
Datalog4: Living with Inconsistency and Taming Nonmonotonicity

Jan Ma luszyński and Andrzej Sza las

March 2010

Jan Ma luszyński and Andrzej Sza las Datalog 2.0, Oxford, UK Slide 1 of 34

The structure of talk

• Introduction and motivations.

• Living with inconsistency.
• Four-valued reasoning with t, f, u and i.
• Monotonic, intuitive and tractable rule language with

unrestricted negation.

• Taming Nonmonotonicity.
• Layered architecture.
• Local Closed-World Assumption.
• Lightweight nonmonotonic reasoning.

• Conclusions.

Jan Ma luszyński and Andrzej Sza las Datalog 2.0, Oxford, UK Slide 2 of 34

Closed-World Assumption?

Why Cwa?

• Efficient representation of negative information.

• Natural and intuitive in many application areas.

Why not Cwa?

• Non-monotonicity not controlled by users.

• Not suitable for important areas including
robotics, Semantic Web, multiagent systems.

Jan Ma luszyński and Andrzej Sza las Datalog 2.0, Oxford, UK Slide 3 of 34

Closed-World Assumption?

Example

An autonomous vehicle approaches an intersection where there is
no stop sign, yield sign or traffic signal. It should yield to vehicles
coming from the right:

halt(X) :– right(X ,Y). (Halt at intersection X
when there is a car Y to the right.)

If right(X ,Y) = u then, under Cwa, halt(X) = f.

Jan Ma luszyński and Andrzej Sza las Datalog 2.0, Oxford, UK Slide 4 of 34

Two truth values?

Example

A web agent asks a Semantic Web service whether X is a reliable
seller. What should be the answer when:

• the service has no information concerning the reliability of X ?

• the service has inconsistent information about X ?

Remark

Such situations are typical for many information sources.
The semantics can be encoded using two truth values.
However, u and i remain more or less implicit there.

Jan Ma luszyński and Andrzej Sza las Datalog 2.0, Oxford, UK Slide 5 of 34

Four-valued logic

Orderings of truth values

i

f t

u

Belnap’s truth ordering

t

u i

f

knowledge ordering (≤k)

t

i

u

f

truth ordering (≤t)

Conjunction and disjunction

The semantics of:

A ∧ B = min{A,B}
A ∨ B = max{A,B}

}
(w.r.t. truth ordering).

E.g., t ∧ i = i, u ∨ f = u, etc.

Jan Ma luszyński and Andrzej Sza las Datalog 2.0, Oxford, UK Slide 6 of 34

Four-valued logic

Orderings of truth values

i

f t

u

Belnap’s truth ordering

t

u i

f

knowledge ordering (≤k)

t

i

u

f

truth ordering (≤t)

Conjunction and disjunction

The semantics of:

A ∧ B = min{A,B}
A ∨ B = max{A,B}

}
(w.r.t. truth ordering).

E.g., t ∧ i = i, u ∨ f = u, etc.

Jan Ma luszyński and Andrzej Sza las Datalog 2.0, Oxford, UK Slide 7 of 34

Four-valued logic

Orderings of truth values

i

f t

u

Belnap’s truth ordering

t

u i

f

knowledge ordering (≤k)

t

i

u

f

truth ordering (≤t)

Conjunction and disjunction

The semantics of:

A ∧ B = min{A,B}
A ∨ B = max{A,B}

}
(w.r.t. truth ordering).

E.g., t ∧ i = i, u ∨ f = u, etc.

Jan Ma luszyński and Andrzej Sza las Datalog 2.0, Oxford, UK Slide 8 of 34

Four-valued logic

Orderings of truth values

i

f t

u

Belnap’s truth ordering

t

u i

f

knowledge ordering (≤k)

t

i

u

f

truth ordering (≤t)

Conjunction and disjunction

The semantics of:

A ∧ B = min{A,B}
A ∨ B = max{A,B}

}
(w.r.t. truth ordering).

E.g., t ∧ i = i, u ∨ f = u, etc.

Jan Ma luszyński and Andrzej Sza las Datalog 2.0, Oxford, UK Slide 9 of 34

Four-valued logic

Semantics of negation and implication

→ f u i t ¬
f t t t t f t
u t t t t u u
i f f t f i i
t f f t t t f

Remark

Implication B → C is f only when the conclusion C has to be
corrected to satisfy the corresponding rule C :– B.

Jan Ma luszyński and Andrzej Sza las Datalog 2.0, Oxford, UK Slide 10 of 34

Four-valued logic

Discussion

We proposed → in our previous work with A. Vitória.
It reflects the following principles:

• new facts are not deduced from premises evaluating to f or u

• a fact can be assigned t only on the basis of premises
evaluating to t

• true premises are allowed to imply inconsistency of a fact,
since another rule can support the negation of this fact.

Jan Ma luszyński and Andrzej Sza las Datalog 2.0, Oxford, UK Slide 11 of 34

Deduction from unknown and false

Discussion continued

• Deduction from unknown leads to nonmonotonicity.
It will later be allowed in a well controlled manner.

• Deduction from false is questionable. For example:

late :– overslept.

If deductions from false premises are allowed, then the falsity
of overslept makes late false which is an incorrect conclusion
both intuitively and in logic.

(Datalog provides the same result due to Cwa.)
In our semantics late remains unknown still satisfying the rule.

Jan Ma luszyński and Andrzej Sza las Datalog 2.0, Oxford, UK Slide 12 of 34

Interpretations

Definition

By an interpretation we mean any set of literals. Truth value of
a literal ` in interpretation I:

I(`)
def
=


t if ` ∈ I and (¬`) 6∈ I
i if ` ∈ I and (¬`) ∈ I
u if ` 6∈ I and (¬`) 6∈ I
f if ` 6∈ I and (¬`) ∈ I.

Extending the definition for all formulas

The truth value of a formula in interpretation I is defined as usual,
using truth tables provided for ¬,∧,∨,→

Jan Ma luszyński and Andrzej Sza las Datalog 2.0, Oxford, UK Slide 13 of 34

The monotonic layer: syntax

Syntax of rules

In the sequel we consider ground rules only and assume that for
each head ` there is only one rule of the form:

` :– (b11, . . . , b1i1) ∨
(b21, . . . , b2i2) ∨
. . . ∨
(bm1, . . . , bmim).

(1)

Disjunction in (1) gathers all ground bodies with ` as the head.

Jan Ma luszyński and Andrzej Sza las Datalog 2.0, Oxford, UK Slide 14 of 34

The monotonic layer: semantics

Notation

Let % be a rule of the form (1). Then:

• head(%)
def
= `

• body(%)
def
=

(b11, . . . , b1i1) ∨ (b21, . . . , b2i2) ∨ . . . ∨ (bm1, . . . , bmim)

Four-valued semantics of rules

A set of literals I is a model of a set of rules S iff for each rule
% ∈ S we have that I

(
body(%)→ head(%)

)
= t, assuming that the

empty body takes the value t in any interpretation.

Jan Ma luszyński and Andrzej Sza las Datalog 2.0, Oxford, UK Slide 15 of 34

The monotonic layer: declarative semantics

Example

Let S be the following set of rules:

wait :– overloaded ∨ rest time .
rest time :– wait .
¬overloaded :– rest time .
overloaded .

A minimal model of S is
{overloaded ,¬overloaded ,wait, rest time}.

There are no facts supporting the truth of wait and rest time
in this model. The intuitively correct model for S is
{overloaded ,¬overloaded ,wait,¬wait, rest time,¬rest time}.

Jan Ma luszyński and Andrzej Sza las Datalog 2.0, Oxford, UK Slide 16 of 34

The monotonic layer: declarative semantics

Well-supported model (formal definition in the paper)

Intuitively, a well-supported model is a model where each literal
has value t or i iff this is forced by a finite derivation starting from
facts.

Theorem

For any set of rules S there is the unique well-supported model.

Theorem

Computing the well-supported model is in PTime w.r.t. the size
of the database domain.

Jan Ma luszyński and Andrzej Sza las Datalog 2.0, Oxford, UK Slide 17 of 34

The monotonic layer: computing the well-supported model

Algorithm

Input: a set of rules S
Output: the unique well-supported model IS for S

1 (finding basic inconsistencies):
• compute the least Herbrand model IS0 of Pos(S), where by

Pos(S) we understand the Datalog program obtained from
S by replacing each negative literal ¬` of S by its (unique and
fresh) duplicate `′

• let IS1
def
= {`,¬` | `, `′ ∈ IS0 }

2 (finding potentially true literals):
• let S ′ = {% | % ∈ S and IS1

(
head(%)

)
6= i}

• set IS2 to be the the least Herbrand model for Pos(S ′)

Jan Ma luszyński and Andrzej Sza las Datalog 2.0, Oxford, UK Slide 18 of 34

The monotonic layer: computing the well-supported model

Algorithm – continued

3 (reasoning with inconsistency):
• define the following transformation ΦS on interpretations:

ΦS(I)
def
= I ∪

{
`,¬` | there is a rule [` :– b1 ∨ . . . ∨ bm]∈S

such that ∃k ∈ {1, . . . ,m}[I(bk) = i]
and ¬∃n ∈ {1, . . . ,m}[(IS2 − I)(bn) = t]

}
.

• The transformation ΦS is monotonic (!)
Denote by IS3 the fixpoint of ΦS obtained by iterating ΦS on
IS1 , i.e.,

IS3 =
⋃
i∈ω

(ΦS)i (IS1)

• set IS = IS2 ∪ IS3 .

Jan Ma luszyński and Andrzej Sza las Datalog 2.0, Oxford, UK Slide 19 of 34

Taming nonmonotonicity

The architecture

P :– . . .Ai .Qi , . . . ,
P :– . . .¬Aj .Qj . . .

. . .
Qi :– . . .¬Ai .Qi = u,

Aj .Qj = i

Q1 :– . . .

module A

module A1

Q2 :– . . .

module A2

Qk :– . . .

module Ak

. . .

*� Y
Layer i + 1

Layer i

Jan Ma luszyński and Andrzej Sza las Datalog 2.0, Oxford, UK Slide 20 of 34

Taming nonmonotonicity

External literals

• External literals are crucial for expressing nonmonotonic rules.

• An external literal is of one of the forms:
A.R, ¬A.R, A.R in T , ¬A.R in T ,

where:
• A is a module (the reference module of the external literal)

and R is a relation in A
(¬A.R in T is to be read as “(¬A.R) in T ”)

• T ⊆ {t, f, i, u} (if T = ∅ then ` in T is f).

• An external literal may only appear in rule bodies of a module
B, provided that

• its relation appears in the head of a rule in its reference module
• its reference module is in a strictly lower layer than B.

• We write ` = υ rather than ` in {υ}.

Jan Ma luszyński and Andrzej Sza las Datalog 2.0, Oxford, UK Slide 21 of 34

Taming nonmonotonicity

Semantics of modules and external literals

• Formally, relation symbol R occurring in module A is an
abbreviation for A.R.

• Each module operates on its “local” relations, accessing
“external” relations only via dotted notation.

• External literals, when used in a given module, are fully
defined in modules in lower layers.

• Relations assigned to external literals, when used, cannot
change.

Jan Ma luszyński and Andrzej Sza las Datalog 2.0, Oxford, UK Slide 22 of 34

Taming nonmonotonicity

Typical sources of nonmonotonicity

Generally, attempts to fill gaps in missing knowledge, e.g.,

• efficient representation of (negative) information
(like Cwa, LCwa)

• drawing rational conclusions from non-conclusive information
(e.g., circumscription, default logics)

• drawing rational conclusions from the lack of knowledge
(e.g., autoepistemic reasoning)

• resolving inconsistencies (e.g., defeasible reasoning).

Jan Ma luszyński and Andrzej Sza las Datalog 2.0, Oxford, UK Slide 23 of 34

Closing the world

Local Closed World Assumption

Intuitively, one often wants to contextually close part of the world,
not necessarily all relations in the database.

Example

The following rules in module, say A, locally close location:

location(X ,Y ,T) :– ¬B.chngPos(X ,S) in {u, t}, house(X),
nextTime(T ,S),C .location(X ,Y ,S).

¬location(X ,Y ,T) :– ¬B.chngPos(X ,S) in {u, f},movingCar(X),
nextTime(T ,S),C .location(X ,Y ,S).

Jan Ma luszyński and Andrzej Sza las Datalog 2.0, Oxford, UK Slide 24 of 34

Some results

Theorem

Datalog4 with modules has PTime data complexity.

Theorem

Stratified Datalog programs are expressible in Datalog4.

Remark

Stratified Datalog captures PTime on ordered structures.

Jan Ma luszyński and Andrzej Sza las Datalog 2.0, Oxford, UK Slide 25 of 34

Lightweight default reasoning

Default rules

Default rules have the form:
prerequisite : justification ` consequent,

with the intuitive meaning
“deduce consequent whenever prerequisite is true

and justification is consistent with current knowledge”.

Example: expressing default-like rules

Default rule:
car(X) ∧ speed(X , high) : onRoad(X) ` onRoad(X)

captures similar intuitions as
onRoad(X) :– car(X), speed(X , high),B.onRoad(X) in {t, u}.

Jan Ma luszyński and Andrzej Sza las Datalog 2.0, Oxford, UK Slide 26 of 34

Lightweight default reasoning

Defaults for resolving inconsistencies

Module B:

stop :– red light.
¬stop :– policeman directs to go through.

Module A:

¬stop :– B.stop = i.

Jan Ma luszyński and Andrzej Sza las Datalog 2.0, Oxford, UK Slide 27 of 34

Lightweight autoepistemic reasoning

The idea

1 A typical pattern of autoepistemic reasoning:
“If you do not know A, conclude ¬A.”

2 The rule stating: “If you do not know that you have a sister,
conclude that you do not have a sister” can be expressed in
module A 6= B by a rule assuming that knowledge of the
reasoner is specified in module B:

¬have sister :– B.have sister = u.

Jan Ma luszyński and Andrzej Sza las Datalog 2.0, Oxford, UK Slide 28 of 34

Lightweight circumscriptive reasoning

Abnormality theories

In general, replacing circumscription by rules is not doable.
However, abnormality theories are typically expressed by formulas
of the following pattern:

(condition ∧ ¬abnormal)→ conclusion.

In such cases one can:

• locally close abnormality

• make varied predicates heads of rules
(this sometimes requires finding their definitions. Even if often
can be done automatically, this is not a lightweight task).

Jan Ma luszyński and Andrzej Sza las Datalog 2.0, Oxford, UK Slide 29 of 34

Lightweight circumscriptive reasoning

Example

Consider the theory:
∀X [(ill(X) ∧ ¬ab(X))→ consults doctor(X)]

and assume one minimizes ab varying consults doctor . Let B be
a module with (among others) the following rule:

ab(X) :– ill(X),¬consults doctor(X).
We define a module A, consisting of rules:

¬ab(X) :– B.ab(X) in {f, u}.
consults doctor(X) :– ¬ab(X), ill(X).

Jan Ma luszyński and Andrzej Sza las Datalog 2.0, Oxford, UK Slide 30 of 34

Defeasible reasoning

Example

Consider the following defeasible rules reflecting buyer’s
requirements as to apartments:

r1 : size(X , large)⇒ acceptable(X)
r2 : ¬pets allowed(X)⇒ ¬acceptable(X)

with priorities r2 > r1.

Jan Ma luszyński and Andrzej Sza las Datalog 2.0, Oxford, UK Slide 31 of 34

Defeasible reasoning

Example continued

Assume module B contains rules:

acceptable(X) :– size(X , large).
¬acceptable(X) :– ¬pets allowed(X).

The following rules in some other module resolves possible
inconsistencies according to required priority (but note that we
have also cases with u, not covered by defeasible rules).

acceptable(X) :– B.acceptable(X) = t.
¬acceptable(X) :– B.acceptable(X) = i.

Jan Ma luszyński and Andrzej Sza las Datalog 2.0, Oxford, UK Slide 32 of 34

Related work

The most relevant papers

• Departure point: our previous work with A. Vitória
(Transactions on Rough Sets 2007, RSCTC 2008, RSKT
2008, Fundamenta Informaticae 2009): focussed on
knowledge fusion and approximate reasoning (e.g., disjunction
w.r.t. knowledge ordering, nonmonotonicity of disjunction
w.r.t. truth ordering).

• S. Amo, M.S. Pais (Int. Journal of Approximate Reasoning
2007): use the same truth ordering, but assume Cwa and
only allow negation in the rule bodies.

• J. Alcântara, C.V. Damásio and L.M. Pereira (J. Applied
Logic 2005): the focus on semantical integration of explicit
and default negation.

• M.C. Fitting (Theoretical Computer Science 2002):
syntactically the same programs, but uses Belnap’s logic.

Jan Ma luszyński and Andrzej Sza las Datalog 2.0, Oxford, UK Slide 33 of 34

Conclusions

• The proposed Datalog4 is powerful but still lightweight
and intuitive. It provides means for monotonic reasoning
supported by facts together with a mechanism for expressing
nonmonotonic rules.

• The intended methodology:
• the lowest layer provides solid knowledge, supported by facts,

e.g., reflecting perception, expert knowledge, etc.
• higher layers allow one to derive conclusions still supported by

facts or using various forms of nonmonotonic reasoning,
usually reflecting expert knowledge.

• Open questions:
• provide an efficient top-down query evaluation

(e.g., resolution or tableaux-based).
We have one, but it is complex (ExpTime in the worst case)

• is the provided algorithm for computing well-supported model
time-optimal?

Jan Ma luszyński and Andrzej Sza las Datalog 2.0, Oxford, UK Slide 34 of 34

