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Abstract: The Krivine machine is a simple and natural implementation of the normal weak-head
reduction strategy for pura-terms. While its original description has remained unpublished, this
machine has served as a basis for many variants, extensions and theoretical studies. In this paper, we
present the Krivine machine and some well-known variants in a common framework. Our framework
consists of a hierarchy of intermediate languages that are subsets)t#heulus. The whole imple-
mentation process (compiler + abstract machine) is described via a sequence of transformations all of
which express an implementation choice. We characterize the essence of the Krivine machine and
locate it in the design space of functional language implementations. We show that, even within the
particular class of Krivine machines, hundreds of variants can be designed.
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1 Introduction

The Krivine machine (or K-machine) is a simple and natural implementation of the weak-
head call-by-name reduction strategy for pdreerms. It can be described in just three or

four rules with minimal machinery (an environment and a stack). While its original descrip-
tion has remained unpublished, the K-machine has served as a basis for many variants, ex-
tensions and theoretical studies. For instance, Crégut used the K-machine as a basis for the
implementation of other reduction strategies (call-by-need, head and strong reduction [4]);
Leroy presents his Zinc abstract machine as a strict variant of the K-machine [24]; many oth-
ers used it as a basis or framework for their work either practical or theoretical
[8][16][23][31][32][34].

The presentations of the K-machine or its variants differ depending on the sources. The
machine instructions may be de Bruijiksexpressions or completely compiled code. Envi-
ronments and closures also have different representations. In this paper, we present the K-
machine and some well-known variants in a common framework. This framework has been
used to describe, prove, compare, classify and hybridize functional language implementa-
tions [9][10][11][12]. Here our main goal is:
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» To characterize the essence of the K-machine by making its fundamental implementation
choices clear. This defines a class of abstract machines and suggests new variants.

« To locate the K-machine in the design space of functional language implementations. In
particular, we mention alternative implementation choices and compare the K-machine
with other abstract machines (e.g. Tim [13], Cam [3]).

2 Overview

The most common description of the K-machine [5] is given in Figure 1. It takes the form of

an operational semantics whose state transition rules involve de Brigxpressions A
machine state, S E) is made of a cod€, an environmenk and a stacks. Here, and
throughout the paper, we represent stacks (and lists) using pairs. For instance, the expression
(.- (((SX): X1 Xn2), - -, X)) denotes a stack of (at leastlelements, withX; at the top. A

closure is represented by a (code, environment) pair.

(MN, S E) - (M (SIN,B), E)
(AM, (S.N, E) - M S(EN)
(i+1,S (E.N) - (,SB
0.sSEME) - MSE)

Figure 1 Usual description of the standard K-Machine

To evaluate an applicatiad N, the K-machine builds a closure made of the argunient
and the current environmeftin the stack and proceeds with the reduction of the function
M. This is the first characteristic of the K-machine: a closure is built in constant time and in-
cludes the complete current environment.

The evaluation of &-abstraction places the argument (the stack’s top element) in the en-
vironment and proceeds with the body of the function. This is the second and more impor-
tant characteristic of the K-machine: it strives not to build closures for functions. Other
abstract machines return functions as closures before applying them.

The evaluation of a variabieamounts to following links to find the corresponding clo-
sure in the environment. The closure’s components become the current code and environ-
ment.

" In de Bruijn’s notation [7], a variable occurrence is represented by the number of lambdas between this occurrence
and the lambda binding the variable. For example,Xterm Ax.x (Ay.y X) is written in de Bruijn’s notation as
AO(AO 1).



Other presentations use a more compiled code for their machine. Indeed, de Bruijn’s no-
tation compiles environment management, but applications remain interpreted by the ma-
chine. The representations of environments or closures also differ according to the machines.

In this paper, we model the K-machine and its variants as compositions of program trans-
formations. Our framework consists of a hierarchy of intermediate languages all of which
are subsets of thie-calculus. The description of an implementation, such as the K-machine,
consists of a series of transformations, each one compiling a particular task by mapping an
expression from one intermediate language into another. The functional expressions ob-
tained can be seen as machine code and their reduction can be seen as the state transitions of
an abstract machine. This approach has several benefits:

e Itis modular. Each transformation implements one compilation step and can be defined
independently of the other steps. Transformations implementing different steps are com-
posed to specify implementations. For instance, in this article, we model the canonical
Krivine abstract machine as the composition of two program transformations. Implemen-
tation choices are modeled as distinct program transformations. Combinations of these
transformations lead to many variants of the K-machine. Many classical abstract ma-
chines and new hybrid machines (e.g. that mix different implementation techniques for
B-reduction) have been described in this framework [12].

* It has a strong formal basis. The functional framework is the only formal framework
used. Instead of translations and state transitions, we use program transformation and
functional reduction. This simplifies the correctness proofs and comparisons. Different
implementation choices are represented by different transformations which can be relat-
ed and compared. For instance, we have shown that, regarding the implementation of the
reduction strategy, a G-machine is an interpretative version of the K-machine. The com-
pilation of the reduction strategy used by the strict K-machine has also been formally
compared to the compilation of the reduction strategy used by the SECD machine [12].

« ltis (relatively) abstract although the intermediate languages come closer to an assembly
language as we progress in the description. The combinators of the intermediate languag-
es allow a more abstract description of notions such as instructions, sequencing or stacks.
As a consequence, the compilation of control is expressed more abstractly than using
CPS expressions, and the representation of components (e.g., data stack, environment
stack) is a separate implementation step.

« ltis extendable. New intermediate languages and transformations can be defined and in-
serted into the transformation sequence to model new compilation steps. For instance,
some variants of the K-machine would be more faithfully described using additional
transformations to compile control transfers (calls and returns) and/or register allocation.

The reduction oi-terms comprises two main tasks: searching for the next redex (which
depends on the reduction strategy) ackducing redexes. We describe an implementation
as a transformation sequente> A, 2. A, where the transformationg and T, com-
pile the reduction strategy and tRBereduction respectively. The functional expressions ob-
tained (inA\,) are sequences of combinators whose reduction can be seen as state transitions.
In order to provide some intuition, consider the following definition of the 3-argument com-

binatormkclos:



mkclosC (S,NE= C(S(N,B) E

Its reduction can be seen as a state transition whekel¢s C), (S,N andE represent the

code, the current stack and environment respectively. The combmé&tdos can therefore

be seen as a functional instruction building a closure made of the top stack element and the
current environment and pushing this closure onto the stack.

In this paper, we consider only pukeexpressions and the two aforementioned compila-
tion steps. This is sufficient to present the fundamental choices that define the K-machine.
There are other steps like the compilation of control transfers (calls and returns) and the im-
plementation of sharing and updates in lazy implementations. Constants, primitive opera-
tors, recursion and data structures can also be taken into account by the K-machine. We will
briefly mention the possible implementation choices for these extensions.

We focus on the description of the Krivine machine and some of its variants. We will in-
troduce only the notions needed by this aim and will not provide correctness proofs. The in-
terested reader can find a more complete presentation of the framework, descriptions and the
classification of a dozen standard implementations, formal comparisons, correctness proofs
and new implementation techniques in two technical reports [9][10], a journal article [12]
and a PhD thesis [11].

We start in Section 3 by describing the classic, call-by-name, K-machine in our frame-
work. Section 4 presents several variants of the K-machine for alternative reduction (call-by-
value, call-by-need) and environment management strategies. In conclusion (Section 5), we
review related work, the main characteristics of K-machines and the possible variations
within this particular class.

3 Standard K-Machine

In this section, we describe the original and simplest version of the K-machine: it considers
the call-by-name evaluation strategy and uses lists to represent the environments. We focus
on purek-expressions and our source languaAge

M ::=x | M; M, [AX.M
Extensions of thé-calculus (e.g. constants, primitive operators, data structures) are dis-
cussed in the conclusion.
3.1 Framework

Our framework consists of a hierarchy of intermediate languages, all of which are subsets of
the A-calculus. We describe the implementation process via the transformation sequence
AL A, T2 A, starting withA and involving two intermediate languages.

The first intermediate languade, is a subset of\ defined using the three combinators
;, pushg andpop,.



N M :=x| My ; M, | push, M | popy(Ax.M)

Intuitively, ; is a sequencing operator aklj ; M, can be read “evaluatd, then evaluate
M,", push, M returnsM as a result angop (Ax.M) binds the previous intermediate result to
x before evaluatingl. The combinatorpush,andpop, suggest a stack storing intermediate
results. This argument stack will be denoted.by

The languagé\ is a subset of\ since it rules out unrestricted applications anreb-
stractions always occur within@op,. The three combinators push, andpopgare not lin-
guistic extensions but only specific clogedxpressions (to be defined later).

The substitution and the notion of free or bound variables are the same as\icdifeulus.

The basic combinators can be given different definitions (possible definitions are given in
Section 3.5). We do not pick specific ones at this point; we simply impose the associativity
of sequencing and that the combinators satisfy rules corresponding foathén-conver-

sions (Figure 2, where “=" stands farconvertibility). To simplify the notation, we write
AXM for the expressiopopy(Ax.M).

(assoc) Wi: M) s Mg=My; (M, ; My)
B (pushyN) ; (Ax.M) = M[N/Y
(ny AX.(pushyx; M) =M if x does not occur free in M

Figure 2 Conversion rules in/\g

We consider only one reduction rule corresponding to the clagsiedluction:
(pushyN) ; AXxM) [ MIN/X
For example:

push(push(Az2) ; Ayy); Axx @ push(Az2);Ayy O Azz

As with all standard abstract machines, we are only interested in modeling weak reduc-
tions. In our framework, a weak redex is a redex that does not occur inside an expression of
the formpush,M or Ax.M. Weak reduction does not reduce ungash/s or A/s and, from
here on, we write “redex” (resp. reduction, normal form) for weak redex (resp. weak reduc-
tion, weak normal form). Note that a redex cannot occur as a subexpression of another redex.
So, a reductionqush, N) ; (Ax.M) [T M[N/X cannot suppress nor duplicate another re-
dex. ThePB,reduction is therefore strongly confluent and hence confluemt,Ithe choice
of the next redex is not relevant anymore: all redexes are needed and any reduction strategy
is normalizing (i.e. reaches the normal form where there exists one). This is the key point to
view transformations from to A, as compiling the evaluation strategy.

The next intermediate language allows the encoding of environment management by
introducing the combinatogsush, andpop,.



N M :=x|M;; M, | pushy M | pop(Ax.M) | push, M | pop,(Ax.M)

e
The combinatorpush, andpop, behave exactly gsush andpop, but they act on a (at

least conceptually) different componex(e.g. a stack of environments). They obey the rules

(Bo) and f) similar to the ones in Figure 2. i\, variables will be only used to define (mac-

ro-)combinators for environment management and the expressions can be read as assembly

code (see Section 3.3). More components (e.g. a call stack or a heap) can be introduced in

the same way. Similarly td, we write Ax.M for the expressiopop,(Ax.M). We will also

use pairs Xy) and simple pattern matching;(x,y).M). These notations are just syntactic

sugar since they are easily translated into peegpressions.

3.2 Evaluation strategy

The K-machine implements the call-by-name evaluation strategy. It uses a push-enter model
where unevaluated functions are applied right away and application is an implicit operation.
The transformatiomV in Figure 3 formalizes this choice.

NiA = A,
NI[MN] = push(N[N]) ; N[M]
N[AM] = AXN[M]

N[X] =x

Figure 3 Compilation of call-by-name in the push-enter modell)

The transformationV compiles applications by pushing the unevaluated argument and
applying the function right away. Functions are not returned as results (no closure is built).
Variables are bound to arguments which are evaluated when accessed.

Example.LetM = AxX)((Ay.y)(Az.2)) then
N[M] = push(push(Az2) ; Ayy) ; Axx O push(Az2);Ayy O Azz=N[AzZ]

This transformation compiles the call-by-name reduction strategy. Indeed, the transformed
form of (Ay.y)(Az2) is push(Azz2) ; AY.y which is not a redex because it occurs under a
push.. So, in the transformed expression, the argument cannot be reduced before calling the
functionAx.x.

In our framework, the correctness of a compilation step boils down to the proof of a sim-
ple program transformation and relies on classical techniques (e.g. structural induction). For
example, the correctnessMfis stated by Property 1.

Property 1 For all closedA-expressions M, My» V if and only ifN[M] iy NIV]



In the rest of the article, we omit other correctness properties and their proofs which can
be found in previous publications [9][10][12].

The transformationV is a very simple way to compile call-by-name. This option is also
taken by Tim [13] and most graph-based implementations (e.g. [18][28]). Another choice is
theeval-applymodel, where a-abstraction is considered as a result and the application of a
function to its argument is an explicit operation. For an expressign.Ax,.M, the K-ma-
chine does not build any closure whereas the eval-apply model buiktaporary closures
corresponding to the partial applications of this function. Uncurrying (e.g. [1]) may re-
move some of this overhead but this optimization is not always possible for functions passed
as arguments. On the other hand, the eval-apply model facilitates the compilation of call-by-
value and call-by-need. This choice is taken by the SECD [22], the Cam [3] and also some
non-strict implementations [14].

3.3 B-reduction

In theA-calculus 3-reduction is defined as a textual substitution. This operation can be com-
piled using transformations fromg to A.. These transformations are akin to abstraction al-
gorithms and consist of replacing variables with combinators [35]. In environment-based
implementations, substitutions are compiled by storing values to be substituted in an envi-
ronment. Values are accessed in the environment only when needed. This technique can be
compared with the activation records used by imperative language compilers. Some graph
based implementations do not use environments but encode each substitution
separately [19][35].

The K-machine uses linked environments. Closures are built in constant time and include
(a reference to) the complete environment. On the other hand, a chain of links has to be fol-
lowed when accessing a value. This option is also taken by the SECD and the Cam.

The transformatiom (Figure 4) formalizes this choice. The transformation is done with
respect to a compile-time environmentinitially empty for a closed expression). We nate
the variable occurring at théh entry in the environment €orresponds to the de Bruijn’s in-
dex of the occurrence).

AN - envo A,

A[M;; Ml p=dupl,; A[M] p; swap.; A[M,] p
Alpush,M] p = push, (A[M] p) ; mkclos
A[AXM] p=mkbind ; A[M] (pX)

ALX] (...((P.X) X0)--- %) =fst' ; snd ; appclos  with  fst' =fst; ... ; fst (i timeg

Figure 4 Compilation of 3-reduction using linked environments )



A uses seven new (macro-)combinatoks ¢losed expressions) to express environment
saving and restoringdpl,, swap,), closure building and callingiikclos, appclos, access
to values fist, snd) and adding a binding in the environmemipind).

A sequenceM, ; M, is evaluated by first reducing, using a copy of the environment.
Then the result of this evaluation and the environment are swapped 9d.thah be evalu-
ated. The combinatodupl,andswap, can be defined in, by:

dupl, =Ae.push,e; push, e swap,. = AXAepush x; push. e

When both components are implemented by the same saelq, is required to reorder
the closure and the environment before redudifjgNote thatswap,. is useless wheaand
e are implemented by distinct components. This implementation choice is postponed to the
instantiation step presented in Section 3.5.

StoringA-expressionspgush, M) and accessing variableg)(correspond to closure con-
structions nkclos) and calls dppclog. These combinators can be definedjry:

mkclos = Ax.Ae.pushy(x,e appclos=A(x,8.push, e; x

A uses linked environments and adding a binding in the environment as well as building
a closure is a constant time operation. On the other hand, a chain of links has to be followed
when accessing a value. The corresponding combinators can be defined as follows:

mkbind =AeAx.pushy(e,® fst =AJ(e,¥.push, e snd=A,(e,’.push, x
Example.  A[AX AX,.pushyM ; x,] p
= mkbind ; mkbind ; dupl . ; push, (A[M] ((p,X),Xo)) ; mkclos ;
swap,; fst; snd ; appclos

The transformed expression is only composed of combinators arfiiréduction has been
compiled. Variables are only used to define (macro-)combinators. In the example, two bind-
ings (nkbind ; mkbind ) are added to the current environment, a closure is builvf¢du-

ple ; push,(...) ; mkclos), and the closure denoted Byis accessed in the environment by
fst; snd.

This implementation of th@-reduction is simple but prone to space leaks. A closure refers

to the whole environment even if its code needs only one entry. Space leaks can be avoided
by copying only the needed entries of the environment during closure building. This variant
can be expressed by inserting code copying the environment bafackos in A. In this

case, each closure has its own environment which can be represented by a vector. Access to
values is therefore a constant access time operation. This choice is taken by Tim [13], the
SML-NJ compiler [1] and several other implementations [14][28].



3.4 Composition

The push-enter model and shared environments are natural options for the compilation of
call-by-name an@-reduction respectively. In our view, these choices are the essence of the
K-machine. The composition & andA gives the compilation rules of thémachine:

K:N - env- A,
KIM N] p =dupl,; push, (K[N] p) ; mkclos ; swap,.; K[M] p
K[Ax.M] p = mkbind ; K[M] (pX)

KX (...((PX) % 1)....%) =fst'; snd ; appclos

Figure 5 Compiler for the K-machine (K= A o N)

Intuitively, the rules can be read as follows. Evaluating an applicafldd, amounts to
building a closure made df and a reference to the environmedtl, ; push(K[N] p) ;
mkclos), and evaluating/ with the environment at the togwap,.; K[M] p). The evalua-
tion of aA-abstraction binds its variable with the top of the data stack in the current environ-
ment nkbind) and evaluates the bod¢[M] (p,x). The evaluation of a variable amounts to
fetching €st' ; snd) and executingappclog the corresponding closure in its environment.

This compilation process is obtained by composing two independent and generic trans-
formations. Actually, this specific composition makes the stack of environments useless. The
duplication of (the reference to) the environment is immediately followed by a closure con-
struction which consumes it: a single environment suffices. The compermant be imple-
mented by a register rather than a stack. Note that this is not always the case (see Section
4.1).

3.5 Instantiation

Until now, we have just assumed that combinatersush andpop, respect properties (as-
soc), @) and @) (i L){s, €}). Their actual definitions are chosen as a last compilation step.
This allows us to shift from th@;-reduction in/,; to a state-machine-like expression reduc-
tion.

The most natural definition for the sequencing combinatpeidaAbAc.a (b ©), that is
M;N=AcM (N9

The (fresh) variable can be seen as a continuation which implements the sequencing.
The K-machine keeps the data staand the environmerdg separate. This is formalized by
the following definitions:

push;=AnAcAsAec(s,n) e pop,= Af.ACA(SX).Aefxcse
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push,= An.Ac.As.Ae.c s(e,n pop.=AfACAsSA(ex).fxcse

It is easy to check that these definitions respect propefligi;) and (assoc). The re-
duction (using classicg-reduction and normal order) of our expressions can be seen as
state transitions of an abstract machine with three components (code, data stack, environ-
ment), e.g.:

(M:N)C)SE- (M(NC)SE
(push,N O SE-~ C(S\N E (AxM) C) (SN E ~ (M[N/X] C) S E
(push,N ©) S E~ C S(E.N) (AXM) C) S(E,N) - (M[N/X C) S E

These definitionisentail the following rewriting rules:

dupl, C S(E,,E) - CS((E,E)E)
swap,. C (S,N (Eo.Ey) - C(SN(EE)
mkclos C (S,N (EyE) - C(S(N,EB)) E,
mkbind C(S,N (E,E) -  C S(Ey(ELN)
fst C S(E,(E,N)) - CS(E,E)
snd C S(E,,(E,,N)) ~  C(SNE,

appclosC (S(N,E)) E, - N C S(E,,E)

The choice of keeping the data and environment stacks separate brings new properties. In
particular, there is no need to swap the environment and the newly built closure. Indeed, the
combinatorswap, is the identity function and can be discarded. In order to get closer to the
usual descriptions of the K-machine, we use the following combinators:

closN =dupl, ; push,N ; mkclos acces§) =fst' ; snd ; appclos

We get the following reduction rules for the code producel:by

(closN ; M) C S(E,E) ~ MC(S(NE)) (E,E)
(mkbind ; M) C (S,N (E,,E) ~  MCS(ELELN)

accesf) C S(Eo,(.-.(EM; ,E)):N0),-.No)) - M; C S(EoE)

Figure 6 Reduction rules of the K-machine

" Note that the definitions use a few useless parentheses to make the three components more explicit. Everywhere
else, the parentheses are dropped using the usual convention of association to the left.
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It is easy to see from these rules that the continuaiias not used and can be replaced
by e.g.a functionend printing the result. The stack of environments is useless and can be re-
placed by a single environmeriis not used and could be removed from the rules). With
these two simplifications, we get the rules of the standard K-machine acting on compiled
code. Our presentation is actually exactly the same as Leroy’s [24] (p. 25) wlosté and
mkbind are writtenPush(N) andGrab, respectively.

The classic presentation of Figure 1 is based on state transitions involving de Bkuijn's
expressions. Sourgeexpressions can be translated into de Bruijn’s form using the follow-
ing abstraction:

(MN),= M, N, (AXM),= AM(p X ((@0xiD)...x0 = |

and the de Bruijn’s form of a closedexpressioM is M,,. It is easy to see that our function-
al machine code and the machine states of Figure 1 are related by the following relation:

K[M] p C S(E,.E) = (M, S E)

for all closedC, S, E, E and for allM with all its free variables irp. The initial arguments/
configuration to reduce a closed expressibare

KIM] 0 end () (0.0) = My, 0, 0)

whereK[M] () takes as parameters an initial continuatim, an empty argument stack ()

and a stack of environments that contains a single empty environment ((),()). The combina-

tors mkbind, fst*! and énd ; appclog correspond respectively to the i+1 and O of

Figure 1. The definition of a relation between states is a standard technique to prove the cor-
rectness or equivalence of implementations [26]. A reductionBtepF of the machine in

Figure 6 is simulated by a sequence of reduction steps of the machine of Figure 1 (i.e. a state
related toE is rewritten into a state related E). Actually, splitting the reduction rule afc-

cessi) into two reduction rules (one fdst**and one foisnd ; appclog is sufficient to get a

one to one correspondence between the reduction steps of the two machines.

4 Variants

In the previous section, we focused on the standard call-by-name K-machine. We now de-
scribe several variants that appear in the literature. We present a strict (i.e. call-by-value) and
a lazy (i.e. call-by-need) version of the machine as well as two alternatives for environment

management.

4.1 A strict variant

In this section, we present a push-enter transformation for the call-by-value reduction strate-
gy. The composition of this transformation withyields a strict variant of the K-machine.

With call-by-value, a function can be evaluated as an argument. In this case, it cannot be ap-
plied right away but must be returned as a result. In order to detect when its evaluation is
over, there has to be a way to distinguish whether its argument is present or absent: this is the



12

role of marks After a function is evaluated, a test is performed: if there is a mark, the func-
tion is returned as a result (and a closure is built); otherwise, the argument is present and the
function is applied. This technique avoids building some closures, but at the price of per-
forming dynamic tests.

The marke is supposed to be a value that can be distinguished from others. Functions are
transformed intograb, M which satisfies the following reduction rules. When a mark is
present the functioM is returned as a result:

pushse; grabgM [ pushyM
When no mark is present, the functidns applied to its argumeht
push,N ; grab,M @ push,N; M

The combinatograb, and the marle can be defined i\, In practisegrab, is imple-
mented using a conditional testing the presence of a mark. The transformation for right-to-
left call-by-value is described in Figure 7.

ViN - A
VIMN] = pushse; V[N] ; V[M]
VI[AxM] = grab, AXx.V[M])

V[x] = grabgx

Figure 7 Compilation of call-by-value (V)

Example. LetM = A\x.X)((Ay.y)(Az2)); then
V[M] =push;e; pushge ; grabg (Az.grab, 2) ; grab Ay.grab,y) ; grab(Ax.grabgx)
[ push, e ; push(Azgrab,2) ; grabAy.grab.y) ; grab(Ax.grabgx)
[0 pushe; grabyAzgrab, 2) ; grabJAx.grabg X)
[0 push(Agzgrab,2) ; grab(Ax.grabg x)
@ grab(Azgrab, 2 = V[AzZ]

In this example, initially the functiohz.z has no argument, so it is returned as a result. No
closure is built forhy.y which takes\z.z as a parameter. Similarly, no closure is built forx
which takes its evaluated argumeyetz as a parameter. This transformation compiles call-
by-value. Indeed, in the transformed expression, the funatkoncannot be called before its
argument is evaluated (the reduction rulegiab, requireeithera markpush, € or a closure

push, N).
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A strict version of the K-machine can be modeledy= A o V. Figure 8 gathers the
rules obtained after the simplification of this composition. In particular, no closure is built
for the constant. We usegrab, that satisfies the two following reduction rules:

push € ; push, X ; grab,M [ push,M ; push, X ; mkclos

pushyN ; push, X ; grab.M [ push;N; push,X; M

Ks: N\ - envos A
KsIM N] p = dupl, ; pushse ; swap.; Ks[N] p ; swap.; K;[M] p
K, [Ax.M] p = grab(mkbind ; K,[M] (p.X))

Ko [x] (.- ((P%).%.1) - X5) = grabg(acces§))

Figure 8 Strict K-Machine (K;=Ao0 V)
With the same definition for the basic combinators as in Section 3.5, we get the following
reduction rulesgwap,. is, as in Section 3.5, the identity function) for the strict K-machine:

(dupl,; pushe ; N; M) C S(Ey,Ey) N (M C) (Sg) ((En.ED.E)

!

grab, M C (Sg) (E,.Ey) - CEME)E
grab.M C (SN (Ex.E) - MC(SN(EE)
(mkbind ; M) C (S,N (EoE) - MCS(ENELN)

acces@) C S(Eo,(-.-(E.(Mi,E)).N;.1),...No))

Besides marks, there are two important differences between the strict variant and the
standard call-by-name machine. Firstly, the continuation evolves: in the first rule, the evalua-
tion of N takes place with the new continuatidv C) recording the fact tha¥l should be re-
duced afteiN. Likewise, the evaluation of grab, M with a mark in the stack (second rule)
returnsM and the reduction proceeds with the code stored in the continuation. Secondly, the
stack of environments is now needed and used. In the first rule, the current enviroBgent (
is saved and will remain in the stack of environments throughout the evaluaion of

M; C S(E,.E)

!

A conventional machine executes linear sequences of basic instructions. In our frame-
work, we could make calls and returns explicit using another compd{gnth its associat-
ed push, and pop, combinators) to represent the call stack. A transformaooan be
designed in order to save explicitly the code following a function call upimgh,, and to re-
turn to it withrts (= A f.f ) when the function ends. Another solution is to transform expres-
sions into CPS before the transformatidnContinuations are treated as regular functions by
A so that return addresses are represented by closures. This solution is used in the SML-NJ
compiler [1]. We do not describe this linearization process here (see [12] pp. 369-370).
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There are several differences between our description and Leroy’s [24]|GTdte in-
struction used by Zinc is a combination of aynab, (in fact, a recursive version) amdk-
bind combinators. Control transfers are implemented by building closures in the data stack.
This machine could be modeled precisely in our framework using a variant gfalecom-
binator.

4.2 A lazy variant

After the evaluation of a closure, a call-by-need (or lazy) implementation updates the closure
with its normal form. The transformatioN makes it impossible to distinguish results of clo-
sures (which have to be updated) from regular functions (which are applied right away). This
problem is solved, as i with the help of marks.

The transformatiord, in Figure 9 introduces marks in order to stop the normal evalua-
tion process and update closures. This transformation implemearatbea-updatescheme.
Each time a variable (i.e. a closure) is accessed, a mark is pushed in order to pause the eval-
uation when the closure is in normal form. Ligeab,, the combinatoupdt, tests the pres-
ence of a mark before the evaluation of a normal form. When no mark is pregpeit,M
proceeds with the evaluation d. When a mark is present, the last closure evaluated must
be updated with its normal forM.

LN o A
L, [MN] = push(L, [ND ; L, [M]
L. [AxM] = updtAx.L, [M])

L. [X] = pushe; x

Figure 9 Compilation of call-by-need (caller-update, push-enter model)

The drawback of this scheme is that it updates a closure every time it is accessed. The
callee-updatescheme updates closures only the first time they are accessed. Once in normal
form, all the subsequent accesses will not entail further (useless) updates.

LN S A
L, [MN] = push(push.e; L, [N]) ; L, [M]
L, [AxM] = updtAx.L, [M])

L[ =x

Figure 10 Compilation of call-by-need (callee-update, push-enter model)
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This last scheme is more efficient and is implemented by most environment-based imple-
mentations. This choice can be formalized by changing the compilation rules as shown in
Figure 10. Closures are now responsible for updating themselves. They begin by pushing a
mark € so thatupdt, can update it with its normal form. Code corresponding to normal
forms does not push marks and the future accesses to updated closures will not trigger up-
dating. Note that when the argument of an application is already a normal forral{strac-
tion) at compile time then it is useless to build an updatable closure. This optimization could
be expressed by the additional rule:

L, IM(AxN)] = push(Ax.L, [N]) ; L, [M]

The composition oL, andA gives the following compilation rules whetgpdt, is a variant
of updt, that takes into account the component

Ki: N - envo A,
KiIMN] p = clogpush,e ; swap,; K/[N] p) ; swap,; K,[M] p
K [AxM] p =updt(mkbind ; K,[M](pX))

Ki[x1 (- ((PX) %) - %) = acces§)

Figure 11 Lazy K-Machine K,=AoL))

The complete description of the lazy K-machine requires modelling sharing and updat-
ing. A memory component (a heap) must be introduced in order to store (and share) clo-
sures. This can be done (see [12]) but encoding a state in a purely functional framework is
intricate. We prefer not to detail this step here. Instead, we leave temporarily our framework
and present intuitively the rules of the lazy K-machine. We use the notion of address (written
@) and a componerii whose modifications and accesses are writtg@® — M] and H@)
respectively. With the same definition for the basic combinators as in Section 3.5, we get the
following rules for the lazy K-machine:

(closN ; M) C S(E,,E;) H - MC(S@new (EoE) H@pen— (NE)]
(pushye ; M) C S(Ey,E)) H - MC(S{s,@,y) (Ep,E) H

updt, M C (S{e,@)) (E,.E,) H - updt,M C S(E,.E) H{@ ~ (M,E))]
updt, M C (S,N (E,,E,) H ~ MC(SN (EnE) H

(mkbind ; M) C (S@) (Eo,Ey) H -~ M C S(Ey(E,,@)) H

l

accesf) C S(Eo,(...(E,,@),@,4,,-.@)) H M; C S(E..E)H with H(@)=(M;,E)

Compared to the previous versions of the machine, the main differences lie in the updat-
ing (updt, rules) and the representation of closures by addresses in the stack and environ-
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ment. Closure building is done at a fresh addm@ss, in the heap and its address is pushed
ontoS Before its evaluation, a closure pushes a mark with its own address in thed@gap (

the last accessed address is the closure’s address). This,@&ir)is used by the first rule

of updt, to perform updating. The other rules are similar as before except that they manipu-
late addresses instead of closures directly. Our description is identical to the KP-machine of
Crégut [4].

4.3 Refined environment managements

4.3.1 Two-level environments

Accesses in the environment of the standard K-machine are linear time operations. We
present here another environment-based abstradtifigure 12) proposed by Krivine [21]

that improves environment lookups. The transforma#gnelies on two-level environments

to deal with sequences dfabstractions.

AN\ - envo A

A [My; My] p =duple; A [M] p; swap,; A, [M,] p

A, [push,M] p =push, (A,[M] p) ; mkclos

A [AX,. .. AX-M] p = mkbind ., ; mkenv, ; A, [M] (p,((0).Xy)--- %)

Ay %1 (P ((@X)--- %)) Pia)---.Po) = fst' ; snd ; fst! ; snd ; appclos

Figure 12 Compilation of B-reduction with two-level environments @A,)

The transformation of A-expression\x,...AX,.M entails the construction of a local en-
vironment of lengthn+1 (mkbind,; = A& AX,...AX.push, & ; push, ((0.X,) -, %))
which is then appended to the main environmenkégnv, = Ag.A&,.push, (,€)). An envi-
ronment is represented by a tree (or list of lists) of closures. The variable occurringtét the
entry of theith local environment is denoted ky.

The benefit of two-level environments is to improve access time. Considardkpres-
sion AzM (Ax;...AX,.2). In the standard K-machine, the acceszwmwuld be compiled into
(fst"; snd ; appclog. With two-level environments, the access zdis constant time
(fst; snd ; snd ; appclo$. On the other hand, this technique suffers space leak problems.

This treatment of environments suggests to use tuples (or vectors) of closures. This can
be done by introducing a family of indexed combinators to build and access tuples:

mkbind (n) = AeAX,...AX,.pushye X,,....X,)
accesfl,j) = A...(€{Cor---(%:8):--+1C) 810), -, &)-PUS. § 5 X
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and by modifying the transformation accordingly:
Az [AXKy. . AXo-M] p = mkbind (n+1) ; A, [M] (p,((0.%)---. %))

Ao D41 (- ((R(R,%9) - %)) P10) - P0) = @cceshi )

With the same definition for the basic combinators as in Section 3.5, we get the following
rules forA, o N:

(closN ; M) C S(E,E) ~ MC(S(NE)) (E,E)

(mkbind (n) ; M) C (...((S;N)Nw)-oND)) (Eo.E) - M C S(Ep(Ep,(Ny,...,N)))
accesfi,j) C S(Ey(...
(E(Vor--os MLE),... VIDINLD),....Ng))  —  M; C S(EyE)

The second level of the environment (represented by an n-ary tuple) is accessed in con-
stant time.

4.3.2 Super closures

The K-machine avoids the construction of some intermediate closures. However, it still
builds n closures for the expressidvl N;...N, (for each argumenil,), each one with the
same environment. A variant, proposed by [23], builds only suygerclosureof the form
(codg, ..., code, eny) made of a code vector and the environment. It replaceairs by a
singlen+1-uplet and avoids-1 references to the environment. This variant of environment
management is formalized in our framework by the transformatj@rigure 13).

Agi\g - env A
As[pushy N, ; ... ; pushyN; ; M] p

=dupl,; pushy (A;[N.] p) ; ... ; pushg (A; [N;] p) ; mkclosS(n) ; swap,.; A;[M] p
A;[AX,.. . AX.M] p = mkbindS(n) ; A;IM]((p.Xy)---. X))

AsTXT ((PX).-..%,) = access8)

Figure 13 Compilation of 3-reduction with super-closures @A)

This transformation uses a new combinator to build a super-closure:

mkclosqn) = AX,...AX,Aepush, (eXy,...,X,)

Such a super-closure is split bykbindS(n) if required. This combinator relies on a run-
time check to adapt the size of super-closures to the arity of functions.
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mkbindS(n) = A.gp. A (€%, Xp)-
case n=m - push, (&X;,...,Xy) ; push, g, ; mkbind
n<m - push, (ex,,...,X,) ; push, & ; mkbind ; pushg(eXy.1,..- Xy
n>m — push, (exy,...,.X;) ; push, & ; mkbind ; mkbindS (n-m)

In the first caser(=m), the super-closure has the right size and it is added to the environ-
ment. In the second case<{m), the super-closure is too large and is split. Finally, in the third
case (>m), the super-closure is too small, so it is added to the environment and the next su-
per-closure is considered.

Environment accesses rely also on dynamic checks. In the first case, the first super-clo-
sure of the environment is skipped. In the second case, the super-closure is opened at the
right index.

accessg) = A(e,(eXy,...,Xy). case n>m - push, g, ; accessh-m)
otherwise- push,e; x,

These combinators allow to delay (and sometimes to suppress) closure building at the ex-
pense of dynamic checks. However, repeated applicationkbfndS(n) (second case) may
lead to build more closures thah Super-closures have also sharing and space leak prob-
lems [23]. Even if super-closures turn out not to be a practical optimization, the simplicity of
the K-machine has clearly facilitated the study of such a complex feature.

5 Conclusion

In this paper, we modeled the K-machine as a sequence of two program transformations.

« The first transformation compiles the reduction strategy according to a push-enter model.
Compared to the eval-apply model, this choice avoids useless closure building. For call-
by-name, this is the most natural choice. When more realistic languages are considered
(e.g. equipped with strict operators and a lazy or call-by-value strategy), the push-enter
model becomes more complicated. Marks and dynamic tests become necessary to return
intermediate results and/or to update closures.

» The second transformation compiles fheeduction using linked closures and environ-
ments. Compared to other environment-based abstractions, this scheme promotes sharing
and closure building is a constant time operation. The main drawback is that this choice
leads to space leaks. In a real functional language implementation, space leaks should be
avoided by copying only the needed part of the environment in closures.

In our view, these two choices are the essence of the Krivine machine. K-machines are
push-enter, linked-environment machines. Still this class is large and contains many vari-
ants:
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* We have considered in this paper three versions of the push-enter model for call-by-
name, call-by-value and call-by-need. For this last strategy, updating can be implemented
according two strategies (caller update or callee update).

e Three versions (basic, two-level environments and super closures) of environment man-
agement have been presented. All of them use linked environments.

e Call-by-value (actually, any reduction strategy as soon as the source language has strict
operators) requires the implementation of function calls and returns. This can be imple-
mented by a stack of return addresses or by closures in the heap.

* Finally, as described by the last instantiation step, an implementation can choose to
merge or keep components separate (e.g. the environments can be stored in the argument
stack). Depending whether there are only two components or also a control stack, this
give rises to 2 or 5 possible choices.

These options are to a large extent independent and can be combined freely. Actually,
just by combining the choices mentioned above, one could derive nearly 100 K-machines.
Of course, the design space of functional languages implementations is much larger. For ex-
ample:

» Like the K-machine, Tim [13] relies on the push-enter model but uses copied environ-
ments instead. Its call-by-name version can be described as the composition of the trans-
formation/N and a new transformation compiling environment management [12].

« Like the K-machine, the SECD [22] and the Cam [3] use linked environments but rely on
the eval-apply model. They can be described as the composition of a new transformation
compiling call-by-value and [12].

e Graph-based implementations (e.g. the G-machine [18]) rewrite more or less interpre-
tively a graph representation of the program. After optimisations, they become close to
push-enter environment machines.

e The call-value and call-by-name machines of Fradet and Le Métayer [14] and the SML-
NJ compiler [1] are based on the eval-apply model and use copied-environments.

Realistic functional languages include constants, data structures and recursion. These
features bring new implementation choices. Constants can be stored into the@tatket
another component. The latter option has the advantage of marking a difference between
pointers and values which can be exploited by the garbage collector. Recursion can be im-
plemented using circular environments or jumps to functions’ addresses. Data structures can
be represented using tags or higher-order functions [29][13]. These new choices would defi-
nitely allow the derivation of more than 700 K-machines. Optimisations (e.g. unboxing [25],
let-floating [30], sophisticated data representations [15][33], etc.) and other compilation
steps (register allocation) would also bring new options.

In this paper, we have presented the K-machine from an implementer’s point of view. We
have focused on pure-expressions and weak-head reduction strategies. The K-machine has
appeared in many other contexts.

The K-machine has served as a workbench to implement head and strong reduction strat-
egies [5] and to study the integration and impact of static analyses [31]. The K-machine has
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been presented in categorical terms [2] and its relationship with the Tim has been
studied [4]. Not surprisingly, the K-machine has been one of the easiest machine to derive
from formal semantics. The standard and lazy versions have been derived from operational
semantics of call-by-name [16] or call-by-need [32]calculi with explicit substitutions aim

at formalizing and proving functional language implementations. The K-machine has been a
natural candidate to present and test some of these calculi [6][17hHealculus [27] is an
extension of theé\-calculus with control operators. Several implementations of this calculus
are based on extensions of the K-machine [8] [34].

All this work demonstrates that the simplicity of the Krivine machine makes it a valuable
tool to study new implementation techniques arahlculi extensions.
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