
1

ead
his
per, we
work

s all of
e and

in the

nal

ak-
r
rip-
ts, ex-
for the
[4]);
oth-

ical

. The
i-
the K-
been
enta-
The Next 700 Krivine Machines

Rémi Douence* and Pascal Fradet**

douence@emn.fr Pascal.Fradet@inria.fr

Abstract: The Krivine machine is a simple and natural implementation of the normal weak-h
reduction strategy for pureλ-terms. While its original description has remained unpublished, t
machine has served as a basis for many variants, extensions and theoretical studies. In this pa
present the Krivine machine and some well-known variants in a common framework. Our frame
consists of a hierarchy of intermediate languages that are subsets of theλ-calculus. The whole imple-
mentation process (compiler + abstract machine) is described via a sequence of transformation
which express an implementation choice. We characterize the essence of the Krivine machin
locate it in the design space of functional language implementations. We show that, even with
particular class of Krivine machines, hundreds of variants can be designed.

Key-words: Krivine machine, abstract machines, program transformation, compilation, functio
language implementations.

1 Introduction

The Krivine machine (or K-machine) is a simple and natural implementation of the we
head call-by-name reduction strategy for pureλ-terms. It can be described in just three o
four rules with minimal machinery (an environment and a stack). While its original desc
tion has remained unpublished, the K-machine has served as a basis for many varian
tensions and theoretical studies. For instance, Crégut used the K-machine as a basis
implementation of other reduction strategies (call-by-need, head and strong reduction
Leroy presents his Zinc abstract machine as a strict variant of the K-machine [24]; many
ers used it as a basis or framework for their work either practical or theoret
[8][16][23][31][32][34].

The presentations of the K-machine or its variants differ depending on the sources
machine instructions may be de Bruijn’sλ-expressions or completely compiled code. Env
ronments and closures also have different representations. In this paper, we present
machine and some well-known variants in a common framework. This framework has
used to describe, prove, compare, classify and hybridize functional language implem
tions [9][10][11][12]. Here our main goal is:

*
ÉCOLE DES MINES DE NANTES, 4 rue Alfred Kastler, BP 20722, 44307 Nantes Cedex 3, France.

** Work performed while at INRIA/IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France.
Author’s current address: INRIA RHÔNE-ALPES, 655 av. de l’Europe, 38330 Montbonnot, France.

2

ation
.

s. In
hine

of

ession

on
in-

en-
por-
her

viron-

rrence
• To characterize the essence of the K-machine by making its fundamental implement
choices clear. This defines a class of abstract machines and suggests new variants

• To locate the K-machine in the design space of functional language implementation
particular, we mention alternative implementation choices and compare the K-mac
with other abstract machines (e.g. Tim [13], Cam [3]).

2 Overview

The most common description of the K-machine [5] is given in Figure 1. It takes the form
an operational semantics whose state transition rules involve de Bruijn’sλ-expressions*. A
machine state (C, S, E) is made of a codeC, an environmentE and a stackS. Here, and
throughout the paper, we represent stacks (and lists) using pairs. For instance, the expr
(…(((S,Xn),Xn-1),Xn-2),…,X1) denotes a stack of (at least)n elements, withX1 at the top. A
closure is represented by a (code, environment) pair.

(M N, S, E) → (M, (S,(N,E)), E)

(λM, (S,N), E) → (M, S, (E,N))

(i+1 , S, (E,N)) → (i, S, E)

(0, S, (E1,(M,E2))) → (M, S, E2)

Figure 1 Usual description of the standard K-Machine

To evaluate an applicationM N, the K-machine builds a closure made of the argumentN
and the current environmentE in the stack and proceeds with the reduction of the functi
M. This is the first characteristic of the K-machine: a closure is built in constant time and
cludes the complete current environment.

The evaluation of aλ-abstraction places the argument (the stack’s top element) in the
vironment and proceeds with the body of the function. This is the second and more im
tant characteristic of the K-machine: it strives not to build closures for functions. Ot
abstract machines return functions as closures before applying them.

The evaluation of a variablei amounts to followingi links to find the corresponding clo-
sure in the environment. The closure’s components become the current code and en
ment.

* In de Bruijn’s notation [7], a variable occurrence is represented by the number of lambdas between this occu
and the lambda binding the variable. For example, theλ-term λx.x (λy.y x) is written in de Bruijn’s notation as
λ0(λ0 1).

3

’s no-
ma-

ines.

rans-
hich
ine,
ng an
s ob-
itions of

fined
com-
nical
en-

these
ma-

s for

ork
n and
rent
relat-
of the
com-
ally

[12].

mbly
guag-
tacks.
using
nment

nd in-
ance,
nal
tion.

ich
on

b-
itions.
m-
Other presentations use a more compiled code for their machine. Indeed, de Bruijn
tation compiles environment management, but applications remain interpreted by the
chine. The representations of environments or closures also differ according to the mach

In this paper, we model the K-machine and its variants as compositions of program t
formations. Our framework consists of a hierarchy of intermediate languages all of w
are subsets of theλ-calculus. The description of an implementation, such as the K-mach
consists of a series of transformations, each one compiling a particular task by mappi
expression from one intermediate language into another. The functional expression
tained can be seen as machine code and their reduction can be seen as the state trans
an abstract machine. This approach has several benefits:

• It is modular. Each transformation implements one compilation step and can be de
independently of the other steps. Transformations implementing different steps are
posed to specify implementations. For instance, in this article, we model the cano
Krivine abstract machine as the composition of two program transformations. Implem
tation choices are modeled as distinct program transformations. Combinations of
transformations lead to many variants of the K-machine. Many classical abstract
chines and new hybrid machines (e.g. that mix different implementation technique
β-reduction) have been described in this framework [12].

• It has a strong formal basis. The functional framework is the only formal framew
used. Instead of translations and state transitions, we use program transformatio
functional reduction. This simplifies the correctness proofs and comparisons. Diffe
implementation choices are represented by different transformations which can be
ed and compared. For instance, we have shown that, regarding the implementation
reduction strategy, a G-machine is an interpretative version of the K-machine. The
pilation of the reduction strategy used by the strict K-machine has also been form
compared to the compilation of the reduction strategy used by the SECD machine

• It is (relatively) abstract although the intermediate languages come closer to an asse
language as we progress in the description. The combinators of the intermediate lan
es allow a more abstract description of notions such as instructions, sequencing or s
As a consequence, the compilation of control is expressed more abstractly than
CPS expressions, and the representation of components (e.g., data stack, enviro
stack) is a separate implementation step.

• It is extendable. New intermediate languages and transformations can be defined a
serted into the transformation sequence to model new compilation steps. For inst
some variants of the K-machine would be more faithfully described using additio
transformations to compile control transfers (calls and returns) and/or register alloca

The reduction ofλ-terms comprises two main tasks: searching for the next redex (wh
depends on the reduction strategy) andβ-reducing redexes. We describe an implementati
as a transformation sequenceΛ T1→ Λs

T2→ Λe, where the transformationsT1 andT2 com-
pile the reduction strategy and theβ-reduction respectively. The functional expressions o
tained (inΛe) are sequences of combinators whose reduction can be seen as state trans
In order to provide some intuition, consider the following definition of the 3-argument co
binatormkclos:

4

d the

a-
hine.
e im-
pera-
e will

in-
e in-
nd the
roofs
12]

me-
l-by-
), we

tions

ders
focus

dis-

ts of
ence

s

mkclosC (S,N) E = C (S,(N,E)) E

Its reduction can be seen as a state transition where (mkclos C), (S,N) andE represent the
code, the current stack and environment respectively. The combinatormkclos can therefore
be seen as a functional instruction building a closure made of the top stack element an
current environment and pushing this closure onto the stack.

In this paper, we consider only pureλ-expressions and the two aforementioned compil
tion steps. This is sufficient to present the fundamental choices that define the K-mac
There are other steps like the compilation of control transfers (calls and returns) and th
plementation of sharing and updates in lazy implementations. Constants, primitive o
tors, recursion and data structures can also be taken into account by the K-machine. W
briefly mention the possible implementation choices for these extensions.

We focus on the description of the Krivine machine and some of its variants. We will
troduce only the notions needed by this aim and will not provide correctness proofs. Th
terested reader can find a more complete presentation of the framework, descriptions a
classification of a dozen standard implementations, formal comparisons, correctness p
and new implementation techniques in two technical reports [9][10], a journal article [
and a PhD thesis [11].

We start in Section 3 by describing the classic, call-by-name, K-machine in our fra
work. Section 4 presents several variants of the K-machine for alternative reduction (cal
value, call-by-need) and environment management strategies. In conclusion (Section 5
review related work, the main characteristics of K-machines and the possible varia
within this particular class.

3 Standard K-Machine

In this section, we describe the original and simplest version of the K-machine: it consi
the call-by-name evaluation strategy and uses lists to represent the environments. We
on pureλ-expressions and our source languageΛ is

M ::= x | M1 M2 | λx.M

Extensions of theλ-calculus (e.g. constants, primitive operators, data structures) are
cussed in the conclusion.

3.1 Framework

Our framework consists of a hierarchy of intermediate languages, all of which are subse
the λ-calculus. We describe the implementation process via the transformation sequ
Λ T1→ Λs

T2→ Λe starting withΛ and involving two intermediate languages.

The first intermediate languageΛs is a subset ofΛ defined using the three combinator
;, pushs andpops.

5

o
e

n in
tivity

duc-
ion of

duc-
redex.
e-

rategy
int to

by
Λs M ::= x | M1 ; M2 | pushs M | pops(λx.M)

Intuitively, ; is a sequencing operator andM1 ; M2 can be read “evaluateM1 then evaluate
M2”, pushs M returnsM as a result andpops(λx.M) binds the previous intermediate result t
x before evaluatingM. The combinatorspushsandpops suggest a stack storing intermediat
results. This argument stack will be denoted bys.

The languageΛs is a subset ofΛ since it rules out unrestricted applications andλ-ab-
stractions always occur within apops. The three combinators;, pushs andpops are not lin-
guistic extensions but only specific closedλ-expressions (to be defined later).

The substitution and the notion of free or bound variables are the same as in theλ-calculus.
The basic combinators can be given different definitions (possible definitions are give
Section 3.5). We do not pick specific ones at this point; we simply impose the associa
of sequencing and that the combinators satisfy rules corresponding to theβ andη-conver-
sions (Figure 2, where “=” stands forλ-convertibility). To simplify the notation, we write
λsx.M for the expressionpops(λx.M).

(assoc) (M1 ; M2) ; M3 = M1 ; (M2 ; M3)

(βs) (pushs N) ; (λsx.M) = M[N/x]

(ηs) λsx.(pushs x ; M) = M if x does not occur free in M

Figure 2 Conversion rules inΛs

We consider only one reduction rule corresponding to the classicalβ-reduction:

(pushs N) ; (λsx.M) ⇒⇒ M[N/x]

For example:

pushs(pushs(λsz.z) ; λsy.y) ; λsx.x ⇒⇒ pushs(λsz.z) ; λsy.y ⇒⇒ λsz.z

As with all standard abstract machines, we are only interested in modeling weak re
tions. In our framework, a weak redex is a redex that does not occur inside an express
the formpushsM or λsx.M. Weak reduction does not reduce underpushs’s or λs’s and, from
here on, we write “redex” (resp. reduction, normal form) for weak redex (resp. weak re
tion, weak normal form). Note that a redex cannot occur as a subexpression of another
So, a reduction (pushs N) ; (λsx.M) ⇒⇒ M[N/x] cannot suppress nor duplicate another r
dex. Theβs-reduction is therefore strongly confluent and hence confluent. InΛs, the choice
of the next redex is not relevant anymore: all redexes are needed and any reduction st
is normalizing (i.e. reaches the normal form where there exists one). This is the key po
view transformations fromΛ to Λs as compiling the evaluation strategy.

The next intermediate languageΛe allows the encoding of environment management
introducing the combinatorspusheandpope.

6

s
-
sembly
ced in

c

odel
tion.

and
uilt).

rmed
a
g the

im-
). For
Λe M ::= x | M1 ; M2 | pushs M | pops(λx.M) | pushe M | pope(λx.M)

The combinatorspushe andpope behave exactly aspushs andpops but they act on a (at
least conceptually) different componente (e.g. a stack of environments). They obey the rule
(βe) and (ηe) similar to the ones in Figure 2. InΛe, variables will be only used to define (mac
ro-)combinators for environment management and the expressions can be read as as
code (see Section 3.3). More components (e.g. a call stack or a heap) can be introdu
the same way. Similarly toΛs, we writeλex.M for the expressionpope(λx.M). We will also
use pairs (x,y) and simple pattern matching (λi(x,y).M). These notations are just syntacti
sugar since they are easily translated into pureλ-expressions.

3.2 Evaluation strategy

The K-machine implements the call-by-name evaluation strategy. It uses a push-enter m
where unevaluated functions are applied right away and application is an implicit opera
The transformationN in Figure 3 formalizes this choice.

N : Λ → Λs

N [[M N]] = pushs(N [[N]]) ; N [[M]]

N [[λx.M]] = λsx.N [[M]]

N [[x]] = x

Figure 3 Compilation of call-by-name in the push-enter model (N)

The transformationN compiles applications by pushing the unevaluated argument
applying the function right away. Functions are not returned as results (no closure is b
Variables are bound to arguments which are evaluated when accessed.

Example. Let M ≡ (λx.x)((λy.y)(λz.z)) then

N [[M]] ≡ pushs(pushs(λsz.z) ; λsy.y) ; λsx.x ⇒⇒ pushs(λsz.z) ; λsy.y ⇒⇒ λsz.z ≡ N [[λz.z]]

This transformation compiles the call-by-name reduction strategy. Indeed, the transfo
form of (λy.y)(λz.z) is pushs(λsz.z) ; λsy.y which is not a redex because it occurs under
pushs. So, in the transformed expression, the argument cannot be reduced before callin
functionλsx.x.

In our framework, the correctness of a compilation step boils down to the proof of a s
ple program transformation and relies on classical techniques (e.g. structural induction
example, the correctness ofN is stated by Property 1.

Property 1 For all closedΛ-expressions M, Mcbn→ V if and only ifN [[M]] ⇒⇒
∗

N [[V]]

7

can

o
ce is
of a

-
ssed
ll-by-
ome

om-
l-
sed
envi-
can be
graph
tution

clude
e fol-

ith
In the rest of the article, we omit other correctness properties and their proofs which
be found in previous publications [9][10][12].

The transformationN is a very simple way to compile call-by-name. This option is als
taken by Tim [13] and most graph-based implementations (e.g. [18][28]). Another choi
theeval-applymodel, where aλ-abstraction is considered as a result and the application
function to its argument is an explicit operation. For an expressionλx1…λxn.M, the K-ma-
chine does not build any closure whereas the eval-apply model buildsn temporary closures
corresponding to then partial applications of this function. Uncurrying (e.g. [1]) may re
move some of this overhead but this optimization is not always possible for functions pa
as arguments. On the other hand, the eval-apply model facilitates the compilation of ca
value and call-by-need. This choice is taken by the SECD [22], the Cam [3] and also s
non-strict implementations [14].

3.3 β-reduction

In theλ-calculus,β-reduction is defined as a textual substitution. This operation can be c
piled using transformations fromΛs to Λe. These transformations are akin to abstraction a
gorithms and consist of replacing variables with combinators [35]. In environment-ba
implementations, substitutions are compiled by storing values to be substituted in an
ronment. Values are accessed in the environment only when needed. This technique
compared with the activation records used by imperative language compilers. Some
based implementations do not use environments but encode each substi
separately [19][35].

The K-machine uses linked environments. Closures are built in constant time and in
(a reference to) the complete environment. On the other hand, a chain of links has to b
lowed when accessing a value. This option is also taken by the SECD and the Cam.

The transformationA (Figure 4) formalizes this choice. The transformation is done w
respect to a compile-time environmentρ (initially empty for a closed expression). We notexi

the variable occurring at theith entry in the environment (i corresponds to the de Bruijn’s in-
dex of the occurrence).

A : Λs → env→ Λe

A [[M1 ; M2]] ρ = duple ; A [[M1]] ρ ; swapse ; A [[M2]] ρ

A [[pushs M]] ρ = pushs (A [[M]] ρ) ; mkclos

A [[λsx.M]] ρ = mkbind ; A [[M]] (ρ,x)

A [[xi]] (…((ρ,xi),xi-1)…,x0) = fsti ; snd ; appclos with fsti = fst ; … ; fst (i times)

Figure 4 Compilation ofβ-reduction using linked environments (A)

8

nt

o the

ding
owed

ind-

y

ers
oided

riant

ess to
], the
A uses seven new (macro-)combinators (Λe closed expressions) to express environme
saving and restoring (duple, swapse), closure building and calling (mkclos, appclos), access
to values (fst, snd) and adding a binding in the environment (mkbind).

A sequenceM1 ; M2 is evaluated by first reducingM1 using a copy of the environment.
Then the result of this evaluation and the environment are swapped so thatM2 can be evalu-
ated. The combinatorsdupleandswapse can be defined inΛe by:

duple = λee.pushe e ; pushe e swapse = λsx.λee.pushs x ; pushe e

When both components are implemented by the same stack,swapse is required to reorder
the closure and the environment before reducingM2. Note thatswapse is useless whens and
e are implemented by distinct components. This implementation choice is postponed t
instantiation step presented in Section 3.5.

Storingλ-expressions (pushs M) and accessing variables (xi) correspond to closure con-
structions (mkclos) and calls (appclos). These combinators can be defined inΛe by:

mkclos = λsx.λee.pushs(x,e) appclos = λs(x,e).pushe e ; x

A uses linked environments and adding a binding in the environment as well as buil
a closure is a constant time operation. On the other hand, a chain of links has to be foll
when accessing a value. The corresponding combinators can be defined as follows:

mkbind = λee.λsx.pushe(e,x) fst = λe(e,x).pushe e snd = λe(e,x).pushs x

Example. A [[λsx1.λsx0.pushs M ; x1]] ρ

= mkbind ; mkbind ; dupl e ; pushs (A [[M]] ((ρ,x1),x0)) ; mkclos ;

swapse ; fst ; snd ; appclos

The transformed expression is only composed of combinators and theβ-reduction has been
compiled. Variables are only used to define (macro-)combinators. In the example, two b
ings (mkbind ; mkbind) are added to the current environment, a closure is built forM (du-
ple ; pushs (…) ; mkclos), and the closure denoted byx1 is accessed in the environment b
fst ; snd.

This implementation of theβ-reduction is simple but prone to space leaks. A closure ref
to the whole environment even if its code needs only one entry. Space leaks can be av
by copying only the needed entries of the environment during closure building. This va
can be expressed by inserting code copying the environment beforemkclos in A. In this
case, each closure has its own environment which can be represented by a vector. Acc
values is therefore a constant access time operation. This choice is taken by Tim [13
SML-NJ compiler [1] and several other implementations [14][28].

9

ion of
f the

ron-
o

rans-
. The
on-

ection

ep.
c-

ing.
3.4 Composition

The push-enter model and shared environments are natural options for the compilat
call-by-name andβ-reduction respectively. In our view, these choices are the essence o
K-machine. The composition ofN andA gives the compilation rules of theK-machine:

K : Λ → env→ Λe

K [[M N]] ρ = duple ; pushs (K [[N]] ρ) ; mkclos ; swapse ; K [[M]] ρ

K [[λx.M]] ρ = mkbind ; K [[M]] (ρ,x)

K [[xi]] (…((ρ,xi),xi-1)…,x0) = fsti ; snd ; appclos

Figure 5 Compiler for the K-machine (K = A o N)

Intuitively, the rules can be read as follows. Evaluating an applicationM N, amounts to
building a closure made ofN and a reference to the environment (duple ; pushs(K [[N]] ρ) ;
mkclos), and evaluatingM with the environment at the top (swapse ; K [[M]] ρ). The evalua-
tion of aλ-abstraction binds its variable with the top of the data stack in the current envi
ment (mkbind) and evaluates the bodyK [[M]] (ρ,x). The evaluation of a variable amounts t
fetching (fsti ; snd) and executing (appclos) the corresponding closure in its environment.

This compilation process is obtained by composing two independent and generic t
formations. Actually, this specific composition makes the stack of environments useless
duplication of (the reference to) the environment is immediately followed by a closure c
struction which consumes it: a single environment suffices. The componente can be imple-
mented by a register rather than a stack. Note that this is not always the case (see S
4.1).

3.5 Instantiation

Until now, we have just assumed that combinators;, pushi andpopi respect properties (as-
soc), (βi) and (ηi) (i ∈{ s, e}). Their actual definitions are chosen as a last compilation st
This allows us to shift from theβi-reduction inΛi to a state-machine-like expression redu
tion.

The most natural definition for the sequencing combinator is; = λa.λb.λc.a (b c), that is

M ; N = λc.M (N c)

The (fresh) variablec can be seen as a continuation which implements the sequenc
The K-machine keeps the data stacks and the environmente separate. This is formalized by
the following definitions:

pushs= λn.λc.λs.λe.c (s,n) e pops= λf.λc.λ(s,x).λe.f x c s e

10

as
viron-

ies. In
d, the
the

rywhere
pushe= λn.λc.λs.λe.c s(e,n) pope= λf.λc.λs.λ(e,x).f x c s e

It is easy to check that these definitions respect properties (βi), (ηi) and (assoc). The re-
duction (using classicalβ-reduction and normal order) of our expressions can be seen
state transitions of an abstract machine with three components (code, data stack, en
ment), e.g.:

((M ; N) C) S E→ (M (N C)) S E

(pushs N C) S E→ C (S,N) E ((λsx.M) C) (S,N) E → (M[N/x] C) S E

(pushe N C) S E→ C S(E,N) ((λex.M) C) S(E,N) → (M[N/x] C) S E

These definitions* entail the following rewriting rules:

duple C S (E0,E1) → C S((E0,E1),E1)

swapseC (S,N) (E0,E1) → C (S,N) (E0,E1)

mkclosC (S,N) (E0,E1) → C (S,(N,E1)) E0

mkbind C (S,N) (E0,E1) → C S (E0,(E1,N))

fst C S (E0,(E1,N)) → C S(E0,E1)

sndC S (E0,(E1,N)) → C (S,N) E0

appclosC (S,(N,E1)) E0 → N C S(E0,E1)

The choice of keeping the data and environment stacks separate brings new propert
particular, there is no need to swap the environment and the newly built closure. Indee
combinatorswapse is the identity function and can be discarded. In order to get closer to
usual descriptions of the K-machine, we use the following combinators:

closN = duple ; pushs N ; mkclos access(i) = fsti ; snd ; appclos

We get the following reduction rules for the code produced byK:

(closN ; M) C S (E0,E1) → M C (S,(N,E1)) (E0,E1)

(mkbind ; M) C (S,N) (E0,E1) → M C S (E0,(E1,N))

access(i) C S(E0,(...((E,(Mi ,Ei)),Ni-1),...,N0)) → Mi C S (E0,Ei)

Figure 6 Reduction rules of the K-machine

* Note that the definitions use a few useless parentheses to make the three components more explicit. Eve
else, the parentheses are dropped using the usual convention of association to the left.

11

d
re-

th
piled

’s
w-

n:

bina-

e cor-

state

de-
) and
ent

trate-

e ap-
on is
is the
It is easy to see from these rules that the continuationC is not used and can be replace
by e.g.a functionendprinting the result. The stack of environments is useless and can be
placed by a single environment (E0 is not used and could be removed from the rules). Wi
these two simplifications, we get the rules of the standard K-machine acting on com
code. Our presentation is actually exactly the same as Leroy’s [24] (p. 25) whereclosN and
mkbind are writtenPush(N) andGrab, respectively.

The classic presentation of Figure 1 is based on state transitions involving de Bruijnλ-
expressions. Sourceλ-expressions can be translated into de Bruijn’s form using the follo
ing abstraction:

(M N)ρ = Mρ Nρ (λx.M)ρ = λM(ρ,x) x (...((ρ,x),xi-1)…,x0) = i

and the de Bruijn’s form of a closedλ-expressionM is M(). It is easy to see that our function-
al machine code and the machine states of Figure 1 are related by the following relatio

K [[M]] ρ C S(E0,E) ≈ (Mρ, S, E)

for all closedC, S, E0, E and for allM with all its free variables inρ. The initial arguments/
configuration to reduce a closed expressionM are

K [[M]] () end () ((),()) ≈ (M(), (), ())

whereK [[M]] () takes as parameters an initial continuationend, an empty argument stack ()
and a stack of environments that contains a single empty environment ((),()). The com
tors mkbind , fsti+1 and (snd ; appclos) correspond respectively to theλ, i+1 and 0 of
Figure 1. The definition of a relation between states is a standard technique to prove th
rectness or equivalence of implementations [26]. A reduction stepE → F of the machine in
Figure 6 is simulated by a sequence of reduction steps of the machine of Figure 1 (i.e. a
related toE is rewritten into a state related toF). Actually, splitting the reduction rule ofac-
cess(i) into two reduction rules (one forfsti+1and one forsnd ; appclos) is sufficient to get a
one to one correspondence between the reduction steps of the two machines.

4 Variants

In the previous section, we focused on the standard call-by-name K-machine. We now
scribe several variants that appear in the literature. We present a strict (i.e. call-by-value
a lazy (i.e. call-by-need) version of the machine as well as two alternatives for environm
management.

4.1 A strict variant

In this section, we present a push-enter transformation for the call-by-value reduction s
gy. The composition of this transformation withA yields a strict variant of the K-machine.
With call-by-value, a function can be evaluated as an argument. In this case, it cannot b
plied right away but must be returned as a result. In order to detect when its evaluati
over, there has to be a way to distinguish whether its argument is present or absent: this

12

nc-
nd the
per-

s are
is

t-to-

o

ll-
role of marks. After a function is evaluated, a test is performed: if there is a mark, the fu
tion is returned as a result (and a closure is built); otherwise, the argument is present a
function is applied. This technique avoids building some closures, but at the price of
forming dynamic tests.

The markε is supposed to be a value that can be distinguished from others. Function
transformed intograbs M which satisfies the following reduction rules. When a mark
present the functionM is returned as a result:

pushs ε ; grabs M ⇒⇒ pushs M

When no mark is present, the functionM is applied to its argumentN:

pushs N ; grabsM ⇒⇒ pushs N ; M

The combinatorgrabs and the markε can be defined inΛs. In practise,grabs is imple-
mented using a conditional testing the presence of a mark. The transformation for righ
left call-by-value is described in Figure 7.

V : Λ → Λs

V [[M N]] = pushs ε ; V [[N]] ; V [[M]]

V [[λx.M]] = grabs (λsx.V [[M]])

V [[x]] = grabs x

Figure 7 Compilation of call-by-value (V)

Example. Let M ≡ (λx.x)((λy.y)(λz.z)); then

V [[M]] ≡ pushs ε ; pushs ε ; grabs (λsz.grabs z) ; grabs(λsy.grabs y) ; grabs(λsx.grabs x)

⇒⇒ pushs ε ; pushs(λsz.grabs z) ; grabs(λsy.grabs y) ; grabs(λsx.grabs x)

⇒⇒ pushs ε ; grabs(λsz.grabs z) ; grabs(λsx.grabs x)

⇒⇒ pushs(λsz.grabs z) ; grabs(λsx.grabs x)

⇒⇒ grabs(λsz.grabs z) ≡ V [[λz.z]]

In this example, initially the functionλz.z has no argument, so it is returned as a result. N
closure is built forλy.y which takesλz.zas a parameter. Similarly, no closure is built forλx.x
which takes its evaluated argumentλz.z as a parameter. This transformation compiles ca
by-value. Indeed, in the transformed expression, the functionλx.x cannot be called before its
argument is evaluated (the reduction rules ofgrabs requireeithera markpushs ε or a closure
pushs N).

13

uilt

ing
:

d the
alua-

)
y, the
t (

ame-

s-
by
ML-NJ
.

A strict version of the K-machine can be modeled byKs = A o V. Figure 8 gathers the
rules obtained after the simplification of this composition. In particular, no closure is b
for the constantε. We usegrabe that satisfies the two following reduction rules:

pushs ε ; pushe X ; grabe M ⇒⇒ pushs M ; pushe X ; mkclos

pushs N ; pushe X ; grabeM ⇒⇒ pushs N ; pushe X ; M

Ks : Λ → env→ Λe

Ks [[M N]] ρ = duple ; pushs ε ; swapse ; Ks [[N]] ρ ; swapse ; Ks [[M]] ρ

Ks [[λx.M]] ρ = grabe(mkbind ; Ks [[M]] (ρ,x))

Ks [[xi]] (…((ρ,xi),xi-1)…,x0) = grabe(access(i))

Figure 8 Strict K-Machine (Ks = A o V)

With the same definition for the basic combinators as in Section 3.5, we get the follow
reduction rules (swapse is, as in Section 3.5, the identity function) for the strict K-machine

(duple ; pushs ε ; N ; M) C S (E0,E1) → N (M C) (S,ε) ((E0,E1),E1)

grabe M C (S,ε) (E0,E1) → C (S,(M,E1)) E0

grabe M C (S,N) (E0,E1) → M C (S,N) (E0,E1)

(mkbind ; M) C (S,N) (E0,E1) → M C S (E0,(E1,N))

access(i) C S(E0,(...((E,(Mi,Ei)),Ni-1),...,N0)) → Mi C S (E0,Ei)

Besides marks, there are two important differences between the strict variant an
standard call-by-name machine. Firstly, the continuation evolves: in the first rule, the ev
tion of N takes place with the new continuation (M C) recording the fact thatM should be re-
duced afterN. Likewise, the evaluation of agrabs M with a mark in the stack (second rule
returnsM and the reduction proceeds with the code stored in the continuation. Secondl
stack of environments is now needed and used. In the first rule, the current environmenE1)
is saved and will remain in the stack of environments throughout the evaluation ofN.

A conventional machine executes linear sequences of basic instructions. In our fr
work, we could make calls and returns explicit using another componentk (with its associat-
ed pushk and popk combinators) to represent the call stack. A transformationS can be
designed in order to save explicitly the code following a function call usingpushk, and to re-
turn to it with rts (= λkf.f) when the function ends. Another solution is to transform expre
sions into CPS before the transformationA. Continuations are treated as regular functions
A so that return addresses are represented by closures. This solution is used in the S
compiler [1]. We do not describe this linearization process here (see [12] pp. 369-370)

14

tack.

sure
-
This

a-

e eval-

ust

. The
ormal
There are several differences between our description and Leroy’s [24]. TheGrab in-
struction used by Zinc is a combination of ourgrabe (in fact, a recursive version) andmk-
bind combinators. Control transfers are implemented by building closures in the data s
This machine could be modeled precisely in our framework using a variant of thegrab com-
binator.

4.2 A lazy variant

After the evaluation of a closure, a call-by-need (or lazy) implementation updates the clo
with its normal form. The transformationN makes it impossible to distinguish results of clo
sures (which have to be updated) from regular functions (which are applied right away).
problem is solved, as inV, with the help of marks.

The transformationL↑ in Figure 9 introduces marks in order to stop the normal evalu
tion process and update closures. This transformation implements acaller-updatescheme.
Each time a variable (i.e. a closure) is accessed, a mark is pushed in order to pause th
uation when the closure is in normal form. Likegrabs, the combinatorupdts tests the pres-
ence of a mark before the evaluation of a normal form. When no mark is present,updts M
proceeds with the evaluation ofM. When a mark is present, the last closure evaluated m
be updated with its normal formM.

L↑ : Λ → Λs

L↑ [[M N]] = pushs(L↑ [[N]]) ; L↑ [[M]]

L↑ [[λx.M]] = updts(λsx.L↑ [[M]])

L↑ [[x]] = pushs ε ; x

Figure 9 Compilation of call-by-need (caller-update, push-enter model)

The drawback of this scheme is that it updates a closure every time it is accessed
callee-updatescheme updates closures only the first time they are accessed. Once in n
form, all the subsequent accesses will not entail further (useless) updates.

L↓ : Λ → Λs

L↓ [[M N]] = pushs(pushs ε ; L↓ [[N]]) ; L↓ [[M]]

L↓ [[λx.M]] = updts(λsx.L↓ [[M]])

L↓ [[x]] = x

Figure 10 Compilation of call-by-need (callee-update, push-enter model)

15

ple-
n in
ing a
al
er up-

ould

dat-
) clo-
ork is
work
ritten

t the

pdat-
viron-
This last scheme is more efficient and is implemented by most environment-based im
mentations. This choice can be formalized by changing the compilation rules as show
Figure 10. Closures are now responsible for updating themselves. They begin by push
mark ε so thatupdts can update it with its normal form. Code corresponding to norm
forms does not push marks and the future accesses to updated closures will not trigg
dating. Note that when the argument of an application is already a normal form (aλ-abstrac-
tion) at compile time then it is useless to build an updatable closure. This optimization c
be expressed by the additional rule:

L↓ [[M (λx.N)]] = pushs(λsx.L↓ [[N]]) ; L↓ [[M]]

The composition ofL↓ andA gives the following compilation rules whereupdte is a variant
of updts that takes into account the componente.

Kl : Λ → env→ Λe

Kl [[M N]] ρ = clos(pushs ε ; swapse ; Kl [[N]] ρ) ; swapse ; Kl [[M]] ρ

Kl [[λx.M]] ρ = updte(mkbind ; Kl [[M]] (ρ,x))

Kl [[xi]] (…((ρ,xi),xi-1)…,x0) = access(i)

Figure 11 Lazy K-Machine (Kl = A o L↓)

The complete description of the lazy K-machine requires modelling sharing and up
ing. A memory component (a heap) must be introduced in order to store (and share
sures. This can be done (see [12]) but encoding a state in a purely functional framew
intricate. We prefer not to detail this step here. Instead, we leave temporarily our frame
and present intuitively the rules of the lazy K-machine. We use the notion of address (w
@) and a componentH whose modifications and accesses are writtenH[@← M] and H(@)
respectively. With the same definition for the basic combinators as in Section 3.5, we ge
following rules for the lazy K-machine:

(closN ; M) C S (E0,E1) H → M C (S,@new) (E0,E1) H[@new← (N,E1)]

(pushs ε ; M) C S (E0,E1) H → M C (S,(ε,@last)) (E0,E1) H

updte M C (S,(ε,@)) (E0,E1) H → updte M C S (E0,E1) H[@← (M,E1)]

updte M C (S,N) (E0,E1) H → M C (S,N) (E0,E1) H

(mkbind ; M) C (S,@) (E0,E1) H → M C S (E0,(E1,@)) H

access(i) C S(E0,(...((E1,@i),@i-1,,...,@0)) H → Mi C S (E0,Ei)H with H(@i)=(Mi,Ei)

Compared to the previous versions of the machine, the main differences lie in the u
ing (updte rules) and the representation of closures by addresses in the stack and en

16

d

ipu-
ine of

. We

-

e

s.

s can
ment. Closure building is done at a fresh address@new in the heap and its address is pushe
ontoS. Before its evaluation, a closure pushes a mark with its own address in the heap (@last,
the last accessed address is the closure’s address). This pair (ε,@last) is used by the first rule
of updte to perform updating. The other rules are similar as before except that they man
late addresses instead of closures directly. Our description is identical to the KP-mach
Crégut [4].

4.3 Refined environment managements

4.3.1 Two-level environments

Accesses in the environment of the standard K-machine are linear time operations
present here another environment-based abstractionA2 (Figure 12) proposed by Krivine [21]
that improves environment lookups. The transformationA2 relies on two-level environments
to deal with sequences ofλ-abstractions.

A2 : Λs → env→ Λe

A2 [[M1 ; M2]] ρ = duple ; A2 [[M1]] ρ ; swapse ; A2 [[M2]] ρ

A2 [[pushs M]] ρ = pushs (A2 [[M]] ρ) ; mkclos

A2 [[λsxn…λsx0.M]] ρ = mkbindn+1 ; mkenve ; A2 [[M]] (ρ,(((),xn)…,x0))

A2 [[xi,j]] (…((ρ,((e,xj)…,x0)),ρi-1)…,ρ0) = fst i ; snd ; fst j ; snd ; appclos

Figure 12 Compilation ofβ-reduction with two-level environments (A2)

The transformation of aλs-expressionλsxn…λsx0.M entails the construction of a local en
vironment of lengthn+1 (mkbindn+1 = λeeg.λsxn…λsx0.pushe eg ; pushe (((),xn) …, x0))
which is then appended to the main environment (mkenve = λeel.λeeg.pushe (eg,el)). An envi-
ronment is represented by a tree (or list of lists) of closures. The variable occurring at thjth
entry of theith local environment is denoted byxi,j.

The benefit of two-level environments is to improve access time. Consider theλ-expres-
sion (λz.M (λx1…λxn.z)). In the standard K-machine, the access toz would be compiled into
(fstn ; snd ; appclos). With two-level environments, the access toz is constant time
(fst ; snd ; snd ; appclos). On the other hand, this technique suffers space leak problem

This treatment of environments suggests to use tuples (or vectors) of closures. Thi
be done by introducing a family of indexed combinators to build and access tuples:

mkbind (n) = λee.λsxn…λsx1.pushe(e,(x1,…,xn))

access(i,j) = λe(...((e,(c0,…,(xj,ej),…,cn)),ei-1),…,e0).pushe ej ; xj

17

ing

con-

still

nt

-

and by modifying the transformation accordingly:

A2 [[λsxn…λsx0.M]] ρ = mkbind(n+1) ; A2 [[M]] (ρ,(((),xn)…,x0))

A2 [[xi,j]] (…((ρ,((ρ’,xj)…,x0)),ρi-1)…,ρ0) = access(i,j)

With the same definition for the basic combinators as in Section 3.5, we get the follow
rules forA2 o N:

(closN ; M) C S (E0,E1) → M C (S,(N,E1)) (E0,E1)

(mkbind (n) ; M) C (…((S,Nn),Nn-1),…,N1)) (E0,E1) → M C S (E0,(E1,(N1,…,Nn)))

access(i,j) C S(E0,(...

((E,(V0,…, (Mj,Ej),…,Vn)),Ni-1),…,N0)) → Mj C S (E0,Ej)

The second level of the environment (represented by an n-ary tuple) is accessed in
stant time.

4.3.2 Super closures

The K-machine avoids the construction of some intermediate closures. However, it
builds n closures for the expressionM N1…Nn (for each argumentNi), each one with the
same environment. A variant, proposed by [23], builds only onesuper-closureof the form
(code1, …, coden, env) made of a code vector and the environment. It replacesn pairs by a
singlen+1-uplet and avoidsn-1 references to the environment. This variant of environme
management is formalized in our framework by the transformationA3 (Figure 13).

A3 : Λs → env→ Λe

A3 [[pushs Nn ; … ; pushs N1 ; M]] ρ

= duple ; pushs (A3 [[Nn]] ρ) ; … ; pushs (A3 [[N1]] ρ) ; mkclosS(n) ; swapse ; A3 [[M]] ρ

A3 [[λsxn…λsx1.M]] ρ = mkbindS(n) ; A3 [[M]] ((ρ,xn)…,x1)

A3 [[xi]] ((ρ,xi)…,x1) = accessS(i)

Figure 13 Compilation ofβ-reduction with super-closures (A3)

This transformation uses a new combinator to build a super-closure:

mkclosS(n) = λsx1…λsxn.λee.pushs (e,x1,…,xn)

Such a super-closure is split bymkbindS(n) if required. This combinator relies on a run
time check to adapt the size of super-closures to the arity of functions.

18

on-
rd
t su-

r-clo-
at the

e ex-

ob-
y of

ns.

odel.
call-
dered
enter
return

-
haring
oice
uld be

s are
vari-
mkbindS(n) = λee0.λs(e,x1,…,xm).

case n=m → pushs (e,x1,…,xm) ; pushe e0 ; mkbind

n<m → pushs (e,x1,…,xn) ; pushe e0 ; mkbind ; pushs(e,xn+1,…,xm)

n>m → pushs (e,x1,…,xm) ; pushe e0 ; mkbind ; mkbindS (n-m)

In the first case (n=m), the super-closure has the right size and it is added to the envir
ment. In the second case (n<m), the super-closure is too large and is split. Finally, in the thi
case (n>m), the super-closure is too small, so it is added to the environment and the nex
per-closure is considered.

Environment accesses rely also on dynamic checks. In the first case, the first supe
sure of the environment is skipped. In the second case, the super-closure is opened
right index.

accessS(n) = λe(e0,(e,x1,…,xm)). case n>m → pushe e0 ; accessS(n-m)

otherwise→ pushe e ; xn

These combinators allow to delay (and sometimes to suppress) closure building at th
pense of dynamic checks. However, repeated application ofmkbindS(n) (second case) may
lead to build more closures thanA. Super-closures have also sharing and space leak pr
lems [23]. Even if super-closures turn out not to be a practical optimization, the simplicit
the K-machine has clearly facilitated the study of such a complex feature.

5 Conclusion

In this paper, we modeled the K-machine as a sequence of two program transformatio

• The first transformation compiles the reduction strategy according to a push-enter m
Compared to the eval-apply model, this choice avoids useless closure building. For
by-name, this is the most natural choice. When more realistic languages are consi
(e.g. equipped with strict operators and a lazy or call-by-value strategy), the push-
model becomes more complicated. Marks and dynamic tests become necessary to
intermediate results and/or to update closures.

• The second transformation compiles theβ-reduction using linked closures and environ
ments. Compared to other environment-based abstractions, this scheme promotes s
and closure building is a constant time operation. The main drawback is that this ch
leads to space leaks. In a real functional language implementation, space leaks sho
avoided by copying only the needed part of the environment in closures.

In our view, these two choices are the essence of the Krivine machine. K-machine
push-enter, linked-environment machines. Still this class is large and contains many
ants:

19

ll-by-
ented

man-

strict
ple-

se to
ument

, this

ually,
ines.
or ex-

ron-
trans-

on
ation

rpre-
e to

ML-

These

tween
e im-
s can
defi-

25],
tion

. We
has

strat-
e has
• We have considered in this paper three versions of the push-enter model for ca
name, call-by-value and call-by-need. For this last strategy, updating can be implem
according two strategies (caller update or callee update).

• Three versions (basic, two-level environments and super closures) of environment
agement have been presented. All of them use linked environments.

• Call-by-value (actually, any reduction strategy as soon as the source language has
operators) requires the implementation of function calls and returns. This can be im
mented by a stack of return addresses or by closures in the heap.

• Finally, as described by the last instantiation step, an implementation can choo
merge or keep components separate (e.g. the environments can be stored in the arg
stack). Depending whether there are only two components or also a control stack
give rises to 2 or 5 possible choices.

These options are to a large extent independent and can be combined freely. Act
just by combining the choices mentioned above, one could derive nearly 100 K-mach
Of course, the design space of functional languages implementations is much larger. F
ample:

• Like the K-machine, Tim [13] relies on the push-enter model but uses copied envi
ments instead. Its call-by-name version can be described as the composition of the
formationN and a new transformation compiling environment management [12].

• Like the K-machine, the SECD [22] and the Cam [3] use linked environments but rely
the eval-apply model. They can be described as the composition of a new transform
compiling call-by-value andA [12].

• Graph-based implementations (e.g. the G-machine [18]) rewrite more or less inte
tively a graph representation of the program. After optimisations, they become clos
push-enter environment machines.

• The call-value and call-by-name machines of Fradet and Le Métayer [14] and the S
NJ compiler [1] are based on the eval-apply model and use copied-environments.

Realistic functional languages include constants, data structures and recursion.
features bring new implementation choices. Constants can be stored into the stacksor in yet
another component. The latter option has the advantage of marking a difference be
pointers and values which can be exploited by the garbage collector. Recursion can b
plemented using circular environments or jumps to functions’ addresses. Data structure
be represented using tags or higher-order functions [29][13]. These new choices would
nitely allow the derivation of more than 700 K-machines. Optimisations (e.g. unboxing [
let-floating [30], sophisticated data representations [15][33], etc.) and other compila
steps (register allocation) would also bring new options.

In this paper, we have presented the K-machine from an implementer’s point of view
have focused on pureλ-expressions and weak-head reduction strategies. The K-machine
appeared in many other contexts.

The K-machine has served as a workbench to implement head and strong reduction
egies [5] and to study the integration and impact of static analyses [31]. The K-machin

20

een
erive
tional

en a

lus

ble

lle

a-

l-by-

l-by-

rs. In

tion.
been presented in categorical terms [2] and its relationship with the Tim has b
studied [4]. Not surprisingly, the K-machine has been one of the easiest machine to d
from formal semantics. The standard and lazy versions have been derived from opera
semantics of call-by-name [16] or call-by-need [32].λ-calculi with explicit substitutions aim
at formalizing and proving functional language implementations. The K-machine has be
natural candidate to present and test some of these calculi [6][17]. Theλµ-calculus [27] is an
extension of theλ-calculus with control operators. Several implementations of this calcu
are based on extensions of the K-machine [8] [34].

All this work demonstrates that the simplicity of the Krivine machine makes it a valua
tool to study new implementation techniques andλ-calculi extensions.

REFERENCES

[1] A. W. Appel.Compiling with Continuations. Cambridge University Press. 1992.

[2] A. Asperti. A categorical understanding of environment machines.Journal of Functional Pro-
gramming, 2(1), pp. 23-59,1992.

[3] G. Cousineau, P.-L. Curien and M. Mauny, The categorical abstract machine.Science of Com-
puter Programming, 8(2), pp. 173-202, 1987.

[4] P. Crégut.Machines à environnement pour la réduction symbolique et l’évaluation partie.
Thèse de l’université de Paris VII, 1991.

[5] P. Crégut. An abstract machine for lambda-terms normalization, InProc. of LFP’90, pp. 333-
340, ACM Press, June 1990.

[6] P.-L. Curien. An abstract framework for environment machines.Theoretical Computer Science,
82, pp. 389-402, 1991.

[7] N. G. De Brujin.λ-calculus notation with nameless dummies: a tool for automatic formula m
nipulation, with application to Church Rosser theorem. InIndagationes mathematicae, 34, pp.
381-392, 1972.

[8] P. De Groote. An environment machine for the lambda-mu-calculus.Mathematical Structures in
Computer Science, 8(6), pp. 637-669, 1998.

[9] R. Douence and P. Fradet. A taxonomy of functional language implementations. Part I: cal
value.INRIA research report 2783, Jan. 1996.

[10] R. Douence and P. Fradet. A taxonomy of functional language implementations. Part II: cal
name, call-by-need, and graph reduction.INRIA research report 3050, Nov. 1996.

[11] R. Douence.Décrire et comparer les mises en œuvre de langages fonctionnels. PhD Thesis, Uni-
versity of Rennes I, 1996.

[12] R. Douence and P. Fradet. A systematic study of functional language implementations.ACM
Trans. on Prog. Lang. and Sys., 20(2), pp. 344-387, 1998.

[13] J. Fairbairn and S. Wray. Tim: a simple, lazy abstract machine to execute supercombinato
Proc of FPCA’87,LNCS 274, pp. 34-45, 1987.

[14] P. Fradet and D. Le Métayer. Compilation of functional languages by program transforma
ACM Trans. on Prog. Lang. and Sys., 13(1), pp. 21-51, 1991.

[15] C. Hall. Using Hindley-Milner type inference to optimise list representation. InProc. of LFP’94,
pp. 162-172,1994.

21

sults.

ulus.

eless

pro-
[16] J. Hannan and D. Miller. From operational semantics to abstract machines: Preliminary re
In Proc. of LFP’90, pp. 323-332, Nice, France, 1990.

[17] T. Hardin, L. Maranget and B. Pagano. Functional back-ends within the lambda-sigma calc
In Proc. ofICFP’1996, pp. 25-33, 1996.

[18] T. Johnsson.Compiling Lazy Functional Languages. PhD Thesis, Chalmers University, 1987.

[19] M. S. Joy, V. J. Rayward-Smith and F. W. Burton. Efficient combinator code.Computer Lan-
guages, 10(3), 1985.

[20] J.W. Klop. Term rewriting systems. InHandbook of Logic in Computer Science. Vol. 2, pp. 2-
108, Oxford University Press, 1992.

[21] J.-L. Krivine. Un interprète du lambda-calcul. Unpublished draft, available atftp://
ftp.logique.jussieu.fr/pub/distrib/krivine/interprt.pdf .

[22] P. J. Landin. The mechanical evaluation of expressions.The Computer Journal, 6(4), pp. 308-
320, 1964.

[23] F. Lang, Z. Benaissa and P. Lescanne. Super-Closures. InProc. of WPAM’98, as Technical Re-
port of the University of SaarBruck, number A 02/98, 1998.

[24] X. Leroy. The Zinc experiment: an economical implementation of the ML language.INRIA
Technical Report 117, 1990.

[25] X. Leroy. Unboxed objects and polymorphic typing. InACM Symp. on Princ. of Prog. Lang., pp.
177-188, 1992.

[26] H.R. Nielson and F. Nielson.Semantics with Applications: A Formal Introduction. Wiley, 1992.

[27] M. Parigot.λµ-Calculus: An algorithmic interpretation of classical natural deduction. InProc. of
LPAR'92, LNAI, Vol. 624, pp. 190-201, 1992.

[28] S.L. Peyton Jones. Implementing lazy functional languages on stock hardware: the spin
tagless G-machine.Journal of Func. Prog., 2(2):127-202, 1992.

[29] S. L. Peyton Jones and D. Lester.Implementing functional languages, a tutorial. Prentice Hall,
1992.

[30] S. L. Peyton Jones, W. Partain and A. Santos. Let-floating: moving bindings to give faster
grams. InProc. of ICFP’96, pp. 1-12, 1996.

[31] P. Sestoft.Analysis and efficient implementation of functional programs. PhD Thesis, DIKU,
University of Copenhagen, 1991.

[32] P. Sestoft. Deriving a lazy abstract machine.Journal of Functional Programming, 7(3), pp. 231-
264, 1997.

[33] Z. Shao, J. Reppy and A. Appel. Unrolling lists. InProc. of LFP’94, pp. 185-195,1994.

[34] T. Streicher and B. Reus. Classical Logic, Continuation semantics and abstract machines.Jour-
nal of Functional Programming, 8(6), pp. 543-572, 1998.

[35] D.A. Turner. A new implementation technique for applicative languages.Software Practice and
Experience, 9, pp. 31-49, 1979.

22

	The Next 700 Krivine Machines
	Abstract: The Krivine machine is a simple and natural implementation of the normal weak-head redu...
	Key-words: Krivine machine, abstract machines, program transformation, compilation, functional la...
	1 Introduction
	2 Overview
	Figure 1 Usual description of the standard K-Machine

	3 Standard K-Machine
	3.1 Framework
	Figure 2 Conversion rules in Ls

	3.2 Evaluation strategy
	Figure 3 Compilation of call-by-name in the push-enter model (N)
	Property 1 For all closed L-expressions M, McbnÆ �V if and only if N[[M]]ﬁﬁ* N[[V]]

	3.3 b-reduction
	Figure 4 Compilation of b-reduction using linked environments (A)

	3.4 Composition
	Figure 5 Compiler for the K-machine (K = A o N)

	3.5 Instantiation
	Figure 6 Reduction rules of the K-machine

	4 Variants
	4.1 A strict variant
	Figure 7 Compilation of call-by-value (V)
	Figure 8 Strict K-Machine (Ks = A o V)

	4.2 A lazy variant
	Figure 9 Compilation of call-by-need (caller-update, push-enter model)
	Figure 10 Compilation of call-by-need (callee-update, push-enter model)
	Figure 11 Lazy K-Machine (Kl = A o LØ)

	4.3 Refined environment managements
	4.3.1 Two-level environments
	Figure 12 Compilation of b-reduction with two-level environments (A2)

	4.3.2 Super closures
	Figure 13 Compilation of b-reduction with super-closures (A3)

	5 Conclusion

	REFERENCES
	[1] A. W. Appel. Compiling with Continuations. Cambridge University Press. 1992.
	[2] A. Asperti. A categorical understanding of environment machines. Journal of Functional Progra...
	[3] G. Cousineau, P.-L. Curien and M. Mauny, The categorical abstract machine. Science of Compute...
	[4] P. Crégut. Machines à environnement pour la réduction symbolique et l’évaluation partielle. T...
	[5] P. Crégut. An abstract machine for lambda-terms normalization, In Proc. of LFP’90, pp.�333- 3...
	[6] P.-L. Curien. An abstract framework for environment machines. Theoretical Computer Science, 8...
	[7] N. G. De Brujin. l-calculus notation with nameless dummies: a tool for automatic formula mani...
	[8] P. De Groote. An environment machine for the lambda-mu-calculus. Mathematical Structures in C...
	[9] R. Douence and P. Fradet. A taxonomy of functional language implementations. Part I: call-by-...
	[10] R. Douence and P. Fradet. A taxonomy of functional language implementations. Part II: call-b...
	[11] R. Douence. Décrire et comparer les mises en œuvre de langages fonctionnels. PhD Thesis, Uni...
	[12] R. Douence and P. Fradet. A systematic study of functional language implementations. ACM Tra...
	[13] J. Fairbairn and S. Wray. Tim: a simple, lazy abstract machine to execute supercombinators. ...
	[14] P. Fradet and D. Le Métayer. Compilation of functional languages by program transformation. ...
	[15] C. Hall. Using Hindley-Milner type inference to optimise list representation. In Proc. of LF...
	[16] J. Hannan and D. Miller. From operational semantics to abstract machines: Preliminary result...
	[17] T. Hardin, L. Maranget and B. Pagano. Functional back-ends within the lambda-sigma calculus....
	[18] T. Johnsson. Compiling Lazy Functional Languages. PhD Thesis, Chalmers University, 1987.
	[19] M. S. Joy, V. J. Rayward-Smith and F. W. Burton. Efficient combinator code. Computer Languag...
	[20] J.W. Klop. Term rewriting systems. In Handbook of Logic in Computer Science. Vol. 2, pp. 2- ...
	[21] J.-L. Krivine. Un interprète du lambda-calcul. Unpublished draft, available at ftp:// ftp.lo...
	[22] P. J. Landin. The mechanical evaluation of expressions. The Computer Journal, 6(4), pp. 308-...
	[23] F. Lang, Z. Benaissa and P. Lescanne. Super-Closures. In Proc. of WPAM’98, as Technical Repo...
	[24] X. Leroy. The Zinc experiment: an economical implementation of the ML language. INRIA Techni...
	[25] X. Leroy. Unboxed objects and polymorphic typing. In ACM Symp. on Princ. of Prog. Lang., pp....
	[26] H.R. Nielson and F. Nielson. Semantics with Applications: A Formal Introduction. Wiley, 1992.
	[27] M. Parigot. lm-Calculus: An algorithmic interpretation of classical natural deduction. In Pr...
	[28] S.L. Peyton Jones. Implementing lazy functional languages on stock hardware: the spineless t...
	[29] S. L. Peyton Jones and D. Lester. Implementing functional languages, a tutorial. Prentice Ha...
	[30] S. L. Peyton Jones, W. Partain and A. Santos. Let-floating: moving bindings to give faster p...
	[31] P. Sestoft. Analysis and efficient implementation of functional programs. PhD Thesis, DIKU, ...
	[32] P. Sestoft. Deriving a lazy abstract machine. Journal of Functional Programming, 7(3), pp.�2...
	[33] Z. Shao, J. Reppy and A. Appel. Unrolling lists. In Proc. of LFP’94, pp. 185-195,1994.
	[34] T. Streicher and B. Reus. Classical Logic, Continuation semantics and abstract machines. Jou...
	[35] D.A. Turner. A new implementation technique for applicative languages. Software Practice and...

