
Using Datalog with Binary Decision Diagrams
for Program Analysis

John Whaley, Dzintars Avots, Michael Carbin, and Monica S. Lam

Computer Science Department
Stanford University

Stanford, CA 94305, USA
{jwhaley, dzin, mcarbin, lam}@cs.stanford.edu

Abstract. Many problems in program analysis can be expressed naturally and
concisely in a declarative language like Datalog. This makes it easy to specify
new analyses or extend or compose existing analyses. However, previous imple-
mentations of declarative languages perform poorly compared with traditional
implementations. This paper describesbddbddb, a BDD-Based Deductive Da-
taBase, which implements the declarative language Datalog with stratified nega-
tion, totally-ordered finite domains and comparison operators.bddbddb uses bi-
nary decision diagrams (BDDs) to efficiently represent large relations. BDD op-
erations take time proportional to the size of the data structure, not the number
of tuples in a relation, which leads to fast execution times.bddbddb is an ef-
fective tool for implementing a large class of program analyses. We show that a
context-insensitive points-to analysis implemented withbddbddb is about twice
as fast as a carefully hand-tuned version. The use of BDDs also allows us to
solve heretofore unsolved problems, like context-sensitive pointer analysis for
large programs.

1 Introduction

Many program analyses can be expressed naturally and easily in logic programming
languages, such as Prolog and Datalog [14, 29, 36]. Expressing a program analysis
declaratively in a logic programming language has a number of advantages. First, anal-
ysis implementation is greatly simplified. Analyses expressed in a few lines of Datalog
can take hundreds to thousands of lines of code in a traditional language. By automat-
ically deriving the implementation from a Datalog specification, we introduce fewer
errors. Second, because all analysis information is expressed in a uniform manner, it is
easy to use analysis results or to combine analyses. Finally, optimizations of Datalog
can be applied to all analyses expressed in the language.

However, implementations using logic programming systems are often slower than
traditional implementations and can have difficulty scaling to large programs. Reps
reported an experiment using Corel, a general-purpose logic programming system, to
implement on-demand interprocedural reaching definitions analysis [29]. It was found
that the logic programming approach was six times slower than a native C implemen-
tation. Dawson et al. used Prolog to perform groundness analysis on logic programs
and strictness analysis on functional programs [14]. Using the XSB system, which has
better efficiency than Corel [31], they were able to analyze a number of programs effi-
ciently. However, the programs they analyzed were small — under 600 lines of code.



Other recent work by Liu and Stoller on efficient Datalog appears to have promise, but
they do not present any performance results [21].

Our system for specifying program analyses using Datalog has successfully an-
alyzed programs with tens of thousands of lines of source code, and has regularly
performed faster than handcoded analyses. We will discuss our experience develop-
ing points-to analyses for C and for Java, which we compare with earlier handcoded
versions. We will also discuss the results of using a security analysis and an external
lock analysis which were specified using the same system.

1.1 Datalog using BDDs

We have developed a system calledbddbddb, which stands for BDD-Based Deductive
DataBase.bddbddb is a solver for Datalog with stratified negation, totally-ordered
finite domains and comparison operators.bddbddb represents relations using binary
decision diagrams, or BDDs. BDDs are a novel data structure that were traditionally
used for hardware verification and model checking, but have since spread to other areas.
The original paper on BDDs is one of the most cited papers in computer science [8].

Recently, Berndl et al. showed that BDDs can be used to implement context-
insensitive inclusion-based pointer analysis efficiently [5]. This work showed that a
BDD-based implementation could be competitive in performance with traditional im-
plementations. Zhu also investigated using BDDs for pointer analysis [40, 41]. In 2004,
Whaley and Lam showed that BDDs could actually be used to solve context-sensitive
pointer analysis for large programs with an exponential number of calling contexts, a
heretofore unsolved problem [38]. Thus, by using BDDs, we can solve new, harder
program analysis problems for which there are no other known efficient algorithms.

Datalog is a logic programming language designed for relational databases. We
translate each Datalog rule into a series of BDD operations, and then find the fixpoint
solution by applying the operations for each rule until the program converges on a final
set of relations. By using BDDs to represent relations, we can use BDD operations to
operate on entire relations at once, instead of iterating over individual tuples.

Our goal withbddbddb was to hide most of the complexity of BDDs from the user.
We have several years of experience in developing BDD-based program analyses and
we have encoded our knowledge and experience in the design of the tool. Non-experts
can develop their own analyses without having to deal with the complexities of fine-
tuning a BDD implementation. They can also easily extend and build on top of the
results of advanced program analyses that have been written forbddbddb.

Using bddbddb is not only easier than implementing an analysis by hand — it
can also produce a more efficient implementation.bddbddb takes advantage of opti-
mization opportunities that are too difficult or tedious to do by hand. We implemented
Whaley and Lam’s context-sensitive pointer analysis [38] using an earlier version of the
bddbddb system and found that it performed significantly faster than a hand-coded,
hand-tuned implementation based on BDDs. The hand-coded implementation, which
was 100 times longer, also contained many more bugs.

We and others have also usedbddbddb for a variety of other analyses and analy-
sis queries, such as C pointer analysis, eliminating bounds check operations [1], find-
ing security vulnerabilities in web applications [22], finding race conditions, escape
analysis, lock analysis, serialization errors, and identifying memory leaks and lapsed
listeners [23].



1.2 Contributions

This paper makes the following contributions:

1. Description of thebddbddb system. This paper describes in detail howbddbddb
translates Datalog into efficient, optimized BDD operations and reports on the per-
formance gains due to various optimizations. We expand upon material introduced
in an earlier tutorial paper [18].

2. Demonstration of effective application of logic programming to problems in pro-
gram analysis. Whereas previous work shows that there is a penalty in writing pro-
gram analysis as database operations, we show that a BDD implementation of Dat-
alog for program analysis can be very efficient. Interprocedural program analysis
tends to create data that exhibits many commonalities. These commonalities re-
sult in an extremely efficient BDD representation. Datalog’s evaluation semantics
directly and efficiently map to BDD set operations.

3. Experimental results on a variety of program analyses over multiple input programs
show thatbddbddb is effective in generating BDD analyses from Datalog specifi-
cations. In particular, we comparebddbddb to some hand-coded, hand-optimized
BDD program analyses and show thatbddbddb is twice as fast in some cases,
while also being far easier to write and debug.

4. Insights into using BDDs for program analysis. Before building this tool, we
had amassed considerable experience in developing BDD-based program analy-
ses. Much of that knowledge went into the design of the tool and our algorithms.
This paper shares many of those insights, which is interesting to anyone who uses
BDDs for program analysis.

1.3 Paper Organization

The rest of the paper is organized as follows. We first describe how a program analysis
can be described as a Datalog program in Section 2. Section 3 deconstructs a Datalog
program into operations in relational algebra, and shows how BDDs can be used to rep-
resent relations and implement relational operations. Section 4 describes the algorithm
used bybddbddb to translate a Datalog program into an interpretable program of effi-
cient BDD operations. Section 5 presents experimental results comparingbddbddb to
hand-coded implementations of program analysis using BDDs. In Section 6 we discuss
the related work. Our conclusions are in Section 7.

2 Expressing a Program Analysis in Datalog

Many program analyses, including type inference and points-to analyses, are often de-
scribed formally in the compiler literature as inference rules, which naturally map to
Datalog programs. A program analysis expressed in Datalog accepts an input program
represented as a set of input relations and generates new output relations representing
the results of the analysis.



2.1 Terminology

bddbddb is an implementation of Datalog with stratified negation, totally-ordered finite
domains, and comparison operators. A Datalog programP consists of a set of domains
D, a set of relationsR, and a set of rulesQ. The variables, types, code locations, func-
tion names, etc. in the input program are mapped to integer values in their respective
domains. Statements in the program are broken down into basic program operations.
Each type of basic operation is represented by a relation; operations in a program are
represented as tuples in corresponding input relations. A program analysis can declare
additional domains and relations. Datalog rules define how the new domains and rela-
tions are computed.

A domainD ∈ D has sizesize(D) ∈ N, whereN is the set of natural numbers.
We require that all domains have finite size. The elements of a domainD is the set of
natural numbers0 . . . size(D)− 1.

A relationR ∈ R is a set ofn-ary tuples ofattributes. Thekth attribute of relation
R is signified byak (R), and the number of attributes of a relationR is signified by
arity(R). Relations must have one or more attributes, i.e.∀R ∈ R, arity(R) ≥ 1.
Each attributea ∈ A has a domaindomain(a) ∈ D, which defines the set of possible
values for that attribute. An expressionR(x1, . . . , xn) is true iff the tuple(x1, . . . , xn)
is in relationR. Likewise,¬R(x1, . . . , xn) is true iff (x1, . . . , xn) is not in R.

Rules are of the form:
E0 : −E1, . . . , Ek.

where the expressionE0 (the rulehead) is of the formR(x1, . . . , xn), whereR ∈ R
andn = arity(R). The expression listE1, . . . , Ek (the rulesubgoals) is a list of zero
or more expressions, each with one of the following forms:

– R(x1, . . . , xn), whereR ∈ R andn = arity(R)
– ¬R(x1, . . . , xn), whereR ∈ R andn = arity(R)
– x1 = x2

– x1 6= x2

– x1 < x2

The comparison expressionsx1 = x2, x1 6= x2, andx1 < x2 have their normal
meanings over the natural numbers.

The domain of a variablex is determined by its usage in a rule. Ifx appears as the
kth argument of an expression of the formR(x1, . . . , xn) then the domain ofx, denoted
by domain(x), isdomain(ak (R)). All uses of a variable within a rule must agree upon
the domain. Furthermore, in a comparison expression such asx1 = x2, x1 6= x2 or
x1 < x2, the domains of variablesx1 andx2 must match.

A safeDatalog program guarantees that the set of inferred facts (relation tuples) will
be finite. Inbddbddb, because all domains are finite, programs are necessarily safe. If a
variable in the head of a rule does not appear in any subgoals, that variable may take on
any value in the corresponding attribute’s domain; i.e. it will be bound to the universal
set for that domain.

bddbddb allows negation instratifiable programs [11]. Rules are grouped into
strata, which are solved in sequence. Each strata has aminimal solution, where rela-
tions have the minimum number of tuples necessary to satisfy those rules. In a stratified
program, every negated predicate evaluates the negation of a relation which was fully
computed in a previous strata.



Datalog withwell-foundednegation is a superset of Datalog with stratifiable nega-
tion, and can be used to express fixpoint queries [15]. We have not yet found it necessary
to extendbddbddb to support well-founded semantics, though it would not be difficult.

2.2 Example

Algorithm 1 Context-insensitive points-to analysis with a precomputed call graph, where pa-
rameter passing is modeled with assignment statements.

DOMAINS

V 262144 variable.map
H 65536 heap.map
F 16384 field.map

RELATIONS
input vP0 (variable : V, heap : H)
input store (base : V,field : F, source : V)
input load (base : V,field : F, dest : V)
input assign (dest : V, source : V)
output vP (variable : V, heap : H)
output hP (base : H,field : F, target : H)

RULES

vP(v, h) : − vP0(v, h). (1)
vP(v1, h) : − assign(v1, v2), vP(v2, h). (2)
hP(h1, f, h2) : − store(v1, f, v2), vP(v1, h1), vP(v2, h2). (3)
vP(v2, h2) : − load(v1, f, v2), vP(v1, h1), hP(h1, f, h2). (4)

2

Algorithm 1 is the Datalog program for a simple Java points-to analysis. It begins
with a declaration of domains, their sizes, and optional mapping files containing mean-
ingful names for the numerical values in each domain. V is the domain of local variables
and method parameters, distinguished by identifier name and lexical scope. H is the do-
main of heap objects, named by their allocation site. F is the domain of field identifiers,
distinguished by name and the type of object in which they are contained.

Relations are declared next, along with the names and domains of their attributes.
RelationvP0 is the set of initial points-to relations.vP0 is declared as a set of tuples
(v,h), wherev ∈ V andh ∈ H. vP0(v, h) is true iff the program directly places a ref-
erence to heap objecth in variablev in an operation such ass = new String() .
Relationstore represents store operations such asx.f = y , andload similarly repre-
sents load operations.assign(x, y) is true iff the program contains the assignmentx=y .
Assuming that a program call graph is availablea priori, intraprocedural assignments
from method invocation arguments to formal method parameters and assignments from
return statements to return value destinations can be modeled as simple assignments.

The analysis infers possible points-to relations between heap objects, and possible
points-to relations from variables to heap objects.vP(v, h) is true if variablev may
point to heap objecth at any point during program execution. Similarly,hP(h1, f, h2)
is true if heap object fieldh1.f may point to heap objecth2.

Rule 1 incorporates the initial points-to relations intovP . Rule 2 computes the tran-
sitive closure over inclusion edges. If variablev2 can point to objecth andv1 includes



v2, thenv1 can also point toh. Rule 3 models the effect of store instructions on the
heap. Given a statementv1.f = v2, if v1 can point toh1 andv2 can point toh2, then
h1.f can point toh2. Rule 4 resolves load instructions. Given a statementv2 = v1.f , if
v1 can point toh1 andh1.f can point toh2, thenv2 can point toh2.

String a = "fido";
String b;
Dog d = new Dog();
b = a;
d.name = b;

(a)

vP0(va, h1)

vP0(vd, h3)
assign(vb, va)
store(vd,name, vb)

(b)

Fig. 1. (a) Example program for Java pointer analysis. (b) Corresponding input relations.

To illustrate this analysis in action, we will use the simple Java program listed in
Figure 1(a). Domain V contains valuesva, vb andvd representing variablesa, b, and
d. Domain H contains valuesh1 andh3, representing the objects allocated on lines 1
and 3. Domain F consists of the valuename, which represents thenamefield of aDog
object.

The initial relations for this input program are given in Figure 1(b). Initial points-to
relations invP0 are (va, h1) and (vd, h3). The program has one assignment opera-
tion, represented as(vb, va) in relationassign, and one store operation, represented as
(vd,name, vb) in relationstore.

We begin by using Rule 1 to find thatvP(va, h1) and vP(vd, h3) are true. The
results of the assignment on line 4 are found by using Rule 2, which tells us that
vP(vb, h1) is true sinceassign(vb, va) andvP(va, h1) are true. Finally, Rule 3 finds
thathP(h3,name, h1) is true, sincestore(vd,name, vb), vP(vd, h3), andvP(vb, h1)
are true.

3 From Datalog to BDD Operations

In this section, we explain our rationale for using BDD operations to solve Datalog
programs. We first show how a Datalog program can be translated into relational al-
gebra operations. We then show how we represent relations as boolean functions and
relational algebra as operations on boolean functions. Finally, we show how boolean
functions can be represented efficiently as binary decision diagrams (BDDs).

3.1 Relational Algebra

A Datalog query with finite domains and stratified negation can be solved by applying
sequences of relational algebra operations corresponding to the Datalog rules iteratively,
until a fixpoint solution is reached. We shall illustrate this translation simply by way of
an example, since it is relatively well understood.

We use the following set of relational operations: join, union, project, rename, dif-
ference, and select.R1 1 R2 denotes thenatural join of relationsR1 andR2, which
returns a new relation where tuples inR1 have been merged with tuples inR2 in which



corresponding attributes have equal values.R1 ∪ R2 denotes theunionof relationsR1

andR2, which returns a new relation that contains the union of the sets of tuples inR1

andR2. πa1,...,ak
(R) denotes theprojectoperation, which forms a new relation by re-

moving attributesa1, . . . , ak from tuples inR. ρa→a′(R) denotes therenameoperation,
which returns a new relation with the attributea of R renamed toa′. R1 − R2 denotes
thedifferenceof relationsR1 andR2, which contains the tuples that are inR1 but not in
R2. Theselectoperation, denoted asσa=c(R), restricts attributea to match a constant
valuec. It is equivalent to performing a natural join with a unary relation consisting of
a single tuple with attributea holding valuec.

To illustrate, an application of the rule

vP(v1, h) : −assign(v1, v2), vP(v2, h).

corresponds to this sequence of relational algebra operations:

t1 = ρvariable→source(vP);
t2 = assign 1 t1;
t3 = πsource(t2);
t4 = ρdest→variable(t3);
vP = vP ∪ t4;

Note that rename operations are inserted before join, union, or difference operations
to ensure that corresponding attributes have the same name, while non-corresponding
attributes have different names.

3.2 Boolean Functions

We encode relations as boolean functions over tuples of binary values. Elements in a
domain are assigned consecutive numeric values, starting from 0. A value in a domain
with m elements can be represented indlog2(m)e bits. Suppose each of the attributes of
ann-ary relationR is associated with numeric domainsD1, D2, . . . , Dn, respectively.
We can representR as a boolean functionf : D1 × . . . × Dn → {0, 1} such that
(d1, . . . , dn) ∈ R iff f(d1, . . . , dn) = 1, and(d1, . . . , dn) /∈ R iff f(d1, . . . , dn) = 0.

Let relationR be a set of tuples{(1, 1), (2, 0), (2, 1), (3, 0), (3, 1)} overD1 ×D2,
whereD1 = {0, 1, 2, 3} andD2 = {0, 1}. The binary encoding forR is functionf ,
displayed in Figure 2(a), where the first attribute ofR is represented by bitsb1 andb2

and the second attribute byb3.
For each relational algebra operation, there is a logical operation that produces the

same effect when applied to the corresponding binary function representation. Suppose
R1 is represented by functionf1 : D1 ×D2 → {0, 1} andR2 by functionf2 : D2 ×
D3 → {0, 1}. The relationR1 1 R2 is represented by functionf3 : D1 ×D2 ×D3 →
{0, 1}, wheref3(d1, d2, d3) = f1(d1, d2) ∧ f2(d2, d3). Similarly, the union operation
maps to the binary∨ operator, andl − r ≡ l ∧ ¬r. The project operation can be
represented using existential quantification. For example,πa2(R1) is represented by
f : D1 → {0, 1} wheref(d1) = ∃d2.f1(d1, d2).



3.3 Binary Decision Diagrams

Large boolean functions can be represented efficiently using BDDs, which were origi-
nally invented for hardware verification to efficiently store a large number of states that
share many commonalities [8].

A BDD is a directed acyclic graph (DAG) with a single root node and two terminal
nodes which represent the constants one and zero. This graph represents a boolean
function over a set of input decision variables. Each non-terminal nodet in the DAG
is labeled with an input decision variable and has exactly two outgoing edges: a high
edge and a low edge. To evaluate the function for a given set of input values, one simply
traces a path from the root node to one of the terminal nodes, following the high edge
of a node if the corresponding input variable is true, and the low edge if it is false.
The terminal node gives the value of the function for that input. Figure 2(b) shows a
BDD representation for functionf from Figure 2(a). Each non-terminal node is labeled
with the corresponding decision variable, and a solid line indicates a high edge while a
dashed line indicates a low edge.

D1 D2 R
b1 b2 b3 f
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

(a)

0 1

1b

2b

3b

(b)

1b 1b

2b

3b

10

(c)

Fig. 2. (a) Binary encoding of a relation. (b) and (c) are BDD encodings of the relation given by
(a) with decision variable ordersb1, b2, b3 andb2, b1, b3, respectively.

We specifically use a variant of BDDs calledreduced ordered binary decision dia-
grams, or ROBDDs [8]. In anorderedBDD, the sequence of variables evaluated along
any path in the DAG is guaranteed to respect a given totaldecision variable order. The
choice of the decision variable order can significantly affect the number of nodes re-
quired in a BDD. The BDD in Figure 2(b) uses variable orderb1, b2, b3, while the BDD
in Figure 2(c) represents the same function, only with variable orderb2, b1, b3. Though
the change in order only adds one extra node in this example, in the worst case an ex-
ponential number of nodes can be added. In addition, ROBDDs aremaximally reduced
meaning common BDD subgraphs are collapsed into a single graph, and the nodes
are shared. Therefore, the size of the ROBDD depends on whether there are common
boolean subexpressions in the encoded function, rather than on the number of entries in
the set.



3.4 BDD Operations

The boolean function operations discussed in Section 3.2 are a standard feature of BDD
libraries [20]. The∧ (and),∨ (or), and− (difference) boolean function operations can
be applied to two BDDs, producing a BDD of the resulting function. The BDD ex-
istential quantification operationexist is used to produce a new BDD where nodes
corresponding to projected attributes are removed. This operation combines the low
and high successors of each removed node by applying an∨ operation.

Rename operations are implemented using the BDDreplace operation, which
computes a new BDD where decision variables corresponding to the old attributes
have been replaced with decision variables corresponding to the new attribute names.
Replace operations can be eliminated if the renamed attributes are encoded using the
same decision variables as the original attributes. Areplace operation which does not
change the relative order of decision variables is only linear with respect to the number
of nodes in the BDD. If the order is changed, the cost of areplace can be exponential
with respect to the number of decision variables. Care must be taken when encoding
relation attributes to minimize the number of expensive rename operations.

Natural join operations are frequently followed by project operations to eliminate
unnecessary attributes. The BDD relational product operation, orrelprod, efficiently
combines this sequence in a single operation. Similarly, the select and project operations
can be combined into a single BDD operation, known asrestrict.

BDD operations operate on entire relations at a time, rather than one tuple at a time.
The cost of BDD operations depends on the size and shape of the BDD graphs, not
the number of tuples in a relation. Thus, large relations can be computed quickly as
long as their encoded BDD representations are compact. Also, due to caching in BDD
packages, identical subproblems only have to be computed once. These points are key
to the efficiency of BDD operations, and are the reason why we use this data structure
to represent our relations.

4 Translating and Optimizing Datalog Programs

The bddbddb system applies a large number of optimizations to transform Datalog
programs into efficient BDD operations:

1. Apply Datalog source level transforms and optimizations. (Section 4.1)
2. Remove unnecessary rules, stratify the rules, and determine the rule iteration order.

(Section 4.2)
3. Translate the stratified query into an intermediate representation (IR) consisting of

relational algebra operations. (Section 4.3)
4. Through analysis, optimize the IR and add BDD operations to replace equivalent

sequences of relational algebra operations. (Section 4.4)
5. Choose BDD decision variables for encoding relation attributes. (Section 4.5)
6. Perform more dataflow optimizations after physical domains have been assigned.

(Section 4.6)
7. Interpret the resulting program. (Section 4.7)

To illustrate this process, we use Algorithm 1 from Section 2 as a running example.



vP0

vP

hP

store

load
2

1

4

3
24

3

assign

(a)

vP0 vP0

assign assign

vP

hP

store

load

vP

hP

store

load

1

3

4
5

1

2
3

4
5

6

7

2

(b)

Fig. 3. (a) Predicate dependency graph for Algorithm 1. (b) Breaking the PDG into SCCs and
finding cycles.

4.1 Datalog Source Transformations

Before compilation, we normalize the forms of the input rules as follows:

– Any variable that appears only once in a rule is changed into an underscore () to
indicate an unused attribute.

– If a variable appears multiple times in a single subgoal, we give each additional
use a distinct name, and then add extra equality subgoals to make the new variables
equal to the original variable. For example, a subgoalR(x, x, x) is transformed into
the three subgoalsR(x, x′, x′′), x = x′, x = x′′.

– Each comparison subgoal with an attribute of domainD is substituted with a sub-
goal for a corresponding precomputed relation defined overD×D which represents
that comparison function.

– Subgoals in rules that define temporary relations are inlined into the rules that use
those relations. Temporary relations are non-input, non-output relations which are
in the head of only one rule, and appear as a subgoal in only one other rule.

4.2 Datalog Rule Optimization

Rule Removal The solver removes rules and relations that do not indirectly contribute
to the output relations. Apredicate dependency graph(PDG) is built to record depen-
dencies between rules and relations. Each node represents a relation, and there is an
edgeg → h marked with ruler if rule r has subgoal relationg and head relationh. (If
the subgoal is negated, the edge is marked as a negative edge.) The PDG for our exam-
ple is shown in Figure 3(a). Necessary rules and relations are found by performing a
backward pass over the PDG, starting from the output relations.

Stratification We then use the PDG to stratify the program. Stratification guarantees
that the relation for every negated subgoal can be fully computed before applying rules
containing the negation. Each stratum is a distinct subset of program rules that fully
computes relations belonging to that stratum. Rules in a particular stratum may use the
positive forms of relations computed in that stratum, as well as positive or negated forms
of relations calculated in earlier strata and input relations from the relational database.
There are no cyclic dependencies between strata. If the program cannot be stratified, we
warn the user. In our experience designing Datalog programs for program analysis, we
have yet to find a need for non-stratifiable queries.



As our example does not contain any negations, all of the rules and relations are
placed within a single stratum.

Finding cycles Cycles in the PDG indicate that some rules and relations are recursively
defined, requiring iterative application of rules within the cycles to reach a fixed-point
solution. The PDG for each stratum is split into strongly connected components (SCCs).
We can compute the result for a stratum by evaluating strongly connected components
and non-cyclic relations in the topological order of the PDG.

A single strongly connected component can encompass multiple loops that share
the same header node. We would like to distinguish between the different loops in a
single SCC so we can iterate around them independently. However, the PDG is typically
not reducible, and the classical algorithm for finding loops—Tarjan’s interval finding
algorithm—only works on reducible graphs [34]. Extensions have been made to deal
with irreducible graphs, but they typically have the property that a node can only be the
header for one loop [28]. We solve this by identifying one loop in the SCC, eliminating
its back edge, and then recursively re-applying the SCC algorithm on the interior nodes
to find more inner loops.

The steps of the algorithm on our example are shown in Figure 3(b). We first break
the PDG into five SCCs, labeled 1-5, as shown on the left. Then, we remove the edge
for rule 4 fromhP to vP, breaking the larger cycle so that it can topologically sort those
nodes and find the smaller self-cycle onvP for rule 2, as shown on the right.

Determining rule application order The order in which the rules are applied can
make a significant difference in the execution time. When there are multiple cycles in
a single SCC, the number of rule applications that are necessary to reach a fixpoint
solution can differ based on the relative order in which the two cycles are iterated.
Which application order will yield the fewest number of rule applications depends not
only on the rules but also on the nature of the relations.

Aspects of the BDD library can also make certain iteration orders more efficient
than others, even if they have more rule applications. For example, the BDD library
uses an operation cache to memoize the results of its recursive descents on BDD nodes,
so it can avoid redundant computations when performing an operation. This cache can
also provide benefits across different operations if the BDDs that are being operated
upon share nodes. To take advantage of operation cache locality across operations, one
should perform related operations in sequence. Another aspect influencing iteration or-
der choice is the set-oriented nature of BDD operations. When performing an operation
on tuples generated in a loop, it is ofter faster to apply the operation after completing
all loop iterations, rather than applying it once per loop iteration.

In the absence of profile information from prior runs or from the user,bddbddb
uses static analysis of the rules to decide upon a rule application order. Cycles that
involve fewer rules are iterated before cycles that involve more rules, and rules that
have fewer subgoals are iterated before rules that have more subgoals. The reasoning
behind this is that smaller, shorter chains of rules and smaller rules are faster to iterate
due to operation cache locality. This static metric works very well in the examples we
have tried because small cycles are usually transitive closure computations, which are
fast and expose more opportunities for set-based computation on the larger cycles.



4.3 Intermediate Representation

Once we have determined the iteration order, we translate the rules into an intermediate
representation based on relational algebra operations as follows:

1. For each subgoal with an underscore, project away its unused attributes.
2. For each subgoal with a constant, use the select and project operators to restrict the

relation to match the constant.
3. Join each subgoal relation with each of the other subgoal relations, projecting away

attributes as they become unnecessary.
4. Rename the attributes in the result to match the head relation.
5. If the head relation contains a constant, use the select operator on the result to set

the value of the constant.
6. Unify the result with the head relation.

4.4 IR Optimizations

In repeated applications of a given rule within a loop, it can be more efficient to make
use of the differential between the current value of a subgoal relation and the previous
value from the last time the rule was applied. This is known asincrementalizationor
the semi-näıve evaluation strategy. By computing the difference in subgoal relations
as compared to the previous iteration, we can avoid extra work; if these inputs are the
same as the last iteration, we can avoid applying the rule altogether. The tradeoff of
incrementalization is that the old value of every subgoal in every incrementalized rule
must be stored. We allow the user to control whether incrementalization is performed
on a per rule basis. Performing incrementalization on the sequence of relational algebra
operations derived from Rule (2) (Section 3.1) generates the following IR:

vP ′′ = vP − vP ′;
vP ′ = vP ;
assign ′′= assign − assign ′;
assign ′= assign;
t1 = ρvariable→source(vP ′′);
t2 = assign 1 t1;
t3 = ρvariable→source(vP);
t4 = assign ′′ 1 t3;
t5 = t2 ∪ t4;
t6 = πsource(t5);
t7 = ρdest→variable(t6);
vP = vP ∪ t7;

Next, we apply a number of traditional compiler data flow optimizations on the IR:

– Constant propagation. We propagate empty set, universal set, and constants to
reduce unions, joins, and difference operations.

– Definition-use chains. We calculate the chains of definitions and uses and use this
to optimize the program by eliminating dead code (operations whose results have
no uses), coalescing natural join and project pairs intorelprod operations, and
coalescing select and project pairs intorestrict operations.



After this stage of optimizations, relational algebra operations are replaced by BDD
operations, using combinedrelprod operations andrestrict operations where pos-
sible. Rule (2) becomes:

vP ′′ = diff(vP , vP ′);
vP ′ = copy(vP);
t1 = replace(vP ′′, variable → source);
t2 = relprod(t1, assign, source);
t3 = replace(t2, dest → variable);
vP = or(vP , t3);

In the optimized IR, the join-project pair involvingassign andvP ′′ has been col-
lapsed into a singlerelprod. Also, the operations for computing and using the differ-
ence ofassign have been removed becauseassign is loop invariant.

4.5 BDD Decision Variable Assignment

As noted in Section 3.4, the use of BDD operations to implement relational operations
places constraints on the choice of BDD decision variables used to encode relation
attributes. When performing an operation on two BDDs, the decision variables for cor-
responding attributes must match. Likewise, unmatched attributes must be assigned to
different decision variables. A BDDreplace operation is used whenever different sets
of decision variables must be substituted into a BDD as the result of a relational rename.

It is most important to minimize the cost ofreplace operations. This depends on
the choice of decision variables used for encoding each attribute. The cost can be zero,
linear, or exponential depending on whether the new decision variables are the same,
have the same relative order, or have a different relative order. Additionally, we prefer
to perform costlyreplace operations on smaller BDDs (in terms of BDD nodes) rather
than on larger BDDs.

bddbddb uses a priority-based constraint system to assign attributes to BDD de-
cision variables. This system is expressed in terms of both equivalence and non-
equivalence constraints on relation attributes and sequences of decision variables. We
use a specialized union-find data structure augmented with non-equivalence constraints
to efficiently compute the constraint system. In BDD terminology, a sequence of bi-
nary decision variables used to represent an attribute is often referred to as aphysical
domain, which should not be confused with a Datalog domain as defined in Section 2.1.

We avoid introducingreplace operations by constraining any renamed attributes
to use the same physical domain as the original attribute. When an introduced constraint
would cause the constraint system to have no solution, we assign the new attribute to a
different physical domain and add areplace operation at that point to allow the con-
straint to be satisfied. By carefully choosing the order of priority in which constraints
are added to the system, we ensure thatreplace operations are introduced where they
will be most efficient.

For each attributea in relationR, we create a non-equivalence constraint between
a and other attributes inR. Then, we add constraints for all program operations, in
order of importance. Operations in inner loops have higher importance than operations
in outer loops, under the presumption that these operations will be performed more
often. Within a given loop depth,relprod operations are considered first, in order



of execution, since they are typically the most expensive operations. Afterrelprod
operations, we consider other operations. For a unary operation such ascopy, we create
equivalence constraints between corresponding attributes of the source and destination
relations. For a binary operation, the interacting attributes for the input relations are
constrained to be equal. After considering all operations, we add constraints for the
attributes of the input and output relations. The physical domains used by these relations
are specified by the user, since they must be loaded from or stored into the relational
database.

An application of the physical domain assignment algorithm to our running example
reveals thatvariable from vP ′′ andsource from assign can be assigned to the same
physical domain for therelprod. Therefore, thereplace that occurs immediately
before can be removed:

vP ′′ = diff(vP , vP ′);
vP ′ = copy(vP);
t1 = relprod(vP ′′, assign, source);
t2 = replace(t1, dest[V 1] → variable[V 0]);
vP = or(vP , t2);

4.6 Additional Optimizations

After domain assignment, we have the opportunity to apply another set of standard
compiler optimizations:

– Global value numbering. Global value numbering factors the evaluation of com-
mon subexpressions among rules into non-redundant computations. Moreover, it
optimizes loops by hoisting invariants.

– Copy propagation. Copy propagation eliminates unnecessary temporary IR rela-
tions that can be generated by our optimizations.

– Liveness analysis. We use a liveness analysis to clean up dead code. We reduce the
memory footprint during IR interpretation by freeing relation allocations as soon
as the lifetime of a relation has ended.

4.7 Interpretation

Finally, bddbddb interprets the optimized IR and performs the IR operations in se-
quence by calling the appropriate methods in the BDD library.

4.8 Decision Variable Ordering

While BDDs have proven effective in compacting the commonalities in large sets of
data, the extent to which these commonalities can be exploited depends on the ordering
of the decision variables. In our case, the difference between a good or bad ordering can
mean the termination or non-termination (due to memory exhaustion) of an analysis.
Moreover, the relative orderings are not readily apparent given only a static analysis,
and the space of all orders is extremely large (with both precedence and interleaving
conditions, the number of orders is given by the series for ordered Bell numbers).



We have developed an algorithm for finding an effective decision variable order-
ing [9]. The algorithm, based on active learning, is embedded in the execution of Dat-
alog programs in thebddbddb system. Whenbddbddb encounters a rule application
that takes longer than a parameterized amount of time, it initiates a learning episode
to find a better decision variable ordering by measuring the time taken for alternative
variable orderings. Because rule applications can be expensive,bddbddb maximizes
the effectiveness of each trial by actively seeking out those decision variable orderings
whose effects are least known.

5 Experimental Results

We measure the effectiveness of ourbddbddb system and compare it to hand-optimized
BDD programs. Prior to developing thebddbddb system, we had manually imple-
mented and optimized three points-to analyses: a context-insensitive pointer analysis for
Java described by Berndl [5], a context-sensitive pointer analysis based on the cloning
of paths in the call graph [38], and a field-sensitive, context-insensitive pointer analysis
for C [1]. We then wrote Datalog versions of these analyses which we ran using the
bddbddb system.

The hand-coded Java analyses are the result of months of effort and are well-tuned
and optimized. The variable ordering and physical domain assignment have been care-
fully hand-tuned to achieve the best results. Many of the rules in the hand-coded algo-
rithms were incrementalized. This proved to be a very tedious and error-prone process,
and we did not incrementalize the whole system as it would have been too unwieldy.
Bugs were still popping up weeks after the incrementalization was completed.bddb-
ddb, on the other hand, happily decomposed and incrementalized even the largest and
most complex inference rules.

Because of the unsafe nature of C, the C pointer analysis is much more complicated,
consisting of many more rules. For the hand-coded C pointer analysis, physical domain
assignments, domain variable orderings and the order of inferences were only optimized
to avoid significant execution slowdowns. Specification of low-level BDD operations
was an error-prone, time-consuming process. A good deal of time was spent modifying
physical domain assignments and solving errors due to the incorrect specification of
physical domains in BDD operations. Once the Datalog version of the analysis was
specified, development of the hand-coded version was discontinued, as it was no longer
worth the effort. In the experiment reported here, we compare the hand-coded version
and equivalent Datalog implementation from that time.

We also evaluate the performance ofbddbddb on two additional analyses: an anal-
ysis to find external lock objects to aid in finding data races and atomicity bugs, and
an analysis to find SQL injection vulnerabilities in Java web applications [23]. Both
of these analyses build on top of the context-sensitive Java pointer analysis, and both
are fairly sophisticated analyses. We do not have hand-coded implementations of these
analyses as they would be too tedious to implement by hand.

5.1 Comparing Lines of Code

The first metric for comparison is in the number of lines of code in each algorithm:



Analysis Hand-coded Datalog
context-insensitive Java 1975 30
context-sensitive Java 3451 33
context-insensitive C 1363 308
external lock analysis n/a 42
SQL injection analysis n/a 38

Fig. 4.LOC for hand-coded analyses versus lines of Datalog usingbddbddb

Specifying the analysis as Datalog reduced the size of the analysis by 4.4 times in
the case of the C analysis, to over 100 times in the case of the context-sensitive Java
analysis. The disparity between the C and Java implementations is due to the fact that
the C implementation combined many BDD operations on a single line, whereas the
Java implementation put each BDD operation on a separate line of code.

Adding a new analysis withbddbddb takes only a few lines of code versus a rewrite
of thousands of lines for a hand-coded implementation. The external lock analysis and
the SQL injection analysis are examples of this. In another example, we easily modified
the inference rules for the context-insensitive C points-to analysis to create a context-
sensitive analysis by adding an additional context attribute to existing relations. While
this was an extremely simple change to make to thebddbddb Datalog specification,
such a modification would have required rewriting hundreds of lines of low-level BDD
operations in the hand-coded analysis.

5.2 Comparing Analysis Times

For each analysis, we compared the solve time for an incrementalized hand-coded
implementation against abddbddb-based implementation with varying levels of op-
timization. Analyses were performed on an AMD Opteron 150 with 4GB RAM run-
ning RedHat Enterprise Linux 3 and Java JDK 5.0. The threebddbddb-based analyses
and the hand-coded Java points-to analysis used the open-source JavaBDD library [37],
which internally makes use of the BuDDy BDD library [20]. The hand-coded C points-
to analysis makes direct use of the BuDDy library. The Java context-insensitive analysis
used an initial node table size of 5M and an operation cache size of 750K. The Java
context-sensitive analysis and C points-to analyses both used an initial node table size
of 10M and an operation cache size of 1.5M.

Figures 5, 6 and 7 contain the run times of our Java context-insensitive analysis, Java
context-sensitive analysis, and C pointer analysis, respectively. The first two columns
give the benchmark name and description. The next column gives the solve time in
seconds for the hand-coded solver. The remaining columns give the solve time when
using bddbddb with various optimizations enabled. Each column adds a new opti-
mization in addition to those used in columns to the left. UnderNo Opts we have
all optimizations disabled. UnderIncr we add incrementalization, as described in Sec-
tion 4.3. Under+DU we add optimizations based on definition-use chains. Under+Dom
we optimize physical domain assignments. Under+All we add the remaining optimiza-
tions described in Section 4. For the Java context-insensitive and C pointer analyses,
the+Order column shows the result ofbddbddb with all optimizations enabled using
a variable order discovered by the learning algorithm referred to in Section 4.8. For our
C programs, we used the order learned fromenscript. For the Java programs we used
the order learned fromjoeq. In the Java context-sensitive case, the learning algorithm



Name Description Hand- bddbddb
codedNo Opts Incr +DU +Dom +All +Order

joeq virtual machine and compiler 7.3 10.0 9.4 7.9 4.8 4.5 3.6
jgraph graph-theory library 15.0 25.6 24.1 20.0 11.0 10.4 7.6
jbidwatch auction site tool 26.3 47.4 45.8 35.4 18.6 16.8 13.0
jedit sourcecode editor 67.0 123.5 119.9 100.0 56.4 45.7 35.7
umldot UML class diagrams from Java 16.6 29.0 27.4 20.2 11.6 10.9 8.4
megamek networked battletech game 35.8 71.3 67.1 57.0 26.8 23.0 17.4

Fig. 5.Comparison of context-insensitive Java pointer analysis runtimes. Times are in seconds.

Name Description Hand- bddbddb
codedNo Opts Incr +DU +Dom +All

joeq virtual machine and compiler 85.3 323.3 317.8 274.7 124.7 69.7
jgraph graph-theory library 118.0 428.1 431.1 362.2 116.3 94.9
jbidwatch auction site tool 421.1 1590.2 1533.3 1324.3 470.6 361.3
jedit sourcecode editor 147.0 377.2 363.4 293.7 136.4 109.3
umldot UML class diagrams from Java 402.5 1548.3 1619.3 1362.3 456.5 332.8
megamek networked battletech game 1219.2 ∞ ∞ 4306.5 1762.9 858.3

Fig. 6.Comparison of context-sensitive Java pointer analysis runtimes. Times are in seconds.

Name Description Hand- bddbddb
codedNo Opts Incr +DU +Dom +All +Order

crafty chess program 8.7 547.3 525.9 571.7 9.4 8.1 8.2
enscript text to PS conversion 41.0 1175.4 1211.7 1128.4 122.3 112.6 31.5
hypermail mbox to HTML conversion 149.4 6263.8 6113.0 5967.1 262.0 231.3 44.2
monkey webserver 16.9 468.9 397.7 398.7 33.1 31.3 9.6

Fig. 7.Comparison of C pointer analysis runtimes. Times are in seconds.

Name Description bddbddb
No Opts Incr +DU +Dom +All

joeq virtual machine and compiler 75.0 60.4 59.3 17.4 15.1
jgraph graph-theory library 64.9 51.0 51.1 13.0 12.5
jbidwatch auction site tool 231.0 183.6 203.5 52.3 51.7
jedit sourcecode editor 20.1 16.3 16.2 5.3 5.1
umldot UML class diagrams from Java 199.3 162.2 161.3 45.0 39.2
megamek networked battletech game 13.3 11.5 10.5 5.1 4.3

Fig. 8.External lock analysis runtimes. Times are in seconds.

Name Description bddbddb
No Opts Incr +DU +Dom +All +Order

personalblog J2EE-based blogging application ∞ 73.0 57.8 25.1 23.1 16.7
road2hibernate hibernate testing application ∞ 86.4 74.8 49.2 39.7 33.4
snipsnap J2EE-based blogging application ∞ 227.8 211.9 98.9 84.5 55.8
roller J2EE-based blogging application ∞ 521.0 479.0 253.7 208.4 185.4

Fig. 9. SQL injection query results. Times are in seconds.∞ indicates that the analysis did not
finish.



was not able to find a better order, so we omitted this column. Entries marked with a∞
signified that the test case did not complete due to running out of memory.

The time spent bybddbddb to translate Datalog to optimized BDD operations is
negligible compared to the solve times, so the translation times have been omitted. In
all cases,bddbddb spent no more than a few seconds to compile the Datalog into BDD
operations.

The unoptimized context-insensitive Java analysis was 1.4 to 2 times slower than
the hand-coded version. Incrementalization showed a very small improvement, but by
adding def-use optimizations, we began to see a useful time reduction to 80% of the
original. Optimizing BDD domain assignments reduces the runtime to about 42% of
the original, and enabling all optimizations further reduces the runtime to about 38%
of the original. Improved variable order brought the runtime between 24% and 36%
of the unoptimized runtime. While incrementalization and def-use optimizations were
sufficient to bring thebddbddb analysis close to the hand-coded analysis runtimes, the
remaining optimizations and learned variable order combined to beat the hand-coded
solver runtime by a factor of 2.

Results for the context-sensitive Java analysis were similar to the context-insensitive
results. Unfortunately, our variable order learning algorithm was unable to learn a better
variable order for this analysis, leaving the fully optimizedbddbddb analysis about
20% faster than the hand-coded version.

In the case of the C analysis, the unoptimizedbddbddb analysis was 23 to 60 times
slower than the hand-coded version. This is likely due to the relative complexity of
the Datalog in the C analysis case; optimizations were able to make significant im-
provements to the execution times. Analysis times with all optimizations enabled were
roughly comparable to our hand-coded solver. As with the Java analyses, the largest
gain was due to optimized physical domain assignment. When applying the learned
variable order,bddbddb analysis runtimes were reduced even further, to fall between
30% and 95% of the hand-coded implementation.

5.3 External Lock and SQL Injection Analyses

We also usedbddbddb to build external lock and SQL injection detection analyses on
top of the Java points-to analysis results. The runtimes for the external lock analysis
using different levels of optimization are displayed in Figure 8. Incrementalization re-
duces the analysis time to about 80% of the original time. Optimizing physical domain
assignments further reduces the analysis time to about 23% of the original. Figure 9
displays the runtimes of the SQL injection analysis on four web-based applications.
Without any incrementalization, the analysis fails to complete due to memory exhaus-
tion. However, with further optimization we see performance gains similar to those of
the external lock analysis.

6 Related Work

Related work falls into three general categories: optimizing Datalog executions, logic
programming systems that use BDDs, and program analysis with BDDs. We go through
each category in turn.



6.1 Optimizing Datalog

Liu and Stoller described a method for transforming Datalog rules into an efficient
implementation based on indexed and linked data structures [21]. They proved their
technique has “optimal” run time with respect to the fact that the combinations of facts
that lead to all hypotheses of a rule being simultaneously true are considered exactly
once. They did not present experimental results. Their formulation also greatly simpli-
fied the complexity analysis of Datalog programs. However, their technique does not
apply when using BDDs, as the cost of BDD operations does not depend upon combi-
nations of facts, but rather upon the number of nodes in the BDD representation and the
nature of the relations.

There has been lots of research on optimizing Datalog evaluation strategies; for
example, semi-naı̈ve evaluation [10], bottom-up evaluation [10, 24, 35], top-down with
tabling [12, 33], etc. Ramakrishnan et al. investigated the role of rule ordering in com-
puting fixpoints [26]. We use an evaluation strategy geared towards peculiarities of the
BDD data structure — for example, to maximize cache locality, we iterate around inner
loops first.

There has been work on transforming Datalog programs to reduce the amount of
work necessary to compute a solution. Magic sets is a general algorithm for rewriting
logical rules to cut down on the number of irrelevant facts generated [4]. This idea
was extended to add better support for certain kinds of recursion [25]. Sagiv presented
an algorithm for optimizing a Datalog program under uniform equivalence [30]. Zhou
and Sato present several optimization techniques for fast computation of fixpoints by
avoiding redundant evaluation of subgoals [39].

Halevy et al. describe thequery-tree, a data structure that is useful in the optimiza-
tion of Datalog programs [16]. The query-tree encodes all symbolic derivation trees that
satisfy some property.

6.2 Logic Programming with BDDs

Iwaihara et al. described a technique for using BDDs for logic programming [17]. They
presented two different ways of encoding relations: logarithmic encoding, which is the
encoding we use in this paper, and linear encoding, which encodes elements or parts
of elements as their own BDD variable. They evaluate the technique using a transitive
closure computation. The Toupie system translates logic programming queries into an
implementation based on decision diagrams [13].

Crocopat is a tool for relational computation that is used for structural analysis of
software systems [7]. Likebddbddb, they use BDDs to represent relations.

6.3 Program Analysis with BDDs

Both Zhu and Berndl et al. used BDDs to implement context-insensitive inclusion-
based points-to analysis [5, 40]. Zhu extended his technique to support a summary-
based context sensitivity [41], whereas Whaley and Lam developed a cloning-based
context-sensitive pointer analysis algorithm that relies heavily on the data sharing in-
herent in BDDs [38]. Avots et al. extended Whaley and Lam’s algorithm to support C
programs with pointer arithmetic [1].

Jedd is a Java language extension that provides a relational algebra abstraction over
BDDs [19]. Their treatment of domain assignment as a constraint problem is similar to



ours; they use a SAT solver to find a legal domain assignment. They do not attempt to
order the constraints based on importance.

Besson and Jensen describe a framework that uses Datalog to specify a variety of
class analyses for object oriented programs [6]. Sittampalam, de Moor, and Larsen for-
mulate program analyses using conditions on control flow paths [32]. These conditions
contain free metavariables corresponding to program elements (such as variables and
constants). They use BDDs to efficiently represent and search the large space of possi-
ble instantiations.

Bebop is a symbolic model checker used for checking program behavior [2]. It uses
BDDs to represent sets of states. It has been used to validate critical safety properties
of device drivers [3].

7 Conclusion

This paper describedbddbddb, a deductive database engine that uses Datalog for spec-
ifying and querying program analyses. Datalog is a natural means of specifying many
program analyses; many complicated analyses can be specified in only a few lines of
Datalog. Adding BDDs to this combination works well because BDDs can take advan-
tage of the redundancies that occur in program analyses — especially context-sensitive
analyses — and because BDD whole-set operations correspond closely to Datalog’s
evaluation style.

Our experience with the system is encouraging. Program analyses are so much eas-
ier to implement usingbddbddb that we can no longer go back to the old technique
of hand coding analyses. This is especially true because our experiments showed that
bddbddb can often execute program analyses faster than a well-tuned handcoded im-
plementation. Although there is still much work to be done in improving the algorithms
and implementation ofbddbddb, we have found the tool to be useful in our research.

The use of our system brings many benefits. It makes prototyping new analyses
remarkably easy. Combining the results of multiple analyses becomes trivial. Concise
specifications are easier to verify than larger traditional programs. The analysis runs
faster because the inference engine automates the tedious process of optimizing and
incrementalizing the analysis. New optimizations can be tested and implemented once
in the inference engine, rather than repeatedly in each analysis.bddbddb bridges the
gap between the specification of a program analysis and its implementation.

However, the greatest benefit of our system is that it makes powerful program anal-
ysis more widely accessible. The ease of a declarative language like SQL is considered
to be one of the reasons for the success in databases [27]. We believe that the use of
Datalog may play a important role in the future of interactive programming tools.

Thebddbddb system is publicly available on Sourceforge licensed under the open-
source LGPL license.

Acknowledgments

The authors would like to thank V. Benjamin Livshits and Christopher Unkel for their
contribution of test cases and helpful feedback on their experiences with usingbddb-
ddb. This work was supported in part by the NSF under Grant No. 0326227 and an
Intel Graduate Fellowship.



References

1. D. Avots, M. Dalton, V. B. Livshits, and M. S. Lam. Improving software security with a C
pointer analysis. InICSE ’05: Proceedings of the 27th International Conference on Software
Engineering. ACM Press, 2005.

2. T. Ball and S. K. Rajamani. Bebop: A symbolic model checker for boolean programs. In
Proceedings of the 7th International SPIN Workshop on SPIN Model Checking and Software
Verification, pages 113–130. Springer-Verlag, 2000.

3. T. Ball and S. K. Rajamani. Automatically validating temporal safety properties of interfaces.
In SPIN ’01: Proceedings of the 8th International SPIN Workshop on Model Checking of
Software, pages 103–122. Springer-Verlag New York, Inc., 2001.

4. F. Bancilhon, D. Maier, Y. Sagiv, and J. D. Ullman. Magic sets and other strange ways to
implement logic programs (extended abstract). InPODS ’86: Proceedings of the Fifth ACM
SIGACT-SIGMOD Symposium on Principles of Database Systems, pages 1–15. ACM Press,
1986.

5. M. Berndl, O. Lhot́ak, F. Qian, L. Hendren, and N. Umanee. Points-to analysis using BDDs.
In PLDI ’03: Proceedings of the ACM SIGPLAN 2003 Conference on Programming Lan-
guage Design and Implementation, pages 103–114. ACM Press, 2003.

6. F. Besson and T. Jensen. Modular class analysis with datalog. In R. Cousot, editor,Pro-
ceedings of the 10th Static Analysis Symposium (SAS 2003), pages 19–36. Springer LNCS
vol. 2694, 2003.

7. D. Beyer, A. Noack, and C. Lewerentz. Simple and efficient relational querying of software
structures. InProceedings of the 10th IEEE Working Conference on Reverse Engineering,
Nov. 2003.

8. R. E. Bryant. Graph-based algorithms for boolean function manipulation.IEEE Transactions
on Computers, 35(8):677–691, 1986.

9. M. Carbin, J. Whaley, and M. S. Lam. Finding effective variable orderings for BDD-based
program analysis. To be submitted for publication, 2005.

10. S. Ceri, G. Gottlob, and L. Tanca.Logic programming and databases. Springer-Verlag New
York, Inc., 1990.

11. A. Chandra and D. Harel. Horn clauses and generalizations.Journal of Logic Programming,
2(1):1–15, 1985.

12. W. Chen and D. S. Warren. Tabled evaluation with delaying for general logic programs.J.
ACM, 43(1):20–74, 1996.

13. M.-M. Corsini, K. Musumbu, A. Rauzy, and B. L. Charlier. Efficient bottom-up abstract
interpretation of prolog by means of constraint solving over symbolic finite domains. In
PLILP ’93: Proceedings of the 5th International Symposium on Programming Language
Implementation and Logic Programming, pages 75–91. Springer-Verlag, 1993.

14. S. Dawson, C. R. Ramakrishnan, and D. S. Warren. Practical program analysis using general
purpose logic programming systemsa case study. InPLDI ’96: Proceedings of the ACM
SIGPLAN 1996 Conference on Programming Language Design and Implementation, pages
117–126. ACM Press, 1996.

15. A. V. Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general logic
programs.J. ACM, 38(3):619–649, 1991.

16. A. Y. Halevy, I. S. Mumick, Y. Sagiv, and O. Shmueli. Static analysis in datalog extensions.
J. ACM, 48(5):971–1012, 2001.

17. M. Iwaihara and Y. Inoue. Bottom-up evaluation of logic programs using binary decision
diagrams. InICDE ’95: Proceedings of the Eleventh International Conference on Data
Engineering, pages 467–474. IEEE Computer Society, 1995.

18. M. S. Lam, J. Whaley, V. B. Livshits, M. C. Martin, D. Avots, M. Carbin, and C. Unkel.
Context-sensitive program analysis as database queries. InProceedings of the Twenty-fourth
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM,
June 2005.



19. O. Lhot́ak and L. Hendren. Jedd: a BDD-based relational extension of Java. InPLDI ’04:
Proceedings of the ACM SIGPLAN 2004 Conference on Programming Language Design and
Implementation, pages 158–169. ACM Press, 2004.

20. J. Lind-Nielsen. BuDDy, a binary decision diagram package. http://buddy.sourceforge.net.
21. Y. A. Liu and S. D. Stoller. From datalog rules to efficient programs with time and space

guarantees. InPPDP ’03: Proceedings of the 5th ACM SIGPLAN International Conference
on Principles and Practice of Declarative Programming, pages 172–183. ACM Press, 2003.

22. V. B. Livshits and M. S. Lam. Finding security vulnerabilities in java applications with static
analysis. In14th USENIX Security Symposium. USENIX, Aug. 2005.

23. M. C. Martin, V. B. Livshits, and M. S. Lam. Finding application errors using PQL: a
program query language. InProceedings of the ACM Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA), Oct. 2005.

24. J. F. Naughton and R. Ramakrishnan. Bottom-up evaluation of logic programs. InCompu-
tational Logic - Essays in Honor of Alan Robinson, pages 640–700, 1991.

25. J. F. Naughton, R. Ramakrishnan, Y. Sagiv, and J. D. Ullman. Efficient evaluation of right-
, left-, and multi-linear rules. InSIGMOD ’89: Proceedings of the 1989 ACM SIGMOD
International Conference on Management of Data, pages 235–242. ACM Press, 1989.

26. R. Ramakrishnan, D. Srivastava, and S. Sudarshan. Rule ordering in bottom-up fixpoint
evaluation of logic programs. InProceedings of the 16th International Conference on Very
Large Data Bases, pages 359–371. Morgan Kaufmann Publishers Inc., 1990.

27. R. Ramakrishnan and J. D. Ullman. A survey of research on deductive database systems.J.
Logic Programming, 23(2):125–149, 1993.

28. G. Ramalingam. Identifying loops in almost linear time.ACM Transactions on Programming
Languages and Systems, 21(2):175–188, Mar. 1999.

29. T. W. Reps.Demand Interprocedural Program Analysis Using Logic Databases, pages 163–
196. Kluwer, 1994.

30. Y. Sagiv. Optimizing datalog programs. InPODS ’87: Proceedings of the Sixth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pages 349–362.
ACM Press, 1987.

31. K. Sagonas, T. Swift, and D. S. Warren. Xsb as an efficient deductive database engine. In
SIGMOD ’94: Proceedings of the 1994 ACM SIGMOD International Conference on Man-
agement of Data, pages 442–453. ACM Press, 1994.

32. G. Sittampalam, O. de Moor, and K. F. Larsen. Incremental execution of transformation
specifications. InPOPL ’04: Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 26–38. ACM Press, 2004.

33. H. Tamaki and T. Sato. Old resolution with tabulation. InProceedings on Third International
Conference on Logic Programming, pages 84–98. Springer-Verlag New York, Inc., 1986.

34. R. E. Tarjan. Testing flow graph reducibility.Journal of Computer and System Sciences,
9(3):355–365, Dec. 1974.

35. J. D. Ullman. Bottom-up beats top-down for datalog. InPODS ’89: Proceedings of the
Eighth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
pages 140–149. ACM Press, 1989.

36. J. D. Ullman. Principles of Database and Knowledge-Base Systems. Computer Science
Press, Rockville, MD., volume II edition, 1989.

37. J. Whaley. JavaBDD library. http://javabdd.sourceforge.net.
38. J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer alias analysis using binary

decision diagrams. InPLDI ’04: Proceedings of the ACM SIGPLAN 2004 Conference on
Programming Language Design and Implementation, pages 131–144. ACM Press, 2004.

39. N.-F. Zhou and T. Sato. Efficient fixpoint computation in linear tabling. InPPDP ’03:
Proceedings of the 5th ACM SIGPLAN International Conference on Principles and Practice
of Declarative Programming, pages 275–283. ACM Press, 2003.

40. J. Zhu. Symbolic pointer analysis. InICCAD ’02: Proceedings of the 2002 IEEE/ACM
International Conference on Computer-Aided Design, pages 150–157. ACM Press, 2002.

41. J. Zhu and S. Calman. Symbolic pointer analysis revisited. InPLDI ’04: Proceedings of the
ACM SIGPLAN 2004 Conference on Programming Language Design and Implementation,
pages 145–157. ACM Press, 2004.


