which can also be used in first-order deductive databases in some cases.

10.1
PROPOSITIONAL SYSTEMS

We have so far considered propositional systems only in passing. In this chapter, we focus on these systems and see that they
have some special properties. Recall from Chapter 4 that a propositional system has no variables, so that all clauses are
ground; and that consequently there is no quantification. Using negation as failure, a proposition is regarded as true if it appears
in the EDB, as false if it does not.

Many expert systems are essentially propositional Horn clause systems. We will use the following simple expert system as
an example:

Example 10.1: Barbecue planner expert system

rain_forecast — call off

bob — all foods

mary — vegetarian_fish

jim — meat

vegetarian_fish & not meat — lentil burgers

meat & not vegetarian_fish — steak

meat & vegetarian_fish — fish

all foods — hot dogs

The update types, with their intended interpretations, are

rain_forecast—the weather forecast is rain

bob—Bob has accepted an invitation to the barbecue

mary—Mary has accepted an invitation to the barbecue

jim—1Jim has accepted an invitation to the barbecue

The query types, with their intended interpretations, are

call off—the barbecue is to be called off

lentil_burgers—Ilentil burgers will be served

steak—steak will be served

fish—fish will be served

hot_dogs—hot dogs will be served

The intermediate types, with their intended interpretations, are
vegetarian_fish—someone has been invited who is a vegetarian but will tolerate fish
meat—someone has been invited who prefers meat but will tolerate fish

all foods—someone has been invited who has no strong food preferences

The perfect model is intended to contain at most one of the query types other than
call off: in other words, the person planning the barbecue is expecting to serve only one type of food.
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10.1.1
Recursion, stratification and indeterminacy

Prepositional systems are simpler than first-order systems, so that some of the more problematic aspects of datalog either
disappear or are reduced in importance.
Recursion as a concept does not apply to prepositional systems. Apparently recursive formulas can be simplified. In particular,
linear recursive formulas are tautologies. Consider
p:-q&p. (10.1)

Using the equivalence

p-q=p+~q (10.2)
formula (10.1) simplifies to

p-q&p=p+-(q&p)

=p+-p+-q (103)
= true
Mutual recursion is conditional equivalence. Consider
Pp-q&r
q:-s&p.
Applying (10.2), the convention that all the clauses are true formulas, and the identity
=)= &y +(Cx&~y) (10.4)

formula (10.4) becomes
p+r-q+-1N&(q+=-s+=~p)=

(p & q)+(p & ~ s} + false +
false 4+ (~q & ~8)+(~q & ~ p) + (10.6)
(-r & q) + (-1 & ~8) + (~r & -p) =
p=q)+-s&p+~P+-r&{g+-p+-s&-r
which says that if s and r are true, then p and g are equivalent. (If s and » have the value frue, then all the disjuncts except
(p=q) have the value false.)

This is an indeterminacy. If in the course of the semi-naive algorithm an alternative proof is found for either p or ¢, then the
formulas (10.4) will assign the same truth value to the other. If no other proof is found, then there is more than one model for
the system.

Non-stratification leads to indeterminacy. From Chapter 4, a logic program is not stratified if its dependency graph has a cycle
at least one edge of which is negative. In a propositional system, the general case of a cyclic dependency graph with one
negative edge is

pi-q&r.
q:-~p&s.
Applying identity (10.2), (10.7) becomes
p&q + p + p&=s + p&~q + ~q&~s + q&~r + p&~r + ~1&~s =
p + —q&~s + q&~r + ~r&-s

(10.7)

(10.8)

which is equivalent to p if 7 and s are true, but to p+q if s is true and 7 is false, and so forth. If both » and s are true, then the
formulas (10.7) do not constrain ¢ at all, so that unless there is some other way of determining ¢, the system is indeterminate.

The point is that in propositional systems, recursion and non-stratification can be seen to be conditional indeterminacy.
Recursive or non-stratified subsystems can be identified as errors and reported to the programmer. Alternatively, the
propositions 7 and s in (10.6) and (10.8) define the conditions under which the formulas are well-behaved. The expressions
deriving r and s therefore play the part of integrity constraints, and could therefore be removed from the expert system proper
into a knowledge base which tests inputs for validity. Recursion and non-stratification are therefore eliminated, and therefore
all the dependency graphs are acyclic.

We lose very little practical generality if we restrict our attention in propositional systems to Horn clause systems where the
dependency graph is acyclic.
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Figure 10.1 Functional view of propositional systems.

10.2
UNFOLDING APPLIED TO PROPOSITIONAL SYSTEMS

10.2.1
Application of unfolding

An important fact about propositional Horn clause systems where the dependency graph is acyclic is that they are equivalent
to decision tables. No matter how many rules there are, and how many steps the semi-naive algorithm takes to compute the perfect
model, the system is functionally dependent on the update types, and can be computed in a single step from a decision table.
This relationship is a simple consequence of the truth-table method for evaluation of propositional expressions, and is
illustrated in Figure 10.1. A propositional system of this type maps subsets of true facts into subsets of true conclusions.

Unfortunately, the simple truth-table method which shows the functional view to be valid does not provide a practicable
method for computing the function, since the number of rows in the decision table is exponential in the number of facts in the
update types. In this section, we show that unfolding provides a practicable method for computing the decision table
equivalent to a propositional Horn clause system with an acyclic dependency graph.

In the general discussion about unfolding in Chapter 9, we gave the rule of thumb that unfolding might increase the number
of joins, so should be used with caution. In propositional systems, the join is a very simple operation: namely the logical
conjunction of two propositions, which can be implemented very cheaply. Therefore in propositional systems, there is no
restriction on unfolding. If the propositional system is acyclic, then the propositions which are neither update nor query types
can be eliminated by unfolding.

The transformed system has no intermediate types. If no IDB query type is in the antecedent of any rule (the user does not
want to see intermediate results) then the resulting system is a set of rules whose antecedents are entirely facts. If no update
type is the consequent of any rule (the user does not want to override intermediate results), then the resulting system is a set of
rules whose consequents are entirely conclusions. The perfect model can be computed in a single step of the semi-naive
algorithm. The resulting rules can be displayed in the form of a decision table with don’t care conditions.

A decision table is an array whose column headings are attribute names. It is intended to classify cases. A case is an
assignment of a single value to each attribute, corresponding to an EDB in the above. The rightmost column is the
conclusions. Each cell contains a subset of the possible values for its attribute. This subset is called a condition. A case is
said to fire a cell if the value of the cell’s attribute in the case is a subset of the values in the cell. A row of the table is said to
fire if all its cells fire. The conclusion in each row is an action to be performed if the row fires. A condition is called a don’t
care condition if it contains more than one value of the associated attribute. Conventionally, a cell whose condition is all
possible values of the attribute is represented by a blank or a dash. In the following a blank cell will be used.

Example 10.2: Decision table equivalent of Example 10.1
rain bob mary jim conclusion

call off
n y n  lentil burgers
n n y  steak
n y y  fish

nynn hot dogs

Note that prepositional systems often reason about continuous measurements (e.g. the temperature of a boiler). The

knowledge concerning the continuous measurement is usually expressed in qualitative terms, for example temperature in the

normal range. There are generally rules which express the qualitative knowledge as a proposition, for example
(temperature<high_threshold) & (temperature>low_threshold) — temp normal

These kinds of rules are often called filter rules.
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Y - call off
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n ™ lentil_burgers

steak

hot_dogs

Figure 10.2 Decision tree equivalent of the table in Example 10.2.

10.2.2
Decision tables

The reader who verifies the decision table in Example 10.2 by unfolding the rules in Example 10.1 will notice that the
unfolding process does not account for the n conditions in the rain column. The immediate justification of the n conditions is
from the domain point of view: if the barbecue is to be called off on account of rain, there is no point in deciding on a menu.

More generally, it is very common in the construction of expert systems for the sequence of rules to be significant. If the
system is evaluated depth-first by backwards chaining, we have seen in Chapter 2 that the earlier rules are tried before the later.
The analogous depth-first approach to forward chaining (used by OPS-5 style interpreters) has a similar effect. In Chapter 4,
the perfect model is evaluated breadthfirst. All the consequents of the antecedents at each stage are computed before
proceeding. In the depth-first systems, when a new proposition is given a value, the interpreter immediately attempts to
evaluate rules which have that proposition in their antecedent. These interpreters are often programmed to stop as soon as a
query type or conclusion proposition becomes frue. In Example 10.1, the first rule, if it fires, establishes a conclusion. An
interpreter of this type would therefore not attempt to execute any of the other rules. We can call this type of interpreter a single-
solution interpreter.

It should be clear that a single-solution interpreter computes only part of the perfect model. It should also be clear that the
sequence of rules can be preserved under unfolding. One strategy which achieves this effect is when an earlier rule is unfolded
into a later rule, to move the later rule into the position of the earlier. If one rule is unfolded into several rules, the relative
sequence of the rules is preserved. If the resulting decision table is evaluated one row at a time in the sequence given, then the
conclusions are computed in the same sequence as the singlesolution interpreter applied to the original rules, as shown in
Example 10.2.

A decision table is said to be ambiguous if there is any assignment of truthvalues to the update types which results in more
than one query type having the value true. In other words, there is some input for which the expert system can come to more
than one conclusion. It is easy to test a decision table for ambiguity: the table is ambiguous if the conditions in any row satisfy
the conditions in any other row with a different conclusion. There are also procedures in the further reading for automatic
elimination of ambiguity. The decision table arising from application of unfolding to Example 10.1 is ambiguous. The
unambiguous table in Example 10.2 is derived from that of Example 10.1 by adding the negation of the condition for call off
to each of the other rows.

10.2.3
Decision trees

An unambiguous decision table can be transformed into a decision tree, which is simply a nested if-then statement.
Figure 10.2 shows a decision tree equivalent of the table in Example 10.2.

A decision tree is formed from a decision table by recursively selecting a proposition as a node of the tree, then dividing the
decision table into two: all rows where the condition is y are attached to the y arc of the tree, and all rows where the condition
is n attached to the n arc. Rows with don’t care conditions are put into both tables. The tree in Figure 10.2 was obtained from
the table in Example 10.2 by selecting the propositions rain, then mary, then jim then bob. It is not necessary to select the same
proposition in each of the sub-tables. There are algorithms given in the further reading for making selections of propositions
which yield small trees.
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10.2.4
Negation

In the discussion so far we have been treating negation from the logical point of view. Recall from Chapter 2 that a Horn
clause cannot have a negated proposition as its head, so that a Horn clause system under the semi-naive algorithm can never
prove a negation. Propositional datalog can therefore be seen to be weaker than the prepositional calculus, since in the latter
the truth-table decision procedure can be used to prove any theorem. In Prolog, we saw that negation was handled using the
concept of negation-as-failure: a negated goal is defined to succeed if the unnegated goal fails.

Propositional datalog can make use of negation-as-failure. Its application here can be seen by considering identity (10.2),
repeated here for convenience

p - g=pt~q

If g is true then we can conclude p, but if ¢ is false, we cannot conclude anything about p. Using negation-as-failure, we
assume ~p if we have ~¢: in other words a proposition is assumed false unless proven true.

Unfolding cannot in general be performed on negative subgoals. In propositional systems, however, we can unfold a
negative subgoal using negation-as-failure. If we have ~p in a clause body and a definition of p

P - q-
P - Q.
o i (10.9)
P - 4y
then we can replace ~p in clause bodies by the negation of (10.9), or
~p=~(q +q+...+q) (10.10)

This transformation has in fact been used in Examples 10.1 and 10.2.

There are situations where we can directly prove a negative proposition, so need not rely on negation-as-failure. Horn
clause systems with the semi-naive algorithm do not allow the direct proof of negative propositions. However, if we wish to
prove ~p, we can define a new proposition np=~p and use the new proposition in the clause head. We need the integrity
constraint

= ~np (10.11)

With this tactic, we treat p and np as distinct propositions, with the stipulation that neither depends on the other. The
consistency aspect of (10.11) is an integrity constraint, which can be enforced by checking that the unfolded definitions of the
two are inconsistent:

P - qp-

np - qi. (10.12)

qp & gn o false.
To check the completeness aspect of (10.11) we would also need to test

qp + qn D frue. (10.13)

10.2.5
Uses of transformed systems

We have seen that, using unfolding and other techniques, propositional Horn clause systems can be transformed into decision
tables and decision trees. Other transformations have been alluded to, for example extraction of integrity checks. The power
of the method is that the transformations are automatic and provably maintain the behaviour of the system. The
transformations permit the knowledge to be viewed in different ways, each of which has advantages.

The original Horn clause formulation of the knowledge base of an expert system may be a very convenient way for the
human domain experts and knowledge engineers to understand the content of the knowledge. The decision table form can
easily be tested for consistency, completeness and computational stability. The decision tree form is easily compiled into
nested if-then statements for very fast execution, and can easily be analysed for consistency of dialog and the conditions
under which expensive tests must be performed. In fact, the procedure for generating the decision tree from the decision table
can be tailored to achieve consistency of dialog and postponement of expensive tests.

Computational stability is a property which is visible from the decision table form of the knowledge. Most expert systems
reason from qualitative statements about measurements, such as whether a given measured variable is low, normal or high. If
the variable is continuous, it can have a value which is just below normal. In the qualitative statement, the value is low, and
not distinguished from a value which is much lower than normal. Propositional expert systems are used to make
classifications, which are often qualitatively different. For example, an expert system used to monitor a power plant might
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identify some states of the plant which call for emergency shutdown, some states which call for immediate repair, and some
which call for routine attention in the next maintenance shift.

Using the decision table view of the knowledge, it is not difficult to determine the minimum difference in the measured
system state which would cause a change from one grade of classification to another. Ideally, a system designer would like
several variables in the plant to change to make the difference between routine maintenance and emergency shutdown, for
example.

More complete indications of how to perform these analyses can be found in the further reading section 10.5.

10.3
APPLICATIONS TO SEMI-PROPOSITIONAL PRODUCTION SYSTEMS

It frequently occurs that expert systems require more than the propositional calculus. These systems are often implemented in
forward chaining expert system languages related to OPS-5, which was described in Chapter 4. An example of such a system,
SIRATAC, is discussed in Chapter 1. Many of these systems (like SIRATAC) can be implemented as deductive databases,
and (again like SIRATAC) they often have a large number of propositional subgoals as well as first-order subgoals. Many of
the rules may be entirely propositional.

It is possible to factor prepositional subgoals out of clauses. For example

r(X’ Y) =P q S(X’ Yv Z)’ t(Z)’ u(Y)' (1014)
is equivalent to
if p & q then
fX. Y) - s(X. Y. Z). €Z), u(Y). (10.15)

The resulting proposition-free Horn clauses can be regarded as similar to a conclusion in a propositional system. The
prepositional system can be transformed into a decision table or a decision tree, so that each first-order clause is executed only
if what might be called its propositional guard is true. The propositional guards might be thought of as situation descriptors
which specify the conditions under which the first-order rule applies. If a system has a large number of propositional subgoals,
and most of the first-order clauses contain one or more propositional subgoals, then a substantial reduction in execution time
might be achieved by this strategy.

It is also the case that programs written in OPS-5 related languages frequently have propositional working memory
elements which are updated, which are therefore non-monotonic and therefore not deductive databases (non-monotonic
systems are discussed in Chapter 12). These updated propositions are generally used as state variables to section the rules so
that fewer are considered at each stage of the recognizeact cycle. For example, a computation might have several stages (like
SIRATAC). A wme called <task> might be used to control the stages. It would have several possible values, e.g. stage I,
stage_2,... The initial value of <task> would be stage 1. When a rule is executed which knows that it concludes stage 1, part
of its action would be to modify the value of <task> to stage 2.

Each state, identified by a combination of values of the updateable propositional wmes, selects a subset of the rules, which
we will call the program for that state. The whole system can be regarded as a finite-state machine, whose action at any
state is to execute its state program and whose transitions are determined by the program. If each state program is monotonic,
then the methods of deductive databases can be applied to it.

104
SUMMARY

Our argument is that:

most expert systems are either propositional or expressed in OPS-5 related languages;

m OPS-5 programs are similar to deductive databases; however, they sometimes contain non-monotonic actions, so are not
always deductive databases;

m some of the non-monotonic actions are used to implement aggregation, as discussed in Chapter 4;

m other non-monotonic actions are state selectors, as discussed above:

m many expert systems are therefore deductive databases, or at least collections of deductive databases, so that the methods
described in this book can be applied;

m many expert systems which are first-order deductive databases are largely propositional, so that the methods described in

this chapter can be applied.
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10.5
FURTHER READING

This chapter is drawn from a variety of sources. Most books on artificial intelligence describe at least propositional expert
systems, for example Winston (1992), Genesereth and Nilsson (1987) or Rich and Knight (1991). A good introduction to first-
order expert systems programmed in OPS-5 is Brownston ef al. (1985). The application of unfolding to propositional expert
systems is described by Colomb and Chung (1995), and an algorithm for transforming a decision table to a decision tree is
given by Shwayder (1974). Various consistency and completeness tests for decision tables are given by Cragun and Steudel
(1987), and the notion of computational stability in expert systems is described in Colomb (1992).

10.6
EXERCISES

10. Flatten the following set of propositional rules:
1

. fl & 2 —al
M2 &3 & A &~f5 — a2
.~al & ~a2 —c2
.al & a2 —cl
f5&al — a2
where {f1, f2, {3, 4, f5} is the set of update types,
{cl, c2} is the set of query types,
and {al, a2} is the set of propositions which are neither update nor query types.

Dbk W=

Express the result as a decision table, and then as a decision tree written in Pascal, C or some other appropriate
language. The result will look something like

if f1 then

else

Hint: you may need to simplify a boolean algebra expression using the identity xt+x&y=x.



CHAPTER ELEVEN
Integrity constraints

In this chapter we consider the representation of integrity constraints and their integration into the deductive database.

111
UPDATES

We have seen in Chapter 4 that a deductive database can be divided into two parts, the EDB and the IDB. The EDB is the
database of ground unit clauses, while the perfect model for the relations described by the predicates in a particular IDB is
determined uniquely by the set of tuples comprising its associated EDB. We can therefore say that the perfect model is
functionally dependent on the EDB.

Another partition of the deductive database we have seen in several chapters is into update, query and intermediate types. In
particular, the update types are the predicates whose populations are allowed to be changed by the user, while the query types
are those predicates whose populations are allowed to be viewed by the user. Note that the update and query types are relative
to a class of user. Taking the University Calendar deductive database as an example, relative to the students the update types
include enrolments, while relative to the Departments the update types include subjects offered and prerequisite structures,
but not enrolments.

Therefore, from the point of view of a class of user, the population of the query types is functionally dependent on the
population of the update types in the same way that the perfect model is functionally dependent on the EDB, assuming the
remainder of the database is held constant. Further, for the given class of user, the entire state of the database is determined by
the population of the update types. If we designate the population of the update types at a particular time by U, we can say
that an update u changes the population to a possibly different population V.

If we think in terms of populations of the update types, it makes sense to consider the set of possible populations, which we
might call S. In other words, each member of the set S is a possible population of the update types.

There are three kinds of elementary updates possible: we can

m add a new clause;
m delete an existing clause;
m alter an existing clause.

We can alter a clause by first deleting the existing clause then adding the revised clause, so that all updates can be done by
combinations of deletions and additions. An update transaction is therefore a collection of additions and deletions. Recall that
a transaction is applied atomically, so that it does not make sense to add and delete the same clause. We can therefore assume
that the clauses added are different from the clauses deleted. Since the clauses added differ from the clauses deleted, we can

apply the additions and deletions in any order. We can express a transaction 7 as a sequence of elementary updates
T = add(t), ..., add(t), delete(t,,,), . . ., delete(t,) (11.1)

Our intuition about updates is that the update transaction derives from a particular state of the database: the application generating
the update usually performs a query, then constructs the update from the results of the query and additional inputs, perhaps
from the user.

If we look a little deeper, we see that the update is actually relevant to many states of the database. Generally, there are
many states of the database which give the same result to the query. For example, if a student wishes to change enrolment, the
tuples recording the enrolment of other students are very rarely relevant. Since we want updates to apply to many states of the
database, it will be easier if we consider that they apply to all states.

First consider the elementary update add(t) to database state (population) DeS. If clause ¢ is in D already, the resulting state
is D, otherwise the resulting state is Du{t}. Similarly, we can apply the elementary update delete(?) to a database state D. If
clause ¢ is in D, then the resulting state is D/{t}. If clause ¢ is not in D, then the resulting state is unchanged.
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Figure 11.1 The NIAM uniqueness constraint.

§

Figure 11.2 The NIAM mandatory constraint.

This allows us to view an update transaction as an operator on the set of update type states. In symbols, given a specific
update transaction 7, we have

Figure 11.3 The NIAM subtype constraint.

T:S->S (11.2)
where the action of 7 is the composition of the actions of its add and delete constituents.

11.2
INTEGRITY CONSTRAINTS

An integrity constraint is a description of allowed states of the database, i.e. both the domain and range of the transaction
operator (11.2) are restricted by the integrity constraints. If a particular transaction 7 maps a particular state s in S outside S,
then 7 is not allowed for database state s.

Integrity constraints are frequently determined in the conceptual modelling phase of information systems development, and
some kinds of constraints can be modelled using information systems modelling methods. Of particular interest to us is that most
integrity constraints encountered in practice can be expressed as formulas in the first-order predicate calculus with
aggregation. We will show below that these formulas can be translated automatically into normal Prolog programs, so that
they integrate well with the deductive database theory we have encountered so far.

We will consider some examples of integrity constraints which can be modelled using the NIAM conceptual modelling
method. Figure 11.1 shows the uniqueness constraint, which indicates that each entity in population 4 participates in relation
with at most one entity in population B.

This uniqueness constraint can be expressed in predicate calculus as

VXrX,Z2),1X,Y) > Y=2 (11.3)

Figure 11.2 shows the mandatory constraint, which indicates that each entity in population 4 participates in relation » with at
least one entity in population B. The mandatory constraint can be expressed in predicate calculus as

VXY aX) - (X, Y). (11.4)
Figure 11.3 shows the subtype constraint, which indicates that every member of population A4 is also a member of population
B.

The subtype constraint can be expressed in predicate calculus as

VX a(X) = b(X). (11.5)
There are many kinds of constraints which are not normally expressed in NIAM diagrams. Also, the integrity constraints may
be expressed in terms of IDB predicates as well as EDB predicates. For example, suppose we have an application whose EDB
consists of a graph, whose IDB consists of a transitive closure algorithm, and the integrity constraint is that the graph must be
acyclic (directed acyclic graph from Chapter 3). The first-order expression of this situation is given in (11.6), where IC
indicates the integrity constraint:

EDB: arc{Source, Sink).
YX¥Y(are(X, Y) +
SiarciX, Z) & pathiZ, Y))] (11.6)
— pathiX, Y)

IC: not 3X path(X, X).
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(2) A = not(V and W), e A - not V.,
A - not W,
(b) A:-"XW >> A = not 3X not W,
(c) A - notYXW. o A - 3X nat W,
(dy A=-W-=V. o AV,
A - per W
c) A =not (W < V), = AV, W
f)y A:VorW B A -V,
A=W,
(gl A not(V or W) >> At V, nd W,
(h} A :-not W, B AW,
() A-ZX W > A=W
(i) A - not 3X WX, Y. >> A - not piY).
plY) « 3X W (X, YL
k) A=B = A= B, B - A,

Figure 11.4 Reduction rules for clause bodies.

11.3
INTEGRITY CONSTRAINTS AS HORN CLAUSES

We now have the ability to express integrity constraints as formulas in the firstorder predicate calculus. As we noted in
Chapter 2, the logic programming language upon which the theory of deductive databases is built allows only Horn clauses,
which are less general than the predicate calculus, so that we may not be able to represent our integrity constraints in our
deductive database in the natural way. Later, we extended the theory to include negated predicates in the clause body using
negation-as-failure, but these negated predicates cannot be used as conclusions. The essential character of Horn clause logic is
thus retained: that only predicates occurring in clause heads can be derived.

However, we notice that the integrity constraints are used in a restricted way in databases and by extension in deductive
databases. They are used only to test whether a database state is valid, i.e. we wish to be notified if a transaction puts the
database in a state where at least one of the integrity constraint formulas is not satisfied.

Note that integrity constraints could in principle be used to derive conclusions. For example, if the population B of the
mandatory constraint example (11.4) had a single member, say b, then for every member a of 4, we would be able to
conclude r(a,b), since every member of 4 must be in relation » with at least one member of B, and B has only the one
member.

By limiting our use of integrity constraints to the detection of violations, giving up some of the power of first-order logic,
we can use a trick to express them as Horn clauses. In terms of Chapter 5, we give up knowledge goal independence. Since
we are interested in the absence of violations, we declare two special predicates, bad and no_violations. The predicate bad is
true if at least one of the integrity constraints is violated, and no_violations is defined as

no_violations :- not bad. (11.7)
If the integrity constraint theory consists of the n formulas W, i = 1,..., n, then the special predicate bad is defined:

bad :- not W,.

e (11.8)

bad :- not W_.

If the integrity constraints (11.3)—(11.6) were applied to the same deductive database system, then the Horn clause
representation would be (noting that VXp(X)=~3X~p(X)):
bad :- X not (X, Z), r(X. Y) = Y = Z. UNIQUENess

bad :- 3X not 3Y a(X) — (X, Y). mandatory
bad :« 3X not a(X) = b(X). subtype (11.9)
bad :- not IX path(X, X), acyclic

no_violations - not bad.
Expression of constraints as Horn clauses with first-order bodies has helped to a degree, in that we now have a clause head.
However, the clause bodies in the deductive databases must be conjunctions of either positive or negative literals, i.e. they must
not contain disjunction symbols or implication symbols, and certainly not quantifiers.
Fortunately, there is a procedure by which an arbitrary first-order predicate formula used as a clause body can be
transformed into a normal program: a conjunction of positive and negative literals, so long as we make the closed world
assumption and are willing to tolerate negation as failure.
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Figure 11.4 shows the rewriting rules which suffice to transform an arbitrary first-order formula in the clause body into a
normal program. The procedure is to find a clause of the form of one of the left-hand sides, then replace it with the righthand
side. The process continues until the program is normal. The process always terminates, and always produces a normal
program. In using the rules, assume that the formula is of the form 4 :- W, W,, ..., W,; where W; is a first-order formula with
~ replaced by not.

In rule (j), the body predicate is represented as W(X, Y), to indicate that W may have variables other than X. The predicate p
is introduced by the transformation. It should have a principal functor different from any other principal functor in the
program. It has the same variables as W, excluding the variable X. The variable X is not present in the new predicate’s clause
head, since the original predicate fails if the new predicate succeeds (see the material on negation-as-failure in Chapter 2). The
new predicate has the other variables, designated Y, since its function is to communicate the variable bindings from the head,
A, of the original clause to the body, ¥, of the new predicate.

We show below an example of the application of these rules. The predicate in (11.10) is based on the ancestor family of
predicates from Chapter 2. It is true if none of a person’s descendants are male.

no_male_descendants(X) :
Y (ancestor(X, Y) —» female(Y)). (11.10)
Applying (b), we get
no_male_descendants(X) :-

not Y not (ancestor(X, Y) —» female(Y)). (11.11)

Applying (j), we get
no_male_descendants(X) :-
s« not male_descendant(X).
male_descendant{X) :- (11.12)
3Y not (ancestor(X, Y) — female(Y)).
Note that the intermediate predicate male_descendant has the variable X, since this variable is present in the body of (11.11),
but does not have the variable Y, since Y is negatively existentially quantified in (11.11).
Applying (i), we get
Applving (i), we gel

male_descendant(X) :- (11.13)
not (ancestor(X, Y) — female(Y).

Applying (e) we get
male_descendani(X) :-
nol female(Y), ancestor(X, Y), (11.14)
resulting in
no_male_descendants(X) :-
not male_descendant(X).
male_descendant(X) :- (1L.15)

not female(Y), ancestor(X, Y).
which is a normal program.

114
EFFECT OF UPDATES

As we have seen above, an update transaction consists of a series of add operations followed by a series of delete operations.
These operations may be on either the EDB, IDB or the integrity constraints. We assume that the database satisfied the
integrity constraints before application of the update. The problem is to determine whether the database state resulting from
the update satisfies the integrity constraints. Clearly, one way to do this is to re-evaluate the entire set of integrity constraints.
Although it is sometimes necessary to perform a complete re-evaluation, it is frequently the case that the amount of
computation can be reduced dramatically.

In particular, if the update is the removal of an integrity constraint, no computation need be done at all. If the database
satisfies a set of constraints, it satisfies a less severe set of constraints. If the update is the addition of an integrity constraint,
then only this new constraint must be evaluated: the database already satisfies the others.

An update to the EDB is the addition or deletion of a tuple from a relation. The EDB update may have additional effects on
the perfect model, either the addition or deletion of tuples. An update to the IDB has the same result: it adds or deletes tuples
from the perfect model, which may result in the addition or deletion of other tuples from other IDB predicates.
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An integrity constraint is a first-order formula involving predicates which may be either in the EDB or the IDB. We
observe that an update which does not affect any of the predicates in a particular integrity constraint cannot change the value
of that constraint. If the database satisfied the constraint before the update, then it satisfies it afterwards. On the other hand, it
may require partial evaluation of the perfect model to tell whether the update affects a particular IDB predicate involved in a
particular integrity constraint.

Our first step in efficiently evaluating integrity constraints on updates is therefore to make a table of the relationship
between update types and integrity constraints. We can unfold all the predicates in the integrity constraints (see Chapter 9)
until we get all the update types upon which they depend directly or indirectly. This unfolding is a purely syntactic operation
and does not affect the operation of the database. If we identify each constraint and each predicate, we can make an
associative relation between the two sets of names which records the progress of unfolding. Given this associative relation and
a list of predicates involved in an update, we can recover a list of integrity constraints which might be affected by the update.
As well, we can recover a sequence of IDB predicates leading from the update to an affected constraint.

For example, suppose we have the following program:

icl - wdb1(X), edbl(X).

K2 - 1db2(X), not idb3(X).

idbl(X) - idbd(X. YY), edb2(X),

Wb2(X) - edb3(X), edb4(X). (11.16)
idb3(X) :- not edb5{X), edbH(X).

idb4(X. Y) - edb7(X, Y), not edbR(X).

otheridb(X) :- edb2(X), edbd{X), cdbb(X), edb8(X).

Recall that for the system to satisfy the integrity constraints, neither ic/ nor ic2 may have any solutions. That is, for ic/, for
any X, either idb! or idb2 must fail to have a solution; and for ic2, either idb2 must not have a solution or idb3 must.

Table 11.1 Dependency table between predicates

Constraint Predicate Constraint Predicate
icl idbl idb3 edbs
icl edbl idb3 edb6
ic2 idb2 idb4 edb?
ic2 idb3 idb4 edb8
idbl idb4 otheridb edb2
idbl edb2 otheridb edb4
idb2 edb3 otheridb edb6
idb2 edb4 otheridb edb8

The associative relation is a relational representation of the connectivity of the dependency graph of Chapter 4, which is
essentially the same thing as the knowledge diagram of Chapter 5. The relational representation is a supertype of the literal/calls
table of the CASE tool described in Chapter 6. Here, we will call it a dependency table. Its population for program (11.16) is
given in Table 11.1.

The set of predicates leading to integrity constraints which are potentially affected by a change to an update predicate p is
given by the transitive closure query affected defined as

affected{ Affected_Predicate, Update_Predicate) :-
dependency(Affected_Predicate, Update_Predicare),
affected(Affected_Predicate, Update_Predicate) - (11.17)
dependency(Intermediate_Predicate, Update_Predicate),
affected(Affected _Predicate, Intermediate_Predicate).
If the EDB relation edb? is updated, then the predicates idbl, icl and otheridb are potentially affected. However, the affected
query on the dependency table tells us that only idb! and icl need be considered. We therefore do not need to perform any
computations in otheridb, nor on any of the other predicates or integrity constraints. Constraint ic2 will be satisfied after the
update to edb2 no matter what that update is. The model for otheridb will possibly change, but it is not relevant to any
integrity constraint.

Furthermore, whether an update can change the value of an affected predicate depends on whether the updated predicate
occurs positively or negatively in the body of an affected integrity constraint. Consider constraint ic2 in (11.16). If this
constraint is true in the original state of the database, then there must either not be a solution for subgoal idb2 in that database
state, or there must be a solution for idb3. If we delete a tuple from idb2, the constraint must still be satisfied since there either
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was no solution, or a solution existed which was also a solution for idb3. Similarly, if we add a tuple to idb3, the constraint
must still be satisfied, since adding a tuple to the predicate defining a negative literal can never make the negative literal true.

In order to use this observation we need to know whether an update affects a particular predicate positively or negatively.
Since IDB predicates may appear in integrity constraints, and there may be a long chain of inference involving both positive
and negative predicates between the updated predicate and the constraint, we need a procedure to propagate the update
through the IDB.

This algorithm will collect in set P all the clauses which involve adding tuples to the perfect model, and in the set NV all the
clauses which involve deleting tuples from the perfect model. Recall that an elementary update either adds or deletes clauses.
We begin by collecting all the clauses added in the set P, and all the clauses deleted in the set &V, and by identifying the IDB
and integrity constraint clauses affected by the updates as the subprogram R. Let preds(P) be the predicate names represented
by clauses in P, and preds(N) be the predicate names represented by clauses in .

11.4.1
Update propagation procedure

Step 1: Collect in the subprogram R™ all the clauses in R which have a predicate from preds(P) occurring positively in the
body or a predicate from preds(N) occurring negatively in the body. This subprogram contains all the clauses which could
possibly generate new tuples in the perfect model as a direct result of the updates. Collect in the subprogram R all the clauses
in R which have a predicate from preds(N) occurring positively in the body or a predicate from preds(P) occurring negatively
in the body. This subprogram contains all the clauses which could possibly remove tuples in the perfect model as a direct
result of the updates.

Example: if the update added clauses to edb5 and edb7, and deleted clauses from edb6 and edb8, then we would have preds
(P)={edb5, edb7} and preds(N)= {edb6, edb8}. R* would contain idb4, while R~ would contain idb3.

Step 2: Generate additional clauses P* from P and N by taking in turn each clause from P and N and unifying it in turn
with each clause body predicate in R*. The clause in P* arising from each step in this process has possibly some of its
variables instantiated to constants, but these clauses may contain variables. Generate P~ from P, N and R in the same way.
This step is essentially the same as one step of the semi-naive algorithm from Chapter 4.

Example: If the clause added was edb7(a, b), and the clause deleted was edb8(a), then R™ contains only idb4, while R is
empty. The clause edb7(a, b) generates the clause idb4(a, b); while the clause edb8(a) generates the clause idb4(a, Y). P*
therefore contains {idb4(a, b), idb4(a, Y)}. P is empty.

Step 3: compare the clauses in P* with each other. If one clause is more general than another, discard the less general.
(Clause p is more general than clause ¢ if p has variables where g has constants, but ¢ has constants everywhere p does.) Then
compare the remaining clauses with those in P. If a clause in P* is more general than a clause in P, discard the less general
clause from P. Finally replace P with the union of the reduced P and P. Similarly, replace N by a reduced N and P-. This step
attempts to retain as many as possible of the constant arguments from the updated clauses. We are computing the queries
which must be evaluated to check the integrity constraints, and the more constant arguments, the easier it is to evaluate
queries.

Example: P" is {idb4(a, b), idb4(a, Y)}, P is {edb7(a, b)}, N is {edb8(a)}. The clause idb4(a, Y) is more general than idb4
(a, b), and none of the clauses in P unify with any in P*, so the resulting P is {edb7(a, b), idb4(a, Y)}.

Repeat steps 1-3 until no new clauses are added to either P or V.

Example: continuing the example from steps 2 and 3, the final P contains {edb7(a, b), idb4(a, Y), idbl(a), icl}, while the
final N contains only {edb8(a);.

We now know how the predicates used in the integrity constraints are affected by the update. In fact, we know that the
integrity constraint predicate ic/ needs to be evaluated. We know that its first subgoal idb/ has the solution a arising from the
update. We can now test whether the new state of the database satisfies the integrity constraints by evaluating the query edb/
(a)?, since if this subgoal returns a solution, then the constraint ic/ has a solution, and therefore the system is inconsistent.

Note that we have not only discovered that constraint ic2 is not affected by the update, but have also discovered that only
one subgoal in constraint ic/ needs to be evaluated, and only for the argument a.

11.5
DISCUSSION

The main point of this chapter is that it is possible to express a wide variety of integrity constraints as first-order predicate
calculus formulas, and that these formulas can be represented for integrity checking as Horn clause programs. A secondary point
is that an update is proposed from a state of the database which already satisfies the integrity constraints. In many cases we
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can take advantage of this fact to reduce the amount of computation we must do to check whether the state of the database
resulting from the update also satisfies the constraints.

In particular, we can identify constraints which are irrelevant to the update since they do not involve predicates which
depend on the updated predicates. We can eliminate further constraints by considering whether the updated predicates appear
negatively or positively. Finally, using the update propagation procedure, we can sometimes propagate the constants in the
updated clauses into the constraint predicates, reducing the scope of the computation.

The update propagation algorithm has other uses. For example, if the perfect model has been evaluated eagerly, it can detect
which predicates must be re-computed as a result of the update. It thus allows incremental change in the perfect model, with
possibly a great reduction in computation over re-computing the perfect model from the new database state.

In practice, aggregation functions are important both in the perfect model and in integrity constraints. Aggregation
functions such as SUM or COUNT which admit

Table 11.2 Additions to P and N for (11.18) and (11.19)

Round P N
0 mother(mary, bill) {}
1 parent(mary, bill) [4] {}
2 ancestor(mary, Y) [3] and [4], {}
[4] more general
3 ancestor(X, Y) [3] more general {}
than ancestor(mary, Y)
male descendant(X) [1.2] {}
5 {} no male descendant(X) [1.1]

incremental updates can take advantage of the update propagation algorithm to identify incremental change in their inputs.
The output of an aggregation function is a binding of a variable in a tuple of the perfect model. The old tuple can be deleted
and the new added, adding to both P and N.

It is important to recognize that the integrity constraint problem is far from solved in general. In particular, if the IDB is
recursive, the update propagation algorithm tends not to result in constraint variables bound to particular constants appearing
in the updated clauses. Consider the example:

1. no_male_descendants(X) - VY(ancestor(X, Y) — female(Y)).
. ancestor(X, Y) - parent(X, Y).
. ancestor(X, Y) :- parent(X, Z). ancestor(Z, Y).
. parenti(X, Y) - mother(X, Y). (11.18)
. parent{X, Y) :- father(X, Y),

[V R N S

EDB predicates mother, father, female

The first predicate in (11.18) is shown in the sequence (11.10)—(11.15) to translate into
1.1 no_male_descendants(X) :- nol male_descendant(X).
1.2 male_descendant(X) :- not female(Y), ancestor(X, Y\ (11.19)
Consider the update

add(mother(mary, bill)). (11.20)

The update propagation algorithm gives Table 11.2, showing P and N at the completion of each round (the clause of (11.18/
11.19) responsible is indicated for each clause in [...]).

Notice that the constants mary, bill are eliminated from the recursive clause [4] of (11.18) in rounds 2 and 3. This is
because the integrity constraint relates to the transitive closure of a recursive predicate, which is equivalent to a property of
the transitive closure of a graph. Addition of a new link may add many more tuples to the transitive closure.

On the other hand, there is clearly further room for optimization. By inspection, the reader should be able to conclude that
the update (11.20) should be rejected. We can expect better and more practicable results in this area in the future.

A second point for discussion is that hot all constraints expressed in first-order predicate calculus make sense. The
language is extremely powerful, so that it is possible to express constraints which require an exponential amount of
computation, or which are not computable at all.
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11.6
SUMMARY

In this chapter, we have examined the problem of formulation and evaluation of integrity constraints in deductive databases.
We have shown that any integrity constraint expressed as a first-order formula can be represented in a natural way, and also
that there is potential for optimization in the evaluation of integrity constraints upon updates to the deductive database. The
optimizations have practical utility in many cases.

11.7
FURTHER READING

The material in this chapter is drawn largely from Lloyd (1987).

11.8
EXERCISES

11. Integrity constraints as formulas:
1

(a) Transform the first-order formulas in the text for uniqueness, mandatory, and subtype to definite clauses.

(b) Put those first-order formulas into Horn clause integrity constraints, and perform the transform to definite clauses on
the resulting clause bodies.

(c) Formulate referential integrity in the relational model as a first-order formula, then transform the corresponding Horn
clause integrity constraint clause body to definite clause form.

11. Consider the conceptual schema given in Chapter 6 for the relational model (information model). In the text and in the
2 exercises you have seen the relational schema for at least some of this model.
Show in first-order predicate calculus a few of the integrity constraints between the schemes pred/role, tuple/role,
literal/calls, literal/argument, supertype and labels.



CHAPTER TWELVE
Non-monotonic reasoning

In this chapter, we look at what happens when we use integrity constraints to propagate updates rather than restrict them. We
first consider a general approach which has not yet found a fully practicable formulation, then a very restricted but effectively
implementable approach.

12.1
THE PROBLEM OF NON-MONOTONICITY

As we saw in Chapter 11, integrity constraints in an information system are normally thought of as restricting the possible
updates which can be applied to a given database state: if a proposed update transaction would result in a database state which
violates the integrity constraints, then the update is rejected. There are, however, many applications in which the user wishes
the update to stand, regardless of the integrity constraints. In these systems, the integrity constraints largely govern
information which is somehow subsidiary to the part of the database which was changed, and what the user desires is that the
subsidiary parts be “fixed up” as automatically as possible, so that the integrity constraints can hold with the nominated
update in place. This is called update propagation.

For example, consider a personnel information system in an organization. Some of the other applications in the
organization might be the telephone directory, membership in a tea club, and what items of furniture and equipment are under
the person’s care. Each of these other applications would have in its database a referential integrity constraint to the employee
table. If a person leaves the organization, these referential integrity constraints will prevent that person’s record from being
deleted from the employee table. This is not a reasonable restriction, since the personnel department, which is responsible for
the employee table, may not even be aware of some of these other systems, much less be authorized to make updates in them.
What we ideally want is for the deletion from the employee table to stand, and for the other applications to adjust themselves
automatically so that referential integrity is preserved.

This kind of situation is common. Users of information systems often want to remove products from a catalog, cancel an
invoice, allow a student to withdraw enrolment or to obsolete a sub-assembly. In the University Catalog Major Exercise in
Chapter 5, a Department may wish to withdraw a subject which is on the schedule for several courses offered by other
faculties. Following Chapter 6, software engineers may wish to remove a module definition from the repository of their CASE
tool. (This last example is discussed in detail below.)

In the expert system world, planning applications often need to change state. Planning how to move a robot from one place
to another to perform some action generally involves many intermediate stages. Identification of a medical condition may
depend on a sequence of laboratory tests: the result of a test may invalidate many possible hypotheses. A design system may
produce a candidate design which the user may reject: it therefore must undo part of the design and try another alternative.

Clearly, it is possible to write an application program to do any of these sorts of adjustments. This text, however, is
concerned with replacing ad hoc application programs with a sound deductive framework based in logic. The problem we
have is that logic is a system of mathematics in which updates do not occur. The logical systems we have drawn upon are
monotonic, i.e. once a conclusion is derived it is never invalidated. A logical system is concerned with derivation of theorems
from a fixed set of axioms. These theorems are conceptually all derived at once in zero time. The derivation of one theorem
cannot invalidate the proof of another unless the logical system is inconsistent, in which case any formula is a theorem and the
system is useless. The main results in Chapters 2 and 4 are of this kind.

The primary purpose of the present chapter is to show how the logical systems can be adapted to deal with updates.
Section 12.2 looks at a formulation of the general problem in terms of belief revision. This provides a framework to describe
the problem of non-monotonic deductive systems, although there is as yet no general satisfactory solution. Section 12.3 looks
at a specialized subproblem, for which excellent solutions exist.



NON-MONOTONIC REASONING 137

12.2
BELIEF REVISION

It is convenient for our present purpose to describe the tuples in the EDB, the tuples in the perfect model, and the rules in the
IDB as beliefs; and the entire assemblage as a belief system. We consider that some of these beliefs are more strongly held than
others. When we propose an update, we consider that the immediately updated beliefs are held very strongly. Should our
belief system be inconsistent (our database violates its integrity constraints), what we want to do is to find some other, less
strongly held, beliefs which we can change to allow the database to be consistent and for our new beliefs to hold. This process
is called belief revision.

There are two main processes in belief revision: first we must identify the existing beliefs which conflict with the update,
then we must decide which beliefs to change.

12.2.1
Identification of conflicts

The first process, identification of conflicting beliefs, follows on from the identification of affected integrity constraints from
Chapter 11. After the constraint queries are identified, they must be evaluated. In order for a query to be successful, we saw in
Chapter 2 that there must be a successful proof tree. A successful proof tree contains a success subtree. In order for the
integrity constraint to be satisfied, its clauses must generate no success subtrees. To remove a success subtree, thereby
allowing the integrity constraint to be satisfied, all of its branches must be cut. A positive branch can be cut by deleting
beliefs, while a negative branch can be cut by adding beliefs.
Consider example (11.16). We showed that if the update transaction consisted of
add(edb7(a, b)}
delete{edb8(a) )
then the integrity constraints can be checked by the query
ic1? (12.2)
Assume that the original state of the database was
edbl(a).
edb2(a). (12.3)
edb8(a).
so that the proposed update state after applying (12.1) is
edbl (a).
edb2(a). (12.4)
edb7(a. b).
The integrity constraint fails because query (12.2) has a solution. The proof tree for this solution is given in Figure 12.1.
This proof tree can be made to fail by one of four possible actions to the EDB:

(12.1)

deleting edbl(a);
deleting edb2(a);
deleting edb7(a, b);
adding edb8(a).
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Figure 12.1 Proof tree for integrity constraint query ic/?.

It can also be made to fail by removing rules from the IDB, namely the definitions of idb4, idbI and icl.

12.2.2
Resolving the conflict: the concept of entrenchment

In cutting the proof tree in Figure 12.1, either of the actions delete(edb7(a, b)) or add(edb8(a)) would reverse part of the
update transaction (12.1). We prefer not to do that, as we consider these beliefs to be strongly held. Our problem is how we
decide between the remaining possibilities.

One way is to explain the situation to the user, present the user with the possibilities, and get the user to choose. This can be
quite acceptable. In effect, we are asking the user to evaluate the strength of their belief for each possibility, and to choose a
combination of actions which changes the weakest held of these beliefs.

We would like to minimize the amount of work we ask the user to perform, however. What we would ideally like is for the
user to evaluate all the beliefs in advance, either by assigning a strength to each belief, or perhaps providing rules whereby the
relative strength of beliefs can be calculated. These predetermined strengths, expressed as numbers, are called
entrenchments. A strongly-held belief is said to be strongly entrenched, a weakly-held belief is said to be weakly entrenched.
Since entrenchments are numbers, they can easily be compared. All the conflict resolution program has to do is to compute all
the possibilities and to choose the least entrenched one.

The problem, of course, is to assign the entrenchments. There is no general way known to do this. It may not even be
generally possible. There are, however, some useful special cases where belief revision can be automated, at least partially.

Consider weak entities. A weak entity is an entity which has no independent identification: it depends on another identity
for its existence. For example, in an accounting application, an invoice might be a weak entity dependent on the customer
entity. Further, a line-item entity might be a weak entity depending on the invoice entity, and therefore indirectly on the
customer entity. This structure was described in Chapter 3.

There would be referential integrity constraints preventing the deletion of an invoice instance if it had any line-items, and
preventing the deletion of a customer instance if it had any invoices. The system could have a rule that invoices were
less entrenched than customers, and that line-items were less entrenched than invoices. If the user wished to delete a customer
instance, the belief revision system would resolve the integrity constraint violation by automatically deleting all the invoice
instances referring to that customer, and all the line-item instances referring to each invoice deleted.

The entrenchments could be conditional. The rule could state that by default unpaid invoices were more entrenched than
customers, while paid invoices were less entrenched. In this way, if the user wished to delete a customer who had unpaid
invoices, they would have to make a decision as to what to do about them, while deletion of a customer all of whose invoices
were paid would proceed and automatically propagate so that the resulting state of the database would be consistent.

Associative relations can often be treated the same way. A relation containing the association between employees and
projects constrains both tables. If it were less entrenched than either, then when a tuple was deleted from either the project or
employee tables, the belief revision system would delete the relevant tuples from the associative relation. Conditional
entrenchment also makes sense for associative relations.

Mandatory constraints can also be supported by belief revision. For example, if a new instance is added to a type
participating in mandatory roles, the belief revision system could either prompt the user for the necessary facts or could insert
default values into them.

We have seen that it is often practical to assign entrenchments to beliefs and to maintain database integrity by belief
revision. Entrenchments are not, however, completely arbitrary. A derived belief must be more entrenched than at least one of
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the beliefs needed to derive it. This is why in the customer/invoice/line-item example, we had customers more entrenched
than invoices, and invoices more entrenched than line-items.

Our discussion of belief revision has been solely in terms of adding or deleting facts in the EDB. Recall that the proof tree
of Figure 12.1 can be cut equally well by removing one of the IDB definitions idb4, idbl or ici. From the perspective of
database systems, this might seem like a strange thing to do, but there are applications where it makes sense to have IDB
predicates less entrenched than EDB predicates. For example, in the field of machine learning, one often attempts to derive
general rules from a database of facts. These rules are tested against the evolving database, and are sometimes invalidated. It
therefore makes sense that they should be less entrenched than the EDB. The no_male descendants example (11.11) could be
an application of this type. It should be clear that the newly added fact mother(mary, bill) violates the integrity constraint
regardless of the remainder of the EDB. In order for the update to be accepted, one of the IDB predicates must go, and the
intuitively most plausible predicate to remove is no_male descendants itself.

12.2.3
Example: software maintenance as belief revision

In Chapter 6, we demonstrated a tool to help build deductive database systems which was itself based upon a deductive
database (the repository). When the specification of a system changes, it is necessary to update its representation in the
repository. Since the repository has a rich set of integrity constraints, we might expect that belief revision would be important
to keep the specification internally consistent. Recall from Chapter 7 that the whole purpose of knowledge maintainability
quality principles is to make it possible to revise a specification correctly by following the structural links which are
represented in the repository by integrity constraints.

Assume that we have the hierarchical thesaurus example of Chapter 5 stored in the repository as described in Chapter 6. (We
will augment the definition of some of the repository predicates.) Our users decide that the predicate has-ingredient should be
removed. This task is achieved by removing the information about that predicate from the tables from which Table 6.2 is
derived, and which were not shown in Chapter 6. We will call the central of these tables valid-predicate.

Referential integrity constraints now come into play. The definition of a predicate is contained in the two tables literal/calls
and literal/argument. Both the literal/ calls and literal/argument predicates have referential integrity constraints from the name
of the group defined to the table of valid predicate labels. These constraints are

bad - not YGroup (Literal/calls(Group, . .. ) =

valid-predicate{Group, . . . )} (12.5)
bad - not YGroup (lteralfargusnent(Group, . , . ) =
valid-predicate(Group . . . }) (12.6)

Both the populations of literal/calls and literal/argument must be less entrenched than the population of valid-predicate, so
that the repository can remove the definitions of has-ingredient from both tables. This situation is analogous to the
relationship between customers, invoices and line-items described above.

The predicate has-ingredient we have removed is a special class of predicate which turns a label into a predicate (in this
case the label ingredient-of playing the type role in the predicate typed-broader stored in the repository table tuple/role,
Table 6.5). Assume that this class of predicate is identified in the repository via the tuple (ingredient-of, has-ingredient) in the
predicate label/predicate(Label, Enforcingpredicate), and that there is a constraint that the predicate is defined only if the
label is valid. A label is valid for a given predicate if it is in the table valid-populations associated with that predicate. This
constraint would look something like

bad :- not ¥Label YEnforcing-Predicate Predicate
label/predicate(Label, Enforcing-Predicate) —

valid-populations{Predicate, Label). (12.7)

bad :- not ¥Enforcing-Predicate (label/predicate(_, Enforcimg-Predicate) —
valid-predicate(Enforcing-Predicate . . . ))

The predicates label/predicate and valid-populations were not included in the repository in Chapter 6. The former identifies
predicates of the special class which turns labels into predicates, while the latter records the labels which can occur in any
population which has defined population constraints (Table 6.1). Before the proposed update, formula (12.7) was satisfied by
the substitution Predicate=typedbroader. In other words, the label ingredient-of was a label in the defined population
constraint of the predicate typed-broader.

If the populations of label/predicate and valid-populations are equally entrenched and less entrenched than valid-predicate,
then the belief revision system can automatically remove the tuple causing the constraint violation from label/predicate and
then from valid-populations. The latter is the tuple containing the label “ingredient-of”
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Figure 12.2 Propagation of a deletion of a valid-predicate.

Another referential integrity constraint is now violated: that between the instance role of tuple/role and valid-populations.
The population of tuple/role must be less entrenched than that of valid-populations, so that the offending tuples can be
automatically removed from fuple/role. These are all the tuples whose instance role is the label ingredient-of.

Finally, we would have a constraint on fuple/role that every mandatory role must have an instance in the role role for each
instance in the role tuple. The update propagation should remove the entire relational tuple from the predicate tuple/role, i.e.
in this case, all tuples in the population of Table 6.5 where the predicate role is typed-broader and the tuple role is onion soup/
onion. The sample population of the application has a number of other examples where the broader term is of type ingredient-
of, which would be represented in tuple/role by tuples having the tuple role onion soup/butter and onion soup/water.

Propagation of the removal of has-ingredient is summarized in Figure 12.2. The propagation is via referential integrity
constraints as shown by arrows between predicates. The arrows are labelled with the names of the variables indicating the
roles linked. Note that the population of tuple/role is in fact the entire population of all of the EDB predicates. In practice,
these populations would probably be stored as they would be in a conventional database, so that tuple/role would be
implemented as a sort of view of the EDB from the repository.

The integrity constraints we have been following so far are constraints of the repository. The repository also stores
constraints of the application, either as formulas in /literal/argument or in special-purpose tables such as might be used to
record referential integrity and the other kinds of constraints indicated on the information model. From these tables, the
repository would find that the tuples from #yped-broader with type has-ingredient must be included in the population of
broader.

That this last constraint is not violated should be intuitively reasonable, since the population of broader is the superset in
the inclusion constraint. These application constraints require that some tuples in tuple/role are more entrenched than others.
In particular, all tuples where predicate is typed-broader are less entrenched than all tuples where predicate is broader.

So far, the belief revision system attached to the repository has allowed us to propagate the deletion of the predicate /as-
ingredient downward. We now consider its propagation upward, to the predicates which call has-ingedient. From the
knowledge diagram in Figure 5.8, we see that removal of has-ingredient aftects both source-of-ingredient and possible-use-
for. The repository makes these conclusions from referential integrity constraints on literal/calls and literal/argument. In
these two cases, it is hard to see how the repository could have enough information to propagate the update automatically. The
CASE tool would therefore inform the user that these two predicates are affected, and ask for instructions. Assume that the
user requests the CASE tool to remove source-of-ingredient but modifies the definition of possible-use-for by replacing has-
ingredient in the body of the single clause in its definition by instance-of.

Removal of source-of-ingredient propagates downward similarly to has-ingredient. In particular, the definition of source-
of-ingredient contains a call to one-of. This last predicate was introduced to normalize the definition of source-of-ingredient,
and it is called by no other predicate. This fact can be derived by the repository using a query on literal/calls. The repository
could have a dynamic entrenchment rule saying that the definition of a predicate of this kind is less entrenched than the
definition of its calling predicate, so that the definition of one-of would be automatically removed by the belief revision
system in the repository.

In this way, a belief revision system can assist the knowledge engineer in maintaining the specification of a knowledge-
based system: making automatic revisions where it can and asking for decisions from the knowledge engineer where it needs
to. This same principle applies to any CASE tool which is supported by such a repository.
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12.2.4
Discussion

We have described the general problem of propagating updates in deductive databases as a process of belief revision, where
integrity constraint violations are corrected not by withdrawing proposed updates but by adding or deleting sufficient other
beliefs that the integrity constraints are satisfied by a database state which includes the proposed update. We have described
this process through the concept of entrenchment: that the beliefs removed are less entrenched than the beliefs which are
retained. Although the general problem of assigning entrenchments a priori so that a belief revision system can operate
unaided is not solved, and is quite probably not solvable, we have seen that there are practical situations where automatic
belief revision is possible. Further, we have seen that belief revision can sometimes be carried out cooperatively between a
human user and an incomplete system of entrenchments.

12.3
ASSUMPTION-BASED TRUTH MAINTENANCE

12.3.1
Motivation

In Chapter 11 we have seen that we can consider the perfect model to be functionally dependent on the EDB, and also that we
can consider the population of the query types to be functionally dependent on the population of the update types. We also
looked at an algorithm for propagating the results of changes in update types into the perfect model computation, which was
intended as a mechanism for determining which integrity constraints needed to be evaluated to determine the validity of the
proposed changes to the update types.

In some applications, it is convenient to compute the population of the query types eagerly. In this case, if a change is made
to the populations of the update types, this change must be propagated to the populations of the query types. The update
propagation algorithm of Chapter 11 can be used for this purpose, but there is an important class of application where a
different algorithm, called assumption-based truth maintenance, or ATMS, is appropriate.

Consider the problem of planning a motoring trip: say, a trip from Brisbane to Townsville and back, 1400 km each way,
taking three days in each direction. There are a large number of considerations, for example:

inland or coast road?

where to stay overnight?

side trips, points of interest?
leave late or early?

arrive late or early?

OK to duplicate portions of trip?

and there are a large number of choices. The choices interact with each other, for example:

take inland road back if leave Townsville early

visit Lisa if overnight at Gladstone and Lisa available

overnight at Gladstone if leave Brisbane early

overnight at Gladstone if coast road back and arrive Brisbane late

The actual construction and evaluation of specific plans is outside the domain of deductive database theory. It could be done
with the assistance of planning software, based perhaps on a constraint satisfaction approach, or could be done by hand. In
either case, there are a few absolute constraints: say

first leg of trip starts from Brisbane

arrive Townsville before 6:00 pm Friday 10th
second leg of trip starts from Townsville
arrive Brisbane before 10:00 pm Monday 21st
drive no more than 600 km each day

and a large number of possibilities which are more or less desirable, for example:
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Figure 12.3 Overview of an ATMS.

m will we visit Lisa?
m will we pass through Mount Morgan?
m will we have to drive after 4:00 pm?

These latter possibilities (which we will call contingent possibilities) are used to evaluate the relative desirability of different
plans, and are analogous to the query types in deductive databases. As we change plans, we want to keep track of the query
types. The process of determining the values of the query types can be expensive. Therefore as we make changes in the plan,
we want to compute the effect of the changes in the query types with a minimum of computation. This is an example of the
class of situation for which ATMS was developed.

12.3.2
The ATMS system

An ATMS system is seen as a companion to a problem solver of some kind, as shown in Figure 12.3. The problem solver
makes changes in the query types and their interdependencies, while the ATMS keeps track of the relationships between the
query types, and is able to answer questions about the current status of any of the contingent possibilities.

An ATMS is essentially a propositional deductive database, with integrity constraints but without negation. However,
ATMS has its own vocabulary, which derived from its first implementations as companions to problem solvers in the
Artificial Intelligence field.

The contingent possibilities are called nodes or atoms. In deductive database terms, they are ground facts. Relationships
between nodes are called informants. An informant is a propositional Horn clause, where each of the predicates is one of the
nodes. For example, we might have three nodes:

visit_lisa
overnight{giadstone) (12.8)
lisa_available
related by the informant
visit_lisa :- ovemnighi(gladstone), lisa_available. (12.9)
The informant is usually expressed in production rule form (see Chapter 4), where the nodes in the clause body are the
antecedents and the node in the clause head is the consequent. The clause (12.9) would be expressed as
overnight(gladstone), lisa_available — visit_lisa (12.10)
We divide the set of nodes into two classes: those which appear as the consequent of at least one informant, and those which
do not appear as the consequent of any informant. A member of the latter class is called an assumption. The intuition is that
assumptions are independent variables while the other nodes are dependent variables. (This distinction is not essential, and
will be relaxed below.)

A set of assumptions is called an environment. As an assumption is a proposition, an environment is interpreted as the
conjunction of the propositions which are its members. In other words, an environment is an assertion that all of its
assumption members hold.

A node is believed if it is associated with an environment. The association between a node and an environment is called a
justification. The justification for an assumption is an environment consisting solely of that assumption. We use the symbol ???
to indicate that an environment and a node are related by a justification. For example,

{overnight(gladstone)} = overnight(gladstone) (12.11)

expresses that overnight(gladstone) is believed because it is an assumption, while
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{ovemight(gladstone), lisa_available| = visil_lisa (12.12)
expresses that visit_lisa is believed because both of the assumptions overnight(gladstone) and lisa_available are believed.
Justifications for nodes other than assumptions are derived from informants. If we have the justification E=a, then we say
that node a is believed in environment E.

A node can have more than one justification. The collection of justifications for a node is called that node’s label. A node
is believed if its label is not empty. For example, we might stay overnight at Gladstone either if we leave Brisbane early on
the way to Townsville, or on the way back take the coast road and plan to arrive in Brisbane late. If all three assumptions hold,
we might stay in Gladstone twice. The label for overnight(gladstone) in this case would contain two justifications:

(leave_brisbane_ecarly| = overnight(gladstone)
A s e st = ol ol (12.13)
{retumicoast_road), arrive_brisbane_late ) = overnightigladsione)
Finally, the equivalent to integrity constraints are sets of assumptions which cannot be contained in any environment, called
nogoods. We can have nogoods arising from logical inconsistencies such as
nogoad: {leave_brishane_early, leave_brisbane_late} (12.14)
from policy, such as
nogood: {go(inland_road), return(inland_road)} (12.15)

expressing the policy that the inland road will be taken only once, or from impossibility of meeting constraints. For example,
it is not possible to overnight at Bowen, Proserpine and Mackay since any solution with all three requires a drive longer than
600 km on one day. The nogood would be

nogood: {overnight(bowen), overnight(proserpine), overnight(mackay)} (12.16)
Nogoods (12.14) and (12.15) are a priori. The former is a logical property and the latter could be a matter of policy given as a
constraint to the planning process. Nogood (12.16) could have been computed dynamically by the problem solver. It could
have concluded that no possible plan meeting the policy and logical constraints could contain those nodes.

Remember that the ATMS is a deductive database, so has no semantic knowledge. It simply accepts assumptions, nogoods
and informants from some other system, and maintains labels computed from them. Assumptions can be deleted as well as
added. (Nogoods and informants can in principle be deleted as well, but since changes of this kind require considerable
computation, they are normally not allowed.)

Initially, the set of nodes is empty. The possible inputs to the ATMS, with their associated actions, are:

Add an informant a,, a,,..., a, — ¢

m create a label with node ¢, if none exists already
m if all the antecedents a;, are believed, then the ATMS creates some new justifications for ¢ by the following process:
There must be a set of environments £, i=1,..., n; j=1,..., n; where all n>0; and the label for a;, contains the
justifications E; = a. Select one of the E,; for each i, and compute the union

E=VE,

If E contains none of the nogoods, and none of the existing environments in which c is believed are a subset of £, then
add the justification E = ¢ to the label for c. The requirement that none of the existing environments be a subset of £
prevents adding redundant environments. If there is an existing environment V" such that, then £ > Vwhenever the
assumptions in £ hold, so do the assumptions in V. V'is said to subsume E.

Repeat the process for every combination of selections for the £j;

Example 12.1: if the ATMS contains the labels

l. {x,y} =a
2. {z,w}=a
3. {q, 1} =b
4. {s,t}=b

and the nogood

nogood: {w, r}

then addition of the informant a, b — c results in the additional labels, obtained by the union of the environments indicated.
Environment 2 + 3 contains the nogood, so is excluded.

{q,1,X,y}=>c 1+3
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{s,t,x,y}=>c 1+4
{s,t,w,z}=>c 2+4
If ¢ appears in the antecedent of any informant, and if the other antecedents are believed, then it is necessary to propagate the
update. Follow the procedure described below.
Add an assumption a:

m create a label with node «a if one does not exist, and add the justification {a} =a
m if a appears as an antecedent in an informant a,, a,,..., a, — ¢, and all the other antecedents are believed, then create
additional justifications in the label associated with the consequent of the informant by the following procedure, which is
closely related to the procedure for adding an informant.
There must be a set of environments £, i=2,..., n, j=1,..., n; where all n>0; and the label for a; contains the justifications Ej;
=a,. Also, there is a set of environments E,;, j=1,..., n; in which a is believed. As a is an
Select one of the E;; for each i, and ¢ ompute the union
E=U E,;
If E contains none of the nogoods, and none of the existing environments in which c is believed are a subset of £, then add the
justification E=yc to the label for c.
Repeat gftgfthe process for every combination of selections for the £j;.
Update propagation: If the consequent ¢ appears as the antecedent of another informant, repeat the entire process with
each new environment which was added to the label for c.

Example 12.2: if the ATMS contains the labels

{w, x}=c

{x} =x

{(wi=w

{y}=y

{}=b

and the informants
y, z—a

a, c—b

then if we add the assumption z, we get the additional labels
{y, z}>a

{w, x,v,z}>b

Note that the intermediate node ¢ is removed in the process of propagation of the update through the justifications. This
update propagation algorithm is a specialization of the update propagation algorithm described in Chapter 11.

Delete an assumption a:

m remove all environments containing a.

Add a nogood N:

m remove all environments of which N is a subset.

12.3.3
Discussion

When the planner adds an assumption to the ATMS, that assumption is believed. If that assumption triggers any informants,
and all the other antecedents of the informant are believed, then there is reason to believe the consequent. The reason is possibly
in addition to existing reasons to believe the consequent. If, in turn, there are informants with the consequent of the first as
antecedent, there is reason to believe the new consequent, again possibly in addition to existing reasons for believing it. The
reasons for believing any node are always assumptions, so that as the update propagates through the informants, the
justifications of the consequents are always assumptions. If there are alternative reasons for believing a node, then each of the
reasons must be reflected in the justifications of nodes connected to that node via informants. This is reasonable since adding
an assumption should increase the number of things believed, and as some beliefs depend on others, one would expect the new
assumption to have a cascade of consequences.
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Similarly, when an informant is added, all possible combinations of assumptions in which its consequent is believed must
be computed. If its consequent is the antecedent of another informant, then the update must propagate. Again, this is
reasonable since a new informant suggests additional grounds for believing something.

Since the process of adding an assumption or informant results in justifications for nodes containing only assumptions,
when an assumption is removed it is simply necessary to delete any justifications whose environment contains it. This may
make some labels empty, so that their nodes are no longer believed. This is reasonable, since removing assumptions should
reduce what is believed. (Recall that ATMS does not include negation, so it is impossible to have a node justified by the
absence of an assumption. This ensures that removal of an assumption does not increase the beliefs.)

Similarly, adding a nogood adds a new constraint to the system, so that some combinations of assumptions can no longer be
held at the same time. This reduces the range of things believed. Again, as the justifications for the nodes have been
constructed in terms of assumptions only, addition of a nogood simply removes the reason to believe some nodes.

12.3.4
ATMS and deductive databases

ATMS is a highly specialized deductive database. It has, however, a close relationship with the general deductive database.
Both the EDB and the perfect model of a deductive database are sets of ground tuples, and there is a functional relationship
given by the fixed point operator TTe from the set of possible EDBs to the set of possible perfect models. For a definite
program, this functional relationship can be decomposed into a relation between sets of EDB tuples and sets of perfect model
tuples. This relation is computed in the course of application of the 7T operator. An ATMS can be used to make this
relation explicit.

Consider the TTw computation to be a problem solver to which an ATMS is attached. The ATMS is first asked to assume
each of the EDB tuples. The problem solver then makes one application of the 7" operator. Some of the clause bodies in the
IDB have solutions, generating tuples for the relation defined by their clause heads. Each solution for the first application of 7'
must be a combination of tuples from the EDB. For each solution, the problem solver gives the ATMS an informant whose
antecedents are the tuples in the solution and whose consequent is the tuple generated for the head predicate.

The problem solver continues to apply the 7 operator, giving the ATMS further informants whose antecedents are tuples
from the EDB and previously computed perfect model tuples, and whose consequents are the corresponding head predicate
tuples. From these assumptions and informants, the ATMS maintains justifications for each of the perfect model tuples. Each
environment is a set of EDB tuples from which that perfect model tuple can be derived. Clearly, one perfect model tuple can
be derived from many sets of EDB tuples, and equally one set of EDB tuples can be used to derive many perfect model
tuples.

For example, consider the ancestor predicate from Example 4.1. The tuple ancestor(bill, sue) is derived from the tuples
parent(bill, paul) and parent(paul, sue). The tuple ancestor(bill, eva) is derived from the tuples parent(bill, paul), parent
(paul, sue) and parent(sue, eva). The ATMS would contain the labels

| parent(bill, paul}} = ancestor(bill, paul)

{ parent(paul, sue)] = ancestor{paul. sue)

{ parentisue, eva)} = ancestor(sue. eva)

{ parent(bill, paul), parcnt(paul, sue)} = ancestar(bill, sue)

{parent(bill, paul), parent(paul, sue), parent(sue, eva)] =
ancestor(bill, eva)

(12.17)

When a tuple of the perfect model is computed, the ATMS creates a non-empty label for it. The fixed point of the T operator
is therefore reached when there is a non-empty label for each head predicate tuple generated in its latest application.

We would like to use the ATMS to maintain the materialized perfect model under changes in the EDB, i.e. under addition
and deletion of tuples from the EDB. It should be clear that when a tuple is added to the EDB, the problem solver must be run
to generate additional perfect model tuples, and therefore give additional informants to the ATMS. When a tuple is deleted
from the EDB, the effect can be determined directly from the ATMS, by deleting all environments containing that tuple and
examining the resulting labels. Tuples deleted from the perfect model will have empty labels.

The only difficulty is that under the stopping rule for 7T, the problem solver stops when every tuple in the perfect model
has been computed, and consequently when every perfect model tuple has a non-empty label in the ATMS. The environment
in a particular justification is essentially a record of a particular derivation of the associated perfect model tuple. When an
EDB tuple is deleted, the ATMS can determine whether any derivations have been invalidated. However, the fact that a
perfect model tuple no longer has a derivation on record does not prove that no derivation exists for it. In order for the ATMS
to have a complete record of all possible derivations for all perfect model tuples, the problem solver would have to be run



146 DEDUCTIVE DATABASES AND THEIR APPLICATIONS

until no new environments were created, rather than stopping when no new labels are generated. This is essentially the
problem of finding all paths in a graph, taking cycles into account, as was discussed in Chapter 3.

12.3.5
Prepositional expert systems

In Chapter 10 we considered a special case of a deductive database where all the IDB predicates are propositional, which we
called a propositional expert system. The EDB is the set of propositions which are input to the expert system, and a perfect
model includes all propositions which can be derived from the input, including the conclusions of the expert system.

Application of the ATMS to the perfect model calculation therefore results in a label for each derived proposition whose
justifications have environments which are the combinations of input propositions which must hold if the conclusion is to be
derived. This is exactly the same result as produced by the rule flattening unfolding procedure described in Chapter 10. The
resulting decision table is equivalent to the set of labels produced by the ATMS.

12.3.6
Differences between ATMS and deductive databases

An ATMS is a deductive database. A definite deductive database is an ATMS in the sense that the perfect model can be
represented in a natural way. If the deductive database is propositional, the correspondence is exact. Otherwise, the ATMS
must represent the universally quantified clauses by sets of ground tuples.

We have seen in Chapter 4 that deductive databases may include negative predicates in clause bodies: these predicates are
not dealt with in a direct way by the ATMS system. Specific solutions can be found for specific applications, but there is no
general theory.

A further difference is that in an ATMS the distinction between update types and query types is not so defined as it is in a
deductive database. The ATMS was developed to keep track of partial solutions to constraint satisfaction problems. A node
represents the assignment of a specific value to a specific variable. An informant is interpreted as a statement that if each of
the assignments represented by an antecedent node is made, then the assignment represented by the consequent satisfies some
constraints. Even though a node may be the consequent of an informant, so long as its label is empty it makes sense to introduce
it as an assumption. For example, the label for overnight(gladstone) in (12.13) is the result of informants described in the
preceding paragraph and the assumptions in the environments in (12.13). If those assumptions had not been made, then the
label for overnight(gladstone) would be empty. The problem solver is free to give the ATMS the assumption overnight
(gladstone).

Thus any node can in principle be an assumption, even if it appears as the consequent of an informant, so long as its label is
empty. This is a dynamic constraint, which must be maintained at run time by the ATMS. Some complication in the
implementation of the ATMS system results from maintenance of this constraint.

124
SUMMARY

In this chapter we have examined the general problem of updating deductive databases using the framework of belief
revision, and have then looked at a particular special case of belief revision, Assumption-Based Truth Maintenance. The
theory of belief revision is much more general than that underlying ATMS, but is not sufficient to derive implementations,
except in special cases. ATMS obtains its implementability from its extremely weak logic (propositional Horn clauses with
integrity constraints but without negation).

12.5
FURTHER READING

The material on belief revision is based on Gardenfors (1988), while the specific formulation of update propagation is based
on, for example, Guessoum and Lloyd (1990). The material on ATMS is drawn largely from de Kleer (1986).



NON-MONOTONIC REASONING 147

12.6
EXERCISES

12. Consider the conceptual schema given in Chapter 6 for the relational model (information model). In the text and in the
1 exercises for that Chapter you have seen the relational schema for at least some of this model.

(a) Consider the schema of Exercise 5.2. Where in the repository would we look to determine the validity of the
population product class?
(b) Consider removing the population product class. How might this change propagate?

12. Consider the possibility of an automatic solution to Exercise 12.1(b). What alternatives might the program consider in
2 propagating the change, what choice would you program it to make, and why would you instruct it to make that choice?
12. Consider the solution to Exercise 12.1(b) and the alternatives from Exercise 12.2. How might you assign entrenchments

3 so that the propagation of the change would be automatic?

12. Consider the following model of a power plant control system. There are indicators:
4

fuel exhausted
temperature too_high
cooling_valve stuck shut
temperature too low
cooling_valve stuck open
two alarms, yellow and red
and the following informants:
fuel exhausted — red
temperature too_high — yellow
cooling_valve stuck shut — yellow
temperature too_low — yellow
cooling_valve stuck open — yellow
temperature too_high and cooling valve stuck shut — red
temperature too_low and cooling_valve stuck open — red
Assume that the following sequence of indicator events occurs:

. temperature_too_high on

. cooling_valve stuck open on
. temperature too_high off

. temperature_too_low on

. cooling_valve stuck open off
. temperature_too_low off

. fuel_exhausted on

~N N B W~

Record the state of the indicators at times 1 through 7 as an ATMS, with their justifications.

12. Consider the following sequence of inputs to an ATMS. At the end, what nodes are believed, and what is their
5 justification?

assume a informantx & y — z
assume b informantr & s — t
informanta & b — ¢ informantt & z —» w
assume d informantx & b — f
assume e assume r
informanta & ¢ — f assume s

informant f& d — g assume y

nogood a, d assume X
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informantg & w —u

12. Sketch how an ATMS could be used to help a student plan a valid program for a course such as the Postgraduate Diploma
6 in Information Technology, as described in the major Exercise from Chapter 5.



Solutions to exercises

CHAPTER 1

1.1 The schemais A B C

Population A B C
al bl cl
al bl c2
a2 bl cl
a2 bl c2
a3 b2 cl

1.2 The schemais A B C

Population A B C
al bl cl

Refresher on joins

In case Exercises 1.1 and 1.2 found a gap in your memory, the following is a discussion of joins which may help.

A natural join is a combination of the attributes and populations of two relations, which we will call R1 and R2, each of
which has a schema consisting of a set of attributes. In Exercise 1.1, R1 has the schema A B, and R2 has the schema B C.

Each of the relations contributes attributes to the join. The join has a set of attributes, called the join attributes, which
determine which tuples from the two relations will contribute to tuples in the join relation. In Exercise 1.1, the set of join
attributes has a single member, B.

Besides the join attributes, each relation may have other attributes. In Exercise 1.1, R1 has a set of other attributes with a
single member, A; while R2 has a set of other attributes with a single member, C.

The join is a relation with a schema consisting of

m the join attributes;
m the other attributes from R1;
m the other attributes from R2.

In Exercise 1.1, the join relation has the schema A B C.

The population of the join relation is derived from the populations of R1 and R2. The following procedure for computing
the join population is closely related to how a typical Prolog interpreter would do it.

Each tuple of R1 is compared with each tuple of R2. If the values of the join attributes differ between the two tuples, no
action is taken. If, however, the two tuples have the same values for all the join attributes, then a new tuple is generated for
the join relation. The value of the join attribute in the join relation is the common value; the value of the other attributes from
R1 is the value of those attributes in the tuple from R1; and similarly, the value of the other attributes from R1 is the value of
those attributes in the tuple from R2.

We illustrate the procedure from Exercise 1.1:
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Step R1 R2 R1 join R2

A B B C A B C
1 al bl bl cl al bl cl
2 al bl bl c2 al bl c2
3 al bl b2 cl fails to match
4 a2 bl bl cl a2 bl cl
5 a2 bl bl c2 a2 bl c2
6 a2 bl b2 cl fails to match
7 a3 b2 bl cl fails to match
8 a3 b2 bl c2 fails to match
9 a3 b2 b2 cl a3 b2 cl

It may happen that one of the relations R1 and R2 has no other attributes. This situation occurs in Exercise 1.2. In this case,
R1 is the result of Exercise 1.1, which has the schema A B C, and R2 has the schema A C. The join attributes are A C, the
other attribute from R1 is B, and the set of other attributes from R2 is empty. The schema of the join is therefore A B C. The
population is derived as in Exercise 1.1, as follows:

Step R1 R2 R1 join R2
A B C A C A B C
1 al bl cl al cl al bl cl
2 al bl cl a3 c2 fails to match
3 al bl c2 al cl fails to match
4 al bl c2 a3 c2 fails to match
5 a2 bl cl al cl fails to match
6 a2 bl cl a3 c2 fails to match
7 a2 bl c2 al cl fails to match
8 a2 bl c2 a3 c2 fails to match
9 a3 b2 cl al cl fails to match
10 a3 b2 cl a3 c2 fails to match

It is also possible for the set of join attributes to be empty. Consider the example with two relations:

A B C D
al bl cl dl
a2 b2 c2 d2

Their natural join has the schema A B C D, and has the population

A B C D

al bl cl dl
al bl c2 d2
a2 b2 cl dl
a2 b2 c2 d2

In this situation, the natural join is a cartesian product, associating each tuple of R1 with each tuple of R2.

Finally, it is possible for both relations to consist entirely of join attributes, so that the set of other attributes is empty for
both R1 and R2. For example, both R1 and R2 have the schema A B, so that the join relation also has the scheme A B.
Suppose the populations are
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R1 R2

A B A B

al bl al b2

a2 bl al b2

a2 b2 a2 bl

The population of the join is

R1 join R2

A B

a2 bl
CHAPTER 2

Data consist of several extensional predicates:

male(Person): true if Person is male.
female(Person): true if Person is female.
parent(Parent, Child): true if Parent is a parent of Child.
married(Husband, Wife): true if Husband is married to Wife.
Implicitly male(Husband), female(Wife).

2.1 person(P) :- male(P).
person(P) :- female(P).
same_generation(Person, Person) :- person(Person).
same_generation(Personl, Person2) :-
parent(Parent1, Personl),
parent(Parent2, Person2),
same_generation(Parentl, Parent2).

2.2 great_grandparent(Ancestor, Child) :-
parent(Ancestor, Intl),
parent(Int1, Int2),
parent(Int2, Child).

2.3 mother(M, C) :- parent(M, C), female(M).

% Note that the use of the variable name Female ancestor does not guarantee that the ancestor is female. It requires the
type predicate female(Female ancestor) to do so.
1. ancestors(Child, [Female ancestor]) :-

mother(Female ancestor, Child).
2. ancestors(Child, [Intermediatel Rest]) :-
mother(Intermediate, Child),
ancestors(Intermediate, Rest).
nearer_cousin(Personl, Person2) :-
grandparent(Ancestor, Personl),
grandparent(Ancestor, Person2).
% Shared ancestors less than grandparent not needed since the shared parents
must extend to the great grandparent level.
Given the database

parent(a, b). parent(b, c). parent(c, d).
female(a). female(b). female(c).

the query

151
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ancestors(d, [c, b])?
will succeed, as well as the queries
ancestors(d, [c])?  ancestors(d, [c, b, a])?

If the query is ancestors(d, L)?, the solution first generated is /c/, from clause 1. To get the second solution, we bypass
clause 1 to clause 2, which generates ancestors(c, L)? and constructs the solution /c, /. The third solution bypasses clause 1
in this second subgoal, so that clause 2 is used twice to generate the subgoal ancestors(b, L)?, which clause 1 solves as L=/a/,
and the two executions of clause 2 construct first L=/b, a then L=/c, b, a], the third solution. The request to generate a fourth
solution fails, as clause 3 is executed three times to generate the query ancestors(a, L)?, clause 1 can find no solution to
mother(M, a), and for the same reason, neither can clause 2.

2.4 second_cousin(Personl, Person2) :-
great_grandparent(Ancestor, Personl),
great_grandparent(Ancestor, Person2),
not nearer _cousin(Personl, Person2).
2.5 different sex(Child1, Child2) :-
male(Childl),
female(Child2).
same_sex_children(Woman) :-
female(Woman),
parent(Woman, Childl),
parent(Woman, Child2),
Childl <> Child2,
not different_sex(Child1, Child2).
2.6 most_children(Parent, Number of children) :-
num_children(Parent, Number of children),
not more_children(Number of children).
num_children(Parent, Number of children) :-
bagof(Child, parent(Parent, Child), Children),
length(Children, Number of children).
more_children(Number of children) :-
num_children(Parent, N),
N > Number of children.
2.7 A problem involving all of anything usually requires bagof or one of its derivatives, like all solutions. We can use
mother/2 to create a specialization of ancestor
fem_anc(F, C) :- mother(F, C).
fem anc(F, C) :- mother(F, I), fem_anc(l, C).
then collect the ancestors
ancestors(C, L) :- all_solutions(F, fem_anc(F, C), L).

It is possible to adapt the solution to Exercise 2.3 (call it program 3) to solve Exercise 2.6 without the use of
all _solutions. Program 3 generates successively longer partial solutions. It fails when it gets to a person who has no
mother recorded in the database. If we think of the generate-and-test paradigm for problem-solving, program 3
generates successively longer possible solutions on backtracking, so if we could test each successive solution, we could
stop when the test succeeds:
ancestors(Child, List) :- partial solution(Child, List),

successful_solution(List).
The test will succeed when the furthest female ancestor fails to have an ancestor. If the variable 7 could somehow be
bound to that ancestor, then the test is
not mother(_, T).

The difficulty with program 3 is that the furthest female ancestor is deeply buried in the list. We can adapt program 3 to
make the top of the list available, so the generate-and-test approach will work in a simple way:
1. anp(C, [M], M) :- mother(M, C)
2. anp(C, [M|R], M) :- mother(M, C) anp(M, R, T)
ancestors(C, L) :- anp(C, L, T), not mother(_, T).
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The new predicate anp is a variation of the original ancestors (program 3). The third argument of anp is the top of the
list, which is put in place by clause 1. Clause 2 simply transmits the variable binding through from the recursive call to
the clause head.

CHAPTER 3

3.1 (a) occupies(Emp, Room) :-
academic(Emp, , , ,Ext, ),
phone(Ext, Room).

3.1 (b) response(Emp, Name, Degree) :-
department(Dept, , , , Fax),

Fax !=null,
academic(Emp, Name, Dept, , , ),
Name !=“Cantor”,
award(Emp, Degree, , Year),
Yeare=1985, Year=1965.

3.1 (c) response(Dept, Name, Degree) :-
academic(Emp, Name, Dept, professor, , ),
award(Emp, Degree, uq, ).
response(Dept, Name, “nil”) :-
academic(Emp, Name, Dept, professor, , ),
not award(Emp, ,uq, ).

3.2 (a) SELECT emp# empname deptname ext# room FROM
academic, phone
WHERE academic.ext#=phone.ext#

3.2 (b) SELECT al.emp# FROM
academic al, academic a2, phone p1, phone p2
WHERE al.ext#=pl.ext#

AND a2.ext#=p2.ext#

AND pl.room=p2.room

path(h, £, {1, [h, d]) AND al.emp# NOT=a2.emp#

3.2path(h, a, ). [h, 4, f]).
pathth, 4, [], [h, d, [, a)).

path(h, d, [}, Ih]). 1.
pathth, e, [] [h, d]).
pathth, €, [). Th. d]). er of paths, since the graph has cycles.

pathth, a, []. [h, 4, f]).

path(h, d. [], [h, d, [, a)).

3.6 One solution is shown in Figure S3.6(a). The main structure is a directed acyclic graph, whose nodes are of type unit, whose
arc is named made-up-of and whose derived-arc is named component-of. Note that the fact type needed applies to both made-
up-of and (as a derived fact), to component-of.

A somewhat more detailed solution is shown in Figure S3.6(b). Breaking out the subtype assembly shows that some units
are assemblies and some may not be. (An assembly is a unit which participates as the source node in a made-up-of fact.) A
part may be the target of a made-up-of fact through its supertype unit.

CHAPTER 4

4.1 The perfect model of the ancestor relation is:
ancestor(jim, jimmy).  ancestor(christine, jake).
ancestor(heather, christine).  ancestor(jimmy jake).
ancestor(christine, adam).  ancestor(jim, jake).
ancestor(heather, adam).  ancestor(heather, jake).
4.2
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prarenlCiing, jisnmy ). paroni(christine, |ake)
¥ heasher, christine), P Cjimmy. jakel,
pareni(chrisime, adam).
persond Py - parenu®, ),
penoed ') - parent_, ).
(Dldor, Younger) ;- parenttlider, Younger).
ancestont Older, Younger) (- parentdObder, Tntermediate,
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(b) All tuples for ancestor, person and related

(a)

B)

inade-up-of/
compgonsnl-of

Figure S3.6 (a) Adequate conceptual model, (b) Better conceptual model.
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Figure S4.2 Dependency diagram. o
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unrelated(jim, heather).
unrelated(christine, jim).
unrelated(jimmy, heather).
unrelated(christine, jimmy).
unrelated(jim, adam).
unrelated(jimmy, adam).
as well as the reverse of these.
(c) All pairs are in the interpretation. The interpretation is not a model.
43

parent

Figure S4.3 Dependency diagram.



SOLUTIONS TO EXERCISES 155
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Figure S4.4 (a) Dependency diagram for Example 4.10. (b) Dependency diagram for Example 4.11.
(a) The program is aggregation stratified.
(b) num-relations(jim, 3).

4.4 The dependency graph for Example 4.10 is shown in Figure S4.4(a) and for Example 4.11 is shown in Figure S4.4(b).
Example 4.10 has a loop involving aggregation between cost-to-mfg and cost-contribution. Example 4.11 has broken that loop
by removing the arc cost-to-mfg — cost-contribution. The former is not aggregation stratified, while the latter is.
4.5 Bottom-up evaluation of successor:
successor(s(0), 0).
successor(s(s(0)), s(0)).
successor(s(s(s(0))), s(s(0))).

and so on. The model is infinite.

CHAPTER 5

5.1 Barbecue planner expert system: The data analysis is the tabulation of query, update and intermediate types from the
problem definition. The information analysis is null, since there are only the predicate names. A knowledge diagram is given
in Figure S5.1.

Notice that the outcome hot dogs depends on the intermediate types vegetarian fish and meat as well as all foods. These
relationships come from the conflict resolution mechanism in OPS-5. If rain_ forecast, then none of the menu conclusions can
fire. The outcome /ot _dogs can only occur if none of the other menu outcomes can fire.

Horn clause representation of the knowledge:

call off :- rain_forecast.
all foods :- bob.
vegetarian_fish :- mary.
meat :- jim.
lentil burgers :- vegetarian_fish, not meat, not rain_forecast.
steak :- meat, not vegetarian_fish, not rain_forecast.
fish :- meat, vegetarian_fish, not rain_forecast.
hot dogs :- all foods, not meat, not vegetarian_fish, not rain_forecast.

5.2 Application model:

There are products, product identifiers, retail prices, wholesale prices, list prices, product classes.

Product is identified by product identifier, and has the properties retail price, wholesale price, list price, product class.

There are customers, customer identifiers, boutique customers, department store customers, customer classes, customer
types.

Customer is identified by customer identifier, and has the properties customer class, customer type.

“boutique” and “department_store” are labels, making up the population customer type.

Boutique customers are customers whose customer type property has the value “boutique”.
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call_off
.— < ram_forecast
hot_dogs —
bob
steak
mary

kuitulu

Figure S5.1 Knowledge diagram.

Department store customers are customers whose customer type property has the value “department store”.

There are discount rates and discounts.

Discount is identified by customer class and has the property discount rate.

There are sales tax and sales tax rates.

Sales tax is identified by product class and has the property sales tax rate.

There are invoice, quantities ordered, costs, sales tax amounts, total sales tax amounts, total wholesale prices, total costs.

An invoice is an association between customer and product, distinguished by invoice number.

For boutique customers, invoice has the properties customer identifier, product identifier, quantity ordered, retail price, list
price, discount rate, cost, sales tax rate, sales tax amount, total sales tax amount, total wholesale price, total cost.

For boutique customers, sales tax amount is a percentage of wholesale price determined by sales tax rate from sales tax
depending on product class.

For boutique customers, wholesale price is the list price of the product less a percentage given by discount rate from
discount depending on customer class.

For boutique customers, cost is the total of wholesale price and sales tax.

For department stores, cost is the retail price of the product less a percentage given by discount rate from discount
depending on customer class.

For department stores, wholesale price depends on the cost and the sales tax rate from sales tax identified by product class
(wholesale price = cost/(1 + sales tax rate)).

For department stores, sales tax amount is the cost less the wholesale price.

Total wholesale price is the wholesale price times the quantity ordered.

Total sales tax is the sales tax amount times the quantity ordered.

Total cost is the cost times the quantity ordered.

For department store customers, invoice has the properties customer identifier, product identifier, quantity ordered, retail
price, discount rate, cost, sales tax rate, sales tax amount, total sales tax amount, total wholesale price, total cost. Information
model:

EDB schema
customer(Customer id, Customer_class, Customer_type)
product(Product id, Retail price, List price, Product class)
invoice id(Customer id, Product id, Seq no, Quantity ordered)
sales tax(Product class, Sales tax rate)
discount(Customer class, Discount rate)
Knowledge

Horn clause representation
sales tax amount(boutique, Sales tax amount, Wholesale price,
Product_class) :-
sales tax(Product class, Sales tax rate),
Sales _tax_amount is Wholesale price*Sales_tax_rate/100.
sales tax amount(ds, Sales_tax_amount, Cost, Wholesale price) :-
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Figure S5.2 (b) Knowledge diagram.

Sales_tax_amount is Cost—Wholesale price.
wholesale price(boutique, Wholesale price, List_price, Customer_class) :-
discount(Customer_class, Discount_rate),
Wholesale price is List_price*(100—Discount_rate)/100.
wholesale price(ds, Wholesale price, Cost, Product_class) :-
sales_tax(Product class, Sales_tax rate),
Wholesale price=Cost/((100+Sales_tax rate)/100).
cost(boutique, Cost, Wholesale price, Sales_tax) :-
Cost is Wholesale price+Sales Tax.
cost(ds, Cost, Retail price, Customer_class) :-
discount(Customer_class, Discount_rate),

Cost is Retail_price*(100—Discount_rate)/100.
total wholesale(Total WP, Wholesale price, Quantity ordered) :-
Total WP is Wholesale price*Quantity ordered.
total stax(Total ST, Sales_tax amount, Quantity ordered) :-
Total ST is Sales_tax_amount*Quantity ordered.
total cost(Total cost, Cost, Quantity ordered) :-

Total cost is Cost*Quantity ordered.
invoice(Customer _id, Product_id, Seq_no, Quantity ordered,
Retail price, List price, Discount rate, Cost,

Sales tax_rate, Sales tax amount,

Total ST, Total WP, Total cost) :-
customer(Customer_id, Customer_class, boutique),
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bold facts are derived

invoice id(Customer_id, Product id, Seq no, Quantity ordered),
product(Product _id, Retail price, List_price, Product_class),
wholesale price(boutique, Wholesale price, List_price, Customer_class),
sales tax amount(boutique, Sales_tax amount, Wholesale price,
Product_class),
cost(boutique, Cost, Wholesale price, Sales_tax amount),
total stax(Total ST, Sales tax_amount, Quantity ordered),
total wholesale(Total WP, Wholesale price, Quantity ordered),
total cost(Total cost, Cost, Quantity ordered).
invoice(Customer _id, Product_id, Seq_no, Quantity ordered,
Retail price, “NA”, Discount rate, Cost,
Sales tax_rate, Sales_tax amount,
Total ST, Total WP, Total cost) :-
customer(Customer_id, Customer_class, ds),
invoice id(Customer_id, Product id, Seq no, Quantity ordered),
product(Product id, Retail price, , Product class),
cost(ds, Cost, Retail price, Customer_class),
wholesale price(ds, Wholesale price, Cost, Product_class),
sales tax_amount(ds, Sales_tax amount, Cost, Wholesale price),
total stax(Total ST, Sales tax_amount, Quantity ordered),
total wholesale(Total WP, Wholesale price, Quantity ordered),
total cost(Total cost, Cost, Quantity ordered).
5.3 Broader term, narrower term, is-a are profitably considered transitive. The others are not.
1 Information model
Assumptions
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contribules-to circular
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Course and degree are in one-to-one correspondence
A student may be enrolled in only one course

2 Knowledge Diagram
3 Horn clause expression
Relevant EDB
subject(Code, Credits,...)
course(Code, Faculty, Degree, Total_credits, Elective credits,
Conceded credits)
compulsory(Course, Subject)
elective(Course, Subject)
student/subject/result(Student#, Code, Result)
subject/offered/department(Code, Dept)
department(Dept, Faculty)
enrolled in(Student#, Course id)
prerequisite(Subject, Pre_Subject)
co-requisite(Subject, Co_Subject)

incompatible(Subject, Inc_Subject)
school_result(Student#, Subject, Result)
IDB
predicates in bold are intermediate types
obsolete(Code) :- subject(Code),
notschedule(_, Code).
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schedule(Course, Code) :- compulsory(Course, Code).
schedule(Course, Code) :- elective(Course, Code).
foundation(Code) :- subject(Code, ,...), not prerequisite(Code, )
contributes_to(Subject, Pre_Subject) :-
prerequisite(Subject, Pre_Subject).
contributes_to(Subject, Co_Subject) :-
co-requisite(Subject, Co_Subject).
contributes_to(Subject, Pre_Subject) :-
prerequisite(Subject, Int_Subject),
contributes_to(Int_Subject, Pre Subject).
contributes_to(Subject, Co_Subject) :-
co-requisite(Subject, Int_Subject),
contributes_to(Int_Subject, Co_Subject).
service(Code) :- subject/offered/department(Code, Dept),
schedule(Course, Code),
course(Code, Faculty, , , , ),
department(Dept, D_Faculty),
Faculty#D_Faculty.
qualifies_for(Student#, Course) :-
enrolled_in(Student#, Course),
course(Code, , , ,Elective credits, Conceded credits),
not missed_any compulsory(Course, Student#),
not failed _compulsory(Course, Student#),
elective credits(Student#, Course, S_E _credits),
S _E credits>Elective credits,
conceded_credits(Student#, S_C_credits),

S C_credits<Conceded Credits.
missed_any compulsory(Course, Student#) :-
compulsory(Course, Code),
student/subject/result(Student#, Code, not_available).
failed compulsory(Course, Student#) :-
compulsory(Course, Subject),
student/subject/result(Student#, Code, fail).
elective credits(Student#, Course, S_E credits) :-
aggregate(sum(Credits),
elective cr(Student#, Course, Credits),

S _E credits).

elective _cr(Student#, Course, Credits) :-
elective(Course, Code),
student/subject/result(Student#, Code, Result),
pass(Result),
subject(Code, Credits,...).
pass(pass).
pass(conceded pass).
conceded _credits(Student#, S C_credits) :-
aggregate(sum(Credits),
conceded_cr(Student#, Course, Credits),

S _C_credits).
conceded_cr(Student#, Course, Credits) :-
schedule(Course, Code),
student/subject/result(Student#, Code, conceded pass),
subject(Code, Credits,...).
eligible for(Student#, Subject) :-



el for(Student#, Subject),
not passed_incompatible(Student#, Subject).
el for(Student#, cs317) :-
enrolled in(Student#, b_inf tech)
student/subject/result(Student#, cs214, pass),
student/subject/result(Student#, cs225, pass).
el for(Student#, cs317) :-
enrolled_in(Student#, Course),
coursezb_inf tech,
student/subject/result(Student#, cs214, pass),
conjunct(1,Student#, cs317).
conjunct(1,Student#, cs317) :-
student/subject/result(Student#, cs225, pass).
conjunct(1,Student#, cs317) :-
student/subject/result(Student#, cs102, pass),
student/subject/result(Student#, cs226, pass).
el for(Student#, cs214) :-
student/subject/result(Student#, cs213, pass).
el for(Student#, cs213) :-
conjunct(1,Student#, cs213),
conjunct(2,Student#, cs213).
conjunct(1,Student#, cs213) :-
student/subject/result(Student#, cs113, pass).
conjunct(1,Student#, ¢s213) :-
student/subject/result(Student#, cs115, pass).
conjunct(2,Student#, cs213) :-
student/subject/result(Student#, me205, pass).

conjunct(2,Student#, cs213) :-
student/subject/result(Student#, mp104, pass).
conjunct(2,Student#, cs213) :-
student/subject/result(Student#, mp108, pass).
conjunct(2,Student#, cs213) :-
student/subject/result(Student#, mp173, pass).
conjunct(2,Student#, ¢s213) :-
student/subject/result(Student#, mp178, pass).
conjunct(2,Student#, cs213) :-
student/subject/result(Student#, mt108, pass).
el for(Student#, cs115) :-
student/subject/result(Student#, cs114, pass).
el for(Student#, cs115) :-
school result(Student#, ipt, ha).
el for(Student#, cs114) :-
enrolled in(Student#, ba),
conjunct(1,Student#, cs114).
el for(Student#, cs114) :-
enrolled in(Student#, Course),
Course#ba.
conjunct(1,Student#, cs114) :-
student/subject/result(Student#, ec131, pass).
conjunct(1,Student#, cs114) :-
student/subject/result(Student#, mp107, pass).
conjunct(1,Student#, cs114) :-
school_result(Student#, sen_math_1, Result),
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good_enough(Result).
passed_incompatible(Student#, Subject) :-
incompatible(Subject, Inc_subject),
student/subject/result(Student#, Inc_subject, pass).
bad :- course(Code, ), too_much_compulsory(Code).
bad :- course(Code, ), not enough credits(Code).
bad :- course(Code, ), incomplete_schedule(Code).
bad :- circular.
too_much_compulsory(Code) :-
course(Code, , , Total credits, , ),
total compulsory(Course, Total C),
Total C>Total credits.
total compulsory(Course, Total C) :-
aggregate(sum(Credits),
(compulsory(Course, Subject), subject(Subject, Credits,...))
Total C).

not_enough_credits(Code) :-
course(Code, , , Total credits, , ),
total compulsory(Course, Total C),
total elective(Course, Total E),
Total C+Total E<Total credits.
total_elective(Course, Total E) :-
aggregate(sum(Credits),
(elective(Course, Subject), subject(Subject, Credits,...)).
Total E).
incomplete schedule(Code) :-
compulsory(Code, Subject),
prerequisite(Subject, Pre),
not compulsory(Code, Pre).
incomplete_schedule(Code) :-
elective(Code, Subject),
prerequisite(Subject, Pre),
not elective(Code, Pre).
circular :- contributes_to(X, X).

4 Population

subject(cs317, 8,...
subject(cs225, 8,...
subject(cs214, 8,...
subject(cs213, 8,...
subject(cs115, 8,...
subject(cs114, 8,...).

N N N N N

compulsory(b_inf tech, co211).
compulsory(b_inf tech, cs381).
compulsory(b_inf tech, cs383).
elective(b_inf tech, ec101).
elective(b_inf tech, ec110).
elective(b_inf tech, mt100).

course(b_inf tech, science, b_inf tech, 288, 144, 30). elective(b_inf tech, mp105).

compulsory(b_inf tech, cs100).
compulsory(b_inf tech, cs102).
compulsory(b_inf tech, cs114).
compulsory(b_inf tech, cs115).
compulsory(b_inf tech, cs162).
compulsory(b_inf tech, cs163).
compulsory(b_inf tech, cs164).
compulsory(b_inf tech, ¢s200).
compulsory(b_inf tech, ec150).
compulsory(b_inf tech, en153).

elective(b_inf tech, mt101).
elective(b_inf tech, ms101).
elective(b_inf tech, ms112).
elective(b_inf tech, ms113).
elective(b_inf tech, py102).
elective(b_inf tech, ¢s205).
elective(b_inf tech, cs214).
elective(b_inf tech, cs215).
elective(b_inf tech, c¢s223).
elective(b_inf tech, cs225).



compulsory(b_inf tech, mt108).

compulsory(b_inf tech, cs202).

compulsory(b_inf tech, cs210).
compulsory(b_inf tech, cs213).
compulsory(b_inf tech, cs261).

elective(b_inf tech, ma212).
elective(b_inf tech, mn212).
elective(b_inf tech, pd211).
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elective(b_inf tech, cs231).
elective(b_inf tech, e3277).
elective(b_inf tech, gn238).
elective(b_inf tech, gn242).

elective(b_inf tech, ic210).
elective(b_inf tech, ic220).

department(cs, science).
department(math, science).
department(inter, science).

subject/offered/ department(earth, science).
department(cs317, cs). department(econ, commerce/econ).
subject/offered/ department(psych, science).
department(mt108, math), department(commerce, commerce/ econ).
subject/offered/ department(english, arts).
department(e3277, ee). department(philosophy, arts).
subject/offered/ department(ee, engineering).
department(ic2 10, inter), prerequisite(cs317, cs214).
subject/offered/ prerequisite(cs317, cs225).
department(gn242, earth), prerequisite(cs317, cs226).
subject/offered/ prerequisite(cs317, cs102).
department(ec101, econ). prerequisite(cs214, cs213).
subject/offered/ prerequisite(cs213, cs115).

department(py102, psych),
subject/offered/department
(co211, commerce),
subject/offered/department
(en153, english).
subject/offered/department
(pd211, philosophy).

prerequisite(cs115, cs114).

prerequisite(cs213, me205).
prerequisite(cs317, mp104).
prerequisite(cs317, mp108).
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5 Exceptions in application of quality principles

Principle 1.2 is violated by prerequisite and eligible for, since in principle prerequisite can be derived from the clauses in
eligible for. However, the theorem proving techniques required to do so are beyond the scope of this subject. An alternative,
probably better than the one presented, strategy would be to represent the prerequisite structure for a subject as an and/or tree.
Both eligible for and prerequisite could be derived from this tree. However, structured data is not allowed by strict datalog,
so is beyond the material expected of the student at this stage.

The intermediate predicates shown in the solution are all in response to principles K.3 and K.4.

Several clauses have multiple derivations (principle G.2). The predicates contributes to and service are both projections
onto non-key attributes. The integrity constraint bad has many derivations, but for the system to be consistent, there should be
no tuple bad in the perfect model. Similarly, missed any compulsory and failed compulsory have multiple derivations, but
only contribute to the perfect model if they have no solutions.

There are several instances of labels appearing in definitions. In all cases, the clause in which a label appears is functionally
dependent on the label.

CHAPTER 6

6.1 predicate definition has name
population is subtype of population
population is domain of predicate definition has role
tuple has role stores instance
instance instance-of population
6.2 All valid labels
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Figure S5.3 Graphical representation of hierarchical thesaurus.

Label(Text, Predicate?, Population?, Instance?).
Labels used as predicate definitions
Has-definition(Name, Predicate).

Labels in a subtype/supertype relation
Subtype(Supertype, Subtype).

Labels which are populations of roles in predicates.
Domain-of(Predicate, Role, Population).
Labels which are instances of roles in tuples
Stores(Tuple, Role, Instance).

Labels which are instances of populations
Instance-of(Instance, Population).

6.3 SQL
SELECT Name FROM Has-definition
UNION
SELECT Supertype FROM Subtype
UNION
SELECT Subtype FROM Subtype
UNION
SELECT Population FROM Domain-of
UNION
SELECT Instance FROM Stores
UNION
SELECT Instance FROM Instance-of
UNION
SELECT Population FROM Instance-of
Datalog
label(T) :- has-definition(T, ).
label(T) :- subtype(T, ).
label(T) :- suptype(_, T).
label(T) :- domain-of(_, , T).
label(T) :- stores(_, , T).
label(T) :- instance-of(T, ).
label(T) :- instance-of(_, T).

6.4
Group Clause Literal# Arg# Label Called Predicate
ancestor 1 0 1 Older —
ancestor 1 0 2 Younger —
ancestor 1 1 1 Older parent
ancestor 1 1 2 Younger parent
ancestor 2 0 1 Older —

Role

older
younger
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ancestor 2 0 2 Younger — —

ancestor 2 1 1 Older parent older

ancestor 2 1 2 Intermediate parent younger

ancestor 2 2 1 Intermediate ancestor older

ancestor 2 2 2 Younger ancestor younger
6.5 sg(X, X).

sg(X, Y) :- parent(P, X), parent(Q, Y), sg(P, Q).

6.6 A join in literal/argument occurs when a label occurs in two different literals
with literal# greater than 0 in the same clause and the same group.

6.7 SELECT DISTINCT Domain FROM pred/role, literal/argument 11, literal/
argument 12 WHERE 11.group=12.group AND 11.clause=12.clause AND 11.literal#>0 AND 12.
literal#>11 literal# AND 11.label=12.label AND  pred/role.predicate=11.called predicate AND  pred/
role.role=11.role

join-attribute(Population) :-
literal/argument(G, C, Litl, , Lab, Calledl, Rolel),
literal/argument(G, C, Lit2, , Lab, Called2, Role2),
Lit1>0, Lit2>Lit1,
pred/role(Calledl, Rolel, Population, ).

% we are assuming that the join attributes are join compatible,
and further that the domains are the same.

Two attributes are join compatible if their domains are non-disjoint subtypes of the same population. They at least have a
common ancestor in the transitive closure subtype-of predicate. Further, they are not disjoint subtypes of their nearest
common ancestor.

CHAPTER 7

A natural enhancement to a system is to add queries using the existing data, for example: find all items whose source is X; for
example, what items are obtainable from a greengrocer. We want only the most specific items: if an item has subtypes or
instances, it should be excluded.
items-obtainable-from(Supplier, [tem) :-
source-of(Item, Supplier), most-specific(Item).
items-obtainable-from(Supplier, [tem) :-
source-of(Type, Supplier),
one-of(Type, Item),
most-specific(Item).
most-specific(Item) :- not instance-of(Item, ), not subtype-of(Item, ).
Re-uses the predicates source-of, one-of, instance-of and subtype-of.

Another natural enhancement is to add similar sorts of data: for example a new narrower term type significant source of
allergen requires adding terms which are allergens, such as lactose, gluten, and adding the new narrower term to existing terms
(lactose to butter, gluten to bread). New queries would be needed to support the new data, for example preparations
containing a given allergen or class of product generally safe from allergen.

preparation-containing-allergen(Prep, Allergen) :-
significant-source-of-allergen(Ingredient, Allergen),
has-ingredient(Prep, Ingredient).
class-generally-safe(Class, Allergen) :-
class-of-preparations(Class),
not class-possibly-unsafe(Class, Allergen).
class-of-preparations(Class) :-
one-of(Class, Instance),
has-ingredient(Instance, ). class-possibly-unsafe(Class, Allergen) :-
one-of(Ingredient, Class),
preparation-containing-allergen(Ingredient, Allergen).
Re-uses has-ingredient and one-of- Note new knowledge has introduced new intermediate predicates.
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A third kind of change is to generalize existing structures. For example, we could declare that some of the narrower or
related term types were transitive, like is-a. (Note that of the other narrower or related term types in the original system, only
ingredient of is plausibly transitive, although it has not been recognized as such in the application.) This allows us to
introduce new types such as owned-by, which serve perhaps a new set of data which are particular companies that are
instances of supermarket, dairy, greengrocer, etc. This would be implemented by first modifying the existing subtype of

subtype-of(Supertype, Subtype) :- transitive-closure(Supertype, Subtype, is-a).
transitive-closure(Supertype, Subtype, Arc) :- Arc(Supertype, Subtype).
transitive-closure(Supertype, Subtype, Arc) :-
Arc(Supertype, Intermediate),

transitive-closure(Intermediate, Subtype, Arc).

then adding, say,
owned-by(Owner, Owned) :- transitive-closure(Owner, Owned, owned-by).
Here, what we have done is to apply principle K.4 to the definition of subtype-of to extract the transitive closure predicate. We
can easily make has-ingredient transitive as well:
rename has-ingredient to say contains.
replace has-ingredient with
has-ingredient(Product, Ingredient) :-
transitive-closure(Product, Ingredient, contains).

The main principles directly involved in these changes are K.3 and K.4. This is because the changes proposed have been in
terms of the existing universe of discourse, and structurally and semantically similar extensions. However, the general lack of
redundancy achieved by following the set of principles has made the changes less troublesome than they otherwise would
have been, since we have been confident that the obvious changes have no hidden side-effects.

CHAPTER 8

8.1 red blue path(X, Y) :- red(X, Y).
red blue path(X, Y) :- red blue path(X, U), blue(U, V), red blue path(V, Y).
bf
red blue path is subgoal-rectified and has the unique binding property.
Using the magic set algorithm:

Magic predicates

m_p(X) :- supy o(X).

m_p(V) :- supy »(X, V).

Zeroth supplementary
supy o(X) - m_p(X).
sup, o(X) :- m_p(X).
Other supplementary
sup; (X, U) :- sup, o(X), red_blue_path(X, U).
sup, »(X, V) :- sup, ;(X, U), blue(U, V).
IDB predicates
red_blue_path(X, Y) :- sup; o(X), red(X, Y).
red_blue_path(X, Y) :- sup, (X, V), red_blue_path(V, Y).
Initialization
m_p(&l).
8.2 Magic predicates
m_e(E) :- sup o(E, T).
m_e(E) :- sups o(E).
m_t(T) :- sup; 1(E, T).
m_t(T) :- sup, o(T).
m_t(T) :- sups o(T, F).
m_f(F) :- sups (T, F).
m_{{(F) :- supy o(F).
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Zeroth supplementary
sup; o(E, T) :- m_e(plus(E, T)).
sup; o(T) :- m_e(T).
sup; o(T, F) :- m_t(times(T, F)).
supy o(T) :- m_t(T).
sups o(E) :- m_f(parens(E)).
supg o(F) :- m_£(F).
Other supplementary
supy 1 (E, T) :- sup; o(E, T), expression(E).
sups ;(T, F) :- sup; o(T, F), term(T).
IDB predicates
expression(plus(E, T)) :- sup; ;(E, T), term(T).
expression(T) :- sup, o(T), term(T).
term(times(T, F)) :- sup; (T, F), factor(F).
term(T) :- supy o(T), factor(T).
factor(parens(E)) :- sups o(E), expression(E).
factor(F) :- supg o(F), identifier(F).
Initialization
m_e(expression_to_be parsed).
8.3 Adornment: bbf
Linear recursion:
Max 1 recursive: clause 1 has no IDB subgoals, while clauses 2 and 3 have
one IDB subgoal, trip.
Recursive last: trip in clauses 2 and 3 can be last without violating the unique
binding property.
Recursively computed output: End is the free variable in the head of clauses
2 and 3, is also the free variable in the subgoal #rip in both clauses, and
occurs nowhere else in the two clauses.
Therefore the predicate is right linear recursive.
Magic predicates
m_t(Line, Int) :- m_t(Line, Start), leg(Line, Start, Int).

m_t(Line 1, Start) :- m_t(Line, Start), interchange(Start, Line, Line 1).

Magic EDB tuple m_t(&l, &2).
Answer predicates a t(End):- m_t(Line, Start), station(Line, Start), Start=End.
Query answer trip(&1, &2, End) :- a_t(End).
CHAPTER 9
9.1

1. m_sg(Xp) :- supp2,1(X, Xp).

2. supl,0(X) :- m_sg(X).

3. sup2,0(X) :- m_sg(X).

4. sup2,1(X, Xp) :- sup2,0(X), par(Xp, X).

5. sup2,2(X, Yp) :- sup2,1(X, Xp), sg(Xp, Yp).
6. sg(X, X) :- sup1,0(X), person(X).
7.5g(X,Y) :- sup2,2(X, Yp), par(Yp, Y).

8. m_sg(&l).

Unfold 2 into 6, 3 into 4

1. m_sg(Xp) :- supp2,1(X, Xp).
4. sup2,1(X, Xp) :- m_sg(X), par(Xp, X).
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. sup2,2(X, Yp) :- sup2,1(X, Xp), sg(Xp, Yp).
. sg(X, X) :- m_sg(X), person(X).

.8g(X,Y) :- sup2,2(X, Yp), par(Yp, Y).

. m_sg(&l).

0 3 N

Unfold 5 into 7

1. m_sg(Xp) :- supp2,1(X, Xp).

4. sup2,1(X, Xp) :- m_sg(X), par(Xp, X).

6. sg(X, X) :- m_sg(X), person(X).

7. 5g(X,Y) :- sup2,1(X, Xp), sg(Xp, Yp), par(Yp, Y).
8. m_sg(&l).

Could unfold 4 into 1 and 7, but do not as it increases the number of joins which must be computed.
9.2m.1 m_e(E) :- sup, o(E, T).
m.2 m_e(E) :- sups o(E).
m.3 m_t(T) :- sup, ;(E, T).
m.4 m_t(T) :- sup, o(T).
m.5 m_t(T) :- sups o(T, F).
m.6 m_£{(F) :- sups (T, F).
m.7 m_{(F) :- supy o(F).
z.1 sup; o(E, T) :- m_e(plus(E, T)).
z.2 sup, o(T) :- m_e(T).
z.3 sup3 o(T, F) :- m_t(times(T, F)).
2.4 sup4 o(T) :- m_t(T).
2.5 sups o(E) :- m_f{parens(E)).
2.6 supg o(F) :- m_f(F).
s.1 sup; ;(E, T) :- sup; o(E, T), expression(E).
s.2 sups i(T, F) :- sup; (T, F), term(T).
r.1 expression(plus(E, T)) :- sup; 1(E, T), term(T).
r.2 expression(T) :- sup, o(T), term(T).
r.3 term(times(T, F)) :- sup; (T, F), factor(F).
r.4 term(T) :- sup, o(T), factor(T).
r.5 factor(parens(E)) :- sups o(E), expression(E).
1.6 factor(F) :- supg ((F), identifier(F).
i.l m_e(expression_to_be parsed).
Unfold z.1 into m.1 and s.1; z2 into m4, r2; z3 into m5, s2; z4 into m7, r4; z5 into m2, r5; z6 into r6; giving:
m.l m_e(E) :- m_e(plus(E, T)).
m.2 m_e(F) :- m_f(parens(F)).
m.3 m_t(T) :- sup; 1(E, T).
m.4 m_t(T) :- m_e(T).
m.5 m_t(T) :- m_t(times(T, F)).
m.6 m_{£(F) :- sups (T, F).
m.7 m_f(T) :-m_t(T).

s.1 sup; ;(E, T) :- m_e(plus(E, T)), expression(E).
s.2 sups |(T, F) :- m_t(times(T, F)), term(T).
r.1 expression(plus(E, T)) :- sup; ;(E, T), term(T).
r.2 expression(T) :- m_e(T), term(T).

r.3 term(times(T, F)) :- sup; (T, F), factor(F).
r.4 term(T) :- m_t(T), factor(T).

1.5 factor(parens(E)) :- m_f(parens(F)), expression(E).
1.6 factor(F) :- m_f{(F), identifier(F).
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None of the other candidates for unfolding are desirable, since they increase the number of joins. There are no candidates for

folding.

10.1

CHAPTER 10

& 2 &5 —cl

fl1 & ~2 = ¢2
~fl & ~f3 — c2
-1 & ~fd — ¢2

~f1 & [§ = ¢2
~f2 & ~[3 = ¢2
-2 & ~f4 = c2

-2 &5 -2
Note that there is a lot of cancellation, due to
p & ~p=false
ptp & q=p
As a decision table:
fl 3 4 f5 Action
y y y cl
y n c2
n n c2
n n c2
n y c2
n c2
n c2
y c2

The table is unambiguous, so can be converted into a
if f1 then
if £2 then
if f5 then cl
else fail
else c2
else
if not f3 or not f4 or f5 then c2
else fail
There are other alternatives.
(a) Uniqueness: VX (X, Z), r(X, Y) > Y = Z.
~AX~1(X, Z), r(X, Y) > Y = Z).
p(Y, Z) - ~0(X, Z), (X, Y) > Y = Z).
11 ~p(Y, Z}.
pY,2):-1rX,2), (X, Y), Y !=Z

decision tree

CHAPTER 11
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Mandatory: ¥X3Y wX) = X, Y)

=3AX~-3Y i X) = X, YL
plY) - ~3Y a(X) = r(X, Y).

~pLY).

giXx) - a{X) — X, Y).
piY) = ~q(X).

q(X) == (X, Y

q(X) - ~a(X).

Subtype: VX a(X) — B X).
~IX~a(X) = b1X).
p - ~a(X) = b(X).
-—P_
P MX)» "b(X).

(b)  Uniqueness: bad - ~YX 0(X, Z),. (X, Y) = Y = Z.
bad - IX~(n(X, Z), o(X, Y) = Y = Z).
bad - ~((1(X, 2), s(X. Y) = Y = 2).
bad - r(X, Z), (X, Y), (Y = 2).

Mandatory: bad :- ~VX3Y a(X) = (X, Y).
bad :- IX~3Y a(X) = r(X, Y.
bad :- <3Y aX) — v(X, Y)
p(X) - a(X) = (X, Y).

bad :- —p(X).
P[X] = r(xs Y)'
p(X) :- ~a(X).

Subtype: bad - ~¥X a(X) — b(X).

bad :» X~ a(X) - b(X).
bad :- ~ (a(X) - b(X)).
bad :- a(X), ~b(X).

(c) Referential integnity: The set of entities in a partcular attribute of
relation A is a subset of the set of entities in the corresponding attribute
in relation 8. This is the same as the subtype constraint,

11.2 There are many constraints. These are some:
Every tuple is an instance of its scheme and every instance label is of the correct type

WTuple VPredicate VRole ¥instance (
tuple/role{Predicate, Tuple, Role, Instance) —
(3Pred 3R FDomain
pred/role(Pred, R, Domain, Type) &
Pred = Predicate & R = Role &
31 3D (labels(l, D) & 1 = Instance & D = Domain)))
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Every scheme has a key
YPredicate VRole IType
pred/role(Predicate, Role. Domain, Type) &
Type = “key”
Every subgoal calls a defined predicate
YGroup VYClause YLiterall ¥ Called_Predicate
literalfealls(Group, Clause, Literal#f, Called_Predicate, Negative) —
(3C_P predfrote(C_P, Role, Domain, Type) &
C P = Called_Predicate)
A literal is a defined predicase
YGroup VClause Vliteral® VCalled _Predicate
literal fargument(Group, Clause, Literal#, Argument#, Label,
Called_Predicate. Role) =
(AC_P pred/role(C_P, Role, Domain. Type) &
C_P = Called_Predicare)
A clause head literal is its own predicate
Y Group ¥Clause Vliteral#
( (hteral fargument(Group, Clause, Literal#, Argument#, Label,
Called_Predicate, Role) & Literals = 0) —
Called Predicate = null)
A clause body literal is a called predicate
YGroup YClause VLiteral# WCalled_Predicate
(literal Jargument(Group, Clause, Literal#, Argumem#, Label.
Called_Predicate, Role) and Literal#f > 0) —»
AGroup ICIause 3Litecal# AC_P
(literal /calls{Group, Clause, Literal#, C_P, Negative) &
C_P = Called_Predicate)

CHAPTER 12

(a) Probably the most reasonable place to find out whether the population product class is valid is in the table pred/role,

with the query pred/ role( , _, product class, )?

(b) If the population product _class were removed, we would need to identify in pred/role all those predicates which have

12.2

product_class as a domain. In this case: product, sales_tax, sales_tax_amount, wholesale _price, and invoice.

It would be imprudent to delete these automatically, so they would be referred to the programmer. Assume that the
programmer decides to modify product and invoice, and to delete the others. These predicates would have to be
removed from pred_role, literal/calls, literal/argument, and tuple/role via referential integrity constraints. These all
propagate to invoice and via join attributes in literal/argument to total wholesale, total stax, and total cost. The
programmer decides to modify invoice, to retain total wholesale, and remove fotal stax and total cost.

The first decision is whether to delete each of product, sales_tax, sales_tax_amount, wholesale price, and invoice, or to
modify them to remove the domain product_class.

product_class is a non-key domain of product, so the domain only can be removed.

product_class is a key domain of sales_tax, so it makes sense to delete the whole predicate.

Both product class and sales_tax have been deleted, sales_tax_amount is a computational predicate based on sales_tax,
so can be deleted.

The same is true of wholesale price.

product_class is not a key of invoice, the predicates removed are only a small part of invoice, so it is not safe to delete
invoice. The program can delete argument Product class from product, and the subgoals sales tax amount and
wholesale_price from both clauses of invoice.
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m fotal wholesale is affected by the join variable Wholesale price. It is a computational predicate for which
Wholesale_price is an input, so can be deleted, and its subgoal deleted from both clauses of invoice. Similarly for
sales_tax_amount via the join variable Sales tax_amount.

m There is no more propagation in the second clause of invoice, but in the first clause the subgoal cost is connected by
both join variables to deleted subgoals. cost, however has two clauses, the first dependent on boutique and the second
on ds. The first clause of invoice is dependent on boutique and the second on ds. The first clause of cost is a
computational predicate taking deleted arguments as input, so could be deleted.

m The output of cost is an output of invoice, and is not deleted in the second clause, so at this point the automatic
propagation would probably have to stop and refer to the programmer. (What the programmer would probably do is
realize that with the absence of sales tax, cost and list price are the same, and amend the program accordingly.)

12.3

m A predicate definition is less entrenched than its key domains.

m A predicate definition is more entrenched than its non-key domains.

m We need to have some way of identifying essential parameters of computational predicates. If we could, then a
computational predicate definition is less entrenched than its essential parameters, but more entrenched than its non-
essential parameters. Certainly the only input parameter is essential.

m Similarly, we need some way of identifying essential subgoals (as in invoice). Computational subgoals are probably
inessential, as are lookup predicates, which we might be able to define as predicates based directly or indirectly on
predicates having two arguments, the key argument of which is deleted.

12.4 Notation:
Label of node n in set of environments is <{environments ] node>
0. <[] vellow> <{| red> neither on
I. <{{temperature_too_high |} yellow> <{} red> yellow on
2. <[ {temperature_too_high |,[cooling_valve_stuck_open ) yellow>
<|) red= yellow on
3. <{(cooling_valve_stuck_open || vellow>
<|} red> yvellow on
4. <[ feooling_valve_stuck_open | [temperature_too_low || yellow=
<| [cooling_valve_stuck_open, temperature_too_low |} red> both on
5. <[ [temperature_too_low |] yellow=>
<|} red> yellow on
6. <[] yellow> <[] red> neither on
7. <|} yellow= <[ |fucl _exhausted) ) red> red on
12.5
[a} — a
|b] = b
la, b] = ¢
[d] = d
le] = e
fa,ef = f
|x, b} =»
{| =g
It = r
{s}) = s
{r.s] =1
iyl =y
{x}] = x
(x,¥] = =
irys. X, v} = w
{1l—=u

g is not believed because the only environment in which it could be believed is {a, e, d}, which contains the nogood {a, d}.u
is not believed because g is not believed.
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12.6 An ATMS could be used by a student planning a program for keeping track of subjects selected not because of their
intrinsic interest but because they are prerequisites for subjects of intrinsic interest or are fillers to gain enough credits in a
particular category. Justifications might be of the form

subject 1 — subject 2

if subject 2 were chosen as a prerequisite for subject 1, and
need credits_in_category x — subject

if subject were selected to fill credits in category x. Main subjects would be assumptions. Querying the labels would
identify all subjects currently selected. Those with empty justifications could be removed with no loss of intrinsic interest.
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