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Abstract. Nonmonotonic dl-programs provide a loose integration of Description
Logic (DL) ontologies and Logic Programming (LP) rules with negation, where
a rule engine can query an ontology with a native DL reasoner. However, even
for tractable dl-programs, the overhead of an external DL reasoner might be con-
siderable. Datalog-rewritable DL ontologies, such as LDL+, can be rewritten
to Datalog programs, such that dl-programs can be reduced to Datalog¬, i.e,
Datalog with negation, under well-founded semantics. We developed the rea-
soner DReW that uses the Datalog-rewriting technique. DReW can as such
answer conjunctive queries over LDL+ ontologies, as well as reason on dl-
programs over LDL+ ontologies under well-founded semantics. The prelimi-
nary but encouraging experimental results show that DReW can efficiently han-
dle large knowledge bases.

1 Introduction

As the envisioned basis of future information systems, the Semantic Web is a fertile
ground for deploying AI techniques, and in turn raises new research problems in AI. As
a prominent example, the combination of rules with Description Logics (DLs), which
is central to the Semantic Web architecture, has received high attention over the past
years, with approaches like Description Logic Programs [10], DL-safe rules [21], r-
hybrid KBs [24], DL+log [25], MKNF KBs [20], Description Logic Rules and ELP
[15, 16], and dl-programs [5].

Nonmonotonic dl-programs provide a loose integration of Description Logic (DL)
ontologies and Logic Programming (LP) rules with negation, where a rule engine can
query an ontology using a native DL reasoner. For dl-programs over tractable DL on-
tologies under well-founded semantics, the reasoning problem is tractable [6]. However,
even for tractable dl-programs, the overhead of an external DL reasoner might be con-
siderable.

In [13], Datalog-rewritability was proposed to remedy the overload of calling ex-
ternal DL reasoners. A Datalog-rewritable ontology can be polynomially rewritten to
a Datalog program. Moreover, dl-programs over such Datalog-rewritable ontologies
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can then be reduced to Datalog¬— Datalog with negation — programs. A particular
Datalog-rewritable DL, called LDL+, was also proposed in [13]. Reasoning in LDL+

is tractable, under both data and combined complexity. Despite its low complexity,
LDL+ is still expressive enough in ontology applications sucha s role equvalences
and transitive roles.

Based on the concept of Datalog-rewriting, we developed a new reasoner DReW
(Datalog ReWriter)1, which rewrites LDL+ontologies (dl-programs over LDL+ on-
tologies) to Datalog (Datalog¬) programs, and calls an underlying rule-based reasoner,
currently DLV, to perform the actual reasoning. For LDL+ ontologies, DReW does
instance checking as well as answering of conjunctive queries (CQs). For dl-programs
over LDL+ ontologies, DReW computes the well-founded model.

The evaluation of the DReW reasoner goes along two axes: as a pure DL reasoner
and as a reasoner for dl-programs. Furthermore, we show that several real-word ontolo-
gies fall to a large extent in the LDL+ fragment. We compare CQs over the LUBM [11]
benchmark with Pellet, KAON2 and RacerPro. For dl-programs, we compare DReW
with DLVHEX over LUBM ontologies with dl-rules. The preliminary but encouraging
experimental results show that DReW can efficiently handle large knowledge bases.

The remainder of the paper is organized as follows: in Section 2, we recall Datalog,
Datalog¬, Description Logics, and dl-programs under well-founded semantics. In Sec-
tion 3, we show how Datalog-rewritability can be used to reason on DL ontologies and
dl-programs, and we present our new reasoner DReW. Section 4 describes the eval-
uation of DReW. We compare our work with Horn-SROIQ [23], ELP [15, 16], and
KAON2 [22] in Section 5. Finally, we conclude our work in Section 6.

2 Preliminaries

2.1 Datalog and Datalog¬

Constants, variables, terms, and atoms are defined as usual. We assume that a binary
inequality predicate 6= is available; atoms not using 6= are normal. A Datalog¬ rule r
has the form

h← b1 , . . . , bk ,not c1 , . . . ,not cm (1)

where the body b1, . . . , bk, c1, . . . , cm are atoms and the head h is a normal atom. We
call B−(r) = {c1, . . . , cm} the negative body of r. If B−(r) = ∅, then r is a Datalog
rule. A finite set of Datalog¬ (Datalog) rules is a Datalog¬ (Datalog) program. Ground
terms, atoms, and programs are defined as usual. A fact is a ground rule (1) with k =
m = 0.

The Herbrand Domain HP of a program P is the set of constants from P . The
Herbrand Base BP of P is the set of normal ground atoms with predicates and constants
from P . An interpretation of P is any set I ⊆ BP . For a ground normal atom a, we
write I |= a if a ∈ I; for a ground atom c1 6= c2, we write I |= c1 6= c2 if c1 and c2 are
different; for a ground negation as failure atom l = not a, we write I |= l if I 6|= a. For
a set of ground (negation as failure) atoms α, I |= α if I |= l for all l ∈ α. A ground
rule r : h←α is satisfied w.r.t. I , denoted I |= r, if I |= h whenever I |= α.

1 http://www.kr.tuwien.ac.at/research/systems/drew
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An interpretation I of a ground program P is a model of P , if I |= r for every
r ∈ P ; in addition, I is minimal, if P has no model J ⊂ I . For a non-ground P , I is a
(minimal) model of P iff it is a (minimal) model of gr(P ), the grounding of P with the
constants of P defined as usual. Each Datalog program P has some minimal model,
which in fact is unique; we denote it with MM (P ). We write P |= a if MM (P ) |= a.

We recall the well-founded semantics [8] for Datalog¬. Let I be an interpretation
for a Datalog¬ program P . The GL-reduct [9] P I of a program P is the set of Datalog
rules h← b1 , . . . , bk such that r : h← b1 , . . . , bk ,not c1 , . . . ,not cm ∈ gr(P ) and
I 6|= ci, for all i, 1 ≤ i ≤ m.

Using the γ operator [3], one can define the well-founded semantics as follows. Let
γP (I) = MM (P I) and γ2

P (I) = γP (γP (I)), i.e., applying the γ operator twice; as
γP is anti-monotone, γ2

P is monotone. The set of well-founded atoms of P , denoted
WFS (P ), is exactly the least fixed point of γ2

P . We denote with P |=wf a that a ∈
WFS (P ).

For a Datalog (Datalog¬) program P and an atom a, deciding P |=a (P |=wf a) is
data complete (P is fixed except for facts) for PTIME and (combined) complete (P is
arbitrary) for EXPTIME [4].

2.2 Description Logics

For space constraints, we assume the reader is familiar with DLs and adopt the usual
conventions, see [2]. We highlight some points below.

A DL knowledge base (KB) Σ = 〈T ,A〉 consists of a finite set T (called TBox) of
terminological and role axioms α v β, where α and β are concept (respectively role)
expressions, and a finite set A (called ABox) of assertions A(o1) and R(o1, o2) where
A is a concept name, R is a role name, and o1, o2 are individuals (i.e., constants). We
also view Σ as the set T ∪ A.

For particular classes of DL KBs Σ, we assume that (1) Σ is defined over a (finite)
set Po of concept and role names; we call the constants appearing in Σ the Herbrand
domain of Σ, denoted with ∆H(Σ); (2) Σ can be extended with arbitrary assertions,
i.e., for any ABox A′ (over Po), Σ ∪ A′ is an admissible DL KB, and (3) Σ defines
a ground entailment relation |= such that Σ |= Q(e) is defined for dl-queries Q(e), e
ground terms, which indicates that all models of Σ satisfy Q(e). Here, a dl-query Q(t)
is either of the form (a) C(t), where C is a concept and t is a term; or (b) R(t1, t2),
where R is a role and t1, t2 are terms.

The relation Σ |= Q(e) is defined relative to the models of Σ, which are the in-
terpretations I = (∆I , ·I) that satisfy all axioms and assertions of Σ, where ∆I 6=∅ is
the domain and ·I is an interpretation function for concept- and role names as well as
individuals. Note that we do not allow for subsumption checking in this paper. We are
mainly interested in query answering.

We will assume that the unique names assumption (UNA) holds in interpretations
I, i.e., oI1 6= oI2 for distinct o1 and o2, and moreover for simplicity that oI = o for
individuals o (in particular {o}I = {oI} for nominals) appearing in the KB. UNA is
required due to the translation to datalog later where we have UNA.
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Example 1. Take the DL KB Σ:

(≥2 PapToRev .>) v Over
Over v ∀Super+.Over

{(a, b)} t {(b, c)} v Super

where Super+ is the transitive closure of the role Super . The first two axioms indicate
that someone who has more than two papers to review is overloaded, and that an over-
loaded person causes all the supervised persons to be overloaded as well (otherwise the
manager delegates badly). The final axiom — equivalent to the assertions Super(a, b)
and Super(b, c) — defines the supervision hierarchy.

The particular Description Logic that the reasoner DReW is able to handle isLDL+,
as introduced in [13].
LDL+ is designed by syntactic restrictions on the expressions that occur in axioms,

distinguishing between occurrence in the “body” α and the “head” β of an axiom α v
β. We define

– b-roles (b for body) E,F to be role names P , role inverses E−, role conjunctions
E uF , role disjunctions E tF , role sequences E ◦F , transitive closures E+, role
nominals {(o1, o2)}, and role top >2, where o1, o2 are individuals, and >2 is the
universal role;

– h-roles (h for head) E,F to be role names P , role inverses E−, role conjunctions
E u F , and role top >2.

Furthermore, let basic concepts C, D be concept names A, the top symbol >, and
conjunctions C uD; then we define

– b-concepts C, D as concept names A, conjunctions C u D, disjunctions C t D,
exists restrictions ∃E.C, atleast restrictions ≥n E.C, nominals {o}, and the top
symbol >, where E is a b-role as above, and o is an individual.

– h-concepts (h for head) as basic concepts B or value restrictions ∀E.B where B
is a basic concept and E a b-role.

Now an LDL+ KB is a pair Σ = 〈T ,A〉 of a finite TBox T and a finite ABox A,
where

– T is a set of terminological axioms B v H , where B is a b-concept and H is an
h-concept, and role axioms S v T , where S is a b-role and T is an h-role, and

– A is a set of assertions of the form C(o) and E(o1, o2) where C is an h-concept
and E an h-role.

Example 2. Reconsider the DL KB Σ from Example 1. It is easily checked that Σ
amounts to an LDL+ KB.

As established in [13], one can check entailment of an atom w.r.t an LDL+ KB by
calculating a minimal model w.r.t. to the Herbrand domain of the KB (the individuals
appearing in the KB) and checking membership of the atom in that minimal model.
This core result allows us to reduce entailment of atoms w.r.t. an LDL+ KB to checking
entailment w.r.t. a Datalog program.
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2.3 DL-Programs under Well-Founded Semantics

We introduce dl-programs under well-founded semantics (WFS) [6].
Informally, a dl-program consists of a DL KB Σ overPo and a Datalog¬ program P

over a set of predicates Pp distinct from Po , which may contain queries to Σ. Roughly,
such queries ask whether a certain ground atom logically follows from Σ. Note that the
Herbrand domains of Σ and P are not necessarily distinct.

Syntax. A dl-atom a(t) has the form

DL[S1 ] p1, . . . , Sm ] pm; Q](t) m ≥ 0, (2)

where each Si is either a concept or a role name from Po , pi is a unary, resp. binary,
predicate symbol from Pp , and Q(t) is a dl-query. We call the list S1]p1, . . . , Sm]pm

the input signature and p1, . . . , pm the input predicate symbols. Intuitively, ] increases
Si by the extension of pi prior to the evaluation of query Q(t).2

A dl-rule r has the form (1), where any atom bi, cj may be a dl-atom. A dl-pro-
gram KB= (Σ,P ) consists of a DL KB Σ and a finite set of dl-rules P — KB is a
dl-program over DL, if Σ is a DL KB.

Semantics. We define the Herbrand base BKB of a dl-program KB = (Σ,P) as the
set of ground atoms with predicate symbols from P (i.e., from Pp) and constants from
the Herbrand domains of Σ and P . An interpretation of KB is any subset I ⊆ BKB. It
satisfies a ground atom a under Σ, denoted I |=Σ a,

– in case a is a non-dl-atom, iff I |= a, and
– in case a is a dl-atom of form (2), iff Σ ∪ τ I(a) |= Q(c),

where τ I(a), the extension of a under I , is τ I(a) =
⋃m

i=1 Ai(I) with Ai(I) = {Si(e) |
pi(e) ∈ I}. Satisfaction of ground dl-rules r under Σ is then as usual (see Datalog¬)
and denoted with I |=Σ r. I is a model of KB, denoted I |= KB, iff I |=Σ r for all
r ∈ gr(P).

We define the well-founded semantics for dl-programs as in [6] using the γ2 op-
erator. For I and KB = (Σ,P), let KBI = (Σ, sP I

Σ), the reduct of KB wrt. I , be
the dl-program where sP I

Σ results from gr(P) by deleting (1) every dl-rule r where
I |=Σ a for some a ∈ B−(r), and (2) from the remaining dl-rules r the negative body
B−(r). Note that sP I

Σ may still contain positive dl-atoms. As shown in [6], KBI has a
single minimal model, denoted MM (KBI).

Now the operator γKB on interpretations I ofKB is defined by γKB(I) = MM (KBI).
As γKB is anti-monotone, γ2

KB(I) = γKB(γKB(I)) is monotone and has a least fixpoint.
This fixpoint is the set of well-founded atoms of KB, denoted WFS (KB); we denote
with KB |=wf a that a ∈WFS (KB).

2 Modifiers that were included in the original dl-program, −∪, −∩, may be expressed by ] in
strong enough DLs and similarly for subsumption expressions C v D. However, Datalog-
rewritability precludes such constructs.
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Example 3. Take KB = (Σ,P) where Σ as in Example 1 and P :

r1 : good(X ) ← DL[; Super ](X ,Y ),
not DL[PapToRev ] paper; Over](Y );

r2 : over(X ) ← not good(X );
r3 : paper(b, p1 ) ← ;
r4 : paper(b, p2 ) ← .

Note that the first dl-atom has no input signature. Intuitively, r1 indicates that if X is
supervising Y and Y is not overloaded, then X is a good manager and r2 indicates that
if X is a not a good manager then X is overloaded. Then, KB |=wf over(a).

Deciding (Σ,P ) |=wf a is combined complete for EXPTIME (PTIMENEXP) for Σ in
SHIF(D) (SHOIN (D)) and data complete for PTIMENP for Σ in SHIF(D) and
SHOIN (D) [6]; here data complete means that only the constants in Σ and P , the
ABox A, and the facts in P may vary.

3 DReW: Reasoning with Description Logics and DL-Programs
using Datalog

As seen in the previous section, one can check entailment of an atom w.r.t. an LDL+

KB by calculating a minimal model w.r.t. to the Herbrand domain of the KB [13]. Thus,
if we manage to write a Datalog program that has a minimal model corresponding to
that minimal model of the KB, we obtain a procedure to check entailment of an atom
w.r.t. an LDL+ using standard Datalog engines.

This is exactly the approach DReW takes for conjunctive query answering w.r.t.
LDL+ knowledge bases, and by extension, for reasoning with DL-Programs that have
as an underlying DL LDL+.

We illustrate the approach by means of Example 3. Take the DL part Σ of the
particular dl-program. How to rewrite Σ to a Datalog program P such that CQs against
Σ can be solved by posing the query to P ?

Take (≥2 PapToRev .>) v Over from Σ. This corresponds trivially to a rule

Over(X ) ← (≥2 PapToRev .>)(X )

where (≥2 PapToRev.>) is treated as a predicate. In order to make the DL semantics
of this number restriction explicit in the program, we add its definition:

(≥2 PapToRev .>)(X ) ← PapToRev(X ,Y1 ),PapToRev(X ,Y2 ),
>(Y1 ),>(Y2 ),Y1 6= Y2

where again > is treated as a predicate. Note that if there are two different domain
elements y1 and y2 such that PapToRev(x , y1 ) and PapToRev(x , y2 ) are true in the
model of the program, then the literal (≥2 PapToRev .>)(x ) will be true as well. Vice
versa, due to minimality of models of a program, the latter literal will only be true in a
minimal model, if there are such two successors y1 and y2.
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For the axiom Over v ∀Super+.Over , we have a rule

Over(Y ) ← Super+(X ,Y ),Over(X )

The transitive closure of Super is defined by the traditional Datalog recursive rules
to define transitive closure of a predicate:

Super+(X ,Y ) ← Super(X ,Y )
Super+(X ,Y ) ← Super(X ,Z ),Super+(Z ,Y )

Note that in contrast with the Horn fragment of Description Logic Programs [10],
the translation uses recursive rules and thus full capabilities of Datalog reasoning.

The axiom {(a, b)} t {(b, c)} v Super results in rules

Super(X ,Y ) ← {(a, b)}(X ,Y )
Super(X ,Y ) ← {(b, c)}(X ,Y )

Together with the rules for nominals,

{(a, b)}(a, b) ←
{(b, c)}(b, c) ←

this ensures that both (a, b) and (b, c) are in the extension of Super as intended by
the axiom. Finally, we have rules to ensure the proper handling of inverses,

Super(X ,Y ) ← Super−(Y ,X )
PapToRev(X ,Y ) ← PapToRev−(Y ,X )

and the rules that introduce the Herbrand domain of the DL KB via > and >2

predicates:

>(a) ←
>(b) ←
>(c) ←

>2 (X ,Y ) ← >(X ),>(Y )

The formal translation of any LDL+ knowledge base Σ to a Datalog program
ΦLDL+(Σ) can be found in [13]. In particular, we can reduce ground entailment of a
ground atom w.r.t. LDL+ knowledge bases to checking whether the atom is present in
the minimal model of the translation in Datalog [13, Proposition 10].

We can use this translation of LDL+ knowledge bases to Datalog to translate rea-
soning with dl-programs over LDL+ under well-founded semantics to Datalog¬ under
well-founded semantics. In other words, for a dl-program KB = (Σ,P) where Σ is
an LDL+ knowledge base and P is a Datalog¬ program, there is a Datalog¬ program
Ψ(KB) that is equivalent w.r.t. checking ground entailment.
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Take the dl-program KB = (Σ,P) where Σ = { C v D } and

P
∆= { p(a)← ; s(a)← ; s(b)← ;

q←DL[C ] s;D ](a),not DL[C ] p;D ](b) }.

Intuitively, the dl-atom DL[C ] s; D](a) extends C in Σ with the extension of s
(i.e., with a and b) and queries Σ then for D(a) which is indeed entailed from Σ once
C(a) holds; similarly DL[C ] p; D](b) extends C with the extension of p (i.e., a), and
queries Σ for D(b) which is not entailed from C v D if only C(a) is assumed to hold
in Σ.

Note that each dl-atom sends up a different input/hypothesis to Σ and that entail-
ments for each different input might be different. To this purpose, we copy Σ to new
disjoint equivalent versions for each dl-atom, i.e., for each distinct dl-atom λ, we define
a new knowledge base Σλ that results from replacing all concept and role names by a
λ-subscripted version. Thus, for the set ΛP = {λ1

∆= C ] s, λ2
∆= C ] p} of dl-atoms,

we have Σλ1 = { Cλ1 v Dλ1 } and Σλ2 = { Cλ2 v Dλ2 }.
We translate these disjoint knowledge bases to a Datalog program using ΦLDL+as

described above, resulting in the rules Dλ1
(X )←Cλ1

(X ) and Dλ2
(X )←Cλ2

(X ).
The inputs in the dl-atoms ΛP can then be encoded as rules ρ(ΛP ):

Cλ1
(X ) ← s(X )

Cλ2
(X ) ← p(X )

Remains to replace the original dl-rules with rules not containing dl-atoms: P ord

results from replacing each dl-atom DL[λ; Q](t) in P with a new atom Qλ(t), such
that P ord is the Datalog¬ program

P ord ∆= { p(a)← ; s(a)← ; s(b)← ;
q←Dλ1

(a),not Dλ2
(b) }.

One sees that indeedKB |= q and ΦLDL+(Σλ1)∪ΦLDL+(Σλ2)∪P ord ∪ρ(ΛP ) |=
q, effectively reducing reasoning w.r.t. the dl-program to a Datalog¬ program.

Such a translation of the loose coupling via dl-programs is not limited to the use
of LDL+. In [13], we showed that such a translation works for so-called Datalog-
rewriteable DLs, roughly, DLs for which entailment can be reduced to Datalog reason-
ing. An example of such DLs are the (individual-free) Horn-DL fragments of OWL 1
and 2 [23].

Figure 1 shows a schematic overview of the component of DReW responsible for
reducing entailment from DLs to Datalog. The extension for dl-programs is a straight-
forward elaboration of this. Taking as input a conjunctive query and an ontology in
OWL 2 syntax extended for the complex role expressions of LDL+, DReW checks
whether the ontology is in the LDL+ fragment. If it is, we translate the ontology ac-
cording to the format suitable for the specified Datalog reasoner (DLV in our case).

DReW is written in Java using an extension of the OWL API 3.0.03 for parsing
LDL+ ontologies. The underlying Datalog engine we used is the latest version of DLV

3 http://owlapi.sourceforge.net/

8



Parse CQExtended OWL 2 ontology

LDL+

fragment?

Translate
to Datalog

Reject

Datalog reasoner profile Datalog
Reasoner

yes

no

Fig. 1. DReW Control Flow — DL Component

(dl-magic-snapshot-2009-11-26) 4 which supports magic sets and well-founded seman-
tics.

4 Evaluation

In this section, we evaluate the DReW reasoner. We do so along two axes: as a pure
Description Logic reasoner and as a reasoner for dl-programs.

All experiments were performed on a laptop running Ubuntu 10.04 with a 1.83G
CPU and 2G of memory; the memory of the Java Virtual Machine was set to 1G.

4.1 Reasoning with Description Logics

We first analyze to what extent common ontologies fall in the LDL+ fragment. Next,
we analyze the performance of conjunctive query answering with DReW compared to
standard DL reasoners on those ontologies.

Expressiveness of LDL+ To assess the expressiveness of LDL+, we select several
ontologies and show that they fall to a large extent in the LDL+profile. We picked the
ontologies that are used in Motik’s thesis for testing the DL reasoner KAON2 [22]; they
can be downloaded from the KAON 2 site5.

The results of this experiment are listed in Table 1. Note that for Galen over 40%
of the axioms are not in the LDL+ profile, but that for Dolce and Wine over 80% of

4 http://www.dbai.tuwien.ac.at/proj/dlv/magic/
5 http://kaon2.semanticweb.org/download/test ontologies.zip
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Ontology Axioms Inds Concepts Object Props LDL+? Violated Axioms Violated %

Galen 4,356 0 2,747 261 no 1,881 0.43
Dolce 1,185 2 125 251 no 162 0.14
Wine 773 162 142 13 no 137 0.18

Vicodi 53,876 16,942 194 10 yes 0 0
Semintec 65,459 17,941 60 16 no 113 1.73 · 10−3

LUBM 8,612 1,555 43 25 no 8 9.29 · 10−4

Table 1. LDL+profile checking

axioms are in LDL+. Only Vicodi is fully in LDL+and over 99% of Semintec and
LUBM axioms are in LDL+. Most of the violations are due to existential quantifiers
occurring on the right side of axioms.

Conjunctive Query Evaluation To evaluate the performance of CQs over ontologies
using DReW, we compare it with 3 state-of-the-art DL reasoners: KAON2, RacerPro,
and Pellet. We did not consider other DL reasoners, such as HermiT or Fact++ as they
cannot handle CQs; we did not consider REQUIEM and QuOnto as they can not handle
LDL+ ontologies.

Reasoning in KAON26 [22] is implemented using novel algorithms that reduce a
SHIQ(D) knowledge base to a disjunctive Datalog program based on resolution tech-
niques. Pellet7 [26] fully supports OWL 2[19]. In contrast with KAON2, it is a reasoner
based on tableaux algorithms. RacerPro8 [12] is a tableaux-based reasoner as well and
implements the Description Logic SHIQ. All 3 reasoners support conjunctive query
answering.

We specifically tested CQs on The Lehigh University Benchmark (LUBM) [11].
LUBM is developed to facilitate the evaluation of Semantic Web repositories in a stan-
dard and systematic way. The benchmark is intended to evaluate the performance of
those repositories with respect to extensional queries over a large data set that commits
to a single realistic ontology. It consists of a university domain ontology, customizable
and repeatable synthetic data, a set of test queries, and several performance metrics.
The queries we evaluated are as in
http://swat.cse.lehigh.edu/projects/lubm/query.htm, referring to numbers 1-14.

As we indicated in Table 1, LUBM is not fully in LDL+: there are 8 violated
axioms, e.g.,

Person u ∃headOf .Department ≡ Chair .

For our experiments and to have an LDL+ conformant fragment of LUBM, we replace
such equivalence axioms by subsumption axioms, e.g., by

Person u ∃headOf .Department v Chair .

In general, such a conversion changes the semantics of the ontology. However, in
our considered test of the benchmark queries, the query results are exactly the same as

6 http://kaon2.semanticweb.org/
7 http://clarkparsia.com/pellet/
8 http://www.racer-systems.com
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Query DReW KAON2 RacerPro Pellet

1 3.13 2.84 3.78 4.55
2 2.23 2.39 4.24 4.54
3 2.29 2.35 3.68 4.54
4 2.25 2.61 26.05 4.63
5 2.29 2.60 5.12 4.52
6 2.24 2.56 5.05 4.51
7 2.21 2.63 3.39 4.44
8 2.28 2.65 27.13 4.62
9 2.22 2.67 4.80 4.54
10 2.22 2.42 3.85 4.53
11 2.23 2.31 4.39 4.49
12 2.27 2.55 4.08 4.63
13 2.31 2.58 4.44 4.42
14 2.26 2.35 5.30 4.52

Table 2. Conjunctive Queries on LUBM (in secs.)

Ontology Inds DReW KAON2 RacerPro Pellet

LUBM0 904 1.61 2.27 4.51 3.53
LUBM1 1,555 2.27 2.54 7.52 4.53
LUBM2 2,753 5.07 3.72 9.38 7.57

Table 3. Conjunctive Queries on LUBM with Different Number of Individuals

on the original LUBM. It is part of future research to investigate how DReW can deal
with partial LDL+ ontologies in answering queries as faithfully as possible.

The results of evaluating the 14 CQs on LUBM are shown in Table 2. From the
table, we see that DReW outperforms RacerPro and Pellet in all the queries and that it
is slightly better than KAON2 for most of the queries. Note the out-of-the-normal times
for RacerPro on query 4 and query 8; we assume they are caused by the use of data
properties.

As DReW and KAON2 have evaluation times close to each other, we also eval-
uate CQs on LUBM ontologies with a different numbers of individuals. The result is
summarized in Table 3.

LUBM1 is the original LUBM ontology. By removing and adding individuals, we
get LUBM0 and LUBM2. The number under each reasoner is the average time for
answering the 14 queries. In all the LUBMs, DReW is better than RacerPro and Pellet.
However, compared with KAON2, we also see that DReW is not so good at dealing
with large number of individuals. We assume that the reason is the use of DLV as the
underlying Datalog engine. Since there is no public API for DLV, we have to use it
as a standalone process. When the translated ontology is big, the communication of
processes costs significant time.
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Query DReW DLVHEX+DL-Plugin dl-atoms Factor

0 2.81 4.31 1 1.53
1 2.63 3.04 1 1.16
2 2.60 3.88 1 1.49
3 2.59 4.04 1 1.56
4 2.75 3.51 1 1.27
5 3.00 5.10 1 1.70
6 4.69 19.59 6 4.17
7 3.20 8.38 2 2.62

Table 4. Reasoning on dl-programs

4.2 Reasoning with DL-Programs

DReW is designed for reasoning over dl-programs under well-founded semantics. The
only reasoner available for comparison is DLVHEX 9 [7]. DLVHEX is a prototype im-
plementation for computing the stable models of so-called HEX-programs – an exten-
sion of dl-programs for reasoning with external sources (not necessarily DL knowledge
bases) under the answer set semantics. By using the Description Logic Plugin 10, which
interfaces to OWL ontologies via a Description Logic reasoner (currently RacerPro),
DLVHEX can reason on dl-programs under the answer set semantics.

Note that for Datalog programs (i.e., without negation), the well-founded semantics
coincides with the answer set semantics. We thus evaluate both reasoners on LUBM,
which is negation free. We manually generate serveral dl-program over LUBM to eval-
uate reasoning over Datalog-rewriteable ontologies.

All the test results are shown in Table 4. We see that DReW outperforms DLVHEX
for all the tests. As the number of dl-atoms increases, the advantage of DReW becomes
more clear, confirming our hypothesis that translating dl-programs to Datalog programs
reduces the overload of calling external DL reasoners as is the case in DLVHEX.

5 Related Work

Horn Fragments of Description Logics Horn-SHOIQ and Horn-SROIQ are Horn
fragments of OWL 1 and OWL 2 [23] respectively. Reasoning in Horn-SHOIQ is EX-
PTIME-complete, and reasoning in Horn-SROIQ is 2-EXPTIME-complete. Despite
their high expressiveness, both Horn-SHOIQ and Horn-SROIQ have polynomial
data complexity and as shown in [23] can be translated to Datalog.

However, SROIQ (SHOIQ) is not Datalog-rewritable (in the sense of [13]) as
the modularity property does not hold in general. In particular, Φ(〈∅,A〉) 6= A. We
do have that it is Datalog-rewritable if we restrict to individual-free knowledge bases.
In essence, this means that we can use DReW to reason on dl-programs over Horn-
SHOIQ and Horn-SROIQ KBs provided the latter do not contain individuals.

9 http://www.kr.tuwien.ac.at/research/systems/dlvhex
10 http://www.kr.tuwien.ac.at/research/systems/dlvhex/dlplugin.html
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ELP ELP [15, 16] is a decidable fragment of the Semantic Web Rule Language (SWRL)
that admits reasoning in polynomial time. ELP is based on the tractable DL EL++ and
encompasses an extended notion of the DL rules[15]. Also ELP extends EL++ with
a number of features introduced by OWL 2, such as disjoint roles, local reflexivity,
certain range restrictions, and the universal role. A reasoning algorithm is based on a
translation of ELP to Datalog in a in a tractable fashion.

There are several differences between ELP and dl-programs over LDL+: (1) ELP
is a tightly-coupled combination of ontologies and rules, while dl-programs are loosely
coupled; (2) in the rule part of a dl-program one can use default negation well-founded
semantics, which can not be expressed in ELP. Indeed, ELPs have a first-order seman-
tics compared to the minimal model semantics of dl-programs.

KAON2 KAON2 does not implement the tableaux calculus. Rather, reasoning in KAON2
is implemented by novel algorithms which reduce a SHIQ knowledge base to a dis-
junctive Datalog program of exponential size. The translation is not modular in the
above-mentioned sense if the ABox is non-empty. However, with an empty ABox, also
the KAON2 rewriting can be used in the context of our dl-programs to Datalog¬ reduc-
tion.

Hybrid MKNF KBs under WFS Well-founded Semantics is also used in other com-
binations. In [14, 1], WFS for the tightly-coupled Hybrid MKNF KBs was proposed.
When the underlying DL of MKNF KBs is tractable, the data complexity of MKNF
under WFS is in PTIME.

6 Conclusions and Outlook

We presented the class of Datalog-rewritable DLs and showed that reasoning with dl-
programs over such DLs can be reduced to Datalog¬ under well-founded semantics.
This reduction avoids the overhead that is normally associated with the calling of a
native DL reasoner. The LDL+ DL is such a particular Datalog-rewritable DL. We
developed a new reasoner, DReW, which can efficiently reason over LDL+ DL on-
tologies and dl-programs over LDL+ ontologies.

We plan to extend LDL+ with more DL constructors as in [17], while keeping
the Datalog-rewritability. For example, disjoint classes in OWL 2 Profiles [18] can
be added. Furthermore, currently, we only use DLV as the underlying rule-based rea-
soner. We plan to experiment with different rule engines, e.g., XSB. Finally, Datalog-
rewritable DLs are a natural candidate for tightly-coupling approaches as well.
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