
From Continuation Passing Style to
Krivine’s Abstract Machine

Peter Selinger
Department of Mathematics and Statistics

University of Ottawa
Ottawa, ON K1N 6N5, Canada

Abstract

We describe, for three different extensions of typed lambda calculus, how the rules
for a version of Krivine’s abstract machine can be derived from those of contin-
uation passing style (CPS) semantics. The three extensions are: Parigot’sλµ-
calculus, Pym and Ritter’sλµν-calculus, and an extension of the call-by-name
lambda calculus with built-in types and primitive functions. We also show how
Krivine’s abstract machine can be implemented on realistic hardware by compil-
ing it into an idealized assembly language.

1 Introduction

Abstract machines play an important role in the implementation of programming lan-
guages. Examples include Warren’s 1983 abstract machine for Prolog, which is the
basis for most modern Prolog implementations [12], and Cousineau’s 1990 categorical
abstract machine for ML, on which the original Caml implementation was based (and
from which it derives its name) [2]. The reason abstract machines are so useful is be-
cause, on the one hand, they are sufficiently “abstract” to relate easily to other kinds
of mathematical semantics, such as equational semantics or continuation passing style
(CPS) semantics. On the other hand, they are sufficiently “machine-like” to be easily
implementable on real machines.

A particularly nice example of an abstract machine is Krivine’s machine for the
call-by-name lambda calculus [6]. In this paper, we show how it is possible to “derive”
the rules of Krivine’s abstract machine, in a semi-formal but systematic way, from a
CPS semantics in the style of Hofmann and Streicher [5]. We do this for three exten-
sions of the lambda calculus: theλµ-calculus, theλµν-calculus, and an extension of
lambda calculus with built-in basic types and primitive functions. For each of these
extensions, we also give an implementation of Krivine’s abstract machine, which takes
the form of a compiler into an idealized assembly language.

It is interesting to note that Hofmann and Streicher’s CPS semantics can itself be
derived, via a categorical completeness theorem, from a yet more abstract category-
theoretical semantics. This semantics is based on the interpretation of theλµν-calculus

1

in a so-calledcontrol category, and it generalizes the familiar interpretation of the
simply-typed lambda calculus in cartesian-closed categories [10]. Thus, one obtains
the following sequence of constructions, leading systematically from the very abstract
to the very concrete:

Categorical Semantics→ CPS Semantics→ Abstract Machine→ Compiler

Krivine’s abstract machine therefore fits nicely into a multi-step process for design-
ing implementations which are essentially “correct by contruction”, relative to a given
high-level semantics. In this paper, we only consider the last two steps in this sequence;
the first step, namely the relationship between the categorical semantics and the CPS
semantics, is discussed elsewhere [10].

It should be stressed that, from a practical point of view, the implementation of
the call-by-name lambda calculus derived in this paper is too inefficient to be of much
use. Because our implementation follows the design of Krivine’s abstract machine
very closely, it embodies a “naive” version of call-by-name evaluation, in which each
subterm is possibly evaluated many times. More realistic implementations of call-by-
name languages typically use a form of “lazy” evaluation to avoid this problem.

The development of CPS semantics, abstract machine, and a compiler, as presented
in this paper, is a rational reconstruction and does not reflect the historical development
of these concepts. As a matter of fact, Krivine’s formulation of his abstract machine
predates the CPS semantics of Hofmann and Streicher, which in turns predates the
categorical semantics in terms of control categories. Also, the connection between
continuation semantics and abstract machines is well-known; for example, a treatment
in the context of denotational semantics was given in [11]. We do not claim originality
for any of the results presented in this article; rather, we hope to present them under a
unique and unifying point of view.

2 Theλµ-calculus

Theλµ-calculus was originally introduced by Parigot as a proof-term calculus for clas-
sical logic [7]. Following Griffin’s earlier work, who showed that under the Curry-
Howard isomorphism, classical logic corresponds to languages with control operators
[4], theλµ-calculus can also be regarded as a prototypical call-by-name language with
control primitives for handling continuations. In this respect, it is similar to program-
ming languages withcallcc or Felleisen’sC operator [3], except that the latter lan-
guages are call-by-value. The rewrite semantics of theλµ-calculus is not very intuitive,
and Krivine’s abstract machine offers a more easily accessible way to understand its
operational behavior. The control primitives are given a natural interpretation as certain
manipulations of stack closures.

Theλµ-calculus extends the simply-typed lambda calculus with a pair of control
operators which can influence the sequential flow of control during the evaluation of
a term. Normally, in call-by-name, a termM represents a computation which, upon
demand, returns some result to its environment. For instance, if the termM appears in
a contextC[−], then the result whichM computes will be returned toC[−].

2

Table 1: The typing rules for theλµ-calculus

(var)
Γ ` x : A | ∆

if x:A ∈ Γ

(∗)
Γ ` ∗ : > | ∆

(pair)
Γ ` M : A | ∆ Γ ` N : B | ∆

Γ ` 〈M,N〉 : A ∧B | ∆

(πi)
Γ ` M : A1 ∧A2 | ∆

Γ ` πiM : Ai | ∆

(app)
Γ ` M : A → B | ∆ Γ ` N : A | ∆

Γ ` MN : B | ∆

(abs)
Γ, x:A ` M : B | ∆

Γ ` λxA.M : A → B | ∆

(name)
Γ ` M : A | ∆

Γ ` [α]M : ⊥ | ∆
if α:A ∈ ∆

(µ)
Γ ` M : ⊥ | α:A,∆
Γ ` µαA.M : A | ∆

In theλµ-calculus, terms are given the ability to ignore their immediate context and
to return a result someplace else. Intuitively, this can be thought of as “sending” a result
on a “channel”. We introduce a set of channel namesα, β, etc., which are distinct from
the usual lambda calculus variablesx, y, z. The term[α]M causes the result ofM to be
sent on channelα. Dually, the termN = µαA.P will start by evaluatingP , but if in the
process of doing so, anything is sent on the channelα, then this immediately becomes
the result ofN . Channel names are typed, and we say that a channelα has typeA if
values of typeA can be sent along it. As we are in a sequential world, channels are
refered to ascontinuations, and channel namesα, β are refered to ascontrol variables,
or simplynames.

This first interpretation of theλµ-calculus in terms of “channels” is only an intuitive
approximation; a more accurate interpretation can be found in the description of the
CPS translation or Krivine’s abstract machine below. Modulo some minor differences
in typing, the termµαA.M is a call-by-name analogue ofcallcc(λα¬A.M) in the
call-by-value world, wherecallcc is the call-with-current-continuation operator as it
appears for instance in Scheme or Standard ML.

2.1 Syntax

We start from a simply-typed lambda calculus with finite products. Binary products
are denotedA ∧B, and the terminal type (or empty product) is denoted by>.

To obtain theλµ-calculus, we first add a new type⊥. The type⊥ is thought of as
the “empty type”, or the type of a term which never returns a result to its immediate

3

context. Thus, the types of theλµ-calculus are given as follows, whereσ ranges over
a set ofbasic types:

A,B ::= σ > A ∧B A → B ⊥

As usual, we sometimes write¬A as an abbreviation for the typeA → ⊥. Theλµ-
calculus uses two sets of identifiers,variablesandnames, which are ranged over by
x, y, . . . andα, β, . . ., respectively. Variables and names belong to two separate name
spaces, which are usually assumed to be disjoint. Semantically, variables are bound to
terms, whereas names are bound to continuations. The terms of theλµ-calculus are
obtained from the terms of the simply-typed lambda calculus by adding two new term
constructors,[α]M andµαA.M . Thus, terms are given as follows:

M,N ::= x ∗ 〈M,N〉 π1M π2M MN λxA.M [α]M µαA.M

A term of the formµαA.M is called aµ-abstraction, and a term of the form[α]M is
called anamed term. In the termsλxA.M andµαA.M , the variablex, respectively the
nameα, is bound. As usual, terms are identified up to capture-free renaming of bound
variables and names. We write FV(M) and FN(M) for the set of free variables and
free names ofM , respectively. For simplicity, we do not consider basic term constants
at this point; we will show how to add them in Section 4.

The typing rules forλµ-terms are shown in Table 1. HereΓ ranges overvariable
contextsand∆ ranges overname contexts, which are (finite) assignments of types to
variables and names, respectively. Atyping judgmentis an expression of the form
Γ`M :A |∆. It asserts that the termM is well-typed of typeA, assuming that its
free variables and names have the types declared inΓ, respectively∆. Note that the
turnstile “̀ ”, the colon “:”, and the vertical bar “|” are all part of the syntax of typing
judgments; thus, a typing judgment is a 4-tuple consisting of a variable context, a term,
a type, and a name context. Valid typing judgments are those which can be derived
from the rules in Table 1.

Note the typing rules for (name) and (µ). The term[α]M has type⊥, reflecting the
fact that such a term never returns anything to its immediate environment. Similarly, in
the termµαA.M , we assume that the subtermM has type⊥, as we have no use for its
value. These typing conventions differ slightly from Parigot’s original formulation of
theλµ-calculus, where the type⊥ only occured implicitly, and only at the top level.

One notable difference between theλµ-calculus and its call-by-value cousins is
that we use a separate name space for continuations, rather than identifying them with
variables of type¬A (or A cont, as this type is known in ML). While this distinction
would make no difference in call-by-value, it turns out to be an important optimization
in call-by-name.

Another difference is that in ML, the term which is analogous to[α]M would be
given an arbitrary typeB, and inµαA.M , the subtermM would have typeA. However,
this difference is unimportant, as we can replace the first term byµβB .[α]M , for a
dummy nameβ, and the second one byµαA.[α]M , in cases where the alternate typing
is required.

The fact that we write the name context∆ on the right-hand side of a typing judg-
ment is motivated by logic: under the formulas-as-types correspondence, a typing judg-

4

Table 2: Axioms of the call-by-nameλµ-calculus

Axioms for the lambda calculus with products:
(β→) (λxA.M)N = M [N/x] : B
(η→) λxA.Mx = M : A → B if x 6∈ FV(M)
(β∧) πi〈M1,M2〉 = Mi : Ai

(η∧) 〈π1M,π2M〉 = M : A ∧B
(η>) ∗ = M : >

Axioms forλµ:
(ζ→) (µαA→B .M)N = µβB .M [[β](−)N/[α](−)] : B if β 6∈ FN(M,N)
(ζ∧) πi(µαA1×A2 .M) = µβAi .M [[β]πi(−)/[α](−)] : Ai if β 6∈ FN(M)

(βµ) [α′]µαA.M = M [α′/α] : ⊥
(ηµ) µαA.[α]M = M : A if α 6∈ FN(M)
(β⊥) [ξ⊥]M = M : ⊥

mentx1:A1, . . . , xn:An `M :B |α1:B1, . . . , αm:Bm corresponds to a logical impli-
cationA1∧ . . .∧An ⇒ B∨B1∨ . . .∨Bm. Operationally, we think ofM as a function
in n arguments, withm + 1 alternative ways of returning a result.

2.2 Equational theory

The equational theory of theλµ-calculus is an extension of that of the call-by-name
lambda calculus. The axioms are shown in Table 2. These axioms use three kinds of
substitution. We writeM [N/x] for the usual substitution of a termN for a variable
x in M . We writeM [α′/α] for the substitution of a nameα′ for another nameα in
M . Finally, we consider the so-calledmixed substitution: If M is a term,C(−) is a
context, andα is a name, then themixed substitutionM [C(−)/[α](−)] is the result of
recursively replacing any subterm of the form[α](−) by C(−) in M . For all three kinds
of substitution, appropriate care must be taken to avoid the capture of free variables.
Also note that technically, each equationM = N is understood to be stated within a
particular typing context, and equations are only between well-typed terms. However,
we usually omit the typing context from the notation. For more details, see e.g. [10].

It is possible to give an operational semantics of theλµ-calculus in terms of a
reduction relation based on a directed version of the axioms of Table 2. However,
this notion of reduction is neither intuitive nor particularly enlightening. We prefer to
discuss the operational semantics of theλµ-calculus in terms of a CPS translation (in
Section 2.3) and via an abstract machine (in Section 2.4).

5

Table 3: The CPS translation of the call-by-nameλµ-calculus

x = λkKA .x̃k wherex : A
∗ = λkK> .2Rk
〈M,N〉 = λkKA∧B .[M,N]k whereM : A, N : B
π1M = λkKA .M(inl k) whereM : A ∧B
π2M = λkKB .M(inr k) whereM : A ∧B
MN = λkKB .M〈N, k〉 whereM : A → B, N : A
λxA.M = λ〈x̃, k〉KA→B .Mk whereM : B
[α]M = λkK⊥ .Mα̃ whereM : A
µαA.M = λα̃KA .M∗ whereM : ⊥

2.3 CPS semantics

We give a continuation passing style (CPS) semantics of theλµ-calculus in the style
of Hofmann and Streicher [5]. The target language of this CPS translation is a lambda
calculusλR×+ with finite sums, products, and a distinguished typeR, called the type
of responses. Function types in the target calculus are restricted to the caseA → R.
Thus, every applicationMN in the target calculus is of typeR, as is the body of any
lambda abstraction.

To keep the notation brief, we use various forms of syntactic sugar for the sums and
products of the target calculus. We use patterned lambda abstractionλ〈x, y〉A×B .M
as an abbreviation forλzA×B .M [π1z/x, π2z/y]. We also use the co-pairing notation
[M,N] as an abbreviation for the term

λkA+B .casek of inl k1 → Mk1 | inr k2 → Nk2.

Notice that[M,N] is the term that corresponds to〈M,N〉 under the canonical isomor-
phism(A + B) → R ∼= (A → R) × (B → R). The initial type0 is equipped with a
type cast operator: IfM has type0, then2AM has typeA.

Definition (Call-by-name CPS translation). We assume that the target calculus has
a chosen typẽσ for each basic constantσ of theλµ-calculus. For each typeA of the
λµ-calculus, we define a pair of typesKA andCA of the target calculus, which are
respectively called the type ofcontinuationsand ofcomputationsof typeA:

Kσ = σ̃, if σ is a basic type,
K> = 0,
KA∧B = KA + KB ,
KA→B = CA ×KB ,
K⊥ = 1,
CA = KA → R.

For each variablex and each nameα of theλµ-calculus, we assume a distinct chosen
variablex̃, respectivelỹα, of the target calculus. The call-by-name CPS translationM

6

of a typed termM is defined in Table 3. It respects the typing in the following sense:

x1:B1, . . . , xn:Bn ` M : A | α1:A1, . . . , αm:Am

x̃1:CB1 , . . . , x̃n:CBn , α̃1:KA1 , . . . , α̃m:KAm ` M : CA
.

This CPS translation, for the fragment without product types, is due to Hofmann and
Streicher [5]. It differs from Plotkin’s original call-by-name translation [8] by introduc-
ing one less double negation at function types, thus taking advantage of the products of
the target language.

The CPS translation respects the equational theory in the sense thatM = N holds
in the equational theory of theλµ-calculus if and only ifM = N holds in the equa-
tional theory of the target calculus.

Remark.The above CPS translation for theλµ-calculus can be derived abstractly, via a
categorical representation theorem, from a category-theoretic interpretation of theλµ-
calculus. This interpretation takes place in a class of so-called “control categories”,
and it generalizes the well-known interpretation of the simply-typed lambda calculus
in cartesian-closed categories. For details, see [10].

2.4 From the CPS semantics to Krivine’s abstract machine

In this section, we describe a rational reconstruction of Krivine’s abstract machine
directly from the CPS semantics, adopted to theλµ-calculus. Note that an abstract
machine interpretation was already sketched in the very last paragraph of Parigot’s
original paper on theλµ-calculus [7].

We start by observing that each continuation typeKA is equipped with a set of
canonical term constructors, shown in the following table. Here,k ranges over contin-
uations andM over computations.

Type: Constructors:

K> = 0 −
KA∧B = KA + KB inl k, inr k
KA→B = CA ×KB 〈M,k〉
K⊥ = 1 ∗

There is also atop-level continuationκ, which is the first continuation passed (presum-
ably by the operating system) to the entire program.

Next, we change the notation for continuations. A pair〈M,k〉 will be written in
infix notationM ::k. Instead of inlk and inrk, we will write tag1::k andtag2::k, re-
spectively. We writenil for ∗, and also forκ, the top-level continuation. To summarize,
we arrive at the following syntax for continuations:

k ::= tag1::k tag2::k M ::k nil.

As this notation suggests, we will think of a continuation as an ordered list, which will
be used as astack. The elements of this stack are the tagstag1 and tag2, as well as
computationsM . The symbolnil represents the empty stack.

7

Table 4: The transitions of the abstract machine

CPS Abstract Machine

xk → x̃k {x, σ, k} → {M, τ, k}, whereσ(x) = Mτ .
〈M, N〉(inl k) → Mk {〈M, N〉, σ, tag1::k} → {M, σ, k}
〈M, N〉(inr k) → Nk {〈M, N〉, σ, tag2::k} → {N, σ, k}
π1Mk → M(inl k) {π1M, σ, k} → {M, σ, tag1::k}
π2Mk → M(inr k) {π2M, σ, k} → {M, σ, tag2::k}
MNk → M〈N, k〉 {MN, σ, k} → {M, σ, Nσ::k}
λxA.M〈N, k〉 → M [N/x̃]k {λx.M, σ, Nτ ::k} → {M, σ(x 7→ Nτ), k}
[α]Mk → Mα̃ {[α]M, σ, k} → {M, σ, k′}, whereσ(α) = k′.
µα.Mk → M [k/α̃]∗ {µα.M, σ, k} → {M, σ(α 7→ k), nil}

After having changed the notation for continuations, we will now also change the
notation for computations, i.e., for translated terms. In order to avoid having to do
substitutions, we introduce the notion of a closure. Aclosureis a pairMσ of a termM
and an environmentσ. An environmentfor M is a map from the free variables ofM to
closures, and from the free names ofM to continuation, i.e., stacks. An environment
σ is also sometimes called anactivation record.

The states of Krivine’s abstract machine are triples{M,σ, k}, consisting of a term,
an environment, and a stack. Informally, a state{M,σ, k} represents the termM ′k of
typeR of the target language of the CPS transform, whereM ′ is the term represented
by the closureMσ. The transition rules of the abstract machine can be read off directly
from the corresponding transitions of the CPS semantics. Both sets of transitions are
shown in Table 4.

Note how the continuation-manipulating operations of theλµ-calculus, namely the
termsµαA.M and[α]M , correspond to manipulations of entire stacks, rather than in-
dividual stack elements. In particular, theµα construction requires saving an image
of the entire current stack into a variableα. In actual implementations, such an op-
eration can be implemented in several different ways. One possibility, which we will
follow in Section 5, is to make an actual copy of the current stack somewhere on the
heap, and to store a pointer to it in the variableα. Such a stack copy is called astack
closure. This implementation is conceptually simple, but potentially expensive if the
stack tends to be large. Another possibility is to implement stacks as linked lists, and
to use sharing instead of copying to implement theµ-operation. This reduces the cost
of eachµ-operation, but it can lead to an increased load for the garbage collector. See
[1] for a thorough discussion of the tradeoffs of the various implementations.

The initial state for a closed programM is {M, ∅, nil}. In other words, a program
starts executing in the empty environment, and with an empty stack. It is easy to see
from Table 4 that the transition relation of the abstract machine is deterministic, i.e.,
each state has at most one successor state. On the other hand, there are clearly some
states from which no transition is possible. Several such states are designated as special

8

halting states, and we write:

{∗, σ, nil} → halt “unit”
{〈M,N〉, σ, nil} → halt “pair”
{λx.M, σ, nil} → halt “function”

In these cases, we say that the machinehaltsand outputs aresult, which is one of the
strings “unit”, “pair”, or “function”. This indicates that theλµ-expression has been
reduced to a unit term, to a pair, or to a lambda abstraction (neither of which will be
evaluated further).

A state which neither allows a valid transition nor is a designated halting state is
called anerror state. An example of an error state is{〈M,N〉, σ, P τ ::k}. This state
represents a run-time typing error, because if the current term is a pair〈M,N〉, then
the abstract machine expects eithertag1 or tag2 on top of the stack, to indicate which
of two possible branches is to be taken. It does not make sense, in this situation, to
find P τ on top of the stack. We imagine that the abstract machine will abort execution
when it encounters an error state; a real machine might engage in undefined behavior
or even crash.

Note that, as we can see from Table 4, the transitions of the abstract machine,
starting from an initial state{M, ∅, nil}, correspond precisely to the top-most reduction
sequence of the termMκ (modulo some administrative reductions).

2.5 Type soundness

A crucial property of the abstract machine is that a well-typed program does not reach
an error state.

Proposition 2.1 (Type soundness).If M is a well-typed, closed term of theλµ-
calculus, then there is no sequence of transitions leading from state{M, ∅, nil} to an
error state.

As a matter of fact, the simply-typedλµ-calculus without explicit recursion is
strongly normalizing, and thus a halting state is always reached in a finite number
of steps. However, once recursion is added, it is possible to obtain a non-terminating
sequence of reductions.

Type soundness is best proved by giving a typed version of the abstract machine.
Typed closures and typed stacks are defined by mutual recursion. A typed closure
is a pair{Γ`M :A |∆, σ}, whereΓ`M :A |∆ is a valid typing judgment andσ is
an environment that maps the variables and names fromΓ and∆ to typed closures,
respectively typed stacks, of the appropriate types. Stacks are typed as follows:

k : A

tagA,B
1 ::k : A ∧B

k : B

tagA,B
2 ::k : A ∧B

k : B
{Γ`M :A |∆, σ}::k : A → B nil⊥ : ⊥ nilAtop : Atop

Here,Atop is the top-level type of the entire program. Note that not only term closures,
but also the tagstag1 andtag2 and the empty stacknil carry type annotations. Finally,

9

a typed abstract machine state is{Γ`M :A |∆, σ, k}, where{Γ`M :A |∆, σ} is a
typed closure andk is a typed stack of typeA. Note that the type ofk matches that of
M . It is now straightforward to check the following:

1. The initial state{M, ∅, nil} is typable, ifM is a well-typed closedλµ-term.

2. The transitions of the abstract machine preserve well-typedness.

3. Every well-typed abstract machine state is either a halting state, or else it has a
unique successor state. In particular, a well-typed state cannot be an error state.

3 Adding classical disjunction

The λµν-calculus is an extension of theλµ-calculus with a typeA ∨ B of classical
disjunctions, first introduced by Pym and Ritter [9]. In call-by-name languages, the
type of classical disjunctions is distinct from the more familiar intuitionistic “sum”
typeA + B, which is usually defined via left and right injections and case distinctions.
In fact, the two disjunctions (intuitionistic and classical) are related by the type iso-
morphismA + B ∼= (¬¬A) ∨ (¬¬B). This implies that classical disjunctions can be
regarded as more primitive than sum types. As we will see, classical disjunctions can
be naturally interpreted in Krivine’s abstract machine as the ability to push and pop
entire stack closures to and from the current stack.

3.1 Theλµν-calculus

Pym and Ritter [9] propose the following straightforward way of adding a disjunction
type to theλµ-calculus:

Types: A,B ::= . . . A ∨B

Terms: M,N ::= . . . 〈α〉M ναA.M

with typing rules:

(ang)
Γ ` M : A ∨B | ∆
Γ ` 〈α〉M : B | ∆

if α:A ∈ ∆, (ν)
Γ ` M : B | α:A,∆

Γ ` ναA.M : A ∨B | ∆
.

Like µ-abstractions and named terms, these two additional term constructors manipu-
late continuations. One can think of a termM of typeA∨B as a term of typeB which
has access to an unnamed continuation of typeA. The term〈α〉M gives this unnamed
continuation the nameα. Dually, the termναA.M abstracts a continuation of name
α in M . The resulting calculus is known as theλµν-calculus. Its equational theory is
obtained from that of theλµ-calculus by adding the following three axioms:

(ζ∨) [β]〈α〉µγA∨B .M = M [[β]〈α〉(−)/[γ](−)] : ⊥
(β∨) 〈α′〉ναA.M = M [α′/α] : ⊥
(η∨) ναA.〈α〉M = M : A ∨B if α 6∈ FN(M)

We also need to extend the definition of a mixed substitutionM [C(−)/[α](−)] to replace
any subterm of the form〈α〉(−) by µβB .C(µαA.[β]〈α〉(−)), whereβ is a fresh name.

10

3.2 Classical and intuitionistic disjunction

In the lambda calculus, one usually defines a “disjoint sum type”A + B via the “inl”,
“inr”, and “case” constructs. Pym and Ritter remark that in the call-by-name case,
the disjunction typeA ∨ B, as defined in the previous section, does not coincide with
the disjoint sum typeA + B. To distinguish them, we sometimes refer toA ∨ B as
“classical” disjunction and toA + B as “intuitionistic” disjunction.

An interesting fact is that intuitionistic disjunction can be defined in terms of clas-
sical disjunction. Namely, we can define

A + B := ¬¬A ∨ ¬¬B
inl M := να.µβ.[α]λk.kM
inr M := να.µβ.[β]λk.kM
caseM of inl x → N | inr y → P := µγ.(µα.(〈α〉M)(λy.[γ]P))(λx.[γ]N)

Here,¬A is an abbreviation for the function typeA → ⊥. With these definitions, the
usual equational call-by-name laws for “inl”, “inr”, and “case” are derivable from those
of theλµν-calculus. On the other hand, the classical disjunctionA∨B is not definable
in terms of the intuitionistic disjunction type. Thus, classical disjunction should be
throught of as a very primitive operation, a low-level building block from which more
high-level constructs can be built.

To further illustrate the difference between the two disjunctions, we remark that
classical disjunction satisfies certain type isomorphisms such as associativity(A∨B)∨
C ∼= A ∨ (B ∨ C) and dominationA ∨ > ∼= >. The corresponding isomorphisms do
not hold for intuitionistic disjunction. For a more in-depth discussion of type isomor-
phisms, see e.g. [10].

3.3 Alternative syntax

A different, more symmetric syntax for the classical disjunction type was used in [10].
Readers who are familiar with [10] may appreciate knowing that the two notations are
interdefinable as follows:

ναA.M = µ(αA, βB).[β]M
〈α〉M = µβB .[α, β]M and

µ(αA, βB).M = ναA.µβB .M
[α, β]M = [β]〈α〉M.

3.4 CPS semantics and abstract machine interpretation

The CPS translation of Section 2.3 easily extends to classical disjunction: We define

KA∨B = KA ×KB ,

〈α〉M = λkKB .M〈α̃, k〉 whereM : A ∨B,
ναA.M = λ〈α̃, k〉KA∨B .Mk whereM : B.

To derive an abstract machine model from this CPS semantics, observe that the dis-
junction introduces a new kind of continuation of the form〈k′, k〉. In the context of
abstract machines, we write this continuation ask′::k, and we interpret it as a stack

11

whose topmost element is (a pointer to) a stack closure. The corresponding abstract
machine transitions are derived directly from the CPS semantics:

CPS Abstract Machine

〈α〉Mk → M〈α̃, k〉 {〈α〉M, σ, k} → {M, σ, k′::k}, whereσ(α) = k′.
να.M〈k′, k〉 → M [k′/α̃]k {να.M, σ, k′::k} → {M, σ(α 7→ k′), k}

Thus, we see that the connectives of classical disjunction correspond to the ability
to push and pop stack closures to/from the current stack. We also introduce a new
halting state, which applies in case aν-abstraction encounters an empty stack:

{να.M, σ, nil} → halt “disjunction”.

An alternative way to think of the classical disjunction type is as a kind of function
type, where the argument is a continuation variable instead of a term. Thus, a term
of type A ∨ B can be thought of as a kind of function which accepts a continuation
variable of typeA and turns into a term of typeB. Note the perfect analogy between
the following pairs of reduction rules of Krivine’s abstract machine:

{MN,σ, k} → {M,σ,Nσ::k}, whereM : A → B,
{〈α〉M, σ, k} → {M,σ, k′::k}, whereM : A ∨B, and

{λx.M, σ, Nτ ::k} → {M,σ(x 7→ Nτ), k}, whereλx.M : A → B,
{να.M, σ, k′::k} → {M,σ(α 7→ k′), k}, whereνα.M : A ∨B.

This helps explain why, in call-by-name, there is a type isomorphism betweenA →
(B ∨ C) andB ∨ (A → C). A term of either type can be regarded as expecting an
argument of typeA and a continuation of typeB; the only difference is the order in
which these two items are expected.

4 Adding basic types and operations

We now consider how the addition of built-in datatypes, such as integers or booleans,
affects the CPS semantics and Krivine’s abstract machine. Basic types complicate the
semantics somewhat, because they lead away from a “pure” call-by-name discipline.
This is because primitive operations on basic types, for instance addition or multiplica-
tion, must necessarily evaluate their arguments before operating on them. Thus, even
in a call-by-name language, basic operations are necessarily call-by-value.

It is therefore necessary to extend Krivine’s machine with a call-by-value evaluation
mechanism at basic types. It is interesting that the rules for the abstract machine can
again be derived systematically from the corresponding CPS semantics.

4.1 CPS semantics

In call-by-name languages, built-in basic types, such as integers or booleans, differ
from other types, because they are equipped with a natural notion ofvalue. These val-
ues are never stored in variables, but they are computed just before a built-in operation

12

is applied. For simplicity, we assume for the moment that all built-in functions, such
as addition or logical “and”, arestrict, i.e., they evaluate all their arguments before
they operate on them. Thus we do not at first consider “lazy” basic operations such as
lazy multiplication, which evaluates its second argument only if the first argument is
non-zero. We will get back to the question of lazy functions in Section 4.3.

We consider theλµν-calculus over a givenalgebraic signature, i.e., over a set of
basic typesσ, τ, . . . and a set of typed constant symbolsc : σ and of typed function
symbolsf : τ1 → . . . → τn → σ. As usual,n is called thearity of the function symbol
f . For the CPS semantics, we consider the same target calculus as before. Moreover,
we assume that each basic typeσ of theλµν-calculus is interpreted by a chosen type
Vσ of the target calculus, together with chosen interpretationsc̃ : Vσ, respectively
f̃ : Vτ1 → . . . → Vτn → Vσ, of the primitive constants and functions. The typeVσ

is called the type ofvaluesof typeσ. We refine the CPS semantics from Sections 2.3
and 3.4 by lettingKσ = Vσ → R, whenσ is a basic type. Thus, continuation and
computation types are defined as before:

Kσ = Vσ → R, if σ is a basic type,
K> = 0,
KA∧B = KA + KB ,
KA→B = CA ×KB ,
K⊥ = 1,
KA∨B = KA ×KB ,
CA = KA → R.

Notice that a value typeVA is only defined whenA is a basic type, and not when
A is an arbitrary type. We extend the CPS translation of Table 3 with the following
interpretation of primitive constantsc : σ and functionsf : τ1 → . . . → τn → σ:

c = λk.kc̃, (1)

f = λ〈x1, . . . , xn, k〉.x1(λv1.x2(λv2. . . . xn(λvn.k(f̃v1 . . . vn)))). (2)

Herek : Kσ, xi : Cτi
, andvi : Vτi

. Notice that the interpretation of a constant symbol
c is actually a special case of the interpretation of ann-ary function symbolf , namely
the case whenn = 0. The reader should check that this CPS translation does indeed
have the required behavior. In particular, the termfN1 . . . Nn is evaluated by first
evaluating all arguments from left to right, and then applyingf̃ to the result.

4.2 Abstract machine interpretation

We extend the abstract machine interpretation to accommodate basic types and func-
tions. As usual, we start by examining the kinds of continuations introduced by the new
language feature. The CPS translation of primitive functions, shown in equation (2),
introduces a new kind of continuation which is a function. We need to fit this into the
“continuations as stacks” paradigm of Section 2.4. Fortunately, a careful examination
of the CPS semantics reveals that, all the continuation functions which occur during
theβ-reduction of the CPS translation of a term are of one particular form:

λvj .Nj+1(λvj+1. . . . Nn(λvn.k(f̃ c1 . . . cj−1vjvj+1 . . . vn))), (3)

13

where1 ≤ j ≤ n. In the abstract machine, each termNi is represented by a closure
Nσi

i , and we will represent a continuation of the form (3) by the formal expression

[f c1 . . . cj−1 •N
σj+1
j+1 . . . Nσn

n]::k.

The expression[f c1 . . . cj−1 •N
σj+1
j+1 . . . Nσn

n] is called aframe, and it is typically im-
plemented as a fixed-size array of data on top of the current stack (i.e., whose size
depends only on the symbolf). This is analogous to the notion of a stack frame in
imperative programming languages, i.e., a data structure on the stack, containing vari-
ables belonging to a particular scope or procedure. The symbol “•” is a special place
holder which corresponds to a memory location which previously contained the closure
N

σj

j , and where the valuecj is going to be stored next.
Before giving the transition rules of the extended abstract machine, we need to

introduce one more new feature, and that is the notion of avalue state. Recall that a
state{M,σ, k} of Krivine’s abstract machine corresponds to a term of the formMk
under CPS. Because of the presence of values in the CPS semantics, there is now a new
kind of state which is of the formkc, wherek is a continuation of a basic typeA, andc
is a value of typeA, i.e., an element ofVA. We call a state of the formkc avalue state,
and we denote it in the abstract machine as a pair{c, k}v. Note that, unlike an ordinary
state of the form{M,σ, k}, a value state{c, k}v does not require an environment.

The CPS semantics of primitive constants and functions, as embodied in equations
(1) and (2), has the following transitions, wherej < n andd = f̃ c1 . . . cn−1c:

ck → kc̃

f〈N1, ..., Nn, k〉 → N1(λv1....Nn(λvn.k(f̃v1...vn)))
(λvj .Nj+1(...(λvn.k(f̃ c1...cj−1vj ...vn))))c → Nj+1(...(λvn.k(f̃ c1...cj−1cvj+1...vn)))
(λvn.k(f̃ c1...cn−1vn))c → kd,

These can now be immediately translated to transition rules of the abstract machine:

{c, σ, k} → {c, k}v

{f, σ,Nσ1
1 ::...::Nσn

n ::k} → {N1, σ1, [f •Nσ2
2 ...Nσn

n]::k}
{c, [f c1...cj−1 •N

σj+1
j+1 ...Nσn

n]::k}v → {Nj+1, σj+1, [f c1...cj−1c •N
σj+2
j+2 ...Nσn

n]::k}
{c, [f c1...cn−1 •]::k}v → {d, k}v.

In these rules, it is again assumed thatf is ann-ary function symbol, thatj < n, and
thatd = f̃ c1 . . . cn−1c. We also introcuce two new halting states: a value state with
empty stack is a halting state with resultc, and ann-ary built-in functionf will halt
with value “function” if the stack contains fewer than the requiredn arguments.

{c, nil}v → haltc,
{f, σ, k} → halt “function”, if size(k) < n.

4.3 “Impure” functions

So far, we have only considered primitive functions of the formf : τ1 → . . . →
τn → σ, where all ofτ1, . . . , τn andσ are basic types. Sometimes, it is useful to allow

14

primitive functions with arbitrary result type, i.e., of the formf : τ1 → . . . → τn → A,
whereA is any type. We refer to these more general basic functions as “impure”.

One example of an impure basic function is the if-then-else functionifB : bool→
(B → B → B) which mapstrue to λxy.x andfalseto λxy.y. Here,bool is a built-
in type of booleans, andB is any type. Another example is the “lazy multiplication”
function lazymult: int → (int → int), whereint is the type of integers. By definition,
the functionlazymultmaps0 to the constant functionλx.0, and any other integern to
λx.mult n x, wheremult is the usual strict multipliction operation. We can regard both
if andlazymultas impure, strict basic functions in one argument.

Another useful example of an impure function is the side-effectingprint function.
In call-by-name, one can model sequential compositionN ;M by applicationNM ,
whereN is a term that performs some effects and then returnsλx.x. As an application
of this idea, we can consider a family of basic functionsprintB : int → (B → B). The
intended meaning is that(print n);M prints the integern and then behaves likeM .

4.4 Semantics of impure functions

The CPS semantics of impure basic functions is straightforward. For each impure basic
function symbolf : τ1 → . . . → τn → A, we need a chosen term̃f : Vτ1 → . . . →
Vτn → CA of the target language of the CPS translation. The termf is then translated
as follows:

f = λ〈x1, . . . , xn, k〉.x1(λv1.x2(λv2. . . . xn(λvn.(f̃v1 . . . vn)k))). (4)

Here,k : KA, xi : Cτi
, andvi : Vτi

. Note that the only difference between equations
(2) and (4) is the order of the terms̃fv1 . . . vn andk. For impure functions, the term
f̃v1 . . . vn is of typeCA, whereas for pure functions, it is of typeVA. It follows that the
interpretation of an impure function does not coincide with that of a pure function, even
in the case whereA happens to be a basic type: the interpretation of a pure function
always produces a value, whereas the interpretation of an impure function potentially
produces an arbitrary computation.

In concrete cases, we rely on the target language of the CPS transform to supply
us with “native” implementations of the required functionality. To interpret the basic
function if : bool → (B → B → B), we assume thatVbool is the type of booleans
of the target language, and we define the functionĩf : Vbool → CB→B→B such that
ĩf true = λxy.x andĩf false= λxy.y. The interpretation oflazymultis similar.

The easiest way to interpret the side-effectingprint function (although there are
better ways) is to assume that the target language of the CPS transform also allows side
effects. In this case, we need a primitive functioñprint : Vint → CB→B of the target
language, such that̃print n has the behavior of printingn and then returningλx.x.

For the abstract machine interpretation, we will overload the frame notation by
writing [f c1 . . . cj−1 •N

σj+1
j+1 . . . Nσn

n]::k for the expression

λvj .Nj+1(λvj+1. . . . Nn(λvn.(f̃ c1 . . . cj−1vjvj+1 . . . vn)k)),

in the case wheref is an impure basic function. Note that this is not quite the same as
equation (3). From the CPS semantics of the impure basic functionsif andprint, we

15

have
(λv.(ĩf v)k)true → λxy.xk

(λv.(ĩf v)k)false → λxy.yk

(λv.(p̃rint v)k)c
outputc−−−−→ λx.xk.

Here the label “outputc” denotes a side effect taking place as part of the reduction.
This immediately gives rise to the corresponding abstract machine rules:

{true, [if •]::k} → {λx.λy.x, ∅, k}
{false, [if •]::k} → {λx.λy.y, ∅, k}
{c, [print •]::k} outputc−−−−→ {λx.x, ∅, k}

5 Implementing the abstract machine

In this section, we give an implementation of Krivine’s abstract machine, and its var-
ious extensions, in an idealized, low-level assembly language. This illustrates that,
despite its name, the abstract machine is not as “abstract” as one might think; it can be
implemented, with relatively little effort, on a standard von Neumann style “concrete”
machine. Note that the implementation takes the form of acompiler, and not of an
interpreter; thus, the final program does not run by updating a data structure, but by
executing actual code.

As already pointed out in the introduction, the implementation given here is not
efficient enough to be useful in practice. Its main flaw is that it uses a naive call-by-
name evaluation strategy, in which each subterm is possibly evaluated many times.
This is the same evaluation strategy which is embodied in Krivine’s abstract machine,
and since our goal is to follow the abstract machine model as faithfully as possible, we
resist the temptation to optimize. It can be argued that any substantial improvement to
the implementation is best carried out at the abstract machine level, or even at the level
of CPS translations, rather than at the compiler level.

We also take the liberty to ignore certain practical aspects of implementations, such
as garbage collection and efficient register allocation. In our “ideal” implementation,
we simply assume that there are infinitely many registers and an infinite amount of
memory available.

5.1 Target assembly language

The target language of our compiler is an idealized assembly language whose instruc-
tion set shown in Table 5. It differs from actual assembly languages in several respects.
First, we assume that there are infinitely many registers. Second, we assume that there
are built-in instructions for certain high-level operations such as memory allocation
(ALLOC) and the manipulation of stack closures (SAVE, RESTORE); these would not
normally be available as separate instructions, but would be implemented as macros or
system calls.

The only data type of the assembly language is aword, which can be interpreted
as an integer, a boolean (with0 = false, 1 = true), or as a pointer. We assume that

16

Instruction Meaning
MOVE w, v Store the valuev in locationw
ADD w, v Add v to w
PUSHv Push the valuev onto the stack
POPw Pop a value from the stack and store it inw
CMPv1, v2 Compare the two values, and remember the result
BNE v If previousCMP resulted in not equal, jump to locationv
BGEv If previousCMP resulted in greater than or equal jump to locationv
JUMPv Jump to addressv
CALL v Call subroutine at addressv
ALLOC w, v Allocatev words of memory and store a pointer to them inw
SAVE w Make a stack closure from the current stack, and store a pointer to it inw
RESTOREv Replace the current stack by a copy of the stack closure pointed to byv
EXIT v Exit with resultv

Table 5: Instruction set of the idealized assembly language

there are infinitely manyregistersR1, R2, . . ., as well as four distinguished registers
SP , SS, C, andV , each of which can hold a word.

We assume that there are infinitely many addressable memory cells, each of which
holds a word. Amemory referencetakes the form[R,n], whereR is a register andn
is a literal integer. The expression[R,n] refers to the contents of the memory cell at
addressR+n. An `-value(assignable value) is either a register or a memory reference.
A valueis either aǹ -value or a literal integer. Literal integers are often written as#n
in assembly language instructions.

The memory is divided into two separate regions: thestackand theheap. The
stack is manipulated in the usual way via thePUSHandPOP instructions, and also via
the two special registersSP andSS, which represent thestack pointerand thestack
size, respectively. We assume that the stack grows downward (towards lower memory
addresses), and that the stack pointerSP points to the memory cell just below the
stack, so that[SP, 1] refers to the topmost element on the stack. Setting the register
SS to 0 has the effect of emptying the stack.

The instruction set of the assembly language is shown in Table 5. Here, the letter
w ranges over̀ -values and the letterv ranges over values. The meaning of most
instructions should be clear. Note that there is only oneMOVE instruction, which can be
used, among other things, to copy a value from memory to a register or vice versa. The
PUSHandPOPinstructions implicitly update the registersSP andSS. Some high-level
operations are included for convenience:ALLOC is used to allocate memory from the
heap.SAVE andRESTOREare used to manipulate stack closures and will be explained
in more detail later, and theEXIT instruction ends the computation and returns a result
which is a word; it is up to the environment to interpret this word correctly as an integer,
a boolean, or a pointer to a literal string, depending on the type of the program being
run.

17

When writing assembly language code, each instruction can be preceded by an
optional label, which provides a symbolic reference to the address of the instruction.
We use a semicolon “;” to introduce a comment.

5.2 Data representation

We need to specify how the various kinds of data of Krivine’s abstract machine are
represented in memory. Specifically, we need to fix a representation for term closures,
stack closures, and for items on the stack. Terms themselves are represented as code,
and will be discussed in Section 5.3.

Term closures and stack closures are allocated on the heap. A term closureNσ is
represented asn + 1 consecutive wordsa0, . . . , an in memory. Herea0 is a pointer to
the code for the termN , anda1, . . . , an are pointers to representations of the closures
σ(x1), . . . , σ(xn), wherex1, . . . , xn are the free variables and names ofN .

A stack closure is represented by a record ofn + 1 words, of which the first one
holds the numbern, and the remaining ones hold the actual stack data. For conve-
nience, we provide aSAVE w instruction, which makes a heap-allocated closure from
the current stack and returns a pointer to it inw. We also provide aRESTOREv in-
struction, which erases the current stack and replaces it by a copy of the stack closure
pointed to byv.

The stack of the abstract machine is of course implemented as the native stack of the
assembly language. Most individual items on the stack are represented as single words,
except for frames, which are represented as records of several words. The tagstag1

andtag2 are represented as the integers1 and2, respectively. Term closures and stack
closures are represented as pointers to the respective objects on the heap. The repre-
sentation ofnil is, of course, the empty stack. A frame[f c1 . . . cj−1 •N

σj+1
j+1 . . . Nσn

n]
is represented as a sequence ofn + 1 wordsfj , c1, . . . , cj−1, b, pj+1, . . . , pn. Here,fj

is a special tag which uniquely determinesf andj (actually, we will implementfj as
a pointer to code).c1, . . . , cj−1 are literal values,b is an undefined word (occupying
the position of the “•” in the frame), andpj+1, . . . , pn are pointers to representations
of the closuresNσj+1

j+1 , . . . , Nσn
n .

5.3 Compilation of terms

Terms are not represented as data structures, but rather as code to be executed. Since
a term needs to be able to access the values of its free variables, it is executed in the
context of a particular closure, thecurrent closureof the term. By convention, we
assume that there is a special registerC which always contains a pointer to the current
closure. Thus, the calling convention for invoking a specific closure is to store a pointer
to it in the registerC, then jump to the address[C, 0].

When the abstract machine is in a value state, the current value needs to be stored
somewhere; by convention, we store it in the special registerV . (As a matter of fact,
the registersC andV are never used simultaneously, so it would be possible to use just
one register for both purposes. However, doing so would add no conceptual clarity).
The representation of stack frames was arranged in such a way that, when the machine
reaches a value state, the topmost item on the stack is a tagfj . We interpret this as an

18

Lambda calculus

[[x]]s =

MOVE C, s(x)
JUMP [C, 0]

[[λx.M]]s =

CMP SS, #0
BNE l
EXIT “function”

l : POP R
[[M]]s(x7→R)

(wherel is a fresh label andR is a fresh
register.)

[[MN]]s =

; build closure forN
ALLOC R,#(n + 1)
MOVE [R, 0],#l
MOVE [R, 1], s(x1)
. . .
MOVE [R,n], s(xn)
PUSH R
[[M]]s

l : [[N]](x1 7→[C,1],...,xn 7→[C,n])

(where l is a fresh label, R is a
fresh register, and FV(N) ∪ FN(N) =
{x1, . . . , xn}.)

[[〈M,N〉]]s =

CMP SS, #0
BNE l1
EXIT “pair”

l1 : POP R
CMP R,#1
BNE l2
[[M]]s

l2 : [[N]]s

(wherel1, l2 are fresh labels, andR is a
fresh register.)

[[πiM]]s =

PUSH #i
[[M]]s

[[∗]]s =

EXIT “unit”

λµ-Calculus

[[µα.M]]s =

; build a stack closure
SAVE R
; clear the stack
MOVE SP,#0
[[M]]s(α7→R)

(whereR is a fresh register.)

[[[α]M]]s =

RESTOREs(α)
[[M]]s

Classical disjunction (λµν-calculus)

[[να.M]]s =

CMP SS, #0
BNE l
EXIT “disjunction”

l : POP R
[[M]]s(α7→R)

(wherel is a fresh label andR is a fresh
register.)

[[〈α〉M]]s =

PUSH s(α)
[[M]]s

Table 6: The compilation of terms

19

Basic constants

[[n]]s =

MOVE V,#n
CMP SS, #0
BNE l
EXIT V

l : POP R
JUMP R

(wherel is a fresh label andR is a fresh
register.)

[[true]]s = [[1]]s

[[false]]s = [[0]]s

“Pure” basic functions

[[f]]s =

; check for sufficient arguments
CMP SS, #n
BGE f0

EXIT “function”
f0 : MOVE C, [SP, 1]

PUSH #f1

JUMP [C, 0]

(repeat following code forj = 1 . . . n− 1)
fj : MOVE [SP, j], V

MOVE C, [SP, j + 1]
PUSH #fj+1

JUMP [C, 0]

fn : MOVE [SP, n], V
; n values are now on top of stack
CALL nativef
POP V
CMP SS,#0
BNE l
EXIT V

fn+1 : POP R
JUMP R

(where n ≥ 1 is the arity of f ,
f0,. . . ,fn+1 are fresh labels, andR is a
fresh register.)

Some “impure” basic functions

[[if]]s =

CMP SS, #1
BGE if0
EXIT “function”

if0 : POP C
PUSH #if1
JUMP [C, 0]

if1 : CMP V,#0
BNE if2
[[λxy.y]]∅

if2 : [[λxy.x]]∅

(whereif0,. . . ,ifn+1 are fresh labels.)

[[print]]s =

CMP SS, #1
BGE print0
EXIT “function”

print0 : POP C
PUSH #print1
JUMP [C, 0]

print1 : PUSH V
CALL nativeprint

[[λx.x]]∅
(whereprint0, print1 are fresh labels.)

Table 7: The compilation of terms, continued

20

address to jump to. Thus, the convention in a value state is to put the value into the
registerV , then pop the topmost address from the stack and jump to it. If a value state
encounters an empty stack, then the program halts and the current value is the result of
the computation.

A compiled term must know where to find the values of its free variables, either as
offsets within the current closure, or in registers or elsewhere in memory. Therefore,
the translation of a termM is defined relative to asymbol tables, which is a function
from the free variables ofM to symbolic values. For example, the symbol table might
specify that the value of the free variablesx, y, andz can be found in[C, 1], [C, 2], and
in the registerR4, respectively. Note that a symbol tables is a compile-time concept
and maps variables tosymbolicvalues, unlike an environmentσ, which is a run-time
concept and maps variables toactualvalues. We writes(x 7→ v) for the symbol table
obtained froms by adding a mapping of the variablex to the symbolic valuev.

We use the notation[[M]]s to denote the assembly code for the termM under the
symbol tables. The rules of translation are derived directly from the corresponding
rules of the abstract machine, and they are shown in Tables 6 and 7. Note that the
translation proceeds by recursion on the structure of terms. Also note that the trans-
lation [[M]]s of a term is always a piece of assembly code which ultimately ends in a
JUMP or EXIT instruction.

5.4 The translation of individual terms

The code for a variablex simply invokes the closure thatx points to. According to our
calling convention for closures, this is done by loading a pointer to the closure into the
registerC, then jumping to the address[C, 0].

The code for a lambda abstractionλx.M simply pops a value from the stack and
binds it to the variablex; thereafter, it behaves likeM . Three additional lines of code
are needed to test whether the stack is empty, in which case the program halts.

The code for an applicationMN builds a term closure forN ; this is done by
allocatingn + 1 words of memory, and storing in them the address of the code for
N , as well as the values of the free variablesx1, . . . , xn of N . A pointer to the term
closure is then pushed onto the stack beforeM is executed. Note that the code for
the termN is given separately, and is generated relative to a new symbol table where
the variablesx1, . . . , xn are mapped to the respective offsets into the “current” closure
(i.e., the closure which will be current whenN is invoked).

The translations of pairs, projections, and unit are straightforward and follow di-
rectly from the corresponding rules of the abstract machine. The code for a pair pops a
tag from the stack, whereas the code for a projection pushes a tag onto the stack.

The code for aµ-abstractionµα.M saves the current stack into a new stack closure,
and then executesM in the context of an empty stack, and with the nameα bound to
the stack closure just created.

The code for[α]M replaces the current stack by the stack closure pointed to byα.
The code for aν-abstraction pops a pointer to a stack closure from the stack and

binds it to the variableα. Note that this code is almost identical to that of aλ-
abstraction, except that, in case of an empty stack, the result of the program is “dis-
junction” instead of “function”.

21

The code for〈α〉M pushes a pointer to a stack closure onto the stack.
The code for basic integer and boolean constants, which is shown in Table 7, re-

flects our convention for value states. Namely, the convention specifies to put the value
into the special registerV , then jump to the address on top of the stack, if any. If the
stack is empty,V is returned as the result of the program.

The code for a “pure” basic function is interesting. We first check whether there
are enough closures on the stack to form a frame. Note that the data representation of
a frame was chosen in such a way that the rule

{f, σ,Nσ1
1 :: . . . ::Nσn

n ::k} → {N1, σ1, [f •Nσ2
2 . . . Nσn

n]::k}

does not require any rearrangment of then closures; the first frame is simply built by
pushing the addressf1 onto the stack. The first closureNσ1

1 , a pointer to which is stored
in the stack frame, is then invoked. Eventually, this closure reaches a value state, and
following the convention for value states, it will jump to the address on top of the stack,
in this casef1, with V being the value just computed. This value is stored in the current
frame, and then the remaining closuresNσ2

2 , . . . , Nσn
n are evaluated in the same way,

until the topn items on the stack contain the actual arguments to the functionf . At this
point, we call a subroutine which contains some native implementation of the function
f . The convention is that this native implementation expects itsn arguments on top of
the stack, and returns its result on top of the stack as well. After the subroutine call
returns, we simply pop the result value off the stack and follow the protocol for value
states.

Finally, Table 7 shows the implementation of two “impure” basic functions, the
“ if” and “print” functions which were already discussed in Section 4.3. Both these
functions use a simplified form of the mechanism for pure basic functions (specialized
for unary functions) to evaluate the closure on top of the stack and to obtain a valueV .
The “if” function then simply executesλxy.x or λxy.y, depending whetherV = true
orV = false. The “print” function calls a subroutine to print the valueV , then executes
λx.x.

References

[1] W. D. Clinger, A. H. Hartheimer, and E. M. Ost. Implementation strategies
for first-class continuations.Higher-Order and Symbolic Computation, 12:7–45,
1999.

[2] G. Cousineau. The categorical abstract machine. In G. Huet, editor,Logical
Foundations of Functional Programming, pages 25–45. Addison-Wesley, 1990.

[3] M. Felleisen and R. Hieb. The revised report on the syntactic theories of sequen-
tial control and state.Theoretical Computer Science, 103:235–271, 1992.

[4] T. G. Griffin. A formulae-as-types notion of control. InPOPL ’90: Proceed-
ings of the 17th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 1990.

22

[5] M. Hofmann and T. Streicher. Continuation models are universal forλµ-calculus.
In Proceedings of the Twelfth Annual IEEE Symposium on Logic in Computer
Science, pages 387–397, 1997.

[6] J.-L. Krivine. Un interpreteur du lambda-calcul. Draft, available from
ftp://ftp.logique.jussieu.fr/pub/distrib/krivine/interprt.pdf.

[7] M. Parigot. λµ-calculus: An algorithmic interpretation of classical natural de-
duction. InProceedings of the International Conference on Logic Programming
and Automated Reasoning, St. Petersburg, Springer LNCS 624, pages 190–201,
1992.

[8] G. D. Plotkin. Call-by-name, call-by-value and theλ-calculus.Theoretical Com-
puter Science, 1:125–159, 1975.

[9] D. Pym and E. Ritter. On the semantics of classical disjunction. Preprint, 1998.

[10] P. Selinger. Control categories and duality: on the categorical semantics of the
lambda-mu calculus.Math. Struct. in Computer Science, 11(2), 2001.

[11] T. Streicher and B. Reus. Classical logic, continuation semantics and abstract
machines.Journal of Functional Programming, 8(6):543–572, Nov. 1998.

[12] D. H. D. Warren. An abstract prolog instruction set. Technical Note 309, SRI
International, 1983.

23

