
On Automata, MDDs and BDDs in Constraint
Satisfaction

Tarik Hadzic and Esben Rune Hansen and Barry O’Sullivan

Abstract. In this paper we analyze the relationships
between the variants of deterministic finite-state automata
(DFAs), multi-valued decision diagrams (MDDs) and binary
decision diagrams (BDDs) as currently used for compiling
constraint satisfaction problems (CSPs). We highlight the lim-
itations and benefits of using Boolean encodings and BDDs,
in comparison to their multi-valued counterparts: MDDs and
DFAs. In particular, we show the close relationship between
these structures when the Boolean encoding of a CSP is using
the clustered variable ordering. We also note that, differences
between the variants of DFAs and MDDs used in the CSP
literature are minor, and appear only due to the removal of
redundant nodes in MDDs. We experimentally compare these
structures over a set of real-world and random instances.

1 Introduction

An ever increasing list of different compact representations for
constraint satisfaction problems makes it increasingly hard to
identify the right one for a given task [Bry86, Vem92, Weg00,
MMD07]. While recently there has been significant work on
describing the relationships between a number of these struc-
tures [DM02], there is still much to clarify, especially when
comparing between functions involving multi-valued variables
and Boolean functions.

In particular, a class of ordered acyclic directed graphs in-
cluding deterministic finite-state automata (DFAs) [Vem92,
AFM02], multi-valued decision diagrams (MDDs) [Weg00],
and binary decision diagrams (BDDs) [MAH02] has often
been used for decision support [MAH02, AFM02] and enhanc-
ing inference in CSP search [Pes04, CY06, AHHT07]. While
DFAs and MDDs represent integer variables directly by label-
ing each edge with a CSP value, BDD representations allow
only binary labeling of edges, therefore requiring a Boolean
encoding of the CSP. This is usually done by using either
log-encoding or direct-encoding [Wal00].

In this paper we highlight the limitations and benefits of
using BDDs in comparison to their multi-valued counterparts:
MDDs and DFAs. In particular, we show the close relationship
between these structures when Boolean CSP variables are or-
dered in finite-domain clusters. We also note that differences
between the variants of DFAs and MDDs used in the CSP
literature are minor, and appear only due to the removal of
redundant nodes in MDDs. Our theoretical observations are
supplemented by experimental comparison of these structures
over a set of real-world and artificially constructed instances.

The reminder of the paper is organized as follows. In Section
2 we provide background work. In Section 3 we describe the

relationship between MDDs and DFAs while in Section 4 we
discuss compilation of CSPs into BDDs. The relationship be-
tween BDDs with clustered ordering and MDDs is described
in Section 5. In Section 6 we experimentally compare the size
of the various structures discussed in the paper and finally
conclude in Section 7.

2 Background

A constraint satisfaction problem C = (X, D, C) is de-
fined over variables X = {x1, . . . , xn} with finite domains
D1, . . . , Dn. Each constraint c ∈ C is defined over a subset of
variables scope(c) ⊆ X, and defines the set of assignments to
the variables in the scope(c) allowed by the constraint. The
solution space of Sol(C) denotes the set of all solutions to the
CSP C. For illustration purposes we will consider a T-Shirt
configuration problem in Example 1.

Example 1 (An Example CSP) Consider specifying a T-
shirt by choosing the color (black, white, red, or blue), the
size (small, medium, or large) and the print (”Men In Black”
- MIB or ”Save The Whales” - STW). There are two con-
straints that we have to observe: if we choose the MIB
print then the color black has to be chosen as well, and
if we choose the small size then the STW print cannot be
selected. The CSP model of the T-shirt example consists
of variables X = {x1, x2, x3} representing color, size and
print. Variable domains are D1 = {0, 1, 2, 3} (standing for
black ,white, red , blue), D2 = {0, 1, 2} (small ,medium, large),
and D3 = {0, 1} (MIB ,STW). The two constraints translate
to C = {c1, c2}, where c1 is (x3 = 0) ⇒ (x1 = 0) and c2 is
(x3 = 1) ⇒ (x2 6= 0). ♦

In reminder of this section we briefly review the variants
of automata and decision diagrams that are currently used in
the constraint satisfaction community.

Deterministic Finite Automaton (DFA). A finite-state
automaton A is defined by the input alphabet Σ, set of states
S, initial state s0 and state-transition function σ : S×Σ → S.
Some of the states in S are accepting states. A sequence of
symbols is accepted by A if it corresponds to a sequence of
transitions from the initial state to an accepting state. Se-
quences of symbols accepted by A define a language accepted
by the automaton. We denote such a language as L(A). De-
terministic finite automata additionally require that for each
state there is at most one transition for each input symbol.

For our purpose, a DFA is represented by a rooted directed
graph G = (V, E), where every state s ∈ S corresponds to a
node u ∈ V (root r ∈ V corresponds to the initial state s0).
Every state-transition (s, a) → s′ is represented by a labeled
edge (u, a, u′).

While there can be many ways in which a DFA could en-
code solutions to a given CSP, considerations in this paper
are limited only to a special construction used in [Vem92]
and [AFM02]. The alphabet is limited to CSP domain val-
ues D1, . . . , Dn. A DFA is constructed such that for every
satisfying assignment {(x1, a1), . . . , (xn, an)} there is a path
starting from the root, ending in an accepting node that con-
sists of edges e1, . . . , en where every edge ei is labeled with
ai ∈ Di. Hence, every word in L(A) is a sequence of n sym-
bols (a1, . . . , an) that directly corresponds to a solution in
Sol. Hence, L(A) = Sol(C).

Decision Diagrams. A decision diagram is a rooted directed
acyclic graph G = (V, E) where every node u is labeled with a
variable xi and every edge e, originating from a node labeled
xi, is labeled with a value ai ∈ Di. No node may have more
than one outgoing edge with the same label. The decision dia-
gram contains a special terminal node 1, that has no outgoing
edges. The terminal node has to be reachable by every other
node in V .

A decision diagram represents a function f : D1 × . . . ×
Dn → {0, 1}, defined over variables {x1, . . . , xn}. A value
of the function f(a), a = (a1, . . . , an), for an assignment
{(x1, a1), . . . , (xn, an)} is defined by traversing G from the
root, and at every node u labeled with variable xi, following
an edge labeled with ai. If there is no such edge, f(a) = 0.
Otherwise, if traversal ends in terminal 1, f(a) = 1.

If all domains Di are binary, i.e. D1 = . . . = Dn = {0, 1},
then we have a binary decision diagram (BDD), otherwise
we have a multi-valued decision diagram (MDD). Note that
the terminology for decision diagrams is still not universally
agreed upon, and both MDDs and BDDs are used in slightly
different variations across the literature. In this paper we con-
sider only ordered decision diagrams, that is decision diagrams
where the variables labeling nodes in a path from the root
to the terminal are in a same order. For a natural ordering
x1, . . . , xn, for every edge e(u, a, u′), where u is labeled with
xi and u′ labeled with xj , it holds that i < j. In the rest of
the paper, when referring to an MDD or a BDD, we always
assume a fixed variable ordering.

While a decision diagram could encode the set of CSP so-
lutions in several ways, we consider only an immediate ap-
proach, where we enforce that the set of satisfying assign-
ments to a function f represented by the MDD, Sol(f) =
{a = (a1, . . . , an) | f(a) = 1} is identical to the solution set
of a CSP, i.e. Sol(f) = Sol(C).

3 Isomorphism and Redundancy in MDDs

It can be seen from the previous section that MDDs and DFAs
are highly related structures. We will now precisely describe
their relationship by discussing two well known reduction op-
erations for decision diagrams: merging isomorphic nodes and
eliminating redundant nodes [Bry86]. Note that every node
u, labeled with a variable xi, is associated with a function
fu : Di × . . .×Dn → {0, 1} in a similar way that the root of

x1

x2

0

x2

1 2 3

x3

0

1

2 1

0

x3

1 2

1

(a) Reduced MDD

x1

x2

0

x2

1 2 3

x3

0

x3

2 1

1

0

x3

1 2

10 1

(b) Merged MDD

s

0 1 2 3

0 1 2

0 0 1

1 2

1

(c) Minimized DFA

Figure 1. Compilation of the T-shirt CSP.

a decision diagram is associated with the function f .

Definition 1 (Isomorphic Nodes) Nodes u1, u2 ∈ V in
an MDD G = (V, E) are isomorphic iff they represent the
same function, i.e. fu1 = fu2 .

Isomorphic nodes can be efficiently detected by traversing
a decision diagram in a bottom-up fashion and searching for
nodes u and u′ labeled with the same variable xi and having
identical child nodes for every outgoing edge. This is a crucial
operation in obtaining compact representations. When all iso-
morphic nodes are merged we obtain a merged MDD. In fact,
it can be easily seen that this structure is identical to a min-
imized DFA (MDFA), that was used in [Vem92, AFM02].

Definition 2 (Redundant Nodes) A node u, labeled with
xi is redundant iff fu does not essentially depend on xi, i.e.
fu restricted by xi = a leads to the same function for all
a ∈ Di.

Node u, labeled with xi, is redundant if for all ai ∈ Di,
there is an outgoing edge (u, ai, u

′) ending in the same child
u′. Then, all incoming edges to u are redirected to u′, and u is
removed. The new edges skip variable xi, indicating that all
assignments to xi are allowed. We refer to these as long edges.
If in addition to merging all isomorphic nodes we remove re-
dundant nodes we get a reduced MDD. In fact, terms MDDs
and BDDs most often refer to their reduced versions. In this
paper we will refer to unreduced merged MDDs as merged
MDDs.

While reduced MDDs are potentially smaller than merged
MDDs (MDFAs) due to long edges, they are also more com-
plicated to use, since long edges must be considered sepa-
rately for many MDD queries (such as optimization [HA06]).
It is not immediately clear which version is most suitable in
general. All three representations – reduced MDDs, merged
MDDs and MDFAs – for the T-Shirt example, are shown in
Figure 1.

4 Compiling CSPs into BDDs

The most famous member of the decision diagram family is
the reduced binary decision diagram (BDD) [Bry86]. This is

largely due to the availability of many highly optimized BDD-
manipulation packages [LNne, Som96] that have led to enor-
mous computational advances in many areas of computer sci-
ence, in particular model checking and verification. Reduced
BDDs are therefore a legitimate choice for compiling CSPs.

However, in order to compile into a BDD, the CSP vari-
ables X first have to be encoded by Boolean variables Xb.
For each finite domain variable xi it suffices to select ki

Boolean variables Xi
b = {xi

j | j = 1, . . . , ki} such that each
a ∈ Di is mapped into a different bit vector enci(a) =
(a1, . . . , aki) ∈ {0, 1}ki . The resulting encoding function
enc = (enc1, . . . , encn) ensures that there is a 1-1 relation-
ship between finite domain CSP solutions, and the solution
set of the corresponding BDD.

There are several standard Boolean encodings of multi-
valued variables [Wal00]. The log encoding is commonly used
in compilation [MAH02]. In this scheme each xi is encoded
with ki = dlog|Di|e Boolean variables, each representing a
digit in binary notation. In this case, xi = a ⇔ xi

j = aj where

a =
∑ki

j=1 2j−1aj . The direct encoding (or 1-hot encoding) is
also common. Each multi-valued variable xi is encoded with
ki = |Di| Boolean variables such that xi = a ⇔ xi

j = aj

where xi
j = 1 for j = a and xi

j = 0 for j 6= a.

Ordering Boolean Variables. While the set of Boolean
variables is completely specified as the union of all encod-
ing variables, Xb =

⋃n
i=1 Xi

b we still have to decide how to
order the variables. The current practice is to respect the vari-
able ordering among finite domain variables x1 < . . . < xn,
by clustering Boolean variables Xi

b into finite-domain blocks
[HSJ+04]. That is,

xi1
j1

< xi2
j2
⇔ i1 < i2 ∨ (i1 = i2 ∧ j1 < j2).

We refer to this as a clustered variable ordering. We will use
a mapping cvar(xi

j) = i to denote the CSP variable xi of an
encoding variable xi

j and, with a slight abuse of notation, we
will apply cvar also to BDD nodes u labeled with xi

j .

Example 2 (BDDs for Binary-encoded CSPs.)
Recall that in the T-shirt example D1 = {0, 1, 2, 3},
D2 = {0, 1, 2}, D3 = {0, 1}. The log encoding variables
are x1

1 < x1
2 < x2

1 < x2
2 < x3

1, inducing a variable set
Xb = {1, 2, 3, 4, 5}. The log-BDD with clustered variable
ordering is shown in Figure 2(a). The direct encoding
variables are x1

1 < x1
2 < x1

3 < x1
4 < x2

1 < x2
2 < x2

3 < x3
1 < x3

2,
inducing a variable set Xb = {1, . . . , 9}. The direct-BDD with
clustered variable ordering is shown in Figure 2(b). ♦

5 Impact of Clustered Variable Ordering

We will show now that regardless of the Boolean encoding
used, there is a strong structural similarity between a BDD
and an MDD for the CSP C when a clustered variable ordering
is used. While we focus on clustered orderings only, note that
other orderings are also possible, such as interleaved ordering
of log-encoding that was particularly well suited for linear
arithmetic constraints [BB03].

Let B be a reduced BDD and M a reduced MDD for a
given CSP C. We will show that a subset of nodes in the

x1

x1

x2x2

x2 x2

x3

1

x2

x3

x2

(a) A log-BDD.

x1

x1 x1

x1

x1

x2

x2 x2

x2

x3

x3

1

x2 x2

x3

x3

x1 x1

x1

x2

x2

x2 x2

x3

x1

(b) A direct-BDD.

Figure 2. BDDs for the T-shirt example. Each node
corresponding to a Boolean encoding variable xi

j is labeled with

the CSP variable xi. Edges labeled with 0 and 1 are drawn as
dashed and full lines, respectively.

MDD induces a merged MDD that is partially reduced, i.e.
that might contain some redundant nodes.

For a BDD (V, E) we denote as

Li = {u ∈ V | cvar(u) = i}, i = 1, . . . , n + 1

the layer of the nodes in the BDD that encode the CSP vari-
able xi (we take Ln+1 = {1}). We denote as

Ini = {u ∈ Li | ∃(u′,u)∈Ecvar(u′) < cvar(u)}

those nodes that are connected by an edge to a node in one
of the previous layers (taking In1 = {r}). Let Vi = {u ∈ V |
var(u) = i} denote the set of nodes in the i-th layer.

For a u ∈ Ini and u′ ∈ Inj , j > i, we write u
a→ u′ if

starting from u and traversing the Li layer with encoding of
value a, enc(a) = (a1, . . . , aki), we end up in u′. If u is not
labeled with the first encoding variable, i.e. it is labeled with
xi

j where j > 1, we take that all the first j−1 bit combinations
(a1, . . . , aj−1) are allowed.

Definition 3 (Induced MDD) Given a reduced BDD B =
(V, E), we define an induced MDD MB = (VB , EB) by VB =⋃n+1

i=1 Ini and EB = {(u, a, u′) | u a→ u′, u, u′ ∈ VB}.

The above definition is sound since, for any u ∈ Ini, traver-
sal u

a→ u′ ends by definition in u′ ∈ Inj , for some j > i. Since
we used a clustered variable ordering, MB respects the same
ordering of CSP variables as the reduced MDD M . It can be
seen from the construction of MB that the following proposi-
tion holds.

Proposition 1 For a given CSP C, represented by reduced
BDD B using a clustered variable ordering, the MDD MB

induced from B is merged and represents the same solution
space Sol(C).

Also note that the induced MDD is partially reduced, i.e.
it might contain some redundant nodes. All long edges from
the reduced BDD, skipping all encoding variables Xi

b, would
be translated into long edges over variable xi in the induced
MDD. However, some redundant nodes would be introduced.
Namely, long edges over the i-th layer of MB are possible only
if encoding xi using {xj

i | j = 1, . . . , ki} allows all assignments
to xj

i variables whenever all assignments to the CSP variable
xi are allowed. This happens iff |Di| = 2ki−1. This is the case,
for example, for a log-encoding of a variable x3 in the T-shirt
example, with domain size 1. On the other hand, if |Di| <
2ki−1 there would be no long edges over the i-th layer because
such edges would inevitably allow some Boolean assignments
that do not translate to an integer value in Di. For the direct
encoding, no long edges are possible.

For example, consider the emphasized nodes in a direct-
BDD (Figure 2(b)). Note that these vertices correspond to
the vertices of the merged MDD in Figure 1(b) (i.e. no long
edges). Similarly, emphasized vertices in the log-BDD (Figure
2(a)) correspond to the reduced MDD in Figure 1(a) (long
edges were created since |D3| = 1).

Impact on Size. The above observations imply that the
difference in size between BDDs with clustered encodings
and MDDs depends mostly on the nature of the domains
D and encoding function enc, rather than the combinato-
rial structure of the solution space. It is illustrative to con-
sider transforming a merged MDD (MDFA) into a reduced
BDD. For each node u, labeled with variable xi, we re-
place each outgoing edge e(u, a, u′) (representing xi = a)
with a path of |Xi

b| nodes, encoding the Boolean assignment
(xi

1 = a1, . . . , x
i
ki

= aki). After these transformations, some
introduced nodes are eliminated once the merging of isomor-
phic nodes and elimination of redundant nodes is performed.

For a merged MDD M = (V, E) where d denotes the size of
the largest CSP domain, there are at most dlog(d)e · |E| edges
in the corresponding log-BDD, and at most d · |E| edges in
the corresponding direct-BDD before merging and reduction.
The worst-case size of d · |E| can be achieved for direct-BDDs
when between any two nodes u and u′ in a merged MDD
there is at most one edge (u, a, u′). Then, d edges would be
added, and no nodes would be merged or reduced. On the
other hand, applying reduction can achieve significant sav-
ings against MDDs when there are many edges between the
same pairs of nodes. In a log-BDD, a single edge between u
and u′ representing assignment to the first bit xi

1 = a1, and
skipping all remaining bits xi

j , j = 2, . . . , ki, corresponds to
2ki−1 MDD edges between u and u′. In conclusion, while ei-
ther representation could be smaller, we could expect large
differences in size between the structures only for sufficiently
large domains.

6 Experiments

We compared the size of reduced MDDs, MDFAs, and BDDs
with log encoding (log-BDDs) and BDDs with direct encoding
(direct-BDDs) over a set of real-world and random instances.

Product configuration. The instances esvs, fs, pc2, 1-
6+22-32, Big-PC and Renault are real-world product con-
figuration instances from Clib [CLi07].

All different. The instances alldiff(k) encode the constraint
∀i6=j : xi 6= xj on four variables x1, . . . , x4 with the domain
1, . . . , k.

Less than. The instances lessthan(k) encode the constraint∑5
i=1 xi < 3k on the five variables x1, . . . , x5 with the do-

main 0, . . . , k.

The results are shown in Figure 3. We estimate the size of
representation by counting the number of edges. For reduced
MDDs and MDFAs (merged MDDs) we report the number
of nodes and edges. For BDDs we report the nodes only, as
the number of edges is two times larger than the number of
nodes.

Product configuration. In all the product configuration
instances the MDFA/MDD representation uses roughly
four times fewer edges than log-BDDs. Furthermore, direct-
BDDs are two to five times larger than the log-encoded
BDDs. This seems to suggest that MDFA/MDDs are the
preferred data structure in product configuration.

All different. In the alldiff instances the space requirements
of the log-encoded BDD and the MDD instance is approx-
imately the same. Note that the size of the direct-BDD
in alldiff(80) is about 20 times larger than the size of the
log-BDD.

Less than. In the lessthan instances, log-BDDs are much
smaller than MDDs. In the instance lessthan(2500) the
MDD is approximately 60 times larger than the log-BDD.
In representing the instance lessthan(250) the direct-BDD
was using roughly 30 times more nodes than log-BDD.

The reduction in size achieved by node elimination by the
MDD compared to the MDFA is insignificant for all instances
that have been considered, except for some of the very small
configuration instances. This seems to suggest that it is rea-
sonable to use the (simpler) MDFAs even though they might
use more space than reduced MDDs.

While log-BDDs are usually larger than MDDs/MDFAs for
configuration instances, the reverse is the case for linear in-
equalities. This confirms our intuition that an overhead of
expanding MDD edges into BDD edges can be compensated
by the subsequent merging and reducing in log-BDDs (as dis-
cussed at the end of the previous section). In particular, it
seems that the MDFA density, expressed as a ratio of edges
per node |E|/|V | corresponds directly to the savings achieved
by log-BDDs. For configuration instances, |E|/|V | is between
1.3 and 2.3, for alldiff instances |E|/|V | is between 6.6 and
8.5 while for the last two lessthan instances |E|/|V | is about
209 and 2084 respectively.

Direct-BDDs perform worse than both MDDs/MDFAs and
log-BDDs especially on variables with large domains. There
are at least two reasons for this. Firstly, in comparison to the
log encoding, the initial overhead is higher: for a variable of
domain size d, each corresponding MDD edge is expanded into
d rather than dlog(d)e BDD edges. Secondly, the overhead is
compensated only by merging isomorphic nodes, since remov-
ing redundant nodes is not possible (no long edges are possible
as noted in the previous section).

MDD MDFA Log-BDD Direct-BDD
Instance Nodes Edges Nodes Edges Nodes Nodes

ESVS 83 185 96 222 306 1732

FS 632 1149 766 2017 3044 15797

PC2 3906 6136 3906 6136 13332 43326

1-6+22-32 8094 11193 8094 11193 20935 62022

Big-PC 100192 132595 100271 132889 356696 1700488

Renault 329134 426212 329134 426212 768560 1419061

alldiff(10) 386 2560 386 2560 2224 5337

alldiff(40) 11521 93680 11521 93680 52949 494345

alldiff(80) 88641 758560 88641 758560 407249 7353525

lessthan(10) 64 593 65 604 354 1099

lessthan(250) 1504 314753 1505 315004 17326 597379

lessthan(2500) 15004 31272503 15005 31275004 265842 Out of Memory

Figure 3. Comparing the size of MDDs, MDFAs, log-BDDs and direct-BDDs, when they encode the same CSP.

7 Conclusions

We have compared a class of highly related CSP represen-
tations: MDFAs, MDDs and BDDs. We have have observed
that MDFAs, as used in constraint programming community,
correspond closely to MDDs. We have shown that, if clus-
tered variable ordering is used, the BDDs share the same ba-
sic structure with MDDs/MDFAs and differences in size can
become significant only for large variable domains.

We have experimentally compared the considered struc-
tures over a set of real-world and artificially constructed in-
stances. In this comparison we have shown that though re-
duced MDDs are usually smaller than MDFAs the difference
in size is insignificant. In particular, we demonstrated that
while MDDs are often smaller than log-BDDs on configuration
instances, log-BDDs are a viable alternative for dense MDDs,
that might occur for CSPs with large variable domains. The
direct encoding proved to yield significantly larger BDDs for
all instances.

Acknowledgments

Tarik Hadzic is supported by an IRCSET/Embark Initia-
tive Postdoctoral Fellowship Scheme. Barry O’Sullivan is
supported by Science Foundation Ireland (Grant Number
05/IN/I886).

References
[AFM02] J. Amilhastre, H. Fargier, and P. Marquis. Consis-

tency restoration and explanations in dynamic CSPs-
application to configuration. Artificial Intelligence,
2002.

[AHHT07] Henrik Reif Andersen, Tarik Hadzic, John N. Hooker,
and Peter Tiedemman. A Constraint Store Based on
Multivalued Decision Diagrams. In C. Bessiere, edi-
tor, Principles and Practice of Constraint Program-
ming (CP 2007), Lecture Notes in Computer Science.
Springer, 2007.

[BB03] Constantinos Bartzis and Tevfik Bultan. Construction
of efficient BDDs for bounded arithmetic constraints.
In Hubert Garavel and John Hatcliff, editors, TACAS,
volume 2619 of Lecture Notes in Computer Science,
pages 394–408. Springer, 2003.

[Bry86] R. E. Bryant. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on Com-
puters, 1986.

[CLi07] CLib. Configuration benchmarks
library. Available online at:
http://www.itu.dk/research/cla/externals/clib/,
2007.

[CY06] Kenil C. K. Cheng and Roland H. C. Yap. Maintaining
generalized arc consistency on ad-hoc n-ary boolean
constraints. In Gerhard Brewka, Silvia Coradeschi,
Anna Perini, and Paolo Traverso, editors, ECAI, pages
78–82. IOS Press, 2006.

[DM02] A. Darwiche and P. Marquis. A knowledge compila-
tion map. Journal of Artificial Intelligence Research,
17:229–264, 2002.

[HA06] Tarik Hadzic and Henrik Reif Andersen. A BDD-
based Polytime Algorithm for Cost-Bounded Interac-
tive Configuration. In Proceedings of AAAI’06, 2006.

[HSJ+04] T. Hadzic, S. Subbarayan, R. M. Jensen, H. R. An-
dersen, J. Møller, and H. Hulgaard. Fast backtrack-
free product configuration using a precompiled solu-
tion space representation. In PETO Conference, pages
131–138. DTU-tryk, June 2004.

[LNne] J. Lind-Nielsen. BuDDy - A Binary Decision Diagram
Package.
http://sourceforge.net/projects/buddy, online.

[MAH02] J. Møller, H. R. Andersen, and H. Hulgaard. Product
configuration over the internet. In INFORMS Confer-
ence on Information Systems and Technology, 2002.

[MMD07] Robert Mateescu, Radu Marinescu, and Rina Dechter.
AND/OR Multi-Valued Decision Diagrams for Con-
straint Optimization. In Frédéric Benhamou, editor,
CP, Lecture Notes in Computer Science. Springer,
2007.

[Pes04] Gilles Pesant. A regular language membership con-
straint for finite sequences of variables. In Proceed-
ings of Principles and Practice of Constraint Program-
ming, pages 482–495, 2004.

[Som96] F. Somenzi. CUDD: Colorado university decision dia-
gram package. ftp://vlsi .colorado.edu/pub/, 1996.

[Vem92] Nageshwara Rao Vempaty. Solving constraint satisfac-
tion problems using finite state automata. In AAAI,
pages 453–458, 1992.

[Wal00] Toby Walsh. SAT v CSP. In Rina Dechter, editor,
CP, Lecture Notes in Computer Science, pages 441–
456, 2000.

[Weg00] Ingo Wegener. Branching Programs and Binary De-
cision Diagrams. Society for Industrial and Applied
Mathematics (SIAM), 2000.

