
PROLE 2009

Implementing Datalog in Maude 1

M. Alpuente M. A. Feliú C. Joubert A. Villanueva 2

Universidad Politécnica de Valencia, DSIC / ELP
Camino de Vera s/n, 46022 Valencia, Spain

Abstract

Transformation of programs among different paradigms has been widely studied in academic research and
education. The interest on Datalog has recently increased as a specification language for expressing,
in just a few lines, complex interprocedural analyses involving dynamically created objects. In real-world
problems, the Datalog rules encoding a particular analysis must be solved generally under a huge set of
Datalog facts that are automatically extracted from the analyzed program (e.g. pointer dependencies).
In that context, this work aims at exploiting Maude’s capabilities for supporting efficient evaluation
of Datalog queries. We demonstrate how, starting from an almost straightforward transformation of
Datalog programs into Maude specifications, we are able to achieve a highly efficient version.

1 Introduction

Datalog [11] has lately focused attention as a means to specifying static analysis
in a very succinct way (just a few clauses), compared to traditional imperative
approaches. The main advantage of formulating data-flow analyses as a Datalog

query is that analyses that take hundreds of lines of code in a traditional language
can be expressed in a few lines of Datalog code [13]. This static analysis approach
implies to recover from the program all the information of interest as a (huge)
set of facts which must be handled effectively by the solver. This paper aims at
taking advantage of Maude’s features for the efficient evaluation of Datalog queries.
Transformation of programs among different paradigms, and in particular from logic
programs to rewriting theories, has been widely studied in academic research and
education. In this work, we demonstrate the impact of different implementation
choices (equations vs rules, extra conditions, etc.) under our working constraints,
i.e., heavy data load (sets of hundreds of facts) and just a few clauses coding the
analysis to be carried out.

1 This work has been partially supported by the eu (feder), the Spanish mec/micinn, under grant tin
2007-68093-C02, the Generalitat Valenciana under grant GV/2009/024, and the Universidad Politécnica de
Valencia, under grant paid-06-07 (tacpas).
2 Email: {alpuente,mfeliu,joubert,villanue}@dsic.upv.es

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Alpuente, Feliú, Joubert and Villanueva

Logic and functional programming are both instances of rule-based, declarative
programming and hence it is not surprising that the relationship between them
has been studied. However, their operational principle differ: logic programming
is based on resolution whereas functional programs are executed by term rewriting.
There exist many proposals for transforming logic programs into rewriting theo-
ries [5,7,10,12]. These transformations aim at reusing the infrastructure of term
rewriting systems to run the (transformed) logic program while preserving the in-
tended observable behavior (e.g. termination, success set, computed answers, etc).
Traditionally, translations of logic programs into functional programs are based
on imposing an input/output relation among the parameters of the original pro-
gram [12]. However, one distinguished feature of Datalog programs burdening the
transformation is that predicate arguments are not moded, meaning that they can
be used both as input or output parameters.

One recent transformation that does not impose an input/output direction for
binding parameters was presented in [10]. The authors defined a transformation
from definite logic programs into (infinitary) term rewriting for the termination
analysis of logic programs. Contrary to our approach, the transformation of [10]
is not concerned with preserving the computed answers, but only the termination
behavior. Moreover, [10] does not tackle the problem of efficiently encoding logic
programs containing a huge amount of facts in a rewriting-based infrastructure.

In previous work [2], we developed a Datalog query solving technique which
is based on Boolean Equation Systems (Bess) [3]. Although the correspondence
between answering a Datalog query and solving a Bes can be established naturally,
the main limitation of this approach is in the difficulty to combine indexed and linked
data structures in order to schedule suitable optimizations which ensure that only
useful combination of facts are simultaneously considered. In this paper, we stay
at a higher level of reasoning in the sense that we transform a high-level Datalog

program into another high-level Maude program.
In Section 2, we present the running Datalog program example that we use to

illustrate the transformations into corresponding Maude specifications. We intro-
duce different transformations by increasing order of efficiency. Section 3 describes
a quite straightforward, rule-based transformation and Section 4 incrementally re-
places backtracking operations of conditional rules by equations. Finally, we con-
clude with some experiments and further directions of research in Section 5.

2 The DATALOG example

Let us introduce the running Datalog program example that we use along the
paper. This program defines a simple, context-insensitive, inclusion-based pointer
analysis for an object-oriented language such as Java. This analysis is defined by
the following predicate vP/2 representing the fact that a program variable points
directly (via vP0/2) or indirectly (via a/2) to a given position in the heap:

vP(Var,Heap) :- vP0(Var,Heap).
vP(Var1,Heap) :- a(Var1,Var2),vP(Var2,Heap).

The predicates a/2 and vP0/2 are defined extensionally by a number of facts that are
automatically extracted from the original program being statically analyzed. The

2

Alpuente, Feliú, Joubert and Villanueva

intuition is that the a/2 predicate represents a direct assignment from a program
variable to another variable, whereas vP0/2 represents newly created pointers within
the analyzed (object-oriented) program from a program variable to the heap. The
following code excerpt contains a number of Datalog facts complementing the above
pointer analysis description for a particular object-oriented example program.

a(v1,v2). a(v1,v3). vP0(v2,h5). vP0(v3,h4).

In the considered Datalog analysis program, a query typically consists in com-
puting the objects in the heap pointed by a specific variable. We write such a query
as ?- vP(v1,Heap).. The expected outcome of this query is the set of all possible
answers, i.e., the set of substitutions mapping the variable Heap to constants sat-
isfying the query. In the example, the set of computed answers for the considered
query is {{Heap/h4},{Heap/h5}}.

Another possible query is ?- vP(Var,h5). , where h5 stands for a heap object.
The solver is expected to compute which are the variables in the analyzed program
that can point to the object h5.

Similarly to [10], our goal is to define a mode-independent transformation for
definite (Datalog) logic programs in order to keep the possibility of running both
kinds of queries. Note that, since variables in rewriting logic are input-only pa-
rameters, we cannot use them to encode logic variables of Datalog. We do it by
following the standard approach based on defining a ground representation for logic
variables [4,6].

3 The rule-based approximation

As explained above, we are interested in recovering all the answers for a given
query. The näıve approach consists in encoding the Datalog clauses as Maude

conditional rules, and then use the Maude search command in order to mimic all
possible executions of the Datalog program.

Let us first introduce our representation of variables and constants of a Datalog

program as ground terms of a given sort in Maude. We define the sorts Variable
and Constant to specifically represent in Maude the variables and constants of the
original Datalog program, whereas the sort Term represents Datalog terms.

sorts Variable Constant Term .
subsort Variable Constant < Term .

In order to construct the elements of the Variable and Constant sorts, we introduce
two constructor symbols: Datalog constants are represented as Maude Quoted
Identifiers (Qids), whereas logical variables are encoded in Maude by means of the
constructor symbol v. These constructor symbols are specified in Maude as follows:

subsort Qid < Constant . --- Every Qid is a Constant
op v : Qid -> Variable [ctor] . --- v(q) is a Variable if q is a Qid
op v : Term Term -> Variable [ctor] .

The last line of the code excerpt above allows us to build variable terms of the form
v(T1,T2) where both T1 and T2 are Terms. This is used to ensure that the ground
representation in Maude for existentially quantified variables appearing in the body
of the Datalog clauses is unique to the whole Maude specification.

Having ground terms representing variables, we still lack a way to collect the

3

Alpuente, Feliú, Joubert and Villanueva

answers for an output variable. In our formulation, the answers are stored within the
term representing the ongoing partial computation of the Maude program. Thus,
we represent a (partial) answer for the original Datalog query as a sequence of
equations (answer constraint) that represents the substitution of (logical) variables
by (logical) constants computed during the program execution:

op = : Term Constant -> Constraint .
op success : -> Constraint [ctor] .
op , : Constraint Constraint -> Constraint [assoc comm id: success] .

Note that the operator , has identity element success and obeys the laws of
associativity and commutativity. A query reduced to success represents a success-
ful computation.

Let us now introduce the translation of Datalog programs into Maude. Since
we want to simulate the non-determinism of Datalog by using the Maude built-
in breadth-first search, we translate as Maude rules the original Datalog clauses.
Maude’s search command will take care of trying all the possible combinations
of them, providing us with the different solutions. In a Datalog program, the
execution of the different clauses or facts for a given predicate symbol is potentially
non-deterministic, so we define a one-to-one correspondence between each clause and
fact with a Maude rule. Considering the running example, we define the following
function symbols in Maude for the predicates vP/2, vP0/2 and a/2:

op vP vP0 a : Term Term -> Constraint .

Note that it would be useless to carry out partial answers that are not correct. A
correct answer is a constraint in which there are no irreconcilable variable bindings.
In logic programming this is implicit within the unification mechanism. In our
transformation, we need an alternative mechanism. We use Maude conditional
rules to encode simple consistency restrictions.

Given a Constraint element, the function isConsistent checks whether the
constraint is consistent or not:

op isConsistent : Constraint -> Bool .
eq isConsistent(success) = true .
ceq isConsistent((X = Cte1) , (X = Cte2) , C) = false if Cte1 =/= Cte2 .
ceq isConsistent((Cte1 = Cte2) , C) = false if Cte1 =/= Cte2 .
ceq isConsistent((T = Cte) , C) = true if isConsistent(C) [owise] .

Using this function, we can easily express the conditional rules encoding the original
Datalog clauses. For the running example, we obtain the following rules:

crl vP(T1,T2) => C if vP0(T1,T2) => C /\ isConsistent(C).

crl vP(T1,T2) => (v(T1,T2) = Cte) , C1 , C2 if
a(T1,v(T1,T2)) => ((v(T1,T2) = Cte) , C1) /\ isConsistent((v(T1,T2) = Cte) , C1) /\
vP(Cte,T2) => C2 /\ isConsistent((v(T1,T2) = Cte) , C1 , C2) .

Each Datalog clause is in one-to-one correspondence with a Maude conditional
rule. The first rule rewrites the predicate vP to the constraint C whenever C is a
consistent result for the term vP0(T1,T2). The second rule has a similar structure.
However, since the Datalog clause has two body subgoals, the rule condition is a bit
more involved. On one hand, we impose a left-to-right evaluation strategy similar
to Prolog. On the other hand, the second Datalog clause in our running example,
has a free variable, namely Var2. As a consequence, the first redex a(T1,v(T1,T2))
will be reduced to a constraint that assigns a constant to the free variable v(T1,T2)
representing Var2. Then, this value is propagated to the next condition, which is a
recursive call to the vP predicate.

4

Alpuente, Feliú, Joubert and Villanueva

Up to this point, we have discussed how to encode in Maude the terms and
clauses of a Datalog program. Let us now proceed with the translation of the
set of (ground) facts of a Datalog program. Each fact represents an assignment
of constants to predicate’s parameters making the predicate true. In our näıve
approach, a fact is represented as a Maude rule rewriting the predicate to the
assignment of constants to the predicate’s arguments. Given the facts of the running
example, we obtain the following Maude rules:

rl a(T1,T2) => (T1 = ’v1) , T2 = ’v2 .
rl a(T1,T2) => (T1 = ’v1) , T2 = ’v3 .
rl vP0(T1,T2) => (T1 = ’v2) , T2 = ’h5 .
rl vP0(T1,T2) => (T1 = ’v3) , T2 = ’h4 .

We use non-conditional Maude rules because substitution’s consistency does not
need to be checked at the level of facts, being already checked at the clause level.
Nevertheless, we have found experimentally that using conditional rules with a sim-
ple check of consistency 3 is significantly more efficient than using non-conditional
rules. Following this idea, facts are defined in the example as follows:

crl a(T1,T2) => (T1 = ’v1) , T2 = ’v2
if (T1 == ’v1 or T1 :: Variable) and (T2 == ’v2 or T2 :: Variable) .

Once the transformation of Datalog programs into Maude specifications is per-
formed, we use the Maude search command to evaluate the query to be solved.
For example, to compute all objects in memory that are pointed by a given variable
of the object-oriented program under analysis, we write the following command:

search vP(v(’variable),v(’heap)) =>*
(v(’variable) = C1:Constant) , (v(’heap) = C2:Constant) , X:Constraint .

This command looks for every possible reduction of the query leading to a con-
straint that represents the solution for the variable of interest. We have tested this
transformation over different sized sets of facts, getting the results shown in Table 1.

Table 1
Execution time (sec.) for the rule-based implementation.

Facts per predicate 100 150 200

Time 1.4 sec. 4.5 sec. 10.9 sec.

Since our final goal is to deal with programs consisting of a huge number of facts
(bigger than 104 facts), the results of this näıve transformation are not satisfactory.
We have learned that the use of rules (especially conditional ones) under backtrack-
ing for the exploration of the search space unbearably penalizes the execution time
of Maude programs. Hence, one way to improve our transformation is to move to
an equation-based representation.

4 The equation-based transformation

Differently from the rule-based approach, we do not check explicitly for the consis-
tency of a constraint. Instead, we make use of simplification equations that collapse
every inconsistent constraint into false while building (partial) answers. As a con-
sequence, , becomes a defined symbol. We also set a hierarchy of subsorts that
allows us to identify trivial constraints whenever possible, improving the overall
performance. The resulting Maude specification is as follows 4 :

3 It checks whether the parameters are consistent w.r.t. the corresponding constants of the fact.
4 The complete specification can be found in [1].

5

Alpuente, Feliú, Joubert and Villanueva

sorts Constraint EmptyConstraint NonEmptyConstraint TConstraint FConstraint .
subsort EmptyConstraint NonEmptyConstraint < Constraint .
subsort TConstraint FConstraint < EmptyConstraint .

op = : Term Constant -> NonEmptyConstraint .
op T : -> TConstraint .
op F : -> FConstraint .
...
eq (Cte = Cte) = T . --- Simplification
eq (Cte1 = Cte2) = F [owise] . --- Unsatisfiability
eq NEC,NEC = NEC . --- Idempotency
eq F,NEC = F . --- Zero element
eq F,F = F . --- Simplification
eq (V = Cte1),(V = Cte2) = F [owise] .--- Unsatisfiability

Since equations in Maude are run deterministically, all the non-determinism
of the original Datalog program has to be embedded into the carried constraints
themselves. This means that, at each execution point, we need to carry on not only
a single answer, but all the possible (partial) answers. To this end, we introduce the
notion of set of answer constraints implementing a new sort called ConstraintSet.
sorts ConstraintSet EmptyConstraintSet NonEmptyConstraintSet .
subsort EmptyConstraintSet NonEmptyConstraintSet < ConstraintSet .
subsort NonEmptyConstraint TConstraint < NonEmptyConstraintSet .
subsort FConstraint < EmptyConstraintSet .

op ; : ConstraintSet ConstraintSet -> ConstraintSet [assoc comm id: F] .
op ; : NonEmptyConstraintSet ConstraintSet -> NonEmptyConstraintSet [assoc comm id: F] .

var NECS : NonEmptyConstraintSet .

eq NECS ; NECS = NECS . --- Idempotency

It is easy to grasp the intuition behind the different sorts and subsort relations
in the above fragment of Maude code. The operator ; represents the union of
constraints. The associativity, commutativity and (the existence of an) identity
element properties of ; can be easily expressed by using ACU 5 attributes in Maude,
thus simplifying the equational specification and achieving better efficiency. We
express the idempotency property of the operator ; by a specific equation on
variables from the NonEmptyConstraintSet subsort.

In order to incrementally add new constraints along the program execution, we
define the composition operator x as follows:

op x : ConstraintSet ConstraintSet -> ConstraintSet [assoc] .

var CS : ConstraintSet .
var NECS1 NECS2 : NonEmptyConstraintSet .
var NEC NEC1 NEC2 : NonEmptyConstraint .

eq F x CS = F . --- L-Zero element
eq CS x F = F . --- R-Zero element
eq F x F = F . --- Double-Zero
eq NEC1 x (NEC2 ; CS) = (NEC1 , NEC2) ; (NEC1 x CS) . --- L-Distributive
eq (NEC ; NECS1) x NECS2 = (NEC x NECS2) ; (NECS1 x NECS2) . --- R-Distributive

In order to mimic the standard left-to-right 6 execution order of the subgoals
in the body of the Datalog clauses, the first näıve idea is trying to translate each
Datalog clause into a conditional equation. Unfortunately, the execution of these
kind of equations suffers an important penalty within the rewriting machinery of
Maude that dramatically slows down the overall performance of the computation.
In order to obtain better performance, we disregard conditional equations in favor
of non-conditional ones and impose an evaluation order by means of some auxiliary
unraveling [8] functions, that stepwisely evaluate each call and propagate the (par-
tially) computed information. We rely on pattern matching to ensure that a call is

5 Equational axioms of associativity, commutativity and identity.
6 This is the way some Datalog solvers such as Xsb [9] work.

6

Alpuente, Feliú, Joubert and Villanueva

executed only when the previous one has been solved.
For each Datalog predicate, we introduce one equation representing the dis-

junction of the possible answers delivered by all the clauses defining that predicate.
In this way, we generate as many auxiliary functions as different clauses define the
Datalog predicate. For instance, the answers for vP/2 in the example are the union
of the answers of functions vPc1 and vPc2 7 , representing the calls to the first and
second Datalog clauses of the running example, respectively:

eq vP(T1,T2) = vPc1(T1,T2) ; vPc2(T1,T2) .

The specification for the first clause vPc1 is given by
eq vPc1(T1,T2) = vP0(T1,T2) .

The transformation for the second clause of the program, represented by vPc2, is
a bit more elaborated. First, it contains more than one subgoal, thus we need an
auxiliary function to impose the execution order. Second, it contains an existentially
quantified variable (not appearing in the head of the clause) that carries information
from one subgoal to the next.

eq vPc2(T1,T2) = vPc2s1(T1,T2) .
eq vPc2s1(T1,T2) = vPc2s2(a(T1,v(T1,T2)),T1 T2) .
eq vPc2s2(((v(T1,T2) = Cte) , C) ; CS, T1 T2) =

(vP(Cte,T1 T2) x ((v(T1,T2) = Cte) , C)) ; vPc2s2(CS,T1 T2) .
eq vPc2s2(F,T1 T2) = F .

As one can observe, vPc2 calls to vPc2s1, whose definition mirrors the execution of
the first subgoal, carrying the (partial) set of answers to the second subgoal in the
first argument of the call vPc2s2. Then, the two arguments of vPc2s2 contain the
(partial) answers resulting from the resolution of a(T1,v(T1,T2)), and the list of
parameters in the head of the original clause. In the pattern at the left-hand side of
the equation vPc2s2, the use of the term v(T1,T2), representing the existentially
quantified variable Var2 of the original Datalog program, is the key for carrying
the computed information from one subgoal to the subsequent subgoals where the
variable occurs. Actually, it allows us to control the recursion over vP in vPc2s2
by constraining it to the value calculated by a(T1,v(T1,T2)). Note that vPc2s2 is
defined to receive the value of the shared variable on the pattern ((V = Cte) , C)
; CS). The recursion over vPc2s2 is needed because its first argument represents all
the possible answers computed by a(T1,v(T1,T2)), thus we recursively compute
each solution and use the constraints composition operator previously defined to
combine them. The formal definition of the transformation can be found in [1].

Similarly to clauses, the set of facts defining a particular predicate represent
non-deterministic choices and hence, they cannot be translated one-to-one into
equations, since equations are evaluated deterministically. We transform them by
joining all non-deterministic choices into a set of answer constraints. Considering
the running example, facts are transformed as follows:

eq a(T1,T2) = ((T1 = ’v1) , (T2 = ’v2)) ; ((T1 = ’v1) , (T2 = ’v3)) .
eq vP0(T1,T2) = ((T1 = ’v2) , (T2 = ’h5)) ; ((T1 = ’v3) , (T2 = ’h4)) .

In order to execute a query in the transformed program, we call the Maude reduce
command. The query that computes all positions to which each variable can point-
to can be written in Maude as follows:

reduce vP(v(’variable),v(’heap)) .

7 The c in vPc1 and vPc2 stands for clause.

7

Alpuente, Feliú, Joubert and Villanueva

We have run this transformation over different numbers of facts and for the given
query we got the results presented in Table 2. These results are much better than the

Table 2
Execution time (sec.) for the equational implementation.

Facts per predicate 100 150 200

Time 0.2 sec. 0.8 sec. 1.7 sec.

previous ones thanks to the use of non-conditional equations. Nevertheless, although
encouraging, the results are not yet good enough for the efficiency requirements we
have in static analysis for large (Java) programs.

We performed a last optimization with Maude’s memoization capabilities [4]. As
it is expected that the subgoal vP(X,Y) will be reduced many times in the recursive
calls, we mark the operator representing it as a memoized one:

op vP : Term Term -> ConstraintSet [memo].

This means that Maude stores each call to vP(X,Y) together with its normal form.
Thus, when Maude finds a memoized call it won’t reduce it but just replace it with
its irreducible form, saving a great amount of rewrites.

We have run again the same tests with this little modification and we got the
results presented in Table 3. This allows us to gain another order of magnitude in
execution time with respect to the previous version.

Table 3
Execution time (sec.) for the equational implementation with memoization.

Facts per predicate 100 150 200 400 800

Time 0.01 sec. 0.01 sec. 0.02 sec. 0.08 sec. 0.6 sec.

We want to mention that, as the number of facts increases, the time required
to read them by the Maude interpreter dominates significantly over the resolution
time. Execution times presented in Tables 2 and 3 exclude the time spent for
loading the specification. As an example, Maude inverts 95% (11.4 sec.) of the
total execution time (12 sec.) in reading and preparing a file with 800 facts before
rewriting it.

5 Conclusion

In this work we have outlined different transformations from Datalog programs
to Maude specifications in the context of Datalog-based static analysis. These
transformations are presented from the straightforward implementation to most
efficient ones, simulating the steps we followed during the development process. We
also describe some encountered difficulties and adopted solutions.

The main advantage of the rule-based approximation is its intuitive correspon-
dence to the original Datalog program, whereas the equational approach, although
less straightforward, is several orders of magnitude faster than the latter. Neverthe-
less, even our best implementation, that handles programs with several hundreds of
facts, is not sufficiently competitive compared to traditional solvers.

As a future work, we plan to use a more compact representation of the facts
in order to minimize the significant execution time spent in the present version
to load them. We can also explore the impact of more sophisticated optimization
techniques like tail-recursion or memoization (at the logical level).

8

Alpuente, Feliú, Joubert and Villanueva

Acknowledgments
We gratefully thank Santiago Escobar for his help and careful suggestions with

this work.

References

[1] M. Alpuente, M.A. Feliú, C. Joubert, and A. Villanueva. Defining Datalog in Rewriting Logic. In D.
de Schreye, editor, Proceedings of 19th International Symposium on Logic-Based Program Synthesis
and Transformation (LOPSTR’09), volume to appear, 2009.

[2] M. Alpuente, M.A. Feliú, C. Joubert, and A. Villanueva. Using Datalog and Boolean Equation
Systems for Program Analysis. In Proceedings of the 13th International Workshop on Formal Methods
for Industrial Critical Systems (FMICS 2008), volume 5596 of Lecture Notes in Computer Science.
Springer-Verlag, 2009.

[3] H. R. Andersen. Model checking and boolean graphs. Theoretical Computer Science, 126(1):3–30,
1994.

[4] M. Clavel, F. Durán, S. Ejer, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Talcott. All About
Maude – A High-Performance Logical Framework, volume 4350 of Lecture Notes in Computer Science.
Springer-Verlag, 2007.

[5] M. Vam Emden and J.W. Lloyd. A logical reconstruction of Prolog II. Journal on Logic Programming,
1, 1984.

[6] P.M. Hill and J.W. Lloyd. Analysis of meta-programs. In H.D. Abramson and M.H. Rogers, editors,
Proceedings of the Meta-Programming in Logic Programming Workshop (Meta88), pages 23–52. MIT
Press, 1989.

[7] M. Marchiori. Logic Programs as Term Rewriting Systems. In Proceedings of the 4th International
Conference on Algebraic and Logic Programming, volume 850 of Lecture Notes In Computer Science,
pages 223– 241. Springer Verlag, 1994.

[8] M. Marchiori. Unravelings and ultra-properties. In M. Hanus and M. Rodŕıguez-Artalejo, editors, 5th
International Conference on Algebraic and Logic Programming, ALP’96, volume 1039 of LNCS, pages
107–121. Springer, 1996.

[9] K. Sagonas, T. Swift, and D.S. Warren. Xsb as an efficient deductive database engine. SIGMOD Rec.,
23(2):442–453, 1994.

[10] P. Schneider-Kamp, J. Giesl, A. Serebrenik, and R. Thiemann. Automated Termination Analysis
for Logic Programs by Term Rewriting. In Proceedings of the Logic-Based Program Synthesis and
Transformation (LOPSTR’06), volume 4407 of Lecture Notes in Computer Science, pages 177–193.
Springer Verlag, 2007.

[11] J. D. Ullman. Principles of Database and Knowledge-Base Systems, Volume I and II, The New
Technologies. Computer Science Press, 1989.

[12] Reddy U.S. Transformation of Logic Programs into Functional Programs. In Proceedings of the
Symposium on Logic Programming, pages 187–197. IEEE Computer Society Press, 1984.

[13] J. Whaley, D. Avots, M. Carbin, and M. S. Lam. Using Datalog with Binary Decision Diagrams for
Program Analysis. In Proc. Third Asian Symp. on Programming Languages and Systems APLAS’05,
volume 3780 of LNCS, pages 97–118. Springer-Verlag, 2005.

9

	Introduction
	The DATALOG example
	The rule-based approximation
	The equation-based transformation
	Conclusion
	References

