
Relationships Among Semantics

If a program + EDB has a strati�ed or perfect
(locally strati�ed) model, then that is the unique
stable model.

� A program + EDB can have a unique stable
model even if there is no perfect model.

Example

p :- NOT q

q :- NOT p

p :- NOT p

� Only fpg is a stable model.

� Note that without the 3rd rule, both fpg and
fqg are stable.

Why Strati�edModels are Stable

Intuition to prove strati�ed model M is stable:

� Divide M into strata M0;M1; : : : (M0 includes
the EDB).

� LFP of stratum 0 does not involve negation,
so its instantiated rules survive to the
inference step of the GL transform, and
exactly M0 is inferred.

� Thus, M0, and nothing else for stratum 0, is
in GL(M ).

� Consider what happens computing the
strati�ed model at stratum 1.

✦ Negated subgoals are resolved according
to M0.

✦ Instantiated rules with a negated member
of M0 e�ectively disappear, and those
with a negated nonmember of M0

e�ectively lose that subgoal.

� Thus, the LFP for stratum 1 looks just like
the GL transform for the relevant instantiated
rules.

Example

Let's revisit the locally strati�ed \Win" example:

1 2 3

whose relevant instantiated rules were:

1



r1: win(1) :- move(1,2) & NOT win(2)

r2: win(1) :- move(1,3) & NOT win(3)

r3: win(2) :- move(2,3) & NOT win(3)

� Recall stratum 0 = win(3) + EDB facts;
stratum 1 = win(2); stratum 2 = win(1).

� Also recall: the strati�ed model is
fwin(1); win(2)g + the EDB; we must show
this model is also stable.

� Stratum 0: No relevant rules, so win(3) is
false. Likewise, win(3) is not inferred in the
GL procedure.

� Stratum 1: Since win(3) is false, the rules for
stratum 1 become:

r3: win(2) :-

win(2) is inferred, both in the strati�ed and
GL procedures.

� Stratum 2: Since win(2) is true and win(3) is
false, the rule for stratum 2 becomes:

r2: win(1) :-

Again, the same thing happens to this rule
in the GL procedure, so we infer win(1) in both
strati�ed and stable approaches.

Well-FoundedModel

� 3-valued model: true, false, unknown.

� WF model has positive facts like p(1) and
negative facts like :p(1).

� IDB ground atoms not mentioned are assumed
to be \unknown."

� EDB ground atoms not mentioned are
assumed false.

Two Modes of Inference

1. If body is true, infer head.

2. Look for unfounded sets: If, after instantiating
rules in all possible ways and eliminating
those with a known false subgoal, there is
a set U of positive ground atoms such that
every rule with a member of U in the head has
a member of U as one of its subgoals, then U

is unfounded.

✦ We cannot prove any member of U ,
because we would have to prove another

2



member �rst.

✦ In WF semantics, we infer the negation of
all members of U .

� Repeat inference modes until no new
inferences of either type are possible.

Example

\Win" rule with EDB 1 ! 2, 2! 1, 2! 3! 4 !
5! 6.

1 2 3 4 5 6

� Start by instantiating the Win rule

win(X) :- move(X,Y) & NOT win(Y)

in all possible ways.

✦ Eliminate rules with false bodies.

✦ Also eliminate true subgoals from
remaining bodies.

✦ For convenience, eliminate rules whose
head has already been inferred.

win(1) :- NOT win(2)

win(2) :- NOT win(1)

win(2) :- NOT win(3)

win(3) :- NOT win(4)

win(4) :- NOT win(5)

win(5) :- NOT win(6)

Round 1: No positive inferences. Largest
unfounded set = fwin(6)g. Infer :win(6).

Round 2: Infer win(5). Delete last two rules. One
now has a false subgoal, the other an already-
inferred head.

win(1) :- NOT win(2)

win(2) :- NOT win(1)

win(2) :- NOT win(3)

win(3) :- NOT win(4)

Largest unfounded set = fwin(4)g. Infer :win(4).

Round 3: Infer win(3), delete last two rules.

win(1) :- NOT win(2)

win(2) :- NOT win(1)

Now, no unfounded sets, so done.

� WF model is

fwin(3); win(5);:win(4);:win(6)g

3



� Truth value of win(1) and win(2) is
\unknown."

Example

p :- q

q :- p

r :- p & q

s :- NOT p & NOT q

� fp; qg is an unfounded set.

� But fp; q; rg is the largest unfounded set.

✦ Note: union of unfounded sets is
unfounded, so there is always a largest.

� WF model: f:p;:q;:r; sg.

Alternating Fixed Point

1. Instantiate rules in all possible ways.

2. Eliminate rules with false EDB or arithmetic
subgoal; eliminate true EDB and arithmetic
subgoals from remaining rules for convenience.

3. Initialize all IDB ground atoms to false.

4. Repeatedly evaluate IDB subgoals by applying
the GL transform to the model consisting of
the EDB + an IDB based on the previous
round's true/false decisions.

� In the limit, IDB ground atoms that converge
to true are true. Those that converge to false
are false. Those that oscillate are unknown.

Example

Repeating above \Win" example:

1 2 3 4 5 6

Rules processed by (1) and (2):

win(1) :- NOT win(2)

win(2) :- NOT win(1)

win(2) :- NOT win(3)

win(3) :- NOT win(4)

win(4) :- NOT win(5)

win(5) :- NOT win(6)

Using alternating �xed point:

4



Round 0 1 2 3 4 5

win(1) 0 1 0 1 0 1
win(2) 0 1 0 1 0 1
win(3) 0 1 0 1 1 1
win(4) 0 1 0 0 0 0
win(5) 0 1 1 1 1 1
win(6) 0 0 0 0 0 0

Another Example

p :- q; q :- NOT p

Round 0 1 2 3 4 5

p 0 1 0 1 0 1
q 0 1 0 1 0 1

� Round 0: Both are 0 as always.

� Round 1: Rules simplify to p :- q; q :-.
Infer both q and p.

� Round 2: Rules simplify to p :- q. No
inference possible!

� Round 3 and later: Repeats.

� Conclude both p and q are \unknown."

Relationships Among Semantics

� If there is a 2-valued WF model, it is the
unique stable model.

� If there is a perfect model (i.e., program +
EDB is locally strati�ed), then this model is
also the stable and WF model, and obviously
is 2-valued.

� There can be a 3-valued WF model when
there is no stable semantics (i.e., no unique
stable model).

Example

Win program with EDB move(1,2), move(2,1).

� Two stable models, fwin(1)g and fwin(2)g.
Thus, a stable semantics does not exist.

� However, the WF model exists and makes
both win(1) and win(2) \unknown."

� There can be a unique stable model 6= WF
model.

5



Example

p :- NOT q

q :- NOT p

p :- NOT p

� WF model makes p, q \unknown."

� fpg is the only stable model.

� There can be a 2-valued WF model when
there is no locally strati�ed model.

Example

win(X) :- move(X,Y) & NOT win(Y)

with move de�ned by

1 2 3 4

� There is a cycle among 1, 2, and 3, so this
program and EDB is not locally strati�ed.

� However, the WF model is 2-valued,
intuitively because the cycle is not followed
from board 3 on best play.

win(1) :- NOT win(2)

win(2) :- NOT win(3)

win(3) :- NOT win(1)

win(3) :- NOT win(4)

Round 0 1 2 3 4

win(1) 0 1 0 1 1
win(2) 0 1 0 0 0
win(3) 0 1 1 1 1
win(4) 0 0 0 0 0

Comparisons Between Stable and WF
Approaches

� In \win" program, true = forced win; false =
forced loss; unknown = draw with best play.

� However, in \cafeteria" example to follow, the
rules are the same but the intuitive semantics
favors the stable approach.

6



Example

Consider a collection of buildings:

� Buildings have either lounges or cafeterias, not
both.

� No adjacent buildings both have cafeterias.

� If a building does not have a cafeteria, then an
adjacent building must have one.

lounge(X) :- adj(X,Y) & cafeteria(Y)

cafeteria(X) :- NOT lounge(X)

If we get rid of \cafeteria":

lounge(X) :- adj(X,Y) & NOT lounge(Y)

Looks just like \win."

� Problem is really: �nd a maximal independent
set of buildings in which to put cafeterias.

� The stable models are the maximal
independent sets.

� But the WF model makes cafeteria(X) true
i� X is in every maximal independent set.

Comparison of Complexity for Stable Versus
WF

� It is NP-hard to tell whether a propositional
logic program has a stable semantics, i.e., a
unique stable model.

� It is polynomial to construct the WF model.

� Same comments hold for �rst-order logic,
but with complexity measured in terms of
the EDB size rather than the number of
propositions.

Modularly Strati�ed Semantics

� Motivation: largest known class of Datalog-
with-negation programs for which magic-sets
(query optimization technique to be discussed)
works.

� Must be able to partition the rules into
\modules," such that

1. All recursion is within a module.

7



2. All modules have locally strati�ed
semantics with respect to the EDB and
the previously computed models for any
lower modules.

✦ I.e., treat all true facts belonging to lower
modules as if they were EDB facts.

� Modularly strati�ed semantics = what we get
by computing locally strati�ed semantics for
modules, bottom up.

� Note modules are partially ordered by
dependence among their predicates, because
all recursion must take place within a single
module.

Example

Consider:

win(X) :- move(X,Y) & NOT win(Y)

with move relation fmove(1; 2)g.

� We might appear to have a cycle in the
instantiated rules

r1: win(1) :- move(1,2) & NOT win(2)

r2: win(2) :- move(2,1) & NOT win(1)

But the fact that move(2; 1) is false removes
r2.

� The only dependence is win(1) ! win(2), and
this program + EDB is locally strati�ed.

Example (Continued)

� Next, suppose we add an IDB predicate
move1 to be identical to move:

win(X) :- move1(X,Y) & NOT win(Y)

move1(X,Y) :- move(X,Y)

Now, with the same EDB, we instantiate the win
rule as:

r1: win(1) :- move1(1,2) & NOT win(2)

r2: win(2) :- move1(2,1) & NOT win(1)

� It is not apparent that win(2) does not
depend on win(1), so it looks like we have a
cycle in the dependency graph.

✦ The di�erence is that move1 is IDB,
while move is EDB.

� This program + EDB is not locally strati�ed.

8



� However, the program + EDB is modularly
strati�ed, because we can group move and
move1 into a module and win into a higher
module.

� Module for move and move1: We �rst
compute the locally strati�ed model for
move1, which is fmove1(1; 2)g.

� Module for win: We discover that r2 can be
removed, because move1(2; 1) is known to be
false.

� Thus, there is no cycle, and the win module is
also locally strati�ed.

� Thus, the whole program + EDB is modularly
strati�ed.

Summary of Semantics

� De�nition A above de�nition B means that
every program + EDB that has a semantics in
B

1. Has a semantics according to A, and

2. The meaning (chosen model) is the same
for both A and B.

semantics
strati�ed
Modularly

semantics
well-founded
Two-valued

No negation

negation
Strati�ed

strati�ed
negation

Locally

semantics
Stable

semantics
Well-founded

9


