
Defining Datalog in Rewriting Logic?

M. Alpuente, M. A. Feliú, C. Joubert, and A. Villanueva

Universidad Politécnica de Valencia, DSIC / ELP
Camino de Vera s/n, 46022 Valencia, Spain

{alpuente,mfeliu,joubert,villanue}@dsic.upv.es

Abstract. Recently, it has been demonstrated the effective application
of logic programming to problems in program analysis. Using a simple
relational query language, like Datalog, complex interprocedural anal-
yses involving dynamically created objects can be expressed in just a
few lines. By exploiting the main features of a term rewriting system like
Maude, we aim at transforming Datalog programs into efficient rewrite
systems. The transformation is proved to be sound and complete. A pro-
totype has been implemented and applied to some real-world Datalog-
based analyses. Experimental results show that solving a Datalog query
using rewriting logic is comparable to state-of-the-art Datalog solvers.

1 Introduction

Datalog [1] is a simple relational query language which permits to describe, in
an intuitive way, complex interprocedural program analyses involving dynami-
cally created objects. The main advantage of formulating data-flow analyses as
a Datalog query is that analyses that take hundreds of lines of code in a tra-
ditional language can be expressed in a few lines of Datalog [2]. In real-world
problems, the Datalog rules encoding a particular analysis must be solved
generally under the huge set of Datalog facts that are automatically extracted
from the analyzed program. In this context, all program updates, like pointer up-
dates, might potentially be inter-related, leading to an exhaustive computation
of all results. An important number of optimization techniques for Datalog has
been designed and studied extensively in program analysis, logic programming,
and deductive databases [3, 4].

The aim of this paper is to provide efficient Datalog query answering in
Rewriting Logic [5], a very general logical and semantical framework efficiently
implemented in the high-level programming language Maude [6]. Our motiva-
tion for using Rewriting Logic is to overcome the difficulty to handle metapro-
gramming features such as reflection in traditional analysis frameworks [7]. Ac-
tually, tracking reflective methods invocations requires not just tracking object
references through variables but actually tracking method values and method

? This work has been partially supported by the eu (feder), the Spanish mec/micinn
under grant tin 2007-68093-C02, the Generalitat Valenciana under grant Emergentes
gv/2009/024, and the Universidad Politécnica de Valencia under grant paid-06-07.

name strings. We consider it a challenge to investigate the interaction of static
analysis with metaprogramming frameworks. An additional goal of this work is
to evaluate if Maude is able to process a sizable number of equations that come
from real-life problems, like those from static analysis problems.

In the related literature, the solution for a Datalog query is classically con-
structed following a bottom-up approach, thus not taking advantage of the in-
formation in the query until the model has been constructed [8]. On the con-
trary, the typical logic programming interpreter would produce the output in
a top-down fashion by reasoning backwards from the query. Between these two
extremes, there is a whole spectrum of evaluation strategies [4, 9, 10]. While
bottom-up computation may be very inefficient, the top-down approach is prone
to infinite computations. In this work, we follow a top-down approach equipped
with a loop check in order to avoid infinite computations, as in [11].

Logic and functional programming are both instances of rule-based, declar-
ative programming and hence it is not surprising that the relationship between
them has been studied. However, the operational principle differs: logic pro-
gramming is based on resolution whereas functional programs are executed by
term rewriting. There exist many proposals for transforming logic programs into
rewriting theories [12–15]. These transformations aim at reusing the infrastruc-
ture of term rewriting systems to run the (transformed) logic program while
preserving the intended observable behavior (e.g. termination, success set, com-
puted answers, etc). Traditionally, translations of logic programs into functional
programs are based on imposing an input/output relation among the parameters
of the original program [15]. However, one distinguished feature of Datalog pro-
grams burdening the transformation is that predicate arguments are not moded,
meaning that they can be used both as input or output parameters.

One recent transformation that does not impose an input/output behavior
among parameters was presented in [14]. The authors defined a transformation
from definite logic programs into (infinitary) term rewriting for the termination
analysis of logic programs. Contrary to our approach, the transformation of [14]
is not concerned with preserving the computed answers, but only the termination
behavior. Moreover, [14] does not tackle the problem of efficiently encoding logic
(Datalog) programs containing a huge amount of facts in a rewriting-based
infrastructure such as Maude. After exploring the impact of different imple-
mentation choices (equations vs rules, extra conditions, etc.) in our working
scenario, i.e., heavy data load (sets of hundreds of facts) together with rela-
tively few clauses encoding the analysis to perform, in this work we present an
equation-based transformation that leads to efficient Maude programs.

In previous work [16], we developed a Datalog query solving technique
based on Boolean Equation Systems (Bess) [17]. Although the correspondence
between answering a Datalog query and solving a Bes can be established
naturally, the main limitation of this approach is in the difficulty to combine
indexed and linked data structures in order to schedule suitable optimizations
which ensure that only useful combination of facts are simultaneously considered.
In this paper, we stay at a higher level in the sense that we transform a high-

2

level Datalog program into another high-level Maude program. The goal is
to take advantage of the flexibility and versatility of Maude in order to achieve
scalability without losing declaratively.

In Section 2, we present our running example: a program analysis expressed
as a Datalog program that we will use to illustrate the general transformation
from a Datalog program into a Maude program. In Section 3, we describe the
transformation of the example. Section 4 formalizes the general process and prove
its correctness and completeness. Section 5 shows experimental results obtained
with realistic examples and compares our Maude implementation to state-of-
the-art Datalog solvers. We conclude and discuss future work in Section 6.

2 A program analysis written as a Datalog program

Datalog is a relational language using declarative clauses to both describe and
query a deductive database. A Datalog clause is a function-free Horn clause
over a finite alphabet of predicate symbols (e.g., relation names or arithmetic
predicates, such as <) whose arguments are either variables or constant symbols.
A Datalog program R is a finite set of Datalog clauses [8].

Definition 1 (Syntax of Rules). Let P be a set of predicate symbols, V be
a finite set of variable symbols, and C a set of constant symbols. A Datalog
clause r defined over a finite alphabet P ⊆ P and arguments from V ∪C, V ⊆ V,
C ⊆ C, has the following syntax:

p0(a0,1, . . . , a0,n0) : − p1(a1,1, . . . , a1,n1), . . . , pm(am,1, . . . , am,nm
).

where m ≥ 0, and each pi is a predicate symbol of arity ni with arguments
ai,j ∈ V ∪ C (j ∈ [1..ni]).

The atom p0(a0,1, . . . , a0,n0) in the left-hand side of the clause is the clause’s
head, where p0 is not arithmetic. The finite conjunction of subgoals in the right-
hand side of the clause is the clause’s body, i.e., a sequence of atoms that contain
all variables appearing in the head. Following logic programming terminology,
a clause with empty body (m = 0) is called a fact. A clause with empty head
and m > 0 is called a query, and � denotes the empty clause. A syntactic
object (argument, atom, or clause) that contains no variables is called ground.
Moreover, an existentially quantified variable is a variable that appears in the
body of a clause and does not occur in its head. The variables appearing in a
query are called output variables.1

Given a Datalog program R and a query q, we follow a top-down approach
and use SLD-resolution to compute the set of answers of q in R. Given the
successful derivation D ≡ q ⇒θ1

SLD q1 ⇒θ2
SLD . . .⇒θn

SLD �, the answer computed
by D is θ1θ2 . . . θn restricted to the variables occurring in q.

1 In the sequel of the paper, Datalog programs are considered to be as defined in
this section.

3

Let us now introduce the running Datalog program example that we use
along the paper. This program defines a simple context-insensitive inclusion-
based pointer analysis for an object-oriented language such as Java. This analy-
sis is defined by the following predicate vP/2 representing the fact that a program
variable points directly (via vP0/2) or indirectly (via a/2) to a given position in
the heap. The second clause states that Var1 points to Heap if Var2 points to
Heap and Var2 is assigned to Var1:

vP(Var,Heap) :- vP0(Var,Heap).

vP(Var1,Heap) :- a(Var1,Var2),vP(Var2,Heap).

The predicates a/2 and vP0/2 are defined extensionally by a number of facts that
are automatically extracted from the original program being statically analyzed.
The intuition is that the a/2 predicate represents a direct assignment from a
program variable to another variable, whereas vP0/2 represents newly created
pointers within the analyzed (object-oriented) program from a program variable
to the heap. The following code excerpt contains a number of Datalog facts
complementing the above pointer analysis description for a particular object-
oriented example program.

a(v1,v2).

a(v1,v3).

vP0(v2,h5).

vP0(v3,h4).

In the considered Datalog analysis program, a query typically consists in com-
puting the objects in the heap pointed by a specific variable. We write such a
query as ?- vP(v1,Heap).. The expected outcome of this query is the set of
all possible answers, i.e., the set of substitutions mapping the variable Heap to
constants satisfying the query. In the example, the set of computed answers for
the considered query is {{Heap/h4},{Heap/h5}}.

Another possible query is ?- vP(Var,h5)., where h5 stands for a heap ob-
ject. The solver should compute which are the variables in the analyzed program
that can point to the object h5.

Similarly to [14], our goal is to define a mode-independent transformation
for (Datalog) logic programs in order to keep the possibility of running both
kinds of queries. Since variables in rewriting logic are input-only parameters, we
cannot use them to encode logic variables of Datalog. We follow the standard
approach based on defining a ground representation for logic variables [6, 18].

3 From Datalog to Maude

As explained above, we are interested in computing by rewriting all answers for
a given query. A näıve approach is to translate Datalog clauses into Maude
rules, similarly to [14], and then use the search2 command of Maude in order
to mimic all possible executions of the original Datalog program. However, in
the context of program analysis, this approach results in poor performance.
2 Intuitively, search t → t′ explores the whole rewriting space from the term t to any

other terms that match t′ [6].

4

In this section, we first formulate a suitable representation in Maude of the
Datalog computed answers. Then, we informally introduce the transformation
by means of the running example. Section 4 formalizes the translation procedure
and proves its correctness.

3.1 Answers representation

Let us first introduce our representation of variables and constants of a Datalog
program as ground terms of a given sort in Maude. We define the sorts Variable
and Constant to specifically represent in Maude the variables and constants of
the original Datalog program, whereas the sort Term (resp. TermList) repre-
sents Datalog terms (resp. lists of terms, built by simple juxtaposition):

sorts Variable Constant Term TermList .

subsort Variable Constant < Term .

subsort Term < TermList .

op : TermList TermList -> TermList [assoc] .

op nil : -> TermList .

For instance, T1 T2 represents the list of terms T1 and T2. In order to construct
the elements of the Variable and Constant sorts, we introduce two construc-
tor symbols: Datalog constants are represented as Maude Quoted Identifiers
(Qids), whereas logical variables are encoded in Maude by means of the con-
structor symbol v. These constructor symbols are specified in Maude as follows:

subsort Qid < Constant . --- Every Qid is a Constant

op v : Qid -> Variable [ctor] . --- v(q) is a Variable if q is a Qid

op v : Term Term -> Variable [ctor] .

The last line of the above code excerpt allows us to build variable terms of the
form v(T1,T2) where both T1 and T2 are Terms. This is used to ensure that the
ground representation in Maude for existentially quantified variables appearing
in the body of Datalog clauses is unique to the whole Maude program.

Having ground terms representing variables, we still lack a way to collect the
answers for an output variable. In our formulation, answers are stored within
the term representing the ongoing partial computation of the Maude program.
Thus, we represent a (partial) answer for the original Datalog query as a se-
quence of equations (called answer constraint) that represents the substitution
of (logical) variables by (logical) constants computed during the program execu-
tion. We define the sort Constraint representing a single answer for a Datalog
query, but we also define a hierarchy of subsorts (e.g., the sort FConstraint, at
the bottom of the hierarchy, represents inconsistent solutions) that allows us to
identify the inconsistent as well as the trivial constraints (Cte = Cte) whenever
possible. This hierarchy allows us to simplify constraints as soon as possible and
to improve performance. The resulting Maude program is as follows:

sorts Constraint EmptyConstraint NonEmptyConstraint TConstraint FConstraint .

subsort EmptyConstraint NonEmptyConstraint < Constraint .

subsort TConstraint FConstraint < EmptyConstraint .

5

op = : Term Constant -> NonEmptyConstraint .

op T : -> TConstraint .

op F : -> FConstraint .

op , : Constraint Constraint -> Constraint [assoc comm id: T] .

op , : FConstraint Constraint -> FConstraint [ditto] .

op , : TConstraint TConstraint -> TConstraint [ditto] .

op , : NonEmptyConstraint TConstraint -> NonEmptyConstraint [ditto] .

op , : NonEmptyConstraint FConstraint -> FConstraint [ditto] .

op , : NonEmptyConstraint NonEmptyConstraint -> NonEmptyConstraint [ditto] .

var NEC : NonEmptyConstraint .

var V : Variable .

var Cte Cte1 Cte2 : Constant .

eq (Cte = Cte) = T . --- Simplification

eq (Cte1 = Cte2) = F [owise] . --- Unsatisfiability

eq NEC,NEC = NEC . --- Idempotence

eq F,NEC = F . --- Zero element

eq F,F = F . --- Simplification

eq (V = Cte1),(V = Cte2) = F [owise] .--- Unsatisfiability

Note that the conjunction operator , has identity element T and obeys the
laws of associativity and commutativity. We express the idempotence property
of the operator by a specific equation on variables from the NonEmptyConstraint
subsort NEC. A query reduced to T represents a successful computation.

Since equations in Maude are run deterministically, all the non-determinism
of the original Datalog program has to be embedded into the carried constraints
themselves. This means that we need to carry on not only a single answer, but
all the possible (partial) answers at a given execution point. To this end, we
introduce the notion of set of answer constraints, and implement in Maude a
new sort called ConstraintSet:

sorts ConstraintSet EmptyConstraintSet NonEmptyConstraintSet .

subsort EmptyConstraintSet NonEmptyConstraintSet < ConstraintSet .

subsort NonEmptyConstraint TConstraint < NonEmptyConstraintSet .

subsort FConstraint < EmptyConstraintSet .

op ; : ConstraintSet ConstraintSet -> ConstraintSet [assoc comm id: F] .

op ; : NonEmptyConstraintSet ConstraintSet -> NonEmptyConstraintSet [assoc comm id: F] .

var NECS : NonEmptyConstraintSet .

eq NECS ; NECS = NECS . --- Idempotence

It is easy to grasp the intuition behind the different sorts and subsort relations in
the above fragment of Maude code. The operator ; represents the disjunction
of constraints. The associativity, commutativity and (the existence of an) iden-
tity element properties of ; can be easily expressed by using ACU attributes
in Maude, thus simplifying the equational specification and achieving better
efficiency. We express the idempotence property of the operator ; by a specific
equation on variables from the NonEmptyConstraintSet subsort.

6

In order to incrementally add new constraints along the program execution,
we define the composition operator x as follows:

op x : ConstraintSet ConstraintSet -> ConstraintSet [assoc] .

var CS : ConstraintSet .

var NECS1 NECS2 : NonEmptyConstraintSet .

var NEC NEC1 NEC2 : NonEmptyConstraint .

eq F x CS = F . --- L-Zero element

eq CS x F = F . --- R-Zero element

eq F x F = F . --- Double-Zero

eq NEC1 x (NEC2 ; CS) = (NEC1 , NEC2) ; (NEC1 x CS) . --- L-Distributive

eq (NEC ; NECS1) x NECS2 = (NEC x NECS2) ; (NECS1 x NECS2) . --- R-Distributive

In order to keep information consistent, some simplification equations are auto-
matically applied. These equations make every inconsistent constraint collapse
into a F value, and trivial constraints are simplified.

3.2 A glimpse of the transformation

In order to mimic the execution order of the subgoals in the body of the Datalog
clauses, the first näıve idea is trying to translate each Datalog clause into a
conditional equation. The execution of these kinds of equations suffers an impor-
tant penalty within the rewriting machinery of Maude that dramatically slows
down the overall performance of the computation. In order to obtain better per-
formance, we disregard conditional equations in favor of non-conditional ones
and impose an evaluation order by means of some auxiliary unraveling [19] func-
tions that stepwisely evaluate each call and propagate the (partially) computed
information. We rely on pattern matching to ensure that a call is executed only
when the previous one has been solved.

For each Datalog predicate, we introduce one equation representing the
disjunction of the possible answers delivered by all the clauses defining that
predicate. In the case of predicates defined by facts, each fact can be represented
as a Constraint term in our setting. Thus, we transform the set of facts defining
a particular predicate as a single equation whose rhs consists of the disjunction
of Constraint terms representing each particular Datalog fact. Considering
the running example, facts are transformed to:
eq a(T1,T2) = ((T1 = ’v1) , (T2 = ’v2)) ; ((T1 = ’v1) , (T2 = ’v3)) .

eq vP0(T1,T2) = ((T1 = ’v2) , (T2 = ’h5)) ; ((T1 = ’v3) , (T2 = ’h4)) .

In the case of predicates defined by clauses with non-empty body, we generate
as many auxiliary functions as different clauses define the Datalog predicate.
For instance, the answers for vP/2 in the example are the disjunction of the
answers of functions vPc1 and vPc2,3 representing the calls to the first and
second Datalog clauses of the running example, respectively:

eq vP(T1,T2) = vPc1(T1,T2) ; vPc2(T1,T2) .

3 The c in vPc1 and vPc2 stands for clause.

7

The specification for the first clause vPc1 is given by

eq vPc1(T1,T2) = vP0(T1,T2) .

The transformation for the second clause of the program, represented by vPc2,
is a bit more elaborated since, first, it contains more than one subgoal, thus we
need an auxiliary function to impose the execution order. Moreover, it contains
an existentially quantified variable (not appearing in the head of the clause) that
carries information from one subgoal to the other.
eq vPc2(T1,T2) = vPc2s2(a(T1,v(T1,T2)), T1 T2) .

eq vPc2s2(((v(T1,T2) = Cte) , C) ; CS, T1 T2) =

(vP(Cte,T1 T2) x ((v(T1,T2) = Cte) , C)) ; vPc2s2(CS,T1 T2) .

eq vPc2s2(F,T1 T2) = F .

As one can observe, vPc2 calls to vPc2s2, whose first argument represents the
execution of the first subgoal and the second one is the list of parameters in the
head of the original clause. The pattern in the first argument in the lhs of the
equation for vPc2s2 forces to compute the (partial) answers resulting from the
resolution of a(T1,v(T1,T2)) first to proceed. The use of the term v(T1,T2),
representing the existentially quantified variable Var2 of the original Datalog
program, in the pattern of the specification of the equation vPc2s2 is the key
for carrying the computed information from one subgoal to the subsequent sub-
goals where the variable occurs. The idea is that vPc2s2 is defined to receive
the value of the shared variable on the pattern ((V = Cte) , C) ; CS). The
recursion over vPc2s2 is needed because its first argument represents all the
possible answers computed by a(T1,v(T1,T2)), thus we recursively compute
each solution and use the constraints composition operator previously defined
to combine them.

In order to execute a query in the transformed program, we call the Maude
reduce command. The query that computes all positions to which each variable
can point-to can be written in Maude as follows:

reduce vP(v(’variable),v(’heap)) .

The answers to this query are shown below. The first sentence specifies the term
which has been reduced. The second sentence shows the number of rewrites and
the execution time that Maude invested to perform the reduction. The last
sentence, written in several lines for the sake of readability, shows the result of
the reduction together with its type.

reduce in ANALYSIS : vP(v(’v), v(’h)) .

rewrites: 39 in 0ms cpu5 (0ms real) (rewrites/second)

result NonEmptyConstraintSet:

((v(’h) = ’h4),v(’v) = ’v3) ;

((v(’h) = ’h5),v(’v) = ’v2) ;

((v(’h) = ’h4),(v(’v) = ’v1),v(v(’v), v(’h)) = ’v3) ;

(v(’h) = ’h5),(v(’v) = ’v1),v(v(’v), v(’h)) = ’v2

As it was expected, four answers have been returned: the first two are obtained
by the auxiliary function vPc1, whereas the other two are computed by the
function vPc2.

8

4 Formal definition of the transformation

In this section, we first give a formal description of the new transformation from
a Datalog program into a Maude program. Then, in Section 4.2 we prove the
correctness and completeness of the transformation.

4.1 The transformation

Let P be a Datalog program defining predicate symbols p1 . . . pn. Before de-
scribing the transformation process, we introduce some auxiliary notations. |pi|
is the number of facts or clauses defining the predicate symbol pi. Following the
Datalog standard, we assume without loss of generality that a predicate pi is
defined only by facts, or only by clauses [8]. The arity of pi is ari.

Let us start by describing the case when predicates are defined by facts.
We transform the whole set of facts defining a given predicate symbol pi into
a single equation by means of a disjunction of answer constraints. Formally, for
each pi with 1 ≤ i ≤ n that is defined in the Datalog program only by facts,
we write the following snippet of Maude code, where the symbol ci,j,k is the
k-th argument of the j-th fact defining the predicate symbol pi:

var Ti,1 ... Ti,ari
: Term .

eq pi(Ti,1, ... ,Ti,ari
) = (Ti,1 = ci,1,1, ... , Ti,ari

= ci,1,ari
) ; ...

; (Ti,1 = ci,|pi|,1, ... , Ti,ari
= ci,|pi|,ari

) .

Similarly, our transformation for Datalog clauses with non-empty body
combines, in a single equation, the disjunction of the calls to all functions rep-
resenting the different clauses for the considered predicate symbol pi. For each
pi with 1 ≤ i ≤ m with non empty body, we have the following Maude piece of
code:
var Ti,1 ... Ti,ari : Term .
eq pi(Ti,1, ... ,Ti,ari

) = pi,1(Ti,1, ... ,Ti,ari
) ; ...

; pi,|pi|(Ti,1,...,Ti,ari
) .

Each call pi,j with 1 ≤ j ≤ |pi| produces the answers computed by the j-th
clause of the predicate symbol. Now we need to define how each of these clauses
is transformed. Notation τai,j,s,k denotes the name of the variable or constant
symbol appearing in the k-th argument of the s-th subgoal in the j-th clause
defining the i-th predicate of the original Datalog program. When s = 0 then
the function refers to the arguments in the head of the clause.

Let us start by considering the case when the body has just one subgoal. We
define the function τpi,j,s that returns the predicate symbol appearing in the s-th
subgoal of the j-th clause defining the i-th predicate in the Datalog program.
For each clause having just a subgoal, we get the following transformation:
eq pi,j(τai,j,0,1,...,τ

a
i,j,0,ari

) = τpi,j,1(τ
a
i,j,1,1, . . . , τ

a
i,j,1,ar l

) .

In the case where more than one subgoal appears in the body of a clause,
we want to impose a left-to-right evaluation strategy. We use auxiliary functions
defined by patterns to force such an execution order. In particular, we set that a

9

subgoal cannot be invoked until the variables in its arguments that also occur in
previous subgoals have been instantiated. We call these variables linked variables.

Let us first introduce some definitions and functions that will be used in our
transformation.

Definition 2 (linked variable). A variable is called linked variable iff it does
not occur in the head of a Datalog clause, and occurs in two or more subgoals
of the clause’s body.

Definition 3 (function linked). Let C be a Datalog clause. Then the func-
tion linked(C) is the function that returns the list of pairs containing in the first
component a linked variable, and in the second component the list of positions
where such a variable occurs in the body of the clause4.

Example 1. For example, given the Datalog clause
C = p(X1,X2) :- p1(X1,X3), p2(X3,X4), p3(X4,X2).

we have that
linked(C) = [(X3,[1.2,2.1]),(X4,[2.2,3.1])]

Now we define the notion of relevant linked variables for a given subgoal,
namely the linked variables of a subgoal appearing also in some previous subgoal.

Definition 4 (Relevant linked variables). Given a clause C and an integer
number n, we define the function relevant that returns the variables that are
common for the n-th subgoal and some previous subgoal:

relevant(n,C)={X|(X,LX)∈ linked(C), and there existsm<n, ∃j s.t.m.j∈LX}

Note that, similarly to [14], we are not marking the input/output positions
of predicates, as required in more traditional transformations. We are just iden-
tifying which are the variables whose values must be propagated for evaluating
the subsequent subgoals following the evaluation strategy.

Now we are ready to address the problem of transforming a clause with more
than one subgoal (and maybe existentially quantified variables) into a set of
equations. Intuitively, the main function initially calls to an auxiliary function
that undertakes the execution of the first subgoal. We have as many auxiliary
functions as subgoals in the original clause, and in the rhs’s of the auxiliary
functions, the execution order of the successive subgoals is implictly controlled
by passing the results of each subgoal as a parameter to the subsequent function.

Let the function pi,j generate the solutions calculated by the j-th clause of the
predicate symbol pi. We state that psi,j,s represents the auxiliary function cor-
responding to the s-th subgoal of the j-th clause defining the predicate pi. Then,
for each clause we have the following translation, where the variables X1...XN
of each equation are calculated by the function relevant(k,linked(clause(i,j)))5

and transformed into the corresponding Maude terms.
4 Positions extend to goals in the natural way.
5 clause(i,j) represents the j-th Datalog clause defining the predicate symbol pi.

10

The first equation reduces the considered Datalog predicate to a call to
the first auxiliary function that calculates the (partial) answers for the second
subgoal, first computing the answers from the first subgoal τpi,j,1 in its first argu-
ment. The second argument of the equations represents the list of terms in the
initial predicate call that, together with the information retrieved from Defini-
tions 3 and 4, allow us to correctly build the patterns and function calls during
the transformation.
eq pi,j(τ

a
i,j,0,1,...,τ

a
i,j,0,ari

) = psi,j,2(τ
p
i,j,1(τ

a
i,j,1,1,...,τ

a
i,j,1,r), τa

i,j,0,1 ... τa
i,j,0,ari

) .

where r is the arity of the predicate τpi,j,1. Then, for each auxiliary function, first
we declare as many constants as relevant variables the given subgoal has. The
left hand side of the equation is defined with patterns that adjust the relevant
variables to the values already computed by the execution of a previous subgoal.
Note that we may have more assignments in the constraint, represented by C, and
that we may have more possible solutions in CS. The auxiliary equation ps’i,j,s
takes each possible (partial) solution and combines it with the solutions given
by the s-th subgoal in the clause (whose predicate symbol is τpi,j,s). Note that we
propagate the instantiation of the relevant variables by means of a substitution.
var C1 ...CN : Constant .

var NECS : NonEmptyConstraintSet .

eq psi,j,s(NECS, T1...Tari) = psi,j,s+1(ps’i,j,s(NECS, T1...Tari), T1...Tari) .

eq psi,j,s(F , LL) = F .

eq ps’i,j,s(((X1=C1,...,XN=CN, C) ; CS), T1...Tari) =

((τp
i,j,s(τ

v
i,j,s,1,...,τ

v
i,j,s,r)[X1\C1,...,XN\CN]) x (X1=C1,...,XN=CN, C)) ;

ps’i,j,s(CS, T1...Tari) .

eq ps’i,j,s((T ; CS), T1...Tari) =

τp
i,j,s(τ

v
i,j,s,1,...,τ

v
i,j,s,r) ; ps’i,j,s(CS, T1...Tari) .

eq ps’i,j,s(F , LL) = F .

The equation for the last subgoal in the clause is slightly different, since we
need not invoke the following auxiliary function. Assuming that g denotes the
number of subgoals in a clause, we define
eq psi,j,g(((X1=C1,...,XN=CN, C) ; CS) , T1...Tari) =

((τp
i,j,g(τ

v
i,j,g,1,...,τ

v
i,j,g,r)[X1\C1,...,XN\CN]) x (X1=C1,...,XN=CN, C)) ;

psi,j,g(CS , T1...Tari) .

eq psi,j,g((T ; CS) , T1...Tari) =

τp
i,j,g(τ

v
i,j,g,1,...,τ

v
i,j,g,r) ; psi,j,g(CS , T1...Tari) .

eq psi,j,g(F , LL) = F .

Finally, we define the transformation for the Datalog query q(X1, . . . , Xn)
where Xi, 1 ≤ i ≤ n are Datalog variables or constants. The Maude encoding
of the query is q(τ q1,...,τ

q
n) where τ qi , 1 ≤ i ≤ n is the transformation of the

corresponding Xi.

4.2 Correctness of the transformation

We have defined a transformation from Datalog programs specifying static
analyses into Maude programs in such a way that the normal form computed

11

for a term of the ConstraintSet sort represents the set of computed answers
for a query of the original Datalog program. In this section we show that the
transformation is sound and complete w.r.t. computed answers.

We first introduce some notation. Let CS be a ConstraintSet of the form
C1 ; C2 ; ...; Cn where each Ci, i ≥ 1 is a Constraint in normal form (C1

= Cte1,...,Cm = Ctem), and V be a list of variables. We write Ci|V to the
restriction of the constraint Ci to the variables in V . We extend the notion to
sets of constraints in the natural way, and denote it as CS|V . Given two terms t
and t′, we write t →∗S t′ when there exists a rewriting sequence from t to t′ in
the Maude program S. Also, var(t) is the set of variables occurring in t.

Now we define a suitable notion of (rewriting) answer constraint :

Definition 5 (Answer Constraint Set). Given a Maude program S as de-
scribed in this work and a input term t, we say that the answer constraint set
computed by t→∗S CS is CS|var(t).

There is a natural isomorphism between the equational constraint C
and an idempotent substitution θ = {X1/C1, X2/C2, . . . , Xn/Cn}, given by:
C is equivalent to θ iff (C⇔ θ̂), where θ̂ is the equational representation of θ. By
abuse, given a disjunction CS of equational constraints and a set of idempotent
substitutions (Θ = ∪ni=1θi), we define Θ ≡ CS iff CS⇔

∨n
i=1 θ̂i

Next we prove that for a given query and Datalog program, each answer
constraint set computed for the corresponding input term in the transformed
Maude program is equivalent to the set of computed answers of the original
Datalog program. The proof of this result is given in [21].

Theorem 1 (Correctness and completeness). Consider a Datalog pro-
gram P together with the query q. Let T (P) be the corresponding, transformed
Maude program, and Tg(q) be the corresponding, transformed input term. Let
Θ be the set of computed answers of P for the query q, and CS|var(Tg(q)) be the
answer constraint set computed by Tg(q)→∗T (P) CS. Then, Θ ≡ CS|var(Tg(q)).

5 Experimental results

This section reports on the performance of our prototype implementing the trans-
formation. First, we compare the efficiency of our implementation with respect
to a näıve transformation to rewriting logic documented in [20]; then, we evalu-
ate the performance of our prototype by comparing it to three state-of-the-art
Datalog solvers.

All experiments were conducted using Java JRE 1.6.0, Joeq version
20030812, on a Mobile AMD Athlon XP2000+ (1.66GHz) with 700 Megabytes
of RAM, running Ubuntu Linux 8.04.

5.1 Comparison w.r.t. the previous rewriting-based versions

We implemented several versions of transformation from Datalog programs
to Maude programs before the one presented in this paper [20]. The first at-
tempt consisted on a transformation based on a one-to-one correspondence of

12

Datalog rules and Maude conditional rules. Then we tried to get rid of all
the non-determinism introduced by conditional equations and rules. In the fol-
lowing, we briefly present the results obtained by using the rule-based approach,
the equational-based approach, and the equational-based approach improved by
using the memoization capability of Maude [6]. Maude is able to store each
call to a given function (in the running example vP(X,Y)) together with its nor-
mal form. Thus, when Maude finds a memoized call it won’t reduce it but just
replaces it with its normal form, saving a great amount of rewrites.

Table 1 shows the resolution times of the three selected versions. The sets
of initial Datalog facts (a/2 and vP0/2) are extracted by the Joeq compiler
from a Java program (with 374 lines of code) implementing a tree visitor. The
Datalog clauses are those of our running example: a simple context-insensitive
inclusion-based pointer analysis. The evaluated query is ?- vP(Var,Heap)., i.e.,
all possible answers that satisfy the predicate vP/2.

Table 1. Number of initial facts (a/2 and vP0/2) and computed answers (vP/2), and
resolution time (in seconds) for the three implementations.

a/2 vP0/2 VP/2 rule-based equational equational+memo

100 100 ? 6.00 0.67 0.02
150 150 ? 20.59 2.23 0.04
200 200 ? 48.48 6.11 0.10
403 399 ? 382.16 77.33 0.47
807 1669 ? 4715.77 1098.64 3.52

The results obtained with the equational implementation are an order of
magnitude better than those obtained by the näıve transformation based on
rules. These results are due to the fact that backtracking operations associated
to the non-determinism of rules and conditional equations and rules penalize the
näıve version. We can also observe that using memoization enables us to gain
another order of magnitude in execution time with respect to the basic equational
implementation. These results confirm that the equational implementation fits
our stated purpose, namely program analysis, and that it is likely to provide a
useful way forward, compared to other implementations of Datalog.

5.2 Comparison w.r.t. other state-of-the-art Datalog solvers

The same sets of initial facts were used to compare our prototype (the equational-
based version with memoization) with three state-of-the-art Datalog solvers,
namely Xsb 3.2 6, Datalog 1.4 7, and Iris 0.58 8. Average resolution times of
three runs for each solver are shown in Figure 1.

In order to evaluate the performance of our implementation with respect to
the other Datalog solvers, only resolution times are presented in Figure 1. This
6 http://xsb.sourceforge.net
7 http://datalog.sourceforge.net
8 http://iris-reasoner.sourceforge.net

13

Fig. 1. Average resolution times of four Datalog solvers (logarithmic time).

means that initialization operations, like loading and compilation, are not taken
into account in the results. Although being slower than Xsb or Iris, from our
figures we can conclude that Maude behaves similarly to optimized deductive
database systems, like Datalog 1.4, which is implemented in C. This validates
that Maude is able to process, under a good transformation such as the equa-
tional implementation extended with memoization, a large number of equations
extracted from real programs in the context of static program analysis. Our
rewrite system could be even more enhanced with the incorporation of efficient
Bdd representation [22] of the input data.

6 Conclusion

In this work, we have defined and implemented an efficient transformation from
definite Datalog programs into Maude programs in the context of Datalog-
based static analysis. We have formalized and proved the correctness of the trans-
formation, and compared the implementation to standard Datalog solvers. We
evaluated that Maude was able to process a sizable number of equations, that
come from real-life problems, like those from the static analysis of programs.

As a future work, we plan to use a more compact representation of the facts,
such as Bdds, in order to minimize the significant loading time and size of the
manipulated term in the rewriting system. We also plan to explore the impact of
more sophisticated optimization techniques like tail-recursion or memoization (at
the logical level) and other specific Datalog optimizations [23]. Our final goal
is to explore the impact of using the metalevel capabilities of rewriting logic for
the analysis of object-oriented programs that include metaprogramming features
such as reflection.

References

1. Ullman, J.D.: Principles of Database and Knowledge-Base Systems, Vol. I and II,
The New Technologies. Computer Science Press (1989)

2. Whaley, J., Avots, D., Carbin, M., Lam, M.: Using Datalog with Binary Decision
Diagrams for Program Analysis. In: Proc. of 3rd Asian Symp. on Programming
Lang. and Systems (APLAS’05). Vol. 3780 of LNCS, Springer-Verlag (2005) 97-118

14

3. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley
(1995)

4. Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer-
Verlag (1990)

5. Meseguer, J.: Conditional Rewriting Logic as a Unified Model of Concurrency.
Theoretical Computer Science 96(1) (1992) 73–155

6. Clavel, M., Durán, F., Ejer, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude – A High-Performance Logical Framework. Vol. 4350 of
LNCS. Springer-Verlag (2007)

7. Livshits, B., Whaley, J., Lam, M.: Reflection Analysis for Java. In: Proc. of the 3rd
Asian Symp. on Programming Lang. and Systems (APLAS’05). (2005) 139–160

8. Leeuwen, J., ed.: Formal Models and Semantics. Volume B. Elsevier, The MIT
Press (1990)

9. Bancilhon, F., Maier, D., Sagiv, Y., Ullman, J.D.: Magic Sets and Other Strange
Ways to Implement Logic Programs. In: Proc. of the 5th ACM SIGACT-SIGMOD
Symp. on Principles of Database Systems (PODS’86), ACM Press (1986) 1–15

10. Vieille, L.: Recursive Axioms in Deductive Databases: The Query/Subquery Ap-
proach. In: Proc. of the 1st Int’l Conf. on Expert Database Systems (EDS’86).
(1986) 253–267

11. Sagonas, K.F., Swift, T., Warren, D.S.: XSB as an Efficient Deductive Database
Engine. In: Proc. of the 1994 ACM SIGMOD Int’l Conf. on Management of Data,
ACM Press (1994) 442–453

12. Emden, M., Lloyd, J.: A logical reconstruction of Prolog II. Journal on Logic
Programming 1 (1984)

13. Marchiori, M.: Logic Programs as Term Rewriting Systems. In: Proc. of the 4th
Int’l Conf. on Algebraic and Logic Programming (ALP’94. Vol. 850 of LNCS.,
Springer-Verlag (1994) 223– 241

14. Schneider-Kamp, P., Giesl, J., Serebrenik, A., Thiemann, R.: Automated Termi-
nation Analysis for Logic Programs by Term Rewriting. In: Proc. of the 16th Int’l
Symp. on Logic-Based Program Synthesis and Transformation (LOPSTR’06). Vol.
4407 of LNCS., Springer-Verlag (2007) 177–193

15. Reddy, U.: Transformation of Logic Programs into Functional Programs. In: Proc.
of the Symp. on Logic Programming (SLP’84), IEEE Computer Society Press
(1984) 187–197

16. Alpuente, M., Feliú, M., Joubert, C., Villanueva, A.: Using Datalog and Boolean
Equation Systems for Program Analysis. In: Proc. of the 13th Int’l Workshop on
Formal Methods for Industrial Critical Systems (FMICS’08). Vol. 5596 of LNCS.,
Springer-Verlag (2009) 215–231

17. Andersen, H.R.: Model checking and boolean graphs. Theoretical Computer Sci-
ence 126(1) (1994) 3–30

18. Hill, P.M., Lloyd, J.W.: Analysis of Meta-Programs. In: Proc. of the First Int’l
Workshop on Meta-Programming in Logic (META’88). (1988) 23–51

19. Marchiori, M.: Unravelings and ultra-properties. In: Proc. of the 5th Int’l Conf. on
Algebraic and Logic Programming (ALP’96). Vol. 1039 of LNCS., Springer-Verlag
(1996) 107–121

20. Alpuente, M., Feliú, M., Joubert, C., Villanueva, A.: Implementing Datalog in
Maude. In: Proc. of the IX Jornadas sobre Programación y Lenguajes (PROLE’09)
and I Taller de Programación Funcional (TPF’09). (September 2009) To appear.

21. Alpuente, M., Feliú, M., Joubert, C., Villanueva, A.: Defining Datalog in
Rewriting Logic. Technical Report DSIC, Universidad Politécnica de Valencia.
http://www.dsic.upv.es/~villanue/pub/AFJV09-techrep.pdf

15

22. Zantema, H., Pol, J.: A rewriting approach to binary decision diagrams. Journal
of Logic and Algebraic Programming 49 (2001) 61–86

23. Liu, Y., Stoller, S.: From Datalog Rules to Efficient Programs with Time and
Space Guarantees. ACM Transactions on Programming Languages and Systems
(2009) To appear.

16

