
Adding Delimited and Composable Control
to a Production Programming Environment

Matthew Flatt1

University of Utah
mflatt@cs.utah.edu

Gang Yu
Institute of Software,

Chinese Academy of Sciences
yug@ios.ac.cn

Robert Bruce Findler
University of Chicago

robby@cs.uchicago.edu

Matthias Felleisen
Northeastern University
matthias@ccs.neu.edu

Abstract
Operators for delimiting control and for capturing composable con-
tinuations litter the landscape of theoretical programming language
research. Numerous papers explain their advantages, how the oper-
ators explain each other (or don’t), and other aspects of the oper-
ators’ existence. Production programming languages, however, do
not support these operators, partly because their relationship to ex-
isting and demonstrably useful constructs—such as exceptions and
dynamic binding—remains relatively unexplored.

In this paper, we report on our effort of translating the theory of
delimited and composable control into a viable implementation for
a production system. The report shows how this effort involved a
substantial design element, including work with a formal model, as
well as significant practical exploration and engineering.

The resulting version of PLT Scheme incorporates the expres-
sive combination of delimited and composable control alongside
dynamic-wind, dynamic binding, and exception handling. None
of the additional operators subvert the intended benefits of existing
control operators, so that programmers can freely mix and match
control operators.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Control structures

General Terms Design, Languages

1. An F in Production
Delimited-control operators have appeared far more often in re-
search papers (Felleisen 1988; Danvy and Filinski 1990; Hieb and
Dybvig 1990; Sitaram and Felleisen 1990; Queinnec and Serpette
1991; Sitaram 1993; Gunter et al. 1995; Shan 2004; Biernacki et al.
2006; Kiselyov et al. 2006; Dybvig et al. 2006) than in production
programming environments (Gasbichler and Sperber 2002). One
obstacle, at least for some run-time system implementations, is the
difficulty of adding higher-order control to the existing implemen-
tation. A broader problem, however, is that delimited control oper-
ators semantically interfere with other pre-existing operators, such
as dynamic-wind and dynamic bindings.

1 On sabbatical at the Institute of Software, Chinese Academy of Sciences

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’07, October 1–3, 2007, Freiburg, Germany.
Copyright c© 2007 ACM 978-1-59593-815-2/07/0010. . . $5.00

Due to this semantic interference, simulations of delimited con-
trol do not immediately yield production-quality implementations.
For example, a Scheme library can use call/cc to simulate de-
limited continuations (Sitaram and Felleisen 1990; Filinski 1994;
Kiselyov 2005b; Dybvig et al. 2006), but other libraries that use
call/cc directly or that use dynamic-wind can interfere with
the simulation (Dybvig et al. 2006).

Over the past year, we have integrated a full set of delimited-
control operators within PLT Scheme, ensuring that all of them
interact properly with the rest of the Scheme programming lan-
guage (Kelsey et al. 1998) as well as pre-existing extensions in
PLT Scheme (Flatt 2007). Specifically, PLT Scheme’s prompts and
composable continuations have a well-defined and useful interac-
tion with call/cc, dynamic-wind, dynamic binding via con-
tinuation marks (Clements et al. 2001), and exceptions.

In this paper, we report on the key aspects of our experience with
this process: the design, the semantic model, its role in the imple-
mentation effort, and our initial uses. As expected, adding delim-
ited continuations significantly simplified the read-eval-print
loop implementation in DrScheme (Findler et al. 2002)—consistent
with the original motivation for prompts by Felleisen (1988). We
also found that associating a prompt with an abort handler clari-
fied our exception handling mechanisms. Finally, delimited control
significantly improved the PLT web server’s implementation.

The rest of the paper proceeds as follows. In section 2, we define
the task at hand. In section 3, we gradually introduce the control
constructs of PLT Scheme—delimited control, continuation marks,
exceptions, dynamic-wind—and we explain how they interact.
In section 4, we present briefly our formal model. In section 5,
we comment on PLT Scheme’s implementation of the model. In
section 6, we report our practical experience.

2. Having It All
A language ought to provide a minimal set of constructs from
which other constructs can be built (Kelsey et al. 1998). Unfortu-
nately, the question of whether a set of constructs can support other
constructs is not always easy to answer.

Consider whether continuations can express (Felleisen 1991)
exceptions. The answer is that continuations plus state can obvi-
ously implement exceptions—but they cannot express exceptions
in a language that already has call/cc (Laird 2002; Thielecke
2000; Riecke and Thielecke 1999). The failure boils down to the
fact that a program that uses call/cc can interfere with the im-
plementation of exceptions using call/cc.

A related confusion surrounds the relative expressiveness of
call/cc, shift, and control. It is well understood (Gasbich-
ler and Sperber 2002) that defining shift and reset in terms
of call/cc produces a shift with incorrect space complexity;

continuation tails get captured by the call/cc encoding when
they would not be captured by a direct implementation of shift.
It is less widely noted that the Danvy and Filinski (1990) imple-
mentation of call/cc using shift,

(λ (f) (shift k (k (f (λ (x) (shift c (k x)))))))

has a similar problem. In particular, their implementations turns

((λ (c) ((call/cc call/cc) c)) (call/cc call/cc))

into an infinite loop of unbounded size, instead of bounded size,
because prompts inserted by shift pile up. Similarly, the simula-
tions of control0 using shift by Shan (2004) and Kiselyov
(2005a) are extensionally correct, but do not have the expected
space complexity, again because prompts can pile up when using
the simulated control0.

Certainly, some control operators can be implemented in terms
of simpler control operators, especially when the simpler operators
can be hidden to prevent external interference. The goal of our
work, however, is not to implement a minimal set of operators
for the core of a run-time system. Instead, our goal is to specify
an expressive set of operators for all PLT Scheme programmers,
not just to privileged modules. We consider it imperative that these
operators smoothly function with the already existing operators and
that they do not violate the existing operators’ expected behaviors.
Programmers can thus freely compose all of the constructs.

This goal drives our specification to include dynamic-wind
and call/cc as primitives, and to build on a form of prompts that
accommodates exception handling (Sitaram 1993). In doing so, we
help to fill a large gap between the frontiers of theory and practice:

• Dybvig et al. (2006) provide a thorough and up-to-date account
of the theory and implementation of delimited continuations,
but they note in closing that a complete account for a production
language must include exceptions and dynamic-wind.

• Gasbichler and Sperber (2002) produced a direct implementa-
tion of shift and reset for Scheme48 (Kelsey and Rees
2007). Their work has not yet become part of the Scheme48
distribution, partly because the interaction with dynamic bind-
ing, exceptions, and dynamic-wind was not worked out.2

3. Intuition, Specification, and Rationale
Adding delimited and composable continuations to PLT Scheme
involves four aspects:

• the actual linguistic mechanism of capturing and applying such
continuations;

• the interaction with the existing dynamic-binding mechanism;
• its use to implement an exception handling mechanism; and
• the interaction with conventional, non-composable continua-

tions and the dynamic-wind mechanism.

All of this is subject to the constraint that existing constructs must
respect the control delimiter in the proper manner, while delimited
and composable continuations must also respect the existing con-
structs’ intended guarantees.

This section develops the intuition behind the revised imple-
mentation of control operators in PLT Scheme. Since intuition can
be deceiving, we use stylized pictures that easily map to an exe-
cutable reduction semantics (Matthews et al. 2004) based on eval-
uation contexts.

Most programmers intuit a program’s execution as processing
one expression at a time, where some combination of a stack and

2 Michael Sperber, personal communication, 2007.

program counter specifies how to continue with the expression’s re-
sult. A programmer using a functional language further understands
that this deconstruction happens at the expression level: evaluating
a sub-expression, as opposed to calling a function, pushes onto the
evaluation stack:

(v1 (((λ (x) x) v3) v2)) =

(v1 [])

([] v2)

((λ (x) x) v3)

In the above picture, the expression to evaluate is shown in a
box, and the chain of circles for the context represents the current
continuation. In each circle, [] indicates where a computed value
is used in the continuation.

This picture of an expression and continuation corresponds di-
rectly to the usual way of defining a language with a reduction se-
mantics, where evaluation is driven by a context grammar E:

e ::= x | v | (e e)
v ::= (λ (x) e)
E ::= [] | (E e) | (v E)

E1[((λ (x1) e1) v1)] E1[e1{v1/x1}]

Formally, then, the continuation is the E1 that surrounds the cur-
rent redex, and an evaluation step manipulates the redex term and
continuation. Pictorially, an evaluation corresponds to manipulat-
ing the expression box and continuation chain:

(v1 [])

([] v2)

((λ (x) x) v3)

(v1 [])

(v3 v2)

Most reduction rules adjust only the expression box and the contin-
uation frame just above it, but reduction rules for control operators
may manipulate the whole chain.

3.1 Continuations and Prompts
In pictures, a call/cc operation that captures the current contin-
uation copies the continuation chain into the redex box:

(v1 [])

([] v2)

(call/cc (λ (k) (k v3)))

(v1 [])

([] v2)

((v1 [])

([] v2)

 v3)

Applying a captured continuation replaces the entire current contin-
uation with a captured one, filling the bottommost [] of the applied
continuation with a given value:

(v1 [])

([] v2)

((v1 [])

([] v2)

 v3)

(v1 [])

(v3 v2)

Formally, we model call/cc by extending the set of values to
include captured continuations, marked with a cont wrapper:

v ::= ... | call/cc | (cont E)

E1[(call/cc (λ (x1) e1))] E1[e1{(cont E1)/x1}] [call/cc1]

E1[((cont E2) v1)] E2[v1] [cont1]

As an alternative to call/cc, we could add a call/comp oper-
ation to capture a composable continuation that extends the current
continuation when applied, instead of replacing it:

(v1 [])

([] v2)

((v1 [])

([] v2)

 v3)

(v1 [])

([] v2)

(v1 [])

(v3 v2)

v ::= ... | call/comp | (comp E)

E1[(call/comp (λ (x1) e1))] [call/comp2]

E1[e1{(comp E1)/x1}]

E1[((comp E2) v1)] E1[E2[v1]] [comp2]

We designate a composable continuation in pictures by placing an
arrow at its top. The formal semantics uses comp instead of cont.

Realistic implementations do not provide composable continua-
tions in quite this way, however. In a realistic continuation, the ini-
tial frame terminates the computation, perhaps by exiting a process
at the OS level, so that composition is not useful. Useful composi-
tion requires a way to delimit the captured continuation, so that it
does not include the process-terminating frame.

One way to delimit a continuation is to include a special kind
of continuation node, a prompt (represented by %), that determines
the end of the chain:

(v1 [])

(% [])

([] v2)

((call/comp (λ (k) (k v3))))

(v1 [])

(% [])

([] v2)

(([] v2) v3)

e ::= ... | (% e)
E ::= ... | (% E)

E1[(% E2[(call/comp (λ (x1) e1))])] [call/comp3]

E1[(% E2[e1{(comp E2)/x1}])]
 where E2 ≠ E3[(% E4)] for any E3, E4

In addition to enabling composable continuations, the delimit-
ing effect of prompts on non-composable continuations can help
programmers create composable abstractions. For example, a pro-
grammer can wrap a prompt around a callback procedure, so that
the callback’s implementation can use continuations without gain-
ing access to the dynamic context of the actual call. One such ex-
ample is the call to eval in the implementation of a read-eval-
print loop (REPL). It is a callback that should not allow access
to (or be affected by) the implementation of the REPL (Felleisen
1988). As we consider the interaction of prompts with other con-
trol operations, we want to ensure that this encapsulation property
of prompts is preserved.

Non-composable continuations can be expressed in terms of
composable continuations if we add an abort mechanism to the lan-
guage. Although abort is often bundled together with the capture
operation (Felleisen 1988; Danvy and Filinski 1990; Dybvig et al.
2006), we provide it separately in anticipation of its interaction with
other operations, especially dynamic-wind. The abort opera-
tor drops the current (delimited) continuation, substituting a given
value in its place:

(v1 [])

(% [])

([] v2)

(abort v3)

(v1 v3)

v ::= ... | abort

E1[(% E2[(abort v1)])] E1[v1] [abort4]

 where E2 ≠ E3[(% E4)] for any E3, E4

With respect to the many composable control operators in the
literature, we have opted for a variant where capture does not
include the delimiting prompt, and composition does not introduce
a prompt. Previous work explores the design space related to this
choice in depth (Shan 2004; Kiselyov 2005a; Biernacki et al. 2006;
Dybvig et al. 2006); when taking into account space complexity,
only the design that does not include or add a prompt is known to
express the others (Dybvig et al. 2006).

In summary, our primitives for delimited control include prompts,
aborting to a prompt, capturing a continuation up to a prompt, and
composing the current continuation with a captured continuation.

3.2 Dynamic Binding via Continuation Marks
For bindings that are associated with a dynamic context instead of
a lexical context, a delimited continuation should capture a corre-
sponding delimited set of dynamic bindings (Kiselyov et al. 2006).
PLT Scheme supports such dynamic bindings through continua-
tion marks (Clements et al. 2001). A distinguishing feature of con-
tinuation marks is that they provide a particular guarantee about
space consumption for bindings added in tail position with respect
to existing bindings. This extra facet of continuation marks makes
them suitable for use in debugging instrumentation (Clements et al.
2001), security checks (Clements and Felleisen 2004), and redun-
dant contract elimination (Herman et al. 2007) in languages that
guarantee tail recursion.

As the name suggests, a continuation mark is intuitively at-
tached to a continuation frame. Each mark v7 v8 pairs a key v7
with a value v8, and each continuation frame can have any num-
ber of marks with distinct keys.3 More precisely, a frame’s marks
are associated with its []; the pictures work best when we draw a
frame’s bindings on the node below it:

(v1 [])

([] v2)

v7 v8

(first [])

(current-marks v7)
v7 v9

(v1 [])

([] v2)

v7 v8

(first (list v9 v8))

e ::= m | (wcm w m)
m ::= v | x | (e e) | (% e)
v ::= ... | current-marks | cons | (list v ...)
w ::= ((v v) ...)
E ::= M | (wcm w M)
M ::= [] | (E e) | (v E) | (% E)

} so wcm does not
immediately wrap wcm

E1[(current-marks v1)] E1[v2] [marks5]

 where v2 = [[E1, v1, (list)]]marks

[[[], v1, e2]]marks = e2

[[(wcm (... (v1 v2) ...) E1), v1, e2]]marks = [[E1, v1, (cons v2 e2)]]marks

[[(wcm w E1), v1, e2]]marks = [[E1, v1, e2]]marks

 where v1 ∉ Dom(w)

. . . completed later in figure 1 . . .

As illustrated above, a current-marks procedure returns the
list of all bindings in the current context for a given key, starting
with the nearest binding.

The call/cm procedure adds or replaces a binding in the
current continuation’s immediate frame:

3 The subscripts on v7 and v8 are arbitrary, but meta-variables with the same
subscript tend to play the same role across all examples.

(v1 [])

(call/cm
v10 v11

 (λ ()
 (call/cm

v7 v12

 (λ () e1))))

v7 v8

(v1 [])

(call/cm
v7 v12

 (λ () e1))

v7 v8

v10 v11

(v1 [])

e1

v7 v12

v10 v11

v ::= ... | call/cm

E1[(wcm ((v1 v2) ...) (call/cm v3 v4 (λ () e1)))] [wcm-add6]

E1[(wcm ((v1 v2) ... (v3 v4)) e1)]
 where v3 ∉ (v1 ...)

E1[(wcm (... (v3 v5) ...) (call/cm v3 v4 (λ () e1)))] [wcm-set6]

E1[(wcm (... (v3 v4) ...) e1)]

E1[(call/cm v1 ...)] [wcm-intro6]

E1[(wcm () (call/cm v1 ...))]
 where E1 ≠ E2[(wcm (...) [])] for any E2

Since call/cm replaces any existing binding instead of creating
a new one, inserting call/cm calls with a fixed number of keys
does not change the asymptotic space consumption of a program.

Naturally, capturing a delimited sequence of continuation frames
also captures the marks associated with each frame. The marks as-
sociated with the delimiting prompt frame’s [] are included,
since they were added inside the prompt:

(v1 [])

(% [])

v7 v8

([] v3)

v7 v9

(call/comp (λ (x) (v13 x)))
v7 v10

(v1 [])

(% [])

v7 v8

([] v3)

v7 v9

(v13

([] v3)

v7 v9

)

v7 v10

E1[(% E2[(wcm w (call/comp (λ (x1) e1)))])] [call/comp7]

E1[(% E2[e1{(comp E2)/x1}])]
 where E2 ≠ E3[(% E4)] for any E3, E4

The marks associated with the call/comp redex need not be
captured, because the redex corresponds to the innermost [] in
the captured continuation, which is filled with a value when the
continuation is composed. That is, at compose time, there is no
opportunity to call current-marks in the innermost [] of a
captured continuation.

The marks drawn on an outermost captured frame, meanwhile,
correspond to the redex frame at composition time. If the compos-
ing redex already has marks, those existing marks must be merged
with (or replaced by) marks from the captured continuation:

(v1 [])

(

([] v3)

v7 v9

([] v2)

 v14)

v7 v8

v15 v10

(v1 [])

([] v3)

v7 v9

v15 v10

(v14 v2)

E1[((comp E2) v1)] E1[E3[v1]] [comp8]

 where E3 = [[E2]]wcm

[[(wcm () e1)]]wcm = e1

[[(wcm ((v1 v2) (v3 v4) ...) e1)]]wcm

 = (call/cm v1 v2 (λ () [[(wcm ((v3 v4) ...) e1)]]wcm))

. . . completed later in figure 1 . . .

This merging reflects the interaction of tail-call guarantees for both
continuation marks and our composable continuations.

One more detail requires attention: as defined, current-
marks inspects the marks of the complete continuation, poten-
tially defeating the encapsulation that is supposed to be provided
by prompt. Therefore, current-marks must stop at the inner-
most prompt:

(v1 [])

(% [])

v7 v8

([] v3)

v7 v9

(current-marks v7)
v7 v10

(v1 [])

(% [])

v7 v8

((list v10 v9) v3)
v7 v9

E1[(% E2[(current-marks v1)])] [marks9]

E1[(% E2[[[E2, v1, (list)]]marks])]

 where E2 ≠ E3[(% E4)] for any E3, E4

In summary, our primitives for dynamic binding are current-
marks and call/cm. Dynamic bindings are captured along with
their associated continuations frames in a natural way; space guar-
antees are preserved by capturing and merging bindings consis-
tently at the boundaries of continuations.

3.3 Exception Handling
Although the Scheme standard (Kelsey et al. 1998) does not
deal with exceptions, both PLT Scheme and a draft report for
Scheme (Sperber (Ed.) 2007) include a two-layer design for ex-
ception handling:

• A low-level layer provides the mechanism for binding an ex-
ception handler for a dynamic context. It also supports chaining
to the next deeper handler without leaving the dynamic context
of the expression that threw the exception, in case the handler
can recover from the exception and resume the computation:4

(handle [] (λ (x) e1))

(v1 [])

(raise v3)

(handle [] (λ (x) e1))

(v1 [])

((λ (x) e1) v3)

• A high-level layer is analogous to try–catch in Java. It
provides the mechanism for dispatching to a specific handler
based on the kind of the exception, and also for calling the
handler in the context of the catching expression instead of the
throwing expression. The latter is the interesting facet:

(v1 [])

(catch [] (λ (x) e1))

([] v2)

(raise v3)

(v1 [])

((λ (x) e1) v3)

The constructs prescribed in the preceding subsections suffice
to implement handle, catch, and raise, instead of making
exception operators primitive. For the low-level layer, continuation
marks support the binding of an exception handler to a dynamic
context, and the list of mark values returned by current-marks
supports the implementation of chaining. For the high-level layer,
prompts and aborts support escaping to the context of an exception-
catching expression.

A prompt that is used to short-circuit a computation, however,
can interfere with a prompt that is installed by catch:

(%from catch [])

(v2 [])

(%from short-circuit [])

(raise v3)

(%from catch [])

(v2 v3)

To avoid this collision, we can distinguish prompts by using tags,
just as the balloons above suggest (Sitaram and Felleisen 1990).
Then, prompts for orthogonal purposes using distinct tags can
be composed in a larger program. To support prompt tags, we
change the % form to start with a tag expression, and we change
call/comp and abort to specify a tag:

4 For simplicity, we ignore details concerning the exception handler that
is in effect while running an exception handler, though the draft-standard
details fit in our model and implementation.

(% v4 [])

(v1 [])

(% v5 [])

([] v2)

(call/comp
 (λ (k) (abort v4 k))
 v5)

(% v4 [])

(v1 [])

(% v5 [])

([] v2)

(abort
 v4

 ([] v2))

(% v4 [])

(v1 ([] v2))

e ::= ... | (% e e)
E ::= ... | (% E e) | (% v E)

E1[(% v1 E2[(call/comp (λ (x1) e1) v1)])] [call/comp10]

E1[(% v1 E2[e1{(comp E2)/x1}])]
 where E2 ≠ E3[(% v1 E4)] for any E3, E4

E1[(% v1 E2[(abort v1 v2)])] E1[v2] [abort10]

 where E2 ≠ E3[(% v1 E4)] for any E3, E4

We also change current-marks to require a prompt tag in
addition to a mark key. For getting marks, capturing a continuation,
or aborting, a prompt tag acts as a kind of capability: the current
continuation must include a prompt using the tag.

Along the same lines as distinguishing different kinds of
prompts, adding an abort handler to % helps distinguish normal
returns from aborts (Sitaram 1993):

(v1 [])

(% v4 [] (λ (x) e1))

([] v2)

(abort v4 v3)

(v1 [])

((λ (x) e1) v3)

e ::= ... | (% e e e)
E ::= ... | (% E e e) | (% v e E) | (% v E v)

E1[(% v1 E2[(abort v1 v2)] v3)] E1[(v3 v2)] [abort11]

 where E2 ≠ E3[(% v1 E4 v4)] for any E3, E4, v4

Abort handlers serve a more general purpose than implementing
catch. For example, the reset half of a shift–reset (Danvy
and Filinski 1990) can be implemented by using % and an abort han-
dler that re-installs the prompt before applying the abort argument.
This pattern leads to implementations of shift, reset, con-
trol, and prompt that work sensibly together, just as in Kise-
lyov’s simulation (Kiselyov 2005b); see the control.ss library
distributed with PLT Scheme for details.

Prompt tags and handlers can be implemented in terms of
prompts without tags and handlers, but the untagged prompt oper-
ators must be hidden from application programmers (Sitaram and
Felleisen 1990). Thus, from a programmer’s perspective, tagged
prompts with handlers act as the primitives. Fortunately, these

primitives easily express other control operators with distinguished
prompts (Gunter et al. 1995; Queinnec and Serpette 1991; Hieb and
Dybvig 1990); again, see the control.ss library for details.

Defining exception handling in terms of tagged prompts and
continuation marks leads to the right interaction of exception han-
dlers and delimited control: delimited continuations capture (only)
exception handlers installed within the delimited region; a program
cannot directly access an exception handler beyond the prompts
whose tags are accessible; and exception-handler chaining uses the
chain in place at the time that an exception handler is called, as
opposed to the chain in place when the exception handler is bound.

The only way that exception handling needs further primitive
support is to establish a specific protocol for exceptions. That is, to
allow primitive operations to raise exceptions, a mark key must be
specified for binding handlers via handle. The catch form then
can be implemented using handle and its own private prompt tag.
In addition, a default prompt tag might be specified as the target for
escapes by a built-in default handler:

(handle e1 (λ (x) e2))
 = (call/cm

handle-mark-key (λ (x) e2)
 (λ () e1))

(catch e1 (λ (x) e2))
 = (% catch-tag

(handle e1 (λ (x) (abort catch-tag x)))
(λ (x) e2))

(raise v1)
 = (default-exn-handler

(fold (λ (v h) (h v))
v1

(current-marks handle-mark-key)))

In summary, we have no need to introduce specific primitives
for exceptions. In support of exceptions and other abstractions built
with delimited-control operators, however, we add tags and abort
handlers as primitive features of prompts.

3.4 Dynamic Wind
When interacting with external processes, a portion of a computa-
tion may need to modify the state of the world on entry to, and on
exit from, a computation (Friedman and Haynes 1985). For exam-
ple, a computation may depend on a file that is opened for writing.
Scheme’s dynamic-wind allows such state to be prepared and
finalized when jumping into or out of the middle of a computation
via continuations.

A dynamic-wind call consumes three thunks: a pre-thunk
to prepare state, a body-thunk to run the computation, and a post-
thunk to finalize state. In the absence of continuation applications,
the pre-thunk is run for its side-effect, the body is run to obtain a
result for the dynamic-wind call, and then the post-thunk is run
for its side-effect before returning from the dynamic-wind.

When a computation wrapped by a dynamic-wind is aborted,
then the corresponding post thunk is executed. Similarly, when a
continuation application resumes a computation that is wrapped by
dynamic-wind, then the corresponding pre-thunk is run.

Pictorially, we can represent pre- and post-thunks in a continua-
tion as spurs on a dw node that is produced by a dynamic-wind
call. Aborting a computation runs spurs on the right, in the order
that they are encountered by a line simulating the abort:

(v1 [])

e1 dw e2

(abort v4 v3)

Applying a continuation runs through the left spurs:

(v6 [])

((v1 [])

e1 dw e2

([] v2)

 v3)

Before pinning down more precisely what it means to run a spur,
there is an additional facet of Scheme’s dynamic-wind to con-
sider. Suppose that a computation involving an open file itself uses
continuation jumps internally. Since the jumps are confined within
the computation that uses the file, the file should not be closed and
then re-opened (which can have any number of externally visible
effects) for the internal jumps.

Given this background, we can now restate our goal for com-
bining abort and composable continuations with call/cc and
dynamic-wind: they must interact so that the programmer’s in-
tended effects are paired with the intended computations, no matter
how the computations are composed.

Prompts provide a good way to think about this problem, and the
control filters of Hieb et al. (1994) provide dynamic-wind-like
behavior with delimited continuations. The designers of Scheme,
however, were confined to a language without prompts; in extend-
ing PLT Scheme, in turn, we are confined by the existing code base
to provide call/cc and dynamic-wind in a way that is con-
sistent with Scheme.

To make use of dynamic-wind without prompts, Scheme
programmers envision their computation as a tree, where a con-
tinuation application jumps from one leaf in the tree to another:

(v1 [])

e1 dw e2

([] v2)

e3 dw e4

(v6 [])

(... v3)

e5 dw e6

(v15 [])

When such a jump occurs, the pre- and post-thunks of the common
part of the tree are ignored; only those in the different parts are run.

The Scheme programmer’s tree does not fit the picture of eval-
uation that we have been using (i.e., evaluation from one chain to

another chain). The graphical intuition carries over to our pictures,
however, if we juxtapose the source and destination contexts for a
continuation application within a single chain. Specifically, if we
draw the redex box to the right of the current continuation, instead
of below it, and if we outline the part of the current and target con-
tinuations that are the same, then we can infer the Schemer’s tree:

(v1 [])

e1 dw e2

([] v2)

e3 dw e4

(v6 [])

((v1 [])

e1 dw e2

([] v2)

e5 dw e6

(v15 [])

 v3)

That is, continuation application has to compare the current (up
to the prompt) continuation and target continuation to see whether
they have a common prefix.

Still, the graphical identity reflected by the dotted box is not
quite the same identity as the tree nodes in a Scheme programmer’s
intuition. The tree nodes correspond to frame creations, not to
frames that happen to be textually equivalent. In particular, two dw
frames might have the same pre- and post-thunks, but correspond
dynamically to opening different files. To enable the detection of
dynamically equivalent dw frames, the evaluation of dynamic-
wind must generate an identity for the frame, which we draw as a
variable in the frame. Evaluation of a continuation jump can then
use the identities of dw frames to determine sharing:

(v1 [])

e1 dw x1 e2

([] v2)

e3 dw x2 e4

(v6 [])

((v1 [])

e1 dw x4 e2

([] v2)

e5 dw x3 e6

(v15 [])

 v3)

Without composable continuations, a dw frame with a specific
identity always appears at most once in a continuation, which
simplifies the comparison for common chains. With composable
continuations, however, a programmer can capture a group of dw
frames and then re-assemble them with multiple instances and
different intermediate frames:

e1 dw x1 e2

([] (+ 1 2))

e1 dw x1 e2

e1 dw x1 e2

([] 3)

e1 dw x1 e2

Should these continuations be treated the same or different when
jumping from one to the other? Treating them as different turns out
to be impractical, because it can expose compiler optimizations.
That is, a compiler might optimize (+ 1 2) to 3; if frames are re-
ally compared at the level of their content, then such optimization
differences become detectable within the language (which is gen-
erally against the spirit of optimizations). Our solution is to make
comparison consider only the dw frames when determining con-
tinuation sharing, so no pre- or post-thunks would execute when
jumping from one of the above continuations to the other.

Only prefixes with the same dw frames are a match. For exam-
ple, when jumping from the first to the second of the following
continuations:5

e1 dw x1 e2

(v1 [])

e3 dw x2 e4

([] v2)

e3 dw x2 e4

both of the post-thunks (e4 and e2) in the left-hand continuation
are run, and then the pre-thunk (e3) of the right-hand continuation
is run. Even though both continuations have a dw frame labelled
x2, the frame is not in a common prefix, even ignoring non-dw
frames. In particular, the pre- and post-thunks associated with the
x2 frame may behave differently depending on side-effects from the
x1 frame’s thunks, so the x1 frame’s thunks should be run.

Having determined the way that gray arrows are drawn, we
know which pre- and post-thunks are expected to run. We must
still say exactly how they are to be run, and our specification must
address three points:

• Each pre- or post-thunk should be executed in the dynamic
environment of its dw frame, which may not match either the
source or target continuations. For example, in

e1 dw x1 e2

v7 v10

(v1 [])

v7 v11

e3 dw x2 e4

e2 should be executed in a context where v7 is dynamically
mapped to v10, whereas e4 should be evaluated in a context
where v7 is mapped to v11.

• A pre- or post-thunk may itself capture a continuation, abort,
or apply a continuation. Although the current Scheme standard
leaves this case unspecified (Kelsey et al. 1998), both the PLT
Scheme documentation and a recent draft standard (Sperber
(Ed.) 2007) specify the behavior of continuation jumps in pre-
and post-thunks.

5 To arrive at this corner case, suppose that the continuation

e3 dw x2 e4

is composed in the context ([] v2) with a value that captures a non-
composable continuation, then composed again in (dw x1 e1 (v1 []) e2),
with the next step as a jump to the non-composable continuation.

• In addition to installing thunks for the jump of continuations,
dynamic-wind must evaluate the pre-thunk on normal entry
and the post-thunk on normal exit. As always, the pre-thunk
must be evaluated in a context that does not include its dw
frame, and the same for the post-thunk.

To address these points, we define dynamic-wind and continu-
ation application in a way that shifts pre- and post-thunks into the
usual redex position, for which we are already defining dynamic
binding and continuation manipulation.

We need three rules for dynamic-wind independent of con-
tinuations. The first turns a dynamic-wind into a dw, generating
an identifier for the dw, and shifts the pre-thunk into the redex:

(v1 [])

(dynamic-wind
 (λ () e1)
 (λ () e2)
 (λ () e3))

(v1 [])

(begin [] (dw x1 e1 e2 e3))

e1

see formal rule [dw] in figure 1 below

At this point, a dw expression has been created, but it is a sub-
expression in a continuation, as opposed to being a continuation
frame directly, so it does not yet create spurs in the continuation.
Thus, the pre-thunk is run without spurs for its corresponding
dw form. The generated begin continuation frame eventually
discards the result from the pre-thunk, since it is executed only for
its effect.

As the pre-thunk produces a value—suppose that e1 locally
reduces to v1, which is discarded—the dw form shifts into its own
frame with spurs, and the body expression e2 becomes the redex:

(v1 [])

(begin [] (dw x1 e1 e2 e3))

e1 v1

(v1 [])

e1 dw x1 e3

e2

see formal rule [begin-v] in figure 1 below

As the body expression produces a value—suppose that e2 lo-
cally reduces to v2—the dw frame is removed, the result value is
recorded in a new begin frame, and the post thunk is moved into
the redex position:

(v1 [])

e1 dw x1 e3

e2 v2

(v1 [])

(begin [] v2)

e3

see formal rule [dw-result] in figure 1 below

Again, the post-thunk is run in a context without spurs from its own
dw. The value from the post-thunk is discarded via the generated
begin expression.

Finally, the rules for continuation jumps with dw rely on an
inferred gray arrow to determine the first pre- or post-thunk to run.
Given this first thunk, the continuation and redex are transformed
to evaluate the thunk’s body in the correct dynamic context. Since

there are three forms that trigger jumps, we end up with three
new pictures: one for aborting, one for applying a composable
continuation, and one for applying a non-composable continuation.

If aborting triggers a post-thunk, then the transformation trims
the continuation through the dw frame, and otherwise resembles a
normal dynamic-wind return:

(v1 [])

e1 dw x1 e2

([] v2)

(abort v4 v3)

(v1 [])

(begin [] (abort v4 v3))

e2

see formal rule [abort-post] in figure 1 below

The original abort is preserved in the transformation, so that it
continues when the post-thunk completes. Eventually, when no pre-
or post-thunks need to run, our earlier rule completes the abort.

If applying a composable continuation involves pre-thunks, the
transformation composes the continuation down to the dynamic-
wind frame. A generated begin frame composes the rest of the
continuation within a dw form:

(v6 [])

((v1 [])

e1 dw x1 e2

([] v2)

 v3)

(v6 [])

(v1 [])

(begin
 []

 (dw x1 e1 (([] v2) v3) e2))

e1

see formal rule [comp-pre] in figure 1 below

Again, a continuation application is preserved in the transformation
so that the composition continues after pre-thunk is finished.

Calling a non-composable continuation may involve either a
pre- or post-thunk. The transformation partially adjusts the current
continuation, as in the composable case. Unlike the composable
case, however, the target continuation itself is not adjusted. Instead,
further evaluation relies on recomputing the shared tree to deter-
mine the next thunk to run:

(v1 [])

e1 dw x1 e2

([] v2)

e3 dw x2 e4

(v6 [])

((v1 [])

e1 dw x1 e2

([] v2)

e5 dw x3 e6

(v15 [])

 v3) =
(v1 [])

e1 dw x1 e2

([] v2)

(begin [] (dw x2 e3 e4))

e4

see formal rule [cont-post] in figure 1 below

In the picture, stands for the continuation application in the redex
box. Essentially the same pictorial rule works for pre-thunks, where
captured continuation frames before the pre-thunk dw, if any, are
copied to the current continuation.

Omitted from the last picture is the detail that a non-composable
continuation must embed a prompt tag as well as a chain of contin-
uation frames, because sharing must be determined with respect to
a particular prompt. See figure 1 for the complete rule.

In summary, direct support for Scheme-style dynamic-wind
implies direct support for non-composable continuations, because
the latter implies an algorithm for selecting pre- and post-thunks
that does not fall out from the other operations. At the same time,
the specification of continuation aborts and composition must
change so that these thunks are executed consistently. Defining
abort to trigger post-thunks, in turn, explains why we kept the
abort operation separate from continuation capture: merely cap-
turing a continuation should not require execution of pre- or post-
thunks.

4. Combined Model
Figure 1 contains formal reduction rules corresponding to the intu-
itive rules and implementation descriptions of the previous section.
The model is actually formulated in PLT Redex (Matthews et al.
2004), which is an executable domain-specific language for reduc-
tion semantics. The model comes with a substantial test suite, de-
rived from PLT Scheme’s test suite for control operators.6 To avoid
transcription errors, the typeset form of the model in figure 1 is
mechanically derived from the executable, tested specification.

The portion of the model included in figure 1 omits standard
rules, such as βv-reduction. The reduction relation is −→, which is
defined by [wcm-intro] and the rule e1 ; e2 ⇒ E1[e1]−→ E1[e2].
All other reduction rules define the local reduction relation ;.

A few aspects of the grammar deserve some explanation.
Specifically, the grammar of expressions e is recursive via m, thus
constraining expressions so that a wcm form never immediately
wraps another wcm form. Contexts are similarly constrained, but
with a further distinction between arbitrary evaluation contexts E
and contexts W that have no dw frames. Furthermore, D is a con-
text that is either empty or ends with a dw frame; it helps ensure
deterministic pattern matching for shared dw chains. The subset of
values u identifies the primitives that need an enclosing wcm frame
to reduce; u is referenced by the [wcm-intro] reduction rule.

The SAMEDWS and NOSHARED metafunctions guide the rules
for aborts and continuation jumps. Specifically, SAMEDWS com-
pares two continuations to check whether they have the same dw

6 Available from http://www.cs.utah.edu/plt/delim-cont/.

http://www.cs.utah.edu/plt/delim-cont/

(% v1 v2 v3) v2 [prompt-v]

(begin v e1) e1 [begin-v]

(dynamic-wind (λ () e1) (λ () e2) (λ () e3)) [dw]

(begin e1 (dw x1 e1 e2 e3))
 where x1 fresh

(dw x e1 v1 e3) (begin e3 v1) [dw-v]

(% v1 W2[(abort v1 v2)] v3) (v3 v2) [abort]

 where W2 ≠ E[(% v1 E v)]

(dw x1 e1 W2[(abort v1 v2)] e2) [abort-post]

(begin e2 (abort v1 v2))
 where W2 ≠ E[(% v1 E v)]

(% v2 E2[(wcm w1 (call/comp v1 v2))] v3) [call/comp]

(% v2 E2[(wcm w1 (v1 (comp E2)))] v3)
 where E2 ≠ E[(% v2 E v)]

((comp W1[(dw x1 e1 E2 e2)]) v1) [comp-pre]

[[W1[(begin e1 (dw x1 e1 ((comp E2) v1) e2))]]]wcm

((comp W1) v1) [[W1[v1]]]wcm [comp]

(% v2 E2[(wcm w1 (call/cc v1 v2))] v3) [call/cc]

(% v2 E2[(wcm w1 (v1 (cont v2 E2)))] v3)
 where E2 ≠ E[(% v2 E v)]

(% v2 D2[E3[(dw x1 e1 W5[((cont v2 D6[E4]) v1)] e2)]] v3) [cont-post]

(% v2 D2[E3[(begin e2 ((cont v2 D6[E4]) v1))]] v3)
 where D2[E3] ≠ E[(% v2 E v)], SAMEDWS(D2, D6),

W5 ≠ E[(% v2 E v)],
NOSHARED(E3[(dw x1 e1 W5 e2)], E4)

(% v1 D2[W3[((cont v1 k1) v2)]] v3) [cont-pre]

(% v1 D6[W4[(begin e1 (dw x1 e1 ((cont v1 k1) v2) e2))]] v3)
 where k1 = D6[W4[(dw x1 e1 E5 e2)]], D2[W3] ≠ E[(% v1 E v)],

SAMEDWS(D2, D6),
NOSHARED(W3, W4[(dw x1 e1 E5 e2)])

(% v1 D2[W3[((cont v1 D6[W4]) v2)]] v3) [cont]

(% v1 D6[W4[v2]] v3)
 where D2[W3] ≠ E[(% v1 E v)], SAMEDWS(D2, D6),

NOSHARED(W3, W4)

(% v2 E2[(current-marks v1 v2)] v3) [marks]

(% v2 E2[[[E2, v1, (list)]]marks] v3)

 where E2 ≠ E[(% v2 E v)]

(wcm w v1) v1 [wcm-v]

(wcm ((v1 v2) ... (v3 v4) (v5 v6) ...)
(call/cm v3 v7 (λ () e1)))

 [wcm-set]

(wcm ((v1 v2) ... (v3 v7) (v5 v6) ...) e1)

(wcm ((v1 v2) ...) (call/cm v3 v4 (λ () e1))) [wcm-add]

(wcm ((v1 v2) ... (v3 v4)) e1)
 where v3 ∉ (v1 ...)

E1[(u1 v1 ...)] E1[(wcm () (u1 v1 ...))] [wcm-intro]

 where E1 ≠ E[(wcm w [])]

e ::= m | (wcm w m)
m ::= x | v | (e e ...) | (begin e e) | (% e e e) | (dw x e e e)
v ::= (list v ...) | (λ (x ...) e) | (cont v E) | (comp E)

 | dynamic-wind | abort | current-marks
 | cons | u

u ::= call/cc | call/comp | call/cm
w ::= ((v v) ...)
E ::= W | W[(dw x e E e)]
W ::= M | (wcm w M)
M ::= [] | (v ... W e ...) | (begin W e) | (% v W v)
D ::= [] | E[(dw x e [] e)]

SAMEDWS : E × E bool

SAMEDWS(W1, W2) = true
SAMEDWS(W1[(dw x1 e1 E1 e2)],

W2[(dw x1 e1 E2 e2)])
 = SAMEDWS(E1, E2)

otherwise = false

NOSHARED : E × E bool

NOSHARED(W1[(dw x1 e1 E1 e2)],
W2[(dw x1 e1 E2 e2)])

 = false

otherwise = true

[[•]]wcm : e e

[[e1]]wcm = e1

 where e1 ≠ (wcm w e)

[[(wcm () e1)]]wcm = e1

[[(wcm ((v1 v2) (v3 v4) ...) e1)]]wcm

 = (call/cm v1 v2 (λ () [[(wcm ((v3 v4) ...) e1)]]wcm))

[[• , • , •]]marks : E × v × e e

[[[], v, e2]]marks = e2

[[(wcm w1 E1), v1, e2]]marks = [[E1, v1, (cons v3 e2)]]marks

 where w1 = ((v v) ... (v1 v3) (v v) ...)

[[(wcm w1 E1), v1, e2]]marks = [[E1, v1, e2]]marks

 where v1 ∉ Dom(w1)

[[(v ... E1 e ...), v1, e2]]marks = [[E1, v1, e2]]marks

[[(begin E1 e), v1, e2]]marks = [[E1, v1, e2]]marks

[[(% v E1 v), v1, e2]]marks = [[E1, v1, e2]]marks

[[(dw x e E1 e), v1, e2]]marks = [[E1, v1, e2]]marks

Figure 1. Combined grammar and reduction rules

frames with the same tags; NOSHARED compares two continua-
tions to make sure that they do not have a common dw prefix.

5. Implementation
PLT Scheme version 360 included the first release of our new
set of control operators. That release contained several flaws:
exception-handler chaining was determined at handler-installation
time instead of exception-raise time, and continuation jumping
did not properly handle the subtleties of using control operators
in dynamic-wind pre- and post-thunks. Aside from one detail
discussed below, version 370 (the current release) of PLT Scheme
faithfully implements the model and passes its tests.

Naturally, reconciling the tests of the model and implementation
exposed a bug that we would not have discovered otherwise. When
composing a continuation that was captured in a dynamic-wind
pre- or post-thunk, and when the captured continuation includes a
different dw frame that is also still in the current continuation at
composition time, the implementation failed to run the captured
pre-thunk. Only careful inspection of the model’s behavior allowed
us to see that the implementation’s result was incorrect.

The architecture of our implementation is similar to that of Dy-
bvig et al. (2006). To achieve the correct space complexity for
continuation composition, our implementation uses continuation
marks to discover and eliminate empty continuations for the meta-
continuation. Continuation marks, in turn, are implemented with a
cache in each continuation frame. This cache enables O(1) amor-
tized access to the first mark for a given tag. This first-mark opera-
tion is used to efficiently find a prompt for a given tag.

To simplify the preceding presentation, we have not used the
actual names of primitives in PLT Scheme. The table in figure 2
provides a mapping from the paper forms to the implemented
forms. The control.ss library distributed with PLT Scheme
provides more succinct names for combinations of these primitives.

In addition to the name changes, the actual implementation uses
a distinct class of values for prompt tags, and it defines a default
prompt tag. The make-continuation-prompt-tag and
default-continuation-prompt-tag procedures produce
fresh and default prompt tags, respectively. The latter is the de-
fault for call-with-current-continuation’s second ar-
gument, and a prompt using the default tag wraps every top-level
evaluation; thus, Scheme programmers do not need to change ex-
isting code that uses continuations.

The default prompt tag is also part of the built-in protocol for
exception handling, in that the default exception handler aborts
to the default tag after printing an error message. Consistent with
this protocol, when an abort handler is omitted for call-with-
continuation-prompt, the default abort handler accepts a
single thunk argument that it applies under a new prompt (using
the same prompt tag and the same default prompt handler).

The continuation-mark-set-first procedure is like
current-marks, but it returns only the first element of the
list. Besides finding prompts internally, this operation is useful for
accessing dynamic bindings (with amortized constant-time access)
for the common case where only the current binding is needed.

Our current implementation differs from the model in one detail
and by design: capturing a continuation preserves marks in the im-
mediate continuation frame, instead of omitting them as prescribed
in section 3.2. PLT Scheme provides a continuation-marks
procedure that extract marks from a given continuation, instead of
from the current continuation, which makes captured immediate
marks accessible when they would be inaccessible otherwise. Al-
though the continuation-marks procedure has been at part
of PLT Scheme for years, we have not yet found a use for it—
which suggests that the operation should be removed, and that our
implementation should be adjusted to match the model.

in paper in PLT Scheme

% call-with-continuation-prompt
body is a thunk as the first argument;
only the first argument is required;
an abort handler can accept multiple values

abort abort-current-continuation
accepts any number of abort values

call/cc call-with-current-continuation
only the first argument is required

call/comp call-with-composable-continuation
only the first argument is required

call/cm with-continuation-mark
body is an expression instead of a thunk

current-marks current-continuation-marks
only the first argument is required;
also: continuation-mark-set-first

Figure 2. Operators in paper versus PLT Scheme

(define (evaluate-from-port port complete-program?)
 (define tag (default-continuation-prompt-tag))
 (define (loop)

 (let ([expr (get-next-expression port)])
 (unless (eof-object? expr)

 ; Delimit each top-level evaluation:
 (call-with-continuation-prompt

(λ () (eval expr)) tag
 (if complete-program?

; Load mode: don't continue
 (λ args

(abort-current-continuation
tag void))

 ; REPL mode: run thunk and continue
 (λ (thunk)

(call-with-continuation-prompt
thunk tag))))

 (loop))))
 ; Catch possible escape in load mode:
 (call-with-continuation-prompt loop))

Figure 3. Evaluation for REPL and Load

PLT Scheme provides pre-emptive threads in addition to con-
tinuations. Threads can be mostly implemented with continuations,
but not without interference from many other constructs (Gasbich-
ler et al. 2003). Fortunately, threads that work with non-composable
continuations also accommodate prompts and composable contin-
uations with few additional considerations. Indeed, adding prompts
to PLT helped remove a restriction on moving continuations among
threads. Nevertheless, one facet of our thread implementation in-
teracts badly with delimited continuations: dynamic bindings cre-
ated with parameterize, which are inherited by newly created
threads, are not consistently delimited by prompts. We expect to fix
this problem, which stems from our current data-structure choice.

6. Experience
Prompts help isolate a REPL implementation from the expressions
that it evaluates, and vice-versa. A text-based REPL must ma-
nipulate state that implements a text stream; without prompts, a
REPL’s implementation is complicated by the possibility that the
state-manipulating code might get captured in a continuation. In
DrScheme’s REPL for graphical programs, the problem is even
worse, because expression evaluation requires a callback in a thread
that is also used for GUI callbacks. Adding prompts to PLT Scheme
allowed us to remove some error-prone code in DrScheme and re-
place it with a straightforward code that is 1/3 as long. We can
also more easily experiment with variations of REPL behavior in

DrScheme, such as controlling the span of captured continuations
when multiple expressions are submitted at once to the REPL.

The abort protocol with the default prompt tag provides further
flexibility in defining the escape behavior for interactive evaluation.
The MzScheme and DrScheme REPLs, for example, wrap evalua-
tion in a prompt using the default tag, and using a handler that loops
to continue evaluation. The file-loading procedure installs a simi-
lar prompt around each evaluation, so that a captured continuation
does not include the load process; it uses an abort handler that re-
aborts, however, so that file loading stops on the first exception:
see figure 3. Exploiting abort handlers in this way for REPLs is far
more maintainable than the previously used tangle of callbacks.

A primary motivation for adding delimited continuations to PLT
Scheme was the space of possibilities that it opens for improv-
ing the PLT web server (Krishnamurthi et al. 2007). Servlets use
continuations to implement sessions, and such continuations pre-
viously captured parts of the driving server process, leading to the
same complexity in the server as for REPLs—even worse, because
the web server is multi-threaded. Indeed, delimited continuations
allow the server to handle multiple session-specific requests con-
currently instead of sequentially. Delimited continuations may also
enable more composable servlets by allowing multiple elements on
a web page to be manipulated independently (analogous to multi-
ple threads), and by allowing servlets to act as filters for the results
of other servlets (analogous to Apache’s mod gzip compression).

Acknowledgements: The authors would like to thank Oleg Kise-
lyov and Ken Shan for discussion about different control operators,
Jay McCarthy for updates on the PLT web server, John Clements
for discussion on continuation marks and delimited continuations,
Michael Sperber and Martin Gasbichler for information on the
Scheme48 implementation of shift and reset, and the anony-
mous ICFP’07 reviewers for their comments on the original draft.
Matthew would like to thank Huimin Lin for hosting his sabbatical.

References
Dariusz Biernacki, Olivier Danvy, and Chung-chieh Shan. On the static

and dynamic extents of delimited continuations. Science of Compututer
Programming, 60(3):274–297, 2006.

John Clements and Matthias Felleisen. A tail-recursive machine with stack
inspection. ACM Transactions on Computing Systems, 26(6):1029–
1052, 2004.

John Clements, Matthew Flatt, and Matthias Felleisen. Modeling an alge-
braic stepper. In Proc. European Symposium on Programming, number
2028 in Lecture Notes in Computer Science, pages 320–334, April 2001.

Olivier Danvy and Andrzej Filinski. Abstracting control. In Proc. ACM
Conference on Lisp and Functional Programming, pages 151–160,
1990.

R. Kent Dybvig, Simon Peyton Jones, and Amr Sabry. A monadic frame-
work for delimited continuations. Journal of Functional Programming,
2006. To appear.

Matthias Felleisen. The theory and practice of first-class prompts. In Proc.
ACM Symposium on Principles of Programming Languages, pages 180–
190, 1988.

Matthias Felleisen. On the expressive power of programming languages.
Science of Compututer Programming, 17(1-3):35–75, 1991.

Andrzej Filinski. Representing monads. In Proc. ACM Symposium on
Principles of Programming Languages, pages 446–457, 1994.

Robert Bruce Findler, John Clements, Cormac Flanagan, Matthew
Flatt, Shriram Krishnamurthi, Paul Steckler, and Matthias Felleisen.
DrScheme: A programming environment for Scheme. Journal of Func-
tional Programming, 12(2):159–182, March 2002.

Matthew Flatt. PLT MzScheme: Language manual. Technical Report PLT-
TR2007-1-v370, PLT Scheme, 2007.

Daniel P. Friedman and Christopher T. Haynes. Constraining control. In
Proc. ACM Symposium on Principles of Programming Languages, pages
245–254, January 1985.

Martin Gasbichler and Michael Sperber. Final shift for call/cc: a direct im-
plementation of shift and reset. In Proc. ACM International Conference
on Functional Programming, pages 271–282, 2002.

Martin Gasbichler, Eric Knauel, Michael Sperber, and Richard A. Kelsey.
How to add threads to a sequential language without getting tangled up.
In Proc. Workshop on Scheme and Functional Programming, 2003.

Carl Gunter, Didier Rémy, and Jon Riecke. A generalization of exceptions
and control in ML-like languages. In Proc. ACM Conference on Func-
tional Programming and Computer Architecture, pages 12–23, 1995.

David Herman, Aaron Tomb, and Cormac Flanagan. Space-efficient grad-
ual typing. In Proc. Trends in Functional Programming, 2007.

Robert Hieb and R. Kent Dybvig. Continuations and concurrency. In Proc.
ACM Symposium on Principles and Practice of Parallel Programming,
pages 128–136, 1990.

Robert Hieb, Kent Dybvig, and Claude W. Anderson, III. Subcontinuations.
Lisp and Symbolic Computation, 7(1):83–110, 1994.

Richard Kelsey, William Clinger, and J. Rees (Eds.). The revised5 report
on the algorithmic language Scheme. ACM SIGPLAN Notices, 33(9),
September 1998.

Richard A. Kelsey and Jonathan Rees. Scheme48, 2007. URL http:
//s48.org/.

Oleg Kiselyov. How to remove a dynamic prompt: static and dynamic
delimited continuation operators are equally expressible. Technical
Report TR611, Indiana University Computer Science, 2005a.

Oleg Kiselyov. Generic implementation of all four *F* operators:
from control0 to shift, 2005b. URL http://okmij.org/ftp/
Computation/Continuations.html#generic-control.

Oleg Kiselyov, Chung-chieh Shan, and Amr Sabry. Delimited dynamic
binding. In Proc. ACM International Conference on Functional Pro-
gramming, pages 26–37, 2006.

Shriram Krishnamurthi, Peter Walton Hopkins, Jay McCarthy, Paul T.
Graunke, Greg Pettyjohn, and Matthias Felleisen. Implementation and
use of the PLT Scheme web server. Higher-Order and Symbolic Com-
putation, 2007. To appear.

James Laird. Exceptions, continuations and macro-expressiveness. In Proc.
European Symposium on Programming, pages 133–146, 2002.

Jacob Matthews, Robert Bruce Findler, Matthew Flatt, and Matthias
Felleisen. A visual environment for developing context-sensitive term
rewriting systems. In Proc. International Conference on Rewriting Tech-
niques and Applications, volume 3091 of Lecture Notes in Computer
Science, 2004.

Christian Queinnec and Bernard P. Serpette. A dynamic extent control op-
erator for partial continuations. In Proc. ACM Symposium on Principles
of Programming Languages, pages 174–184, 1991.

Jon G. Riecke and Hayo Thielecke. Typed exceptions and continuations
cannot macro-express each other. In Proc. International Colloquium on
Automata, Languages and Programming, pages 635–644, 1999.

Chung-chieh Shan. Shift to control. In Proc. Workshop on Scheme and
Functional Programming, pages 99–107, 2004.

Dorai Sitaram. Handling control. In Proc. ACM Conference on Program-
ming Language Design and Implementation, pages 147–155, 1993.

Dorai Sitaram and Matthias Felleisen. Control delimiters and their hierar-
chies. Lisp and Symbolic Computation, 3(1):67–99, 1990.

Michael Sperber (Ed.). The revised5.97 report on the algorithmic language
Scheme, 2007.

Hayo Thielecke. On exceptions versus continuations in the presence of
state. In Proc. European Symposium on Programming, pages 397–411,
2000.

http://s48.org/
http://s48.org/
http://okmij.org/ftp/Computation/Continuations.html#generic-control
http://okmij.org/ftp/Computation/Continuations.html#generic-control

	An F in Production
	Having It All
	Intuition, Specification, and Rationale
	Continuations and Prompts
	Dynamic Binding via Continuation Marks
	Exception Handling
	Dynamic Wind

	Combined Model
	Implementation
	Experience

