From Continuation Passing Style to
Krivine’s Abstract Machine

Peter Selinger
Department of Mathematics and Statistics
University of Ottawa
Ottawa, ON K1N 6N5, Canada

Abstract

We describe, for three different extensions of typed lambda calculus, how the rules
for a version of Krivine’s abstract machine can be derived from those of contin-
uation passing style (CPS) semantics. The three extensions are: Pakigot's
calculus, Pym and Ritter'dv-calculus, and an extension of the call-by-name
lambda calculus with built-in types and primitive functions. We also show how
Krivine’s abstract machine can be implemented on realistic hardware by compil-
ing it into an idealized assembly language.

1 Introduction

Abstract machines play an important role in the implementation of programming lan-
guages. Examples include Warren’s 1983 abstract machine for Prolog, which is the
basis for most modern Prolog implementations [12], and Cousineau’s 1990 categorical
abstract machine for ML, on which the original Caml implementation was based (and
from which it derives its name) [2]. The reason abstract machines are so useful is be-
cause, on the one hand, they are sufficiently “abstract” to relate easily to other kinds
of mathematical semantics, such as equational semantics or continuation passing style
(CPS) semantics. On the other hand, they are sufficiently “machine-like” to be easily
implementable on real machines.

A particularly nice example of an abstract machine is Krivine’s machine for the
call-by-name lambda calculus [6]. In this paper, we show how it is possible to “derive”
the rules of Krivine’s abstract machine, in a semi-formal but systematic way, from a
CPS semantics in the style of Hofmann and Streicher [5]. We do this for three exten-
sions of the lambda calculus: the:.-calculus, the\pv-calculus, and an extension of
lambda calculus with built-in basic types and primitive functions. For each of these
extensions, we also give an implementation of Krivine’s abstract machine, which takes
the form of a compiler into an idealized assembly language.

It is interesting to note that Hofmann and Streicher’'s CPS semantics can itself be
derived, via a categorical completeness theorem, from a yet more abstract category-
theoretical semantics. This semantics is based on the interpretation\gfithealculus

in a so-calledcontrol category and it generalizes the familiar interpretation of the
simply-typed lambda calculus in cartesian-closed categories [10]. Thus, one obtains
the following sequence of constructions, leading systematically from the very abstract
to the very concrete:

Categorical Semanticss CPS Semantics» Abstract Machine— Compiler

Krivine's abstract machine therefore fits nicely into a multi-step process for design-
ing implementations which are essentially “correct by contruction”, relative to a given
high-level semantics. In this paper, we only consider the last two steps in this sequence;
the first step, namely the relationship between the categorical semantics and the CPS
semantics, is discussed elsewhere [10].

It should be stressed that, from a practical point of view, the implementation of
the call-by-name lambda calculus derived in this paper is too inefficient to be of much
use. Because our implementation follows the design of Krivine’s abstract machine
very closely, it embodies a “naive” version of call-by-name evaluation, in which each
subterm is possibly evaluated many times. More realistic implementations of call-by-
name languages typically use a form of “lazy” evaluation to avoid this problem.

The development of CPS semantics, abstract machine, and a compiler, as presented
in this paper, is a rational reconstruction and does not reflect the historical development
of these concepts. As a matter of fact, Krivine’s formulation of his abstract machine
predates the CPS semantics of Hofmann and Streicher, which in turns predates the
categorical semantics in terms of control categories. Also, the connection between
continuation semantics and abstract machines is well-known; for example, a treatment
in the context of denotational semantics was given in [11]. We do not claim originality
for any of the results presented in this article; rather, we hope to present them under a
unique and unifying point of view.

2 The Au-calculus

The \p-calculus was originally introduced by Parigot as a proof-term calculus for clas-
sical logic [7]. Following Griffin’s earlier work, who showed that under the Curry-
Howard isomorphism, classical logic corresponds to languages with control operators
[4], the Au-calculus can also be regarded as a prototypical call-by-name language with
control primitives for handling continuations. In this respect, it is similar to program-
ming languages withrallcc or Felleisen’sC operator [3], except that the latter lan-
guages are call-by-value. The rewrite semantics of\fixealculus is not very intuitive,

and Krivine’s abstract machine offers a more easily accessible way to understand its
operational behavior. The control primitives are given a natural interpretation as certain
manipulations of stack closures.

The Au-calculus extends the simply-typed lambda calculus with a pair of control
operators which can influence the sequential flow of control during the evaluation of
a term. Normally, in call-by-name, a tertd represents a computation which, upon
demand, returns some result to its environment. For instance, if thelteappears in
a contextC[—], then the result whici/ computes will be returned t6[—].

Table 1: The typing rules for thiu-calculus

() Tr T A

(pair) r-M:A| A '-N:B| A

P TF(M,N):AAB | A
i TFmM:A; | A

(app) 'M:A—B| A 'EN:A| A
PP TFMN:B]| A

Fe:AFM:B | A
(abg TF AM:A>B|A
(namg CEMAJA o den

TFaM: LA
(1) FEM: L | aAA
TFpa* M:A]A

In the \p-calculus, terms are given the ability to ignore their immediate context and
to return a result someplace else. Intuitively, this can be thought of as “sending” a result
on a “channel”. We introduce a set of channel namgs, etc., which are distinct from
the usual lambda calculus variableg), z. The termja]M causes the result aff to be
sent on channel. Dually, the termV = po*. P will start by evaluatingP, but if in the
process of doing so, anything is sent on the chann#éten this immediately becomes
the result ofN. Channel names are typed, and we say that a chanhak typeA if
values of typeA can be sent along it. As we are in a sequential world, channels are
refered to agontinuationsand channel names g are refered to asontrol variables
or simplynames

This firstinterpretation of thau-calculus in terms of “channels” is only an intuitive
approximation; a more accurate interpretation can be found in the description of the
CPS translation or Krivine’s abstract machine below. Modulo some minor differences
in typing, the termua®.M is a call-by-name analogue afilicc(Aa~4.M) in the
call-by-value world, whereallcc is the call-with-current-continuation operator as it
appears for instance in Scheme or Standard ML.

2.1 Syntax

We start from a simply-typed lambda calculus with finite products. Binary products
are denoted! A B, and the terminal type (or empty product) is denotedby

To obtain the\pu-calculus, we first add a new type. The typel is thought of as
the “empty type”, or the type of a term which never returns a result to its immediate

context. Thus, the types of the:-calculus are given as follows, wheseranges over
a set ofbasic types

A,B:::U|T|A/\B|A—>B|J_

As usual, we sometimes writeA as an abbreviation for the typé — L. The Au-
calculus uses two sets of identifiekgriablesandnames which are ranged over by
x,y,...anda, 8, ..., respectively. Variables and names belong to two separate hame
spaces, which are usually assumed to be disjoint. Semantically, variables are bound to
terms, whereas names are bound to continuations. The terms &fithalculus are
obtained from the terms of the simply-typed lambda calculus by adding two new term
constructorsja] M andua®.M. Thus, terms are given as follows:

M,N =z |+ | (M,N) | ;M | maM | MN | \a*. M | [a]M | pa®.M

A term of the formua®.M is called au-abstraction and a term of the formn] M is
called anamed termin the terms\z#. M andua”. M, the variabler, respectively the
namecq, is bound. As usual, terms are identified up to capture-free renaming of bound
variables and names. We write EM) and FN M) for the set of free variables and
free names of\/, respectively. For simplicity, we do not consider basic term constants
at this point; we will show how to add them in Section 4.

The typing rules for\u-terms are shown in Table 1. Heferanges ovevariable
contextsand A ranges ovename contextsvhich are (finite) assignments of types to
variables and names, respectively. typing judgmenis an expression of the form
I'EM:A|A. It asserts that the terf is well-typed of typeA, assuming that its
free variables and names have the types declaréd iaspectivelyA. Note that the
turnstile +", the colon “”, and the vertical bar|” are all part of the syntax of typing
judgments; thus, a typing judgment is a 4-tuple consisting of a variable context, a term,
a type, and a name context. Valid typing judgments are those which can be derived
from the rules in Table 1.

Note the typing rules fomfamg and (). The termja]M has typel, reflecting the
fact that such a term never returns anything to its immediate environment. Similarly, in
the termua® .M, we assume that the subtef has typel, as we have no use for its
value. These typing conventions differ slightly from Parigot's original formulation of
the Ap-calculus, where the typé only occured implicitly, and only at the top level.

One notable difference between thg-calculus and its call-by-value cousins is
that we use a separate hame space for continuations, rather than identifying them with
variables of type-A (or A cont, as this type is known in ML). While this distinction
would make no difference in call-by-value, it turns out to be an important optimization
in call-by-name.

Another difference is that in ML, the term which is analogousdah\/ would be
given an arbitrary typé, and inua. M, the subtermi/ would have typed. However,
this difference is unimportant, as we can replace the first term®¥.[a| M, for a
dummy name3, and the second one v .[a] M, in cases where the alternate typing
is required.

The fact that we write the name contekton the right-hand side of a typing judg-
ment is motivated by logic: under the formulas-as-types correspondence, a typing judg-

Table 2: Axioms of the call-by-namku-calculus

Axioms for the lambda calculus with products:

(6-) (aA.M)N — MI[N/z]: B

(n-) Xzt Mz = M:A—>B if = ¢ FV(M)
(Br) mi(My, My) = M;: A

(nn) (MM, 7o M) = M:AANB

(nr) = = M:T

Axioms for Ap:

¢-) (ua?=BM)N = psP M[F) /[J=)]: B if B¢ FN(M,N)
€n) mi(pat A2 M) = pst M[[Blmi()/[a]()] : Ay if 5 ¢ FN(M)

(B [o/jpat M = Mlo'/a]: L

(nu) patalM = M:A if « ¢ FN(M)

(Br) €M = M:1

mentxy:Ay, ..., xn: A M:B|ag:By,. .., an: By, corresponds to a logical impli-

cationA; A...ANA, = BV By V...V B,,. Operationally, we think of/ as a function
in n arguments, withn + 1 alternative ways of returning a result.

2.2 Equational theory

The equational theory of th&u-calculus is an extension of that of the call-by-name
lambda calculus. The axioms are shown in Table 2. These axioms use three kinds of
substitution. We writeM/[N/z] for the usual substitution of a terfW for a variable

x in M. We write M [o’/«] for the substitution of a name’ for another name in

M. Finally, we consider the so-calledixed substitutionlf A is a term,C(-) is a
context, anch is a name, then thmixed substitutio/[C(-)/[a](-)] is the result of
recursively replacing any subterm of the fofaj(—) by C(-) in M. For all three kinds

of substitution, appropriate care must be taken to avoid the capture of free variables.
Also note that technically, each equatiéf = N is understood to be stated within a
particular typing context, and equations are only between well-typed terms. However,
we usually omit the typing context from the notation. For more details, see e.g. [10].

It is possible to give an operational semantics of Mecalculus in terms of a
reduction relation based on a directed version of the axioms of Table 2. However,
this notion of reduction is neither intuitive nor particularly enlightening. We prefer to
discuss the operational semantics of Mecalculus in terms of a CPS translation (in
Section 2.3) and via an abstract machine (in Section 2.4).

Table 3: The CPS translation of the call-by-namecalculus

T = M\eKa gk wherez : A

* = MNeKT.ORk

(M.N) = Mk%ars[M,N]k whereM : A, N :B

T M = MK M(inl k) whereM : AA B

o M = M5 M(inrk) whereM : AANB

MN = MeK2 M(N,k) whereM:A— B,N:A
MM = N&,k)Ka-2 Mk whereM : B

oM = XeErMa wherelM : A

pot M = MaFa Mx whereM : L

2.3 CPS semantics

We give a continuation passing style (CPS) semantics ohthealculus in the style
of Hofmann and Streicher [5]. The target language of this CPS translation is a lambda
calculus\™** with finite sums, products, and a distinguished typecalled the type
of responsesFunction types in the target calculus are restricted to the dase R.
Thus, every applicatiod/ N in the target calculus is of typR, as is the body of any
lambda abstraction.

To keep the notation brief, we use various forms of syntactic sugar for the sums and
products of the target calculus. We use patterned lambda abstraction) 4> 5. M
as an abbreviation fokz4* B M|r,z/x, 722 /y]. We also use the co-pairing notation
[M, N] as an abbreviation for the term

MeATB casek of inl ky — Mk, |inr ky — Nks.

Notice that{M, N] is the term that corresponds ¢d/, N) under the canonical isomor-
phism(A + B) - R = (A — R) x (B — R). The initial type0 is equipped with a
type cast operator: I/ has typd), thenO 4 M has typeA.

Definition (Call-by-name CPS translation). We assume that the target calculus has
a chosen typé& for each basic constantof the \p-calculus. For each typd of the
Au-calculus, we define a pair of typds, and C4 of the target calculus, which are
respectively called the type obntinuationsand ofcomputation®f type A:

K, = 4, if o is a basic type
K+ = 0,

Kinp = Ku+ Kp,

Ka.p = CaXxKp,

K, = 1,

CA = KA — R.

For each variable and each name of the A\u-calculus, we assume a distinct chosen
variablez, respectivelyi, of the target calculus. The call-by-name CPS translatibn

of a typed termM/ is defined in Table 3. It respects the typing in the following sense:

x1:B1, . kB b M A | aiAy, . oA
i‘licBl,...,in:CBn,&llKAl,...,&thAm I—M:CA

This CPS translation, for the fragment without product types, is due to Hofmann and
Streicher [5]. It differs from Plotkin’s original call-by-name translation [8] by introduc-
ing one less double negation at function types, thus taking advantage of the products of
the target language.

The CPS translation respects the equational theory in the sensd thatV holds
in the equational theory of thiu-calculus if and only ifAM = N holds in the equa-
tional theory of the target calculus.

Remark.The above CPS translation for thg-calculus can be derived abstractly, via a
categorical representation theorem, from a category-theoretic interpretation)gf-the
calculus. This interpretation takes place in a class of so-called “control categories”,
and it generalizes the well-known interpretation of the simply-typed lambda calculus
in cartesian-closed categories. For details, see [10].

2.4 From the CPS semantics to Krivine's abstract machine

In this section, we describe a rational reconstruction of Krivine’s abstract machine
directly from the CPS semantics, adopted to Mecalculus. Note that an abstract
machine interpretation was already sketched in the very last paragraph of Parigot’s
original paper on the u-calculus [7].

We start by observing that each continuation typg is equipped with a set of
canonical term constructors, shown in the following table. Heranges over contin-
uations andV/ over computations.

Type: Constructors:

K+ =0 -

Karp =Ka+Kp inl k,inr k
KA_,B:CAXKB <M,k>
KJ_ =1 *

There is also #op-level continuatiom:, which is the first continuation passed (presum-
ably by the operating system) to the entire program.

Next, we change the notation for continuations. A [aif, k) will be written in
infix notation M ::k. Instead of inlk and inrk, we will write tag, ::k andtag,::k, re-
spectively. We writanil for x, and also for, the top-level continuation. To summarize,
we arrive at the following syntax for continuations:

k :=tag,::k | tag,::k | M::k | nil.

As this notation suggests, we will think of a continuation as an ordered list, which will
be used as atack The elements of this stack are the tagg, andtag,, as well as
computationsV/. The symbohil represents the empty stack.

Table 4: The transitions of the abstract machine

CPS Abstract Machine

zk — Tk {z,0,k} —{M,1,k}, whereo(z)=M".
(M, N)(inl k) — Mk {{M,N),o,tag,::k} — {M, 0, k}

(M, N)(inr k) — Nk {{M,N),o,tag,::k} — {N, o, k}

m Mk — M(inl k) {miM,o,k} — {M, o,tag, :k}

mo Mk — M(inr k) {maM, o, k} — {M, o,tag,::k}

MNE S M(N,K) {MN,o,k} — {M,0, N°::k}

Az M (N, k) — M[N/#]k {d.M,o0,N":k} —{M,o(x— N"),k}

la]ME — Ma {[e] M, 0,k} —{M,o,k'}, wheres(a)=F.
pa. Mk — M[k/a&]* {pa.M, o, k} —{M,c(a — k),nil}

After having changed the notation for continuations, we will now also change the
notation for computations, i.e., for translated terms. In order to avoid having to do
substitutions, we introduce the notion of a closurecldsureis a pairM° of a termM
and an environmernt. An environmenfor M is a map from the free variables #f to
closures, and from the free namesidfto continuation, i.e., stacks. An environment
o is also sometimes called ativation record

The states of Krivine’s abstract machine are triflé$, o, k}, consisting of a term,
an environment, and a stack. Informally, a stgié, o, k} represents the terd/’k of
type R of the target language of the CPS transform, whigreis the term represented
by the closurel/?. The transition rules of the abstract machine can be read off directly
from the corresponding transitions of the CPS semantics. Both sets of transitions are
shown in Table 4.

Note how the continuation-manipulating operations oftpecalculus, namely the
termspa. M and[a]M, correspond to manipulations of entire stacks, rather than in-
dividual stack elements. In particular, thex construction requires saving an image
of the entire current stack into a variahle In actual implementations, such an op-
eration can be implemented in several different ways. One possibility, which we will
follow in Section 5, is to make an actual copy of the current stack somewhere on the
heap, and to store a pointer to it in the variahleSuch a stack copy is calledstack
closure This implementation is conceptually simple, but potentially expensive if the
stack tends to be large. Another possibility is to implement stacks as linked lists, and
to use sharing instead of copying to implement theperation. This reduces the cost
of eachu-operation, but it can lead to an increased load for the garbage collector. See
[1] for a thorough discussion of the tradeoffs of the various implementations.

The initial state for a closed prograid is { M, @, nil}. In other words, a program
starts executing in the empty environment, and with an empty stack. It is easy to see
from Table 4 that the transition relation of the abstract machine is deterministic, i.e.,
each state has at most one successor state. On the other hand, there are clearly some
states from which no transition is possible. Several such states are designated as special

halting statesand we write:

{*,0,nil} — halt“unit”
{(M,N), o,nil} — halt“pair”
{\z.M,o,nil} — halt“function”

In these cases, we say that the maclnaks and outputs @esult, which is one of the
strings “unit”, “pair”, or “function”. This indicates that th&u-expression has been
reduced to a unit term, to a pair, or to a lambda abstraction (neither of which will be
evaluated further).

A state which neither allows a valid transition nor is a designated halting state is
called anerror state An example of an error state {§M, N), o, P7::k}. This state
represents a run-time typing error, because if the current term is d/aiv), then
the abstract machine expects eittey, or tag, on top of the stack, to indicate which
of two possible branches is to be taken. It does not make sense, in this situation, to
find P™ on top of the stack. We imagine that the abstract machine will abort execution
when it encounters an error state; a real machine might engage in undefined behavior
or even crash.

Note that, as we can see from Table 4, the transitions of the abstract machine,
starting from an initial stat€M, (), nil }, correspond precisely to the top-most reduction
sequence of the ter@/ x (modulo some administrative reductions).

2.5 Type soundness

A crucial property of the abstract machine is that a well-typed program does not reach
an error state.

Proposition 2.1 (Type soundness)lf M is a well-typed, closed term of thiu-
calculus, then there is no sequence of transitions leading from §feted, nil} to an
error state.

As a matter of fact, the simply-typedu-calculus without explicit recursion is
strongly normalizing, and thus a halting state is always reached in a finite number
of steps. However, once recursion is added, it is possible to obtain a non-terminating
sequence of reductions.

Type soundness is best proved by giving a typed version of the abstract machine.
Typed closures and typed stacks are defined by mutual recursion. A typed closure
isapair{T-M:A|A,c}, whereT' M : A| A is a valid typing judgment and is
an environment that maps the variables and names frand A to typed closures,
respectively typed stacks, of the appropriate types. Stacks are typed as follows:

k:A k:B
tag] "k : AAB tag, Uk : AAB
k:B
{TFM:A|Ajo}::k: A— B nilt: L nil Aeer s Atop

Here, A,,, is the top-level type of the entire program. Note that not only term closures,
but also the tagtag, andtag, and the empty staakil carry type annotations. Finally,

a typed abstract machine state{Is- M : A| A, o, k}, where{THFM: A|A,c}is a
typed closure and is a typed stack of typel. Note that the type of matches that of
M. Itis now straightforward to check the following:

1. The initial stateg M, @, nil} is typable, ifM is a well-typed closed ui-term.
2. The transitions of the abstract machine preserve well-typedness.

3. Every well-typed abstract machine state is either a halting state, or else it has a
unique successor state. In particular, a well-typed state cannot be an error state.

3 Adding classical disjunction

The Auv-calculus is an extension of theu-calculus with a typed v B of classical
disjunctions, first introduced by Pym and Ritter [9]. In call-by-name languages, the
type of classical disjunctions is distinct from the more familiar intuitionistic “sum”
type A + B, which is usually defined via left and right injections and case distinctions.
In fact, the two disjunctions (intuitionistic and classical) are related by the type iso-
morphismA + B = (-—A) V (-—B). This implies that classical disjunctions can be
regarded as more primitive than sum types. As we will see, classical disjunctions can
be naturally interpreted in Krivine’s abstract machine as the ability to push and pop
entire stack closures to and from the current stack.

3.1 The\uv-calculus

Pym and Ritter [9] propose the following straightforward way of adding a disjunction
type to the\u-calculus:

Types: A,B == ... | AVB
Terms: M,N == ... <a>M|VaA.M

with typing rules:

I'-M:AVB | A

(ang 'FM:B| a:AA
'k{e)M:B | A

TFvadM:AVB | A

if a:A €A, (v)

Like u-abstractions and named terms, these two additional term constructors manipu-
late continuations. One can think of a tefmhof type A v B as a term of typeé3 which

has access to an unnamed continuation of tp&he term(a) M gives this unnamed
continuation the name. Dually, the termwa. M abstracts a continuation of name
«in M. The resulting calculus is known as thgr-calculus. Its equational theory is
obtained from that of thep-calculus by adding the following three axioms:

) [ﬂKOzWJ“‘VB.M = M[[Bl)/ = L

Bv) (yvat.M = Mlo//a]: L
() vat{a)M = M:AVB if o & FN(M)

We also need to extend the definition of a mixed substitutifd’(-) /[«](-)] to replace
any subterm of the formn) (-) by 38.C(ua?.[8]{a)(-)), wherej is a fresh name.

10

3.2 Classical and intuitionistic disjunction

In the lambda calculus, one usually defines a “disjoint sum type” B via the “inl”,
“inr", and “case” constructs. Pym and Ritter remark that in the call-by-name case,
the disjunction typed v B, as defined in the previous section, does not coincide with
the disjoint sum typed + B. To distinguish them, we sometimes refer4o/ B as
“classical” disjunction and tel + B as “intuitionistic” disjunction.

An interesting fact is that intuitionistic disjunction can be defined in terms of clas-
sical disjunction. Namely, we can define

A+ B = —-—AV--B

inl M = va.uf.[a]\k.kM

inr M = va.uf.[f| \k.kM

caseM ofinlz — N |inry — P = py.(pa.({a)M)(Ny.[y]P))(Az.[y]N)

Here,—A is an abbreviation for the function typé — L. With these definitions, the
usual equational call-by-name laws for “inl”, “inr”, and “case” are derivable from those
of the Auv-calculus. On the other hand, the classical disjunctionB is not definable
in terms of the intuitionistic disjunction type. Thus, classical disjunction should be
throught of as a very primitive operation, a low-level building block from which more
high-level constructs can be built.

To further illustrate the difference between the two disjunctions, we remark that
classical disjunction satisfies certain type isomorphisms such as associativify) v
C =2 Av (BV(C)anddominatiod v T = T. The corresponding isomorphisms do
not hold for intuitionistic disjunction. For a more in-depth discussion of type isomor-
phisms, see e.g. [10].

3.3 Alternative syntax

A different, more symmetric syntax for the classical disjunction type was used in [10].
Readers who are familiar with [10] may appreciate knowing that the two notations are
interdefinable as follows:

vat. M = p(a?, B3P).[B|M and wla?, B8).M = va’.uB%.M
()M = ppPla,BlM [, B]M = [B{a)M.

3.4 CPS semantics and abstract machine interpretation

The CPS translation of Section 2.3 easily extends to classical disjunction: We define

Kave = KaxKp,
()M = Mk%B. M(a,k) whereM : AV B,
vat.M = Ma,k)®ave Mk whereM : B.

To derive an abstract machine model from this CPS semantics, observe that the dis-
junction introduces a new kind of continuation of the fotii, k). In the context of
abstract machines, we write this continuationkask, and we interpret it as a stack

11

whose topmost element is (a pointer to) a stack closure. The corresponding abstract
machine transitions are derived directly from the CPS semantics:

CPS Abstract Machine

(a)ME — M(a, k) {a)M,0,k} — {M,o,k'::k}, wheres(a)=F".
va.M{k' kY — M[Kk'/a)k {va.M,o,k":k} - {M,o(a — k'), k}

Thus, we see that the connectives of classical disjunction correspond to the ability
to push and pop stack closures to/from the current stack. We also introduce a new
halting state, which applies in case-@bstraction encounters an empty stack:

{va.M, o, nil} — halt“disjunction”.

An alternative way to think of the classical disjunction type is as a kind of function
type, where the argument is a continuation variable instead of a term. Thus, a term
of type A v B can be thought of as a kind of function which accepts a continuation
variable of typeA and turns into a term of typ8. Note the perfect analogy between
the following pairs of reduction rules of Krivine's abstract machine:

{MN,o,k} — {M,o0,N7::k}, whereM : A — B,
{a)M, 0, k} — {M, oKk}, whereM : AV B, and

{M.M,0,N":k} — {M,o(x— N7),k}, wherelz.M : A — B,
{va.M,o,k'::k} — {M,o(a—k'),k}, whereva.M : AV B.

This helps explain why, in call-by-name, there is a type isomorphism between
(BvC)andBV (A — (). Aterm of either type can be regarded as expecting an
argument of typed and a continuation of typ&; the only difference is the order in
which these two items are expected.

4 Adding basic types and operations

We now consider how the addition of built-in datatypes, such as integers or booleans,
affects the CPS semantics and Krivine’s abstract machine. Basic types complicate the
semantics somewhat, because they lead away from a “pure” call-by-name discipline.
This is because primitive operations on basic types, for instance addition or multiplica-
tion, must necessarily evaluate their arguments before operating on them. Thus, even
in a call-by-name language, basic operations are necessarily call-by-value.

Itis therefore necessary to extend Krivine’s machine with a call-by-value evaluation
mechanism at basic types. It is interesting that the rules for the abstract machine can
again be derived systematically from the corresponding CPS semantics.

4.1 CPS semantics

In call-by-name languages, built-in basic types, such as integers or booleans, differ
from other types, because they are equipped with a natural noticadd These val-
ues are never stored in variables, but they are computed just before a built-in operation

12

is applied. For simplicity, we assume for the moment that all built-in functions, such
as addition or logical “and”, arsetrict, i.e., they evaluate all their arguments before
they operate on them. Thus we do not at first consider “lazy” basic operations such as
lazy multiplication, which evaluates its second argument only if the first argument is
non-zero. We will get back to the question of lazy functions in Section 4.3.

We consider the\pv-calculus over a givealgebraic signaturei.e., over a set of
basic typess, 7, ... and a set of typed constant symbels o and of typed function
symbolsf : 1, — ... — 7, — 0. As usualyn is called thearity of the function symbol
f. For the CPS semantics, we consider the same target calculus as before. Moreover,
we assume that each basic typef the \uv-calculus is interpreted by a chosen type
V, of the target calculus, together with chosen interpretationsV,,, respectively
f Ve, — ... = V., — V,, of the primitive constants and functions. The tyie
is called the type ofaluesof typeo. We refine the CPS semantics from Sections 2.3
and 3.4 by lettingk, = V, — R, wheno is a basic type. Thus, continuation and
computation types are defined as before:

K, = V, =R, if o is a basic type
Kr = 0,

Kinp = Kua+ Kp,

Ki.p = CaxKp,

KJ_ = 17

Kavp = KaxKp,

Ca = Kjs—R.

Notice that a value typ&, is only defined whemd is a basic type, and not when
A is an arbitrary type. We extend the CPS translation of Table 3 with the following
interpretation of primitive constants: o and functionsf : 1 — ... —» 7, — o

= Ak.ké, (1)
£ = My, ..oz, k)2 (A zas(Ay. ... zn (A, k(for .. .v)). (2)

Herek : K,, z,; : C.,, andv; : V.. Notice that the interpretation of a constant symbol

c is actually a special case of the interpretation ofizery function symbolf, namely

the case when = 0. The reader should check that this CPS translation does indeed
have the required behavior. In particular, the tefiv; ... V,, is evaluated by first
evaluating all arguments from left to right, and then applyjrtg the result.

1o

4.2 Abstract machine interpretation

We extend the abstract machine interpretation to accommodate basic types and func-
tions. As usual, we start by examining the kinds of continuations introduced by the new
language feature. The CPS translation of primitive functions, shown in equation (2),
introduces a new kind of continuation which is a function. We need to fit this into the
“continuations as stacks” paradigm of Section 2.4. Fortunately, a careful examination
of the CPS semantics reveals that, all the continuation functions which occur during
the s-reduction of the CPS translation of a term are of one particular form:

A Njp1 (A4 No(w, k(fer ... ci1vvi41 - .. 00))), (3)

13

wherel < j < n. In the abstract machine, each tein is represented by a closure
N7*, and we will represent a continuation of the form (3) by the formal expression

[fCl .. Cj—1® N;_:_ﬁl-l e Ng"]::k.

The expressiofif ¢1...c;_1 ® Nfﬂl ...NZ»]is called drame and it is typically im-
plemented as a fixed-size array of data on top of the current stack (i.e., whose size
depends only on the symbg). This is analogous to the notion of a stack frame in
imperative programming languages, i.e., a data structure on the stack, containing vari-
ables belonging to a particular scope or procedure. The symbds ‘a special place

holder which corresponds to a memory location which previously contained the closure
N;'-f, and where the value; is going to be stored next.

Before giving the transition rules of the extended abstract machine, we need to
introduce one more new feature, and that is the notion\aflae state Recall that a
state{ M, o, k} of Krivine's abstract machine corresponds to a term of the fd#h
under CPS. Because of the presence of values in the CPS semantics, there is now a new
kind of state which is of the formc, wherek is a continuation of a basic typ&, andc
is a value of typed, i.e., an element df 4. We call a state of the forric avalue state
and we denote it in the abstract machine as afgait}¥. Note that, unlike an ordinary
state of the form{ M, o, k}, a value statéc, £}V does not require an environment.

The CPS semantics of primitive constants and functions, as embodied in equations
(1) and (2), has the following transitions, where: n andd = fe; ... c,_ic:

ck — ké y

(N1, ...y Ny, k)) = Ni(Avy... Np (Ao, k(fo1...00)))

(Av; Njg1 (- (Ao k(fer...cj—1vj..0n))))e = Njpa (. (Avy k(fercj—1cvj41..00)))
(Av,,.k(fer...cn_1vp))e — kd,

These can now be immediately translated to transition rules of the abstract machine:

{c,0,k} —{c,k}¥

{f,0, Nflzz...::Ng”;;k} — {N1,01,[f e N32..NI"]::k} o
{e;[feicj—r @ Njf{l...Ng"]::k}v — {Njt1,0541,[fci...cj_ice Njigz...Ng"]::k}
{¢,[f c1...C1 ®]::K}Y — {d,k}".

In these rules, it is again assumed tlias ann-ary function symbol, thaf < n, and
thatd = fc1 ...cn_1c. We also introcuce two new halting states: a value state with
empty stack is a halting state with resultand ann-ary built-in function f will halt

with value “function” if the stack contains fewer than the requiregrguments.

{c,nil}¥ — haltc,
{f,0,k} — halt“function”, if size(k) < n.

4.3 “Impure” functions

So far, we have only considered primitive functions of the fofm r, — ... —
. — o, where all ofry, ..., 7, ando are basic types. Sometimes, it is useful to allow

14

primitive functions with arbitrary result type, i.e., ofthe foffn r, — ... — 7, — A,
whereA is any type. We refer to these more general basic functions as “impure”.
One example of an impure basic function is the if-then-else fundtjpn bool —
(B — B — B) which mapsrue to A\zy.z andfalseto Azy.y. Here,boolis a built-
in type of booleans, an® is any type. Another example is the “lazy multiplication”
functionlazymult: int — (int — int), whereint is the type of integers. By definition,
the functionlazymultmaps0 to the constant functioiz.0, and any other integer to
Ax.mult n x wheremultis the usual strict multipliction operation. We can regard both
if andlazymultas impure, strict basic functions in one argument.
Another useful example of an impure function is the side-effeqpirigt function.
In call-by-name, one can model sequential composifian\/ by applicationN M,
whereN is a term that performs some effects and then retdins. As an application
of this idea, we can consider a family of basic functipnisit; : int — (B — B). The
intended meaning is th@printn); M prints the integen and then behaves lik&/ .

4.4 Semantics of impure functions

The CPS semantics of impure basic functions is straightforward. For each impure basic
function symbolf : m;, — ... — 7, — A, we need a chosen terfn: Ve — o0 —

V., — Ca of the target language of the CPS translation. The tgimthen translated

as follows:

£ = Mz, 2, k)2 (A za(My. ... zn (M, (for .. v)k))). (4)

Here,k : K4, z; : C,,, andv; : V,,. Note that the only difference between equations
(2) and (4) is the order of the ternfe, ... v, andk. For impure functions, the term
fur...v, is of typeC 4, whereas for pure functions, it is of typé . It follows that the
interpretation of an impure function does not coincide with that of a pure function, even
in the case wherdl happens to be a basic type: the interpretation of a pure function
always produces a value, whereas the interpretation of an impure function potentially
produces an arbitrary computation.

In concrete cases, we rely on the target language of the CPS transform to supply
us with “native” implementations of the required functionality. To interpret the basic
functionif : bool — (B — B — B), we assume thath is the type of booleans
of the target language, and we define the functfon Vheo — Cp—p—.p such that
if true = \zy.x andif false = A\xy.y. The interpretation ofazymultis similar.

The easiest way to interpret the side-effectprint function (although there are
better ways) is to assume that the target language of the CPS transform also allows side
effects. In this case, we need a primitive functijmt : Viyy — C_. p of the target
language, such thatintn has the behavior of printing and then returningz.x.

For the abstract machine interpretation, we will overload the frame notation by
writing [f ey ...cj—1 ® NjiT" ... N7»]:k for the expression
)‘Uj'Nj+1()‘vj+1' . Nn()\vn.(fcl < Cj1VUV541 - - ’Un)k)),
in the case wher¢ is an impure basic function. Note that this is not quite the same as
equation (3). From the CPS semantics of the impure basic fundfi@msl print, we

15

have ~
(M. (if v)k)true — Azy.xk
M.(ifo)k)false — Azyyk
(Av.(Azy.y
(Av.(printv)k)c U, k.

Here the label “output’ denotes a side effect taking place as part of the reduction.
This immediately gives rise to the corresponding abstract machine rules:

{true, [if o]::k} — {Az.Ay.x, 0, k}
{false [if o]::k} — {Az.Ny.y,0,k}
{c, [printe]:k} 2P gz, 0, k)

5 Implementing the abstract machine

In this section, we give an implementation of Krivine's abstract machine, and its var-
ious extensions, in an idealized, low-level assembly language. This illustrates that,
despite its name, the abstract machine is not as “abstract” as one might think; it can be
implemented, with relatively little effort, on a standard von Neumann style “concrete”
machine. Note that the implementation takes the form obmpiler and not of an
interpreter, thus, the final program does not run by updating a data structure, but by
executing actual code.

As already pointed out in the introduction, the implementation given here is not
efficient enough to be useful in practice. Its main flaw is that it uses a naive call-by-
name evaluation strategy, in which each subterm is possibly evaluated many times.
This is the same evaluation strategy which is embodied in Krivine’s abstract machine,
and since our goal is to follow the abstract machine model as faithfully as possible, we
resist the temptation to optimize. It can be argued that any substantial improvement to
the implementation is best carried out at the abstract machine level, or even at the level
of CPS translations, rather than at the compiler level.

We also take the liberty to ignore certain practical aspects of implementations, such
as garbage collection and efficient register allocation. In our “ideal” implementation,
we simply assume that there are infinitely many registers and an infinite amount of
memory available.

5.1 Target assembly language

The target language of our compiler is an idealized assembly language whose instruc-
tion set shown in Table 5. It differs from actual assembly languages in several respects.
First, we assume that there are infinitely many registers. Second, we assume that there
are built-in instructions for certain high-level operations such as memory allocation
(ALLOC) and the manipulation of stack closures{E, RESTORB; these would not
normally be available as separate instructions, but would be implemented as macros or
system calls.

The only data type of the assembly language Vgoad, which can be interpreted
as an integer, a boolean (with= false 1 = true), or as a pointer. We assume that

16

Instruction Meaning
MOVEw,v Store the value in locationw
ADD w, v Add v tow

PUSHv Push the value onto the stack

POPwW Pop a value from the stack and store itin

CMPuy,v9 Compare the two values, and remember the result

BNEwv If previouscMPp resulted in not equal, jump to locatian

BGEwv If previouscMPp resulted in greater than or equal jump to location
JUMPw Jump to address

CALL v Call subroutine at address

ALLOC w,v Allocatev words of memory and store a pointer to themuin

SAVE w Make a stack closure from the current stack, and store a pointer tait in

RESTOREv Replace the current stack by a copy of the stack closure pointed:to by
EXIT v Exit with resultv

Table 5: Instruction set of the idealized assembly language

there are infinitely manyegistersR;, R, ..., as well as four distinguished registers
SP,SS, C,andV, each of which can hold a word.

We assume that there are infinitely many addressable memory cells, each of which
holds a word. Amemory referenctakes the forniR, n], whereR is a register ana
is a literal integer. The expressioR, n] refers to the contents of the memory cell at
address?+n. An /-value(assignable value) is either a register or a memory reference.
A valueis either ar/-value or a literal integer. Literal integers are often writterfas
in assembly language instructions.

The memory is divided into two separate regions: steckand theheap The
stack is manipulated in the usual way via thesHandpPorinstructions, and also via
the two special registerSP and.S.S, which represent thetack pointerand thestack
size respectively. We assume that the stack grows downward (towards lower memory
addresses), and that the stack poirfiét points to the memory cell just below the
stack, so thatSP, 1] refers to the topmost element on the stack. Setting the register
5SS to 0 has the effect of emptying the stack.

The instruction set of the assembly language is shown in Table 5. Here, the letter
w ranges over-values and the lettes ranges over values. The meaning of most
instructions should be clear. Note that there is onlymo#&E instruction, which can be
used, among other things, to copy a value from memory to a register or vice versa. The
PUSHandpPoPinstructions implicitly update the registe$s® andS.S. Some high-level
operations are included for convenienee1oc is used to allocate memory from the
heap.sAVE andRESTOREare used to manipulate stack closures and will be explained
in more detail later, and thexIT instruction ends the computation and returns a result
which is aword; itis up to the environment to interpret this word correctly as an integer,
a boolean, or a pointer to a literal string, depending on the type of the program being
run.

17

When writing assembly language code, each instruction can be preceded by an
optional label, which provides a symbolic reference to the address of the instruction.
We use a semicolon “;” to introduce a comment.

5.2 Data representation

We need to specify how the various kinds of data of Krivine’s abstract machine are
represented in memory. Specifically, we need to fix a representation for term closures,
stack closures, and for items on the stack. Terms themselves are represented as code,
and will be discussed in Section 5.3.

Term closures and stack closures are allocated on the heap. A term c\d3use
represented as + 1 consecutive wordsy, . . ., a, in memory. Herex is a pointer to
the code for the tern, anda, ..., a,, are pointers to representations of the closures
o(x1),...,0(x,), Wherezy, ..., z, are the free variables and names\af

A stack closure is represented by a recordvef 1 words, of which the first one
holds the number, and the remaining ones hold the actual stack data. For conve-
nience, we provide aAvVE w instruction, which makes a heap-allocated closure from
the current stack and returns a pointer to ituin We also provide &ESTOREw in-
struction, which erases the current stack and replaces it by a copy of the stack closure
pointed to byw.

The stack of the abstract machine is of course implemented as the native stack of the
assembly language. Most individual items on the stack are represented as single words,
except for frames, which are represented as records of several words. Tliagiags
andtag, are represented as the integémnd2, respectively. Term closures and stack
closures are represented as pointers to the respective objects on the heap. The repre-
sentation ofil is, of course, the empty stack. A frafiec; ...c;—1 @ N7 1" ... N2"]

1
is represented as a sequenceaf 1 wordsf;,ci,...,¢j—1,b,pj+1,- - .];yn. Here, f;
is a special tag which uniquely determingsand; (actually, we will implementf; as
a pointer to code)cy, ..., c;—; are literal valuesh is an undefined word (occupying
the position of the 8" in the frame), ang; 4+, .. ., p, are pointers to representations
of the closuresV; /1", ..., N

5.3 Compilation of terms

Terms are not represented as data structures, but rather as code to be executed. Since
a term needs to be able to access the values of its free variables, it is executed in the
context of a particular closure, thmirrent closureof the term. By convention, we
assume that there is a special regigtarvhich always contains a pointer to the current
closure. Thus, the calling convention for invoking a specific closure is to store a pointer
to it in the registelC, then jump to the addre$§’, 0].

When the abstract machine is in a value state, the current value needs to be stored
somewhere; by convention, we store it in the special registefAs a matter of fact,
the registerg’ andV are never used simultaneously, so it would be possible to use just
one register for both purposes. However, doing so would add no conceptual clarity).
The representation of stack frames was arranged in such a way that, when the machine
reaches a value state, the topmost item on the stack is £ taje interpret this as an

18

Lambda calculus

[z]s =
MOVE (|, s(x)
Jump [C,0]
[Me.M]s =
CMP SS, #0
BNE l
EXIT “function”
l: POP R
[[M]]s(r»—»R)

(wherel is a fresh label and is a fresh
register.)

[MN]s =
; build closure forV
ALLOC R,#(n+1)
MOVE [R,0],#l
MOVE [R,1],s(x1)
MOVE [R,n],s(z,)
PUSH R
[M]s

L [Nl zne(Cm)

(where [is a fresh label, R is a
fresh register, and F\W) U FN(N) =
{z1,...,2,}.)

[((M,N)]s =
CMP SS, #0
BNE I
EXIT “pair”

l1: POP R
CMP R, #1
BNE ly
[M]s

lg: [[N]]S

(wherely, I; are fresh labels, anR is a
fresh register.)

EXIT “unit”

Au-Calculus
[pa.M]s =

; build a stack closure
SAVE R

; clear the stack
MOVE SP,#0

[[M]]s(w—)R)
(whereR is a fresh register.)
[l[a]M]s =

RESTOREs(«)

[M]s

Classical disjunction A\ pr-calculus)

[va.M]s =
CMP SS, #0
BNE l
EXIT “disjunction”
l: POP R
[[M]]s(m—)R)

(wherel is a fresh label and is a fresh
register.)

[{e)M]s =

PUSH s(«)
[M]s

Table 6: The compilation of terms

Basic constants

Some “impure” basic functions

[n]s = lif]s =
MOVE V,#n CMP SS, #1
CMP SS, #0 BGE if,
BNE l EXIT “function”
EXIT 14 ifp: POP c
l: POP R PUSH #if;
JuMP R Jump [C,0]
(wherel is a fresh label and is a fresh ify - gz'g I‘f/’ 70
register. 2
gister.) [M2y.ylo
[true], = [1], ify [Ney.x]g
[falsds = [0]s (whereif,... jf,, are fresh labels.)
[print]s =
“Pure” basic functions
CMP SS, #1
[f1s = BGE printy.
; check for sufficient arguments . EXIT function
CMP SS. #n print, : POP C
BGE £ ’ PUSH #print,
EXIT “function” int. - ;UM: 5’ 0]
fo: Move C,[SP1] print, - PUS .
PUSH 4/, CALL nativeyint
Jump [C,0] [X2.z]g

(repeat following code fof =1...n — 1)

(whereprint,, print, are fresh labels.)

fi+ Move [SPj],V
MOVE C,[SP,j+1]
PUSH #fj+1
Jump [C,0]
fn: MOVE [SP,n],V
; n values are now on top of stack
CALL nativey
POP v
CMP SS, #0
BNE l
EXIT Vv
fny1:POP R
JUMP R
(where n > 1 is the arity of f,

fose - fny1 are fresh labels, ang is a
fresh register.)

Table 7: The compilation of terms, continued

20

address to jump to. Thus, the convention in a value state is to put the value into the
registerV, then pop the topmost address from the stack and jump to it. If a value state
encounters an empty stack, then the program halts and the current value is the result of
the computation.

A compiled term must know where to find the values of its free variables, either as
offsets within the current closure, or in registers or elsewhere in memory. Therefore,
the translation of a termd/ is defined relative to aymbol tables, which is a function
from the free variables af/ to symbolic values. For example, the symbol table might
specify that the value of the free variableg;, andz can be found ifC, 1], [C, 2], and
in the registerR,, respectively. Note that a symbol tablés a compile-time concept
and maps variables ®ymbolicvalues, unlike an environment which is a run-time
concept and maps variablesdgotualvalues. We writes(z — v) for the symbol table
obtained froms by adding a mapping of the variahieto the symbolic value.

We use the notatiofil/], to denote the assembly code for the tebfunder the
symbol tables. The rules of translation are derived directly from the corresponding
rules of the abstract machine, and they are shown in Tables 6 and 7. Note that the
translation proceeds by recursion on the structure of terms. Also note that the trans-
lation [M] of a term is always a piece of assembly code which ultimately ends in a
JUMP or EXIT instruction.

5.4 The translation of individual terms

The code for a variable simply invokes the closure thatpoints to. According to our
calling convention for closures, this is done by loading a pointer to the closure into the
registerC', then jumping to the addre$s, 0].

The code for a lambda abstractiam. M simply pops a value from the stack and
binds it to the variable:; thereafter, it behaves liké/. Three additional lines of code
are needed to test whether the stack is empty, in which case the program halts.

The code for an application/ N builds a term closure fo#V; this is done by
allocatingn + 1 words of memory, and storing in them the address of the code for
N, as well as the values of the free variabigs. .., z,, of N. A pointer to the term
closure is then pushed onto the stack befbfeis executed. Note that the code for
the termN is given separately, and is generated relative to a new symbol table where
the variables, . . ., x,, are mapped to the respective offsets into the “current” closure
(i.e., the closure which will be current whé¥i is invoked).

The translations of pairs, projections, and unit are straightforward and follow di-
rectly from the corresponding rules of the abstract machine. The code for a pair pops a
tag from the stack, whereas the code for a projection pushes a tag onto the stack.

The code for au-abstractionua. M saves the current stack into a new stack closure,
and then execute®/ in the context of an empty stack, and with the namieound to
the stack closure just created.

The code foffla] M replaces the current stack by the stack closure pointed to by

The code for as-abstraction pops a pointer to a stack closure from the stack and
binds it to the variablex. Note that this code is almost identical to that ofa
abstraction, except that, in case of an empty stack, the result of the program is “dis-
junction” instead of “function”.

21

The code fora) M pushes a pointer to a stack closure onto the stack.

The code for basic integer and boolean constants, which is shown in Table 7, re-
flects our convention for value states. Namely, the convention specifies to put the value
into the special registdr, then jump to the address on top of the stack, if any. If the
stack is empty} is returned as the result of the program.

The code for a “pure” basic function is interesting. We first check whether there
are enough closures on the stack to form a frame. Note that the data representation of
a frame was chosen in such a way that the rule

{f,o, Ny ::...u:NZr:k} — {Ny1,01,[f e NJ? ... NI"]::k}

does not require any rearrangment of thelosures; the first frame is simply built by
pushing the addreg onto the stack. The first closufé’ , a pointer to which is stored

in the stack frame, is then invoked. Eventually, this closure reaches a value state, and
following the convention for value states, it will jump to the address on top of the stack,
in this casefy, with V' being the value just computed. This value is stored in the current
frame, and then the remaining closur€§?, ..., N7~ are evaluated in the same way,
until the topn items on the stack contain the actual arguments to the fungtié this

point, we call a subroutine which contains some native implementation of the function
f. The convention is that this native implementation expects ésgguments on top of

the stack, and returns its result on top of the stack as well. After the subroutine call
returns, we simply pop the result value off the stack and follow the protocol for value
states.

Finally, Table 7 shows the implementation of two “impure” basic functions, the
“if” and “print” functions which were already discussed in Section 4.3. Both these
functions use a simplified form of the mechanism for pure basic functions (specialized
for unary functions) to evaluate the closure on top of the stack and to obtain aialue
The “if” function then simply executeszy.x or Azxy.y, depending whethér = true
orV = false The “print” function calls a subroutine to print the vallie then executes
AT.x.

References

[1] W. D. Clinger, A. H. Hartheimer, and E. M. Ost. Implementation strategies
for first-class continuationddigher-Order and Symbolic Computatioh?:7-45,
1999.

[2] G. Cousineau. The categorical abstract machine. In G. Huet, edigical
Foundations of Functional Programmingages 25-45. Addison-Wesley, 1990.

[3] M. Felleisen and R. Hieb. The revised report on the syntactic theories of sequen-
tial control and stateTheoretical Computer Scienc#03:235-271, 1992.

[4] T. G. Griffin. A formulae-as-types notion of control. PROPL '90: Proceed-
ings of the 17th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Language4990.

22

[5] M. Hofmann and T. Streicher. Continuation models are universalfiecalculus.
In Proceedings of the Twelfth Annual IEEE Symposium on Logic in Computer
Sciencepages 387-397, 1997.

[6] J.-L. Krivine. Un interpreteur du lambda-calcul. Draft, available from
ftp://ftp.logique.jussieu.fr/pub/distrib/krivine/interprt.pdf.

[7] M. Parigot. Au-calculus: An algorithmic interpretation of classical natural de-
duction. InProceedings of the International Conference on Logic Programming
and Automated Reasoning, St. Petersb&@pgringer LNCS 624, pages 190-201,
1992.

[8] G. D. Plotkin. Call-by-name, call-by-value and thecalculus.Theoretical Com-
puter Sciencel:125-159, 1975.

[9] D. Pym and E. Ritter. On the semantics of classical disjunction. Preprint, 1998.

[10] P. Selinger. Control categories and duality: on the categorical semantics of the
lambda-mu calculusMath. Struct. in Computer SciencEL(2), 2001.

[11] T. Streicher and B. Reus. Classical logic, continuation semantics and abstract
machines.Journal of Functional Programming(6):543-572, Nov. 1998.

[12] D. H. D. Warren. An abstract prolog instruction set. Technical Note 309, SRI
International, 1983.

23

