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Abstract

We materialize the common belief that calculi with explicit substi-
tutions provide an intermediate step between an abstract specification of
substitution in the λ-calculus and its actual implementations. To this end,
we show a systematic derivation leading from a slight extension of Curien’s
calculus of closures, capable of expressing one-step reduction strategies, to
the environment-based Krivine’s abstract machine for call-by-name evalu-
ation in the λ-calculus. The derivation consists of two phases: the first one
employs Danvy and Nielsen’s refocusing method to construct an abstract
machine for the calculus of closures; the second performs an unfolding of
closures to make the environment part explicit in the resulting abstract
machine.

1 Introduction

Krivine’s machine is probably the simplest example of an abstract machine
implementing an evaluation function of the λ-calculus [10]. As many other
abstract machines for languages with binding constructs, it is environment-
based, i.e., roughly, one component of a machine configuration stores terms to
be substituted for free variables during the process of evaluation. The transitions
of the machine provide a precise way of handling substitution, contrasting with
the usual abstract specification of substitution in the λ-calculus, where one
expresses the β-rule using a meta-level notion of (implicit) substitution.

Actual implementations, however, do not use implicit substitutions. Instead,
they keep an explicit representation of what should have been substituted and
leave the term untouched.
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To bridge the two worlds of implicit and explicit substitutions, various calculi
of explicit substitutions have been proposed [1, 4, 11]. The idea of explicit
substitutions is to incorporate the notion of substitution into the syntax of the
language and to specify suitable rewrite rules that realize the substitution.

Our goal in this work is to present a completely systematic way of deriving
an abstract machine with environment from a specification of one-step reduction
strategy in a calculus of closures, by employing Danvy and Nielsen’s refocusing
technique [6] followed by an unfolding of the data type of closures.

We first turn our attention to Curien’s original calculus of closures λρ [3],
mediating between the standard λ-calculus and its implementations via abstract
machines. We observe that one-step reductions cannot be expressed in this cal-
culus, and therefore we propose a minimal extension to λρ, capable of expressing
such computations (λρ̂-calculus). We then show a derivation of Krivine’s ma-
chine [10] from the specification of the call-by-name one-step strategy in λρ̂.

2 Curien’s calculus of closures

The language of λρ has three syntactic categories: terms, closures and sub-
stitutions. Terms are defined as in the λ-calculus, using de Bruijn indices for
variables:

(terms) t ::= i | t t | λt

(closures) c ::= t[s]
(substitutions) s ::= • | c · s

A closure is a pair consisting of a term and a substitution, which itself is a finite
list of closures to be substituted for free variables in the term.

The weak reduction relation
ρ→ is specified by the following rules:

(Eval)
t0[s]

ρ→∗ (λt′0)[s
′]

(t0 t1)[s]
ρ→ t′0[(t1[s]) · s′]

(Var) i[c1 · · · cm]
ρ→ cn if 1 ≤ n ≤ m

(Sub)
c1

ρ→∗ c′1 . . . cm
ρ→∗ c′m

t[c1 · · · cm]
ρ→ t[c′1 · · · c′m]

where
ρ→∗ is the reflexive, transitive closure of

ρ→. All reductions are performed
on closures, and not on individual terms. However minimalist, this calculus is
powerful enough to compute weak head normal forms.

The rules of the calculus are nondeterministic and can be restricted in order
to define a specific deterministic evaluation strategy. For instance, the call-by-
name strategy is obtained by removing the rule (Sub).
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3 A minimal extension to Curien’s calculus of
closures

It turns out that the the λρ-calculus is not expressive enough for specifying
one-step computations. This is due to the fact that the specification of one-step
reduction requires a way of “composing” intermediate results of computation –
here, closures – to form a new closure, which can be reduced further. In λρ,
there is no such possibility. A simple solution to this problem is to extend the
syntax of closures with a construct denoting closure composition. We denote it
simply by juxtaposition. The modified grammar of closures is then as follows:

(closures) c ::= t[s] | c c

With the extended syntax we are now in a position to define the one-step
reduction relation on the language of closures.

(βc) ((λt)[s]) c
bρ→ t[c · s]

(Var) i[c1 · · · cm]
bρ→ cn if 1 ≤ n ≤ m

(App) (t0 t1)[s]
bρ→ (t0[s]) (t1[s])

(Sub)
c1

bρ→ c′1 . . . cm
bρ→ c′m

t[c1 · · · cm]
bρ→ t[c′1 · · · c′m]

(ν)
c1

bρ→ c′1

c1 c2
bρ→ c′1 c2

(µ)
c2

bρ→ c′2

c1 c2
bρ→ c1 c′2

The call-by-name evaluation strategy can be obtained from the full system
of λρ̂ by restricting it to the following rules:

(βc) ((λt)[s]) c
bρ→n t[c · s]

(Var) i[c1 · · · cm]
bρ→n cn, if 1 ≤ i ≤ m

(App) (t0 t1)[s]
bρ→n (t0[s]) (t1[s])

(ν)
c1

bρ→n c′1

c1 c2
bρ→n c′1 c2
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4 From call-by-name reduction
to environment machine

The above specification of the call-by-name strategy as a deterministic relation
can be rewritten as a function in the obvious way:

reduce : Closure → Closure
reduce (((λt)[s]) c) = t[c · s]

reduce (n[c1 · · · cm]) = cn

reduce ((t0 t1)[s]) = (t0[s]) (t1[s])
reduce (c1 c2) = (reduce c1) c2

As proposed by Felleisen [7, 8, 9], this reduction function can be equivalently
expressed using evaluation contexts. As observed by Danvy and Nielsen [5, 6],
these evaluation contexts can be mechanically obtained by (1) transforming
reduce into continuation-passing style, and (2) defunctionalizing the resulting
continuations. The resulting grammar of evaluation contexts, plug function,
and CPS-transformed reduction function read as follows:

(evaluation contexts) C ::= [ ] | ARG(C , c)

plug : Context × Closure → Closure
plug ([ ], c) = c

plug (ARG(C , c′), c) = (plug (C , c)) c′

reduce′ : Closure× Context → Closure
reduce′((λt)[s], ARG(C , c)) = plug (C , t[c · s])

reduce′(n[c1 · · · cm], C ) = plug (C , cn)
reduce′((t0 t1)[s], C ) = plug (C , t0[s] t1[s])

reduce′(c1 c2, C ) = reduce′(c1, ARG(C , c2))

As traditional, evaluation is defined as the reflexive and transitive closure
of one-step reduction. The following function evaluate therefore computes the
value of a term:

evaluate : Value + Computation → Value
evaluate v = v
evaluate c = evaluate (reduce c),

where reduce c = reduce′(c, [ ])
Next we mechanically optimize the evaluation function into an abstract ma-

chine using Danvy and Nielsen’s refocusing technique [6], which yields the fol-
lowing abstract machine for the λρ-calculus (and for the λρ̂-calculus with the
grammar of closures restricted to that of λρ):

refocus : Closure× Context → Value
refocus ((λt)[s], ARG(C , c)) = refocus (t[c · s], C )

refocus (n[c1 · · · cm], C ) = refocus (cn, C )
refocus ((t0 t1)[s], C ) = refocus (t0[s], ARG(C , t1[s]))

refocus ((λt)[s], [ ]) = (λt)[s]
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To obtain the standard definition of Krivine’s machine, we perform the un-
folding of the data type of closures. We consider the language of the λρ-calculus.
If we read each syntactic category as a type, then the type of substitutions is
an inductive type representing a list of closures:

Substitution
def= Closure list,

and the type of closures is also an inductive type, satisfying the following equa-
tion:

Closure = Term × Closure list.

Hence Closure = µX.Term × X list, and one unfolding of this type yields

Closure
def= µX.Term × X list
= Term × (µX.Term × X list)list
= Term × Closure list
= Term × Substitution

For any closure t[s] of type Closure, its unfolding gives a pair (t, s) of type
Term× Substitution, and we can replace each closure in the definition of refocus
by its unfolding. The final result reads as follows:

refocus : Term × Substitution× Context → Value

refocus (λt, s, ARG(C , c)) = refocus (t, c · s, C )
refocus (n, c1 · · · cm, C ) = refocus (t, s, C ), where cn = t[s]

refocus (t0 t1, s, C ) = refocus (t0, s, ARG(C , (t1[s])))
refocus (λt, s, [ ]) = (λt)[s]

It coincides with the definition of Krivine’s machine.

4.1 Correctness

We state the correctness of the Krivine’s machine with respect to evaluation in
the λρ̂-calculus, for the restricted grammar of closures. The following theorem
is a corollary of the full correctness of refocusing [6].

Theorem 1. Let
bρ→n

∗ be the reflexive, transitive closure of
bρ→n. For any closure

t[s] in λρ̂,

t[s]
bρ→n

∗ (λt′)[s′] if and only if refocus (t, s, [ ]) = (λt′)[s′].

The theorem states that Krivine’s machine is correct in the sense that it
computes closed weak head normal forms, and it realizes the exact call-by-name
strategy in the λρ̂-calculus. As a corollary, we also obtain the correctness of this
machine with respect to evaluation in Curien’s λρ-calculus.
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However, Krivine’s machine is better known as an abstract machine with
environment, computing weak head normal forms of λ-terms. The following
theorem states the correspondence between the evaluation via Krivine’s machine
and in the λ-calculus with de Bruijn indices (called λ).

Theorem 2 (Correspondence). For any term t, the call-by-name evaluation
of t in λ terminates with a value λt′ if and only if

refocus (t, •, [ ]) = (λt′′)[s],

and σ((λt′′)[s], 1) = λt′, where σ is a function “forcing” all the delayed substi-
tutions in a λρ-closure (definition omitted).

5 Conclusion

We have presented a systematic derivation of Krivine’s machine from the call-
by-name strategy expressed in the extended calculus of closures λρ̂. The final
step of the derivation (closure unfolding) provides the exact characterization of
what has now become folklore: that languages with explicit substitutions me-
diate between abstract machines using the meta-level operation of substitution
(implicit substitution) and those using an environment. The derivation also
shows that indeed Curien’s calculus is the minimal language of explicit sub-
stitutions that corresponds to Krivine’s machine, in the sense of Theorem 2.
A similar development can be carried over to the call-by-value case, yielding
another well known machine—the CEK machine [9].
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This talk presents a summary of results published in [22]. The objective at
the time was to provide an approach to continuation semantics that appeals to
domain theorists. Consequently, by contrast to the operational approach (see
[19, 18, 3–5, 8, 7, 9, 20, 15]) based on CPS-transformations, we employ a domain
theoretic semantics. From the semantic equations of the λ-calculus under con-
sideration it is possible to derive the operational rules for an abstract machine.
For the call-by-name λ-calculus with control we derive Krivine’s Machine. The
same treatment can be successfully applied to the call-by-value λ-calculus with
control features yielding the CEK machine, and Parigot’s λµ calculus yielding a
machine found independently by De Groote.

It is a well-known fact that classical logic can be translated into constructive
logic via so-called ¬¬-translations [24]. As constructive logic has a proof seman-
tics corresponding to a (model of a) simple functional language, such translations
give rise to a proof semantics for classical logic.

The basic idea of our work is based on the ¬¬-translation introduced by Kriv-
ine and Girard, see [12, 13], where classical propositions are mapped to negated
intuitionistic propositions which are closed under intuitionistic implication and
contain the proposition ⊥ (falsity ). Classical logic can therefore be considered
a subsystem of constructive logic, namely its negative fragment.

These considerations are reflected in the category NR of Negated Domains
which is defined as the full subcategory of the category of domains and continu-
ous functions on objects of the form RA, where A is a predomain and R is some
fixed domain of responses. Interpreting the λ-calculus in NR instead of ordinary
domains gives rise to a continuation semantics . The interpretation of a term is
an object of RA mapping continuations in A to responses in R.

Due to the isomorphism (RB)(R
A) ∼= RRA×B, the domain of continuations for

the exponential (RB)(R
A) is RA ×B. Accordingly, a continuation for a function

f from RA to RB is a pair 〈 d, k 〉 where d ∈ RA is an argument for f and k ∈ B

is a continuation for f(d). The canonical map from RRRA

to RA sending Φ to
λa:A. Φ(λf :RA. f(a)) ∈ RA provides an interpretation of the classical proof prin-
ciple ¬¬P ⊃ P . It is (a variant of) this interpretation of reductio ad absurdum
which serves as interpretation of the control operator C originally introduced by
Felleisen [6]. The idea to understand the control operator C as a proof of reductio
ad absurdum via the principle of propositions-as-types was first introduced by
Griffin in [11].



In order to interpret untyped λ-calculus in NR one has to exhibit a so-called
reflexive object in NR ie a C with RC ∼= RRC×C . For this purpose it suffices
to provide a domain C with C ∼= RC × C. Objects in C are continuations and
objects in D = RC are denotations. Reflexive objects in NR of this form are
called continuation models of untyped λ-calculus. It turns out that these – up
to isomorphism – coincide with Scott’s D∞ with D = R.

We use these continuation models of untyped λ-calculus for interpreting the
λC-calculus, a λ-calculus extended by Felleisen’s control operator C, and (an
extension of) M. Parigot’s λµ-calculus, see eg. [16]. But continuation semantics
have more to offer than just a denotational explanation of control features.

The semantic equations for untyped (call-by-name) λ-calculus can be viewed
as transition rules of an environment machine for computing weak head normal
forms of λ-terms. We obtain a well-known abstract machine: Krivine’s Machine.
The correspondence is given by identifying expressions of the form [[M ]] e k, ie
the meaning of term M in environment e applied to continuation k, with the
states of Krivine’s Machine, ie expressions of the form 〈 [M, env], S 〉 where env
is an environment assigning closures to variables and S is a stack of closures.

For extensions of the machines where reduction under λ- and µ-abstractions,
resp., is allowed, we prove computational adequacy. As a corollary, those ma-
chines compute a head normal form of a term t if, and only if, the denotation
of t is different from ⊥. To accomplish this, one uses Andy Pitts’ technique for
computational adequacy proofs [17].

An analogous treatment is possible for call-by-value languages but in this
case one has to employ the opposite of NR which is isomorphic to the Kleisli
category for the continuation monad RR( )

. The relationship (or duality) between
call-by-name and call-by-value for λµ has been further studied by Selinger [21]
and Levy [14] (see also [23, 10]). More recent work by Ager, Danvy et al. [1]
shows that virtual machines and compilers can be derived from interpreters or
normalisation functions. This technique works even for call-by-need λ-calculus
[2].
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1 Overview

The goal of this work is to draw a formal connection between steps taken by
abstract machines and reductions in a system of proof terms for a version of the
sequent calculus. We believe that by doing so we shed light on some essential
characteristics of abstract machines, proofs in sequent calculus systems, and
weak normalization of λ-terms. The machines that we consider are the (call-
by-name) Krivine machine and a call-by-value machine that may be called a
“right-to-left CEK machine” but with some modifications can be seen as a
proto-ZINC machine.

The formal connection we exhibit is, in fact, an embedding of the machines
into the term calculus. We embed run-time data structures, such as the control
stack and environment, in such a way that the operational semantics of the
machine corresponds to reduction steps in the calculus. The abstract machine
state, including the code that it executes, is captured as a term; the abstract
machine transitions are captured as term reductions.

This is in contrast to specifying the operational semantics on top of the
calculus. In other words, our goal is to provide a shallow embedding of an
abstract machine in a calculus/logic, as opposed to a deep embedding. This
allows reasoning about the machine inside the logic itself instead of on top

of it. The logical formulae that are assigned to proof terms provide a type
system for the term language via the Curry-Howard isomorphism, and because
of the method of embedding the machines into the terms, this type system can
be directly lifted to the machine code and machine states, thereby allowing an
elegant and simple formulation of safety, based on the subject reduction theorem
of the calculus.
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2 Tail-Recursive Evaluators

Plotkin [9] showed how abstract machines could be seen as an implementation of
an evaluation function for a functional programming language. It can be noted
that a basic evaluation function, whether implementing call-by-name or call-by-
value semantics, is not tail-recursive. This corresponds to the fact that the small-
step operational semantics has a recursive definition, relying on congruence
rules. An implementation of these rules naturally involves a process of searching
for the next redex, which may be arbitrarily deep in a term. This search must
be managed with care when computing a sequence of reductions, since the cost
of computing a single reduction step is linear in the size of the term [4].

An implementation of an abstract machine, on the other hand, can be di-
rectly written down as a tail-recursive function. One view of abstract machines is
that they are simply tail-recursive evaluators. The process of constructing such
an evaluator, as presented by Reynolds [11] and more recently explored by Ager
et al. [2], consists of defunctionalizing the continuations in a CPS interpreter. A
defunctionalized continuation is actually just a data structure representing an
evaluation context. As shown by Herbelin [7], proof terms for sequent calculi
have a computational interpretation as evaluation contexts. Thus, it is very
natural to believe that sequent calculi would have a relationship with abstract
machines. A simple connection between the λµµ̃-calculus and the Krivine ma-
chine was observed by Curien and Herbelin [3].

3 Calculi for Machines

If a machine correctly implements evaluation of λ-terms, then it will certainly
be possible to prove a correspondence between the machine and the λ-calculus.
However, there are various calculi that may be much closer to abstract machines,
i.e. have a more direct statement and proof of correspondence. The closest
correspondence would occur when we could define a translation from machine
states to terms (or vice-versa) in a purely compositional manner, such that the
transitions of the machine could be matched up with the steps of a particular
reduction strategy on the term so that neither one would ever take more than
a statically fixed number of steps for a given step in the other system.

In order to achieve a correspondence at this level, the term calculus must
possess certain features. First, it must be able to simulate weak β-reduction
without performing arbitrarily deep searches for the next redex. Otherwise,
one step in the calculus would correspond to an arbitrary number of steps of
the machine. The λµµ̃-calculus [3] described by Curien and Herbelin has this
property. They define translations from λ-terms to λµµ̃-terms, such that the
computational reduction rules of the λµµ̃-calculus can be used without any con-
gruence rules to simulate weak β-reduction of the λ-terms. Moreover, by making
a simple choice of which way to resolve a critical pair, the same computational
rules can be used to simulate either call-by-name or call-by-value reduction on
λ-terms.
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Abstract machines are also designed to break down the process of substi-
tution into small steps, and they generally carry out these substitutions in a
lazy manner. Thus, the other important feature of a good calculus for our
simulations is an explicit notion of substitution. Calculi with explicit substitu-
tions were investigated by Abadi et al. [1] and certain variants have been used
to prove the correctness of abstract machines, e.g. the λenv, which was used
by Leroy [8] when the ZINC machine was introduced. Hardin, Maranget, and
Pagano [6] proposed the λσw-calculus as a “calculus of closures” for proving the
correctness of abstract machines and representing the output of compilers. They
succeeded in providing an elegant calculus specialized for weak β-reduction, but
the calculus was still based upon the structures of natural deduction and there-
fore cannot satisfy the requirement of the last paragraph. On the other hand,
the λµµ̃-calculus does not provide any notion of explicit substitution, so it is
not immediately satisfactory, either.

A version of the λµµ̃-calculus with explicit substitutions has been studied
and found to be well-behaved [10]. Unfortunately, the inclusion of explicit sub-
stitutions is not, in itself, enough to guarantee that a calculus has the properties
that we desire. The reason is that when a term has multiple substitutions at
the outermost level, the next redex must (eventually) be a propagation of the
innermost substitution. The search for this redex, which may be arbitrarily
deep, would not mirror the operation of an abstract machine. One way around
this is to take the approach of the λσw-calculus and use simultaneous explicit
substitutions. However, we take another approach and represent environments
within the calculus. This approach was inspired by Douence and Fradet [5], but
instead of working abstractly at the level of combinators, we provide a concrete
embedding of environments in the calculus, which gives us the benefit of being
able to apply the type system of the calculus to the environments in a direct
way.

4 Our Development

The calculus into which we embed the abstract machines is a slightly modi-
fied version of the λµµ̃-calculus with explicit substitutions that was studied by
Polonovski [10]. Our first modification is the addition of an explicit weakening
construct that acts as a method of garbage collection. This is necessary for
simulating the mutable machine registers that typical abstract machines have.
The other modification involves focusing on a subset of terms for which we no
longer care about α-equivalence. We do this by constraining both the grammar
of the terms and the contexts of the typing judgments. This is not technically
necessary but makes the embedding more transparent. The restricted set of
terms are allowed to use only a single term variable—which is used to encode
an accumulator register—and two context variables—one is used for encoding
the run-time stack pointer and the other for encoding the environment pointer.
We call this the λµµ̃r↑-calculus.

The λµµ̃r↑-calculus imposes a useful structure on terms that is closer to the
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level of an abstract machine. In fact, the individual reduction steps in this sys-
tem are much more fine-grained that one would see in most abstract machines.
In order to show how the reduction steps of this calculus correspond to abstract
machines, such as the Krivine machine, it is useful to develop a sort of toolkit
of “macros” for commands and terms in the λµµ̃r↑-calculus. Thereafter, we
exhibit a set of reduction steps on these macro-terms that correspond to mul-
tiple reduction steps at the raw term level. These macro-reductions implement
a specific strategy of small-step reductions; hence, we present one set imple-
menting call-by-name and one set implementing call-by-value, with a concrete
description of the strategies that they implement on the pure λµµ̃r↑-terms.

It becomes apparent that these coarse-grained systems are, in a literal sense,
abstract machines themselves built directly out of the λµµ̃r↑-calculus. It is
then a very small (almost trivial) step to draw the correspondence with the
traditional Krivine machine and a call-by-value machine that is similar to the
ZINC machine, and we see how these machines arise out of the duality of the
calculus. The typing rules of the calculus are then also lifted in the obvious
way to give a type system to the macro-terms and, by extension, the abstract
machines themselves, thus allowing an elegant statement of safety at the level
of machines.
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Introduction

We present, in this paper, a particularly simple lazy machine which runs programs written in
-calculus. It was introduced by the present writer more than twenty years ago. It has been,

since, used and implemented by several authors, but remained unpublished.
In the first section, we give a rather informal, but complete, description of the machine. In the
second part, definitions are formalized, which allows us to give a proof of correctness for the
execution of -terms. Finally, in the third part, we build an extension for the machine, with a
control instruction (a kind of call-by-name call/cc ) and with continuations.

This machine uses weak head reduction to execute -calculus, which means that the active redex
must be at the very beginning of the -term. Thus, computation stops if there is no redex at the
head of the -term. In fact, we reduce at once a whole chain x1 . . . xn. Therefore, execution
also stops if there are not enough arguments.

The first example of a -calculus machine is P. Landin’s celebrated SECD-machine [6]. The
one presented here is quite different, in particular because it uses call-by-name. This needs
some explanation, since functional programming languages are, most of the time, implemented
through call-by-value. Here is the reason for this choice :

Starting in the sixties, a fascinating domain has been growing between logic and theoretical
computer science, that we can designate as the Curry-Howard correspondence. Succinctly, this
correspondence permits the transformation of a mathematical proof into a program, which is
written :

in -calculus if the proof is intuitionistic et only uses logical axioms ;
in -calculus extended with a control instruction, if one uses the law of excluded middle [2]

and the axioms of set theory [3], which is most often the case.
Other instructions are necessary if one uses additional axioms, such as the Axiom of Choice [4].
The programs obtained in this way are indeed very complex and two important problems im-
mediately arise : how should we execute them and what is their behaviour ? Naturally, these
questions are not independent, so let us give a more precise formulation :

(i) How should one execute these programs so as to obtain a meaningful behaviour ?
(ii) Assuming an answer to question (i), what is the common behaviour (if any) of the programs
obtained from different proofs of the same theorem ?
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It is altogether surprising that there be an answer to question (i) ; it is the machine presented
below. I believe that, in itself, is a strong reason for being interested in it.
Let us give a very simple but illuminating example, namely the following theorem of Euclid :

There exists infinitely many prime numbers.
Let us consider a proof D of this theorem, using the axioms of classical analysis, or those of
classical set theory ; consider, further, the program PD extracted from this proof. One would
like to have the following behaviour for PD :

wait for an integer n ;
produce then a prime number p n.

That is exactly what happens when the program PD is executed by the present machine. But
it’s not true anymore if one uses a different execution mechanism, for instance call-by-value. In
this case one gets, in general, an aberrant behaviour and no meaningful output.

This machine was thus conceived to execute programs obtained from mathematical proofs. It
is an essential ingredient of the classical realizability theory developed in [3, 4] to extend the
Curry-Howard correspondence to analysis and set theory. Thanks to the remarkable properties
of weak head reduction, one can thus, inter alia, search for the specification associated with
a given mathematical theorem, meaning the shared behaviour of the programs extracted from
the various proofs of the theorem under consideration : this is question (ii) stated earlier. That
problem is a very interesting one, it is also quite difficult and has only been solved, up to now,
in very few cases, even for tautologies (cf. [5]). A further interesting side of this theory is that it
illuminates, in a new way, the problem of proving programs, so very important for applications.

1 Description of the machine

Terms of -calculus are written with the notation (t)u for application of t to u. We shall also
write tu if no ambiguity arise ; (. . . ((t)u1)u2 . . .)uk will be also denoted by (t)u1 . . . uk or
tu1 . . . uk.

We consider three areas in the memory : the stack, the heap and the term area where are written
the -terms to be performed. We denote by &t the address of the term t.

In the heap, we have objects of the following kinds :

� environment : a finite sequence (e, 1, . . . , k) where e is the address of an environment,
and 1, . . . , k are closures. There is also an empty environment.

� closure : An ordered pair (&t, e) built with the address of a term (in the term area) and
the address of an environment.

The elements of the stack are closures.

Intuitively, closures are the values which -calculus variables take.

Execution of a term

The term t0 to be performed is written, in ‘‘compiled form’’ in the term area. The ‘‘compiled
form’’ of a term is obtained by replacing each occurrence of x with and each variable oc-
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currence by an ordered pair of integers ( , k) (it is a variant of the de Bruijn notation [1], see
the definition below). We assume that t0 is a closed term. Thus, the term area contains only
closed terms.
Nevertheless, terms may contain symbols of constant, which are performed with some prede-
fined programs. For example :

� the constant symbol is the name of another closed term and the program consists in the
execution of this term.

� there may be an input-output library.

The execution consists in constantly updating a closure (T,E) and the stack. T is the address
of the current subterm : it is, therefore, an instruction pointer which runs along the term to be
performed ; E is the current environment.
At the beginning, T is the address of the first term t0 to be performed. Since it is a closed term,
E is the null pointer (which points to the empty environment).
At each moment, there are three possibilities according to the term pointed by T : it may be
an application (t)u, an abstraction x t or a variable.

� Execution of (t)u.
We push the closure (&u,E) on the top of the stack and we go on by performing t : thus
T points now to t and E does not change.

� Execution of x1 . . . xn t where t does not begin with a ; thus, T points to x1.
A new environment (e, 1, . . . , n) is created : e is the address of E, 1, . . . , n are
‘‘popped’’ : we take the n top entries off the stack. We put in E the address of this
new environment and we go on by performing t : thus T points now to t.

� Execution of x (a -calculus variable).
We fetch as follows the value of the variable x in the environment E : indeed, it is a
bound occurrence of x in the initial term t0. Thus, it was replaced by an ordered pair of
integers < , k>. If = 0, the value we need is the k-th closure of the environment E.
If 1, let E1 be the environment which has its address in E, E2 the one which has
its address in E1, etc. Then, the value of x is the k-th closure of E . This value is an
ordered pair (T ,E ) which we put in (T,E).

Remark.

The intuitive meaning of these rules of execution is to consider the symbols x, (, x of -calculus as

elementary instructions :

� ‘‘ x’’ is : ‘‘pop’’ in x and increment the instruction pointer.

� ‘‘(’’ is : ‘‘push’’ the address of the corresponding ‘‘)’’ and increment the instruction pointer.

� ‘‘x’’ is : go to the address which is contained in x.

It remains to explain how we compute the integers , k for each occurrence of a variable x, i.e.
how we ‘‘compile’’ a closed term t. More generally, we compute for an occurrence of x in an
arbitrary term t, and k when it is a bound occurrence in t. This is done by induction on the
length of t.
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If t = x, we set = 0. If t = uv, the occurrence of x we consider is in u (resp. v). We compute
, and possibly k, in u (resp. v).

Let now t = x1 . . . xn u with n > 0, u being a term which does not start with . If the
occurrence of x we consider is free in t, we compute in t by computing in u then adding 1.
If this occurrence of x is bound in u, we compute and k in u. Finally, if this occurrence is
free in u and bound in t, then we have x = xi. We compute in u, and we set k = i.

2 Formal definitions and correction proof

Compiled terms or B-terms (this notion is a variant of the de Bruijn notation) are defined as
follows :

� A constant a or an ordered pair < , k> (k 1) of integers is a B-term (atomic term).
� If t, u are B-terms, then so is (t)u.
� If t is a B-term which does not start with i and if n 1, then nt is a B-term.

Let us consider, in a B-term t, an occurrence of a constant a or of < , k> (ordered pair of
integers). We define, in an obvious way, the depth of this occurrence, which is the number of
n symbols above it. The definition is done by induction on the length of t :

If there is no symbol in t, the depth is 0.
If t = (u)v, the occurrence we consider is either in u or in v. We compute its depth in this
subterm and do not change it.
If t = nu, we compute the depth of this occurrence in the subterm u and we add 1 to it.

An occurrence of < , k> in t is said to be free (resp. bound) if its depth in t is (resp. > ).
Of course, each occurrence of a constant a is free. Thus, we could write constants as ordered
pairs < , k>.

Weak head reduction

Consider a B-term of the form ( nt)u1 . . . up with p n. Then, we can carry out a weak head
reduction step : we get the B-term t un+1 . . . up (or t , if n = p) ; the term t is obtained by
replacing, in t, each occurrence of < , i> (1 i n) the depth of which is exactly , with ui.
We write t u if u is obtained from t by a finite (possibly null) number of weak head reduction
steps.

Alpha-equivalence

Let t be a closed -term, with constants. We define, by induction on t, its ‘‘compiled’’ form,
which is a B-term denoted by B(t) :
B(a) = a ; if t = uv, then B(t) = B(u)B(v).
If t = x1 . . . xn u where u does not begin with , consider the B-term :
B(u[a1/x1, . . . , an/xn]), where a1, . . . , an are new constants.
We replace in it each occurrence of ai by the ordered pair < , i>, where is the depth of this
occurrence in B(u[a1/x1, . . . , an/xn]). We get in this way a B-term U and we set :
B(t) = nU .
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The compiled form of a -term t is a variant of the de Bruijn notation for t. Its main property,
expressed by theorem 1, is that it depends only on -equivalence class of t. This property is
not used in the following, but the brevity of the proof below convinced me to give it here.

It is clear that the weak head reduction of a -term t corresponds to the weak head reduction
of its compiled form B(t).

Theorem 1. Two closed -terms t, t are -equivalent if and only if B(t) = B(t ).

We use the notation t t for -equivalence. The proof is done by induction on t. The result
is clear if t = a or t = uv.
Assume that t = x1 . . . xn u where u does not begin with . If t t or if B(t) = B(t ), then
t = x1 . . . xn u where u does not begin with . Let a1, . . . , an be new constants ; then, by
definition of -equivalence, we have :
t t u[a1/x1, . . . , an/xn] u [a1/x1, . . . , an/xn] ; by induction hypothesis, this is
equivalent to B(u[a1/x1, . . . , an/xn]) = B(u [a1/x1, . . . , an/xn]).
If B(u[a1/x1, . . . , an/xn]) = B(u [a1/x1, . . . , an/xn]), we obviously have B(t) = B(t ). But
conversely, we get B(u[a1/x1, . . . , an/xn]) from B(t), by removing the initial n and replacing
< , i> with ai for every occurrence of < , i> the depth of which is precisely equal to .
Therefore, we have B(u[a1/x1, . . . , an/xn]) = B(u [a1/x1, . . . , an/xn]) B(t) = B(t ) and
finally t t B(t) = B(t ).

Closures, environments and stacks

We now define recursively closures and environments :
is an environment (the empty environment) ; if e is an environment and 1, . . . , n are closures
(n 0), then the finite sequence (e, 1, . . . , n) is an environment.
A closure is an ordered pair (t, e) composed with a B-term t and an environment e.
A stack is a finite sequence = ( 1, . . . , n) of closures.
We denote by . the stack ( , 1, . . . , n) obtained by ‘‘pushing’’ the closure on the top of
the stack .

Execution rules

A state of the machine is a triple (t, e, ) where t is a B-term, e an environment and a
stack. We now give the execution rules, by which we pass from a state (t, e, ) to the next one
(t , e , ) :

� If t = (u)v, then t = u, e = e and = (v, e). .

� If t = nu, then e = (e, 1, . . . , n) and = 1 . . . n. .
The length of the stack must be n, otherwise the machine stops.

� If t = < , k> : let e0 = e and let ei+1 be the environment which is the first element of ei,
for i = 0, 1, . . . If ei = for an i , then the machine stops.
Otherwise, we have e = (e +1, (t1, e1), . . . , (tp, ep)). If k p, we set t = tk, e = ek and
= .

If k > p, the machine stops.
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The value of a closure

Given any closure = (t, e), we define a B-term which is denoted by ¯ or t[e] ; it is defined
by induction on e as follows :
We set t[ ] = t ; t[(e, 1, . . . , n)] = u[e] where u is the B-term we obtain by replacing in t
each occurrence of < , i> with :
< 1, i> if is strictly greater than the depth of this occurrence ;

ī (resp. d) if is equal to the depth of this occurrence and i n (resp. i > n) ; d is a fixed
constant.

Remark. We observe that t[e] is a closed B-term, which is obtained by replacing in t free occurrences of

< , i> with suitable B-terms. These closed B-terms are recursively provided by the environment e ;

the constant d is used as a ‘‘wild card’’, when the environment e does not provide anything.

Theorem 2.
Let (t, e, ), (t , e , ) be two consecutive states of the machine, with = ( 1, . . . , m) and
= ( 1, . . . , m ). Then t[e] ¯1 . . . ¯m is a closed B-term and t[e] ¯1 . . . ¯m t [e ] ¯1 . . .

¯
m .

Recall that the symbol denotes the weak head reduction. We shall use the notation t[e]¯ for
t[e] ¯1 . . . ¯m when is the stack ( 1, . . . , m).
There are three possible cases for t :

� t = (u)v : we have t[e] = u[e]v[e], t [e ] = u[e] (since e = e) and = (v, e). . Therefore
t[e]¯ = t [e ]¯ .

� t = nu : then we have n m and t = u, e = (e, 1, . . . , n), = ( n+1, . . . , m). We
must show that ( nu)[e] ¯1 . . . ¯n u[(e, 1, . . . , n)].
By the definition of the value of a closure, we have u[(e, 1, . . . , n)] = v[e], where v is obtained
by substituting, in u, ī for the occurrences of < , i> the depth of which is and < 1, i>
for the ones the depth of which is < .
Now, if we perform a sep of weak head reduction in ( nu)[e] ¯1 . . . ¯n , we carry out exactly the
substitution which is defined by e on the free occurrences of < , i> in v ; we therefore get v[e].

� t = < , k> : let e0 = e and ej+1 the environment which is the first element of ej , if ej = .
Then, by definition of t[e], we have t[e] = ¯

k where k is the k-th closure of the environment
e = (e +1, 1, . . . , p). Now, we have k = (t , e ) by the reduction rules of the machine.
Therefore, t[e]¯ = ¯

k¯ = t [e ]¯ , since = .

This theorem shows that the machine which has been described above computes correctly
in the following sense : if t at1 . . . tk, where t is a closed -term and a is a constant,
then the execution of B(t), from an empty environment and an empty stack, will end up in
aB(t1) . . . B(tk). In particular, if t a, then the execution of B(t) will end up in a.

3 Control instruction and continuations

We now extend this machine with a call-by-name control instruction, and with continuations.
There are two advantages : first, an obvious utility for programming ; second, in the frame of
realisability theory (see the introduction), this allows the typing of programs in classical logic and
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no longer only in intuitionistic logic. Indeed, the type of the instruction call/cc is Peirce’s
law ((A B) A) A (see [2]).
As we did before, we give first an informal description of the machine, then mathematical
definitions.

3.1 Description of the machine

We describe only the changes. Terms are the same but there is one more constant, which is
denoted by cc. There are still three memory areas : the stack and the term area, which are the
same as before, and the heap which contains objects of the following kinds :

� environment : same definition.

� closure : it is, either an ordered pair (&t, e) built with the address of a term (in the term
area) and the address of an environment ; or the address & of a continuation.

� continuation : it is a sequence = ( 1, . . . , n) of closures.

Execution of a term

The execution consists in constantly updating the current closure and the stack. There are
now two possible forms for the current closure : (& , e) (where is a term) or & (where is
a continuation).
Consider the first case : = (& , e). There are now four possibilities for the term : an
application (t)u, an abstraction x t, a variable x or the constant cc. Nothing is changed during
execution in the first two cases.

� Execution of x ( -calculus variable).
As before, we fetch the value of the variable x in the environment e, which gives a closure

which becomes the current closure . The stack does not change.

� Execution of cc.
We pop a closure which becomes the current closure . We save the stack in a contin-
uation and we push the address of (this address is a closure).
Therefore, the stack which was of the form ( , 1, . . . , n), has become (& , 1, . . . , n)
with = ( 1, . . . , n).

Consider now the second case, when the current closure is of the form & . Then, the execution
consists in popping a closure , which becomes the current closure and in replacing the current
stack with .

3.2 Formal definitions

B-terms are defined as before, with a distinguished constant, which is denoted by cc.

We define recursively the closures, the environments and the stacks (which are now also called
continuations) :

is an environnement (the empty environnement) ; if e is an environment and 1, . . . , n are
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closures (n 0), then the finite sequence (e, 1, . . . , n) is an environnement.
A closure is either a stack, or an ordered pair (t, e) composed with a B-term t and an envi-
ronment e.
A stack (or continuation) is a finite sequence = ( 1, . . . , n) of closures. We denote by .
the stack ( , 1, . . . , n) which is obtained by ‘‘pushing’’ the closure on the top of the stack .

Execution rules

A state of the machine is an ordered pair ( , ) where is a closure and is a stack. We give
now the execution rules, by which we pass from a state ( , ) to the next one ( , ) :

� If is a stack, then is the closure which is on the top of the stack (if is empty, the
machine stops) and = .

� Else, we have = (t, e) and there are four possibilities for the B-term t :

� If t = (u)v, then = (u, e) and = (v, e). .

� If t = nu, then = (u, e ) with e = (e, 1, . . . , n) and = 1 . . . n. .
The length of the stack must be n, otherwise the machine stops.

� If t = < , k> : let e0 = e and let ei+1 be the environment which is the first element of
ei, for i = 0, 1, . . . If ei = for an i , then the machine stops.
Else, we have e = (e +1, 1, . . . , p). If k p, we set = k and = .
If k > p, the machine stops.

� If t = cc, then is the closure which is on the top of the stack (if is empty, the
machine stops). Thus, we have = . where is a stack. Therefore, is also a closure, which
we denote by . Then, we set = . .
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Abstract

In previous work we showed how to verify a compiler for a small lan-
guage with exceptions. In this article we show how to calculate, as opposed
to verify, an abstract machine for this language. The key step is the use of
Reynold’s defunctionalization, an old program transformation technique
that has recently been rejuvenated by the work of Danvy et al.
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Jumping Semantics For Call-By-Push-Value

Paul Blain Levy

University of Birmingham

Abstract. We give a jumping machine for a higher-order language, em-
bodying the intuition that calling a procedure is a jump, and returning
from a procedure is also a jump. The machine makes it very easy to
execute a program on paper, so it is a kind of pedagogical tool. It rep-
resents a closure in a graphical way, so that a jump does not need to
be accompanied by a separate change of environment (as it does in the
Krivine machine).
The language used is call-by-push-value, making it easy to obtain similar
jumping machines for call-by-value and call-by-name calculi (as these are
fragments of call-by-push-value).

1 Introduction

1.1 Jumping Semantics

Beginning programmers learn a simple intuition for procedures and functions.

– A procedure or function call causes a jump from the calling code to the
procedure or function

– The return of a value by a function, or the termination of a procedure, causes
a jump to the frame on top of the stack, which is popped.

The goal of this paper is to present, informally, a jumping machine that embodies
these two intuitions, for a higher-order language. The machine is based on a
graphical view of closures.

It must be stressed from the outset what this kind of operational semantics
does not achieve:

– it is not suitable as a practical implementation of programming languages,
principally because there is no garbage collection

– it is not a convenient way of reasoning about programs, because—like many
graphical notations—its formalization (which we omit in this paper) is rather
complex.

So what is its contribution? Simply that it is a very easy way of executing a
program on paper. It can, therefore, be seen as a kind of pedagogical tool.

A somewhat similar formalization of jumping in a higher-order setting ap-
pears in [DR99]. In that paper, after a very careful analysis of the “geometry of
interaction” machine for MELL, a jumping machine is given as an optimization.
This induces a jumping machine for simply typed CBN λ-calculus with a single
free type identifier ι. Because pattern-matching (in particular, conditionals) is
absent from this language, there are no frames on the stack.



1.2 Languages

Many analyses of abstract machines, such as [ABDM03], consider both call-
by-value (CBV) and call-by-name (CBN) variants. In this paper, instead, we
present our machine for call-by-push-value (CBPV) [Lev99]. This is a calculus
that contains both CBV and CBN calculi as fragments, and consequently jump-
ing machines for these calculi can easily be obtained from the CBPV one.

In [Lev04], a similar jumping machine is given for a CPS language, of course
without a stack. From this, one can obtain a jumping machine for CBPV, by
applying the appropriate CPS transform (described in [Lev04]). But that is
different from the machine we give in this paper, which is not continuation-
passing: when calling a procedure, we do not pass the stack as an additional
argument. This is surely closer to the programmer’s intuition that we are trying
to capture.

1.3 Structure Of Paper

In Sect. 2, we review call-by-push-value, omitting the denotational aspects. We
present operational semantics in two traditional styles (first-order interpreter
and CK-machine) in Sect. 3. In Sect. 4, we give an informal account of the
jumping semantics, executing an example program in detail; another example is
given in Sect. 5. We discuss correctness in Sect. 6.

Finally, in Sect. 7, we compare and contrast our jumping machine to other
machines in the literature.

2 Review Of Call-By-Push-Value

CBPV has two disjoint classes of terms: values and computations. It likewise has
two disjoint classes of types: a value has a value type, while a computation has
a computation type. For clarity, we underline computation types. The types are
given by

value types A ::= UB |
∑

i∈I
Ai | 1 | A × A

computation types B ::= FA |
∏

i∈I
B

i
| A → B

where I can be any countable set (finite, in finitary CBPV). The meaning of F

and U is as follows. A computation of type FA returns a value of type A. A
value of type UB is a thunk of a computation of type B. When later required,
it can be forced i.e. executed.

Unlike in call-by-value, a function in CBPV is a computation, and hence a
function type is a computation type. We will discuss this further in Sect. 3.

Like in call-by-value, an identifier in CBPV can be bound only to a value, so
it must have value type. We accordingly define a context Γ to be a sequence

x0 : A0, . . . , xn−1 : An−1



of identifiers with associated value types. We often omit the identifiers and write
just A0, . . . , An−1. We write Γ `v V : A to mean that V is a value of type A,
and we write Γ `c M : B to mean that M is a computation of type B.

The terms of CBPV are given in Fig. 1. We assume formally that all terms
are explicitly typed, but in this paper, to reduce clutter, we omit explicit typing
information. We omit the rules for 1, which follow those for ×.

We explain some of the less familiar constructs as follows. M to x. N is the
sequenced computation that first executes M , and when, this returns a value
V proceeds to execute N with x bound to V . This was written in Moggi’s syn-
tax using let, but we reserve let for mere binding. The keyword pm stands
for “pattern-match”, and the symbol ‘ represents application in reverse order.
Because we think of

∏
i∈I

as the type of functions taking each i ∈ I to a com-
putation of type B

i
, we have made its syntax similar to that of →.

Γ, x : A, Γ ′ `v

x : A

Γ `v V : A Γ, x : A `c M : B

Γ `c

let V be x. M : B

Γ `v V : A

Γ `c

return V : FA

Γ `c M : FA Γ, x : A `c N : B

Γ `c M to x. N : B

Γ `c M : B

Γ `v

thunk M : UB

Γ `v V : UB

Γ `c

force V : B

Γ `v V : Aı̂

ı̂ ∈ I
Γ `v (̂ı, V ) :

P
i∈I

Ai

Γ `v V :
P

i∈I
Ai · · · Γ, x : Ai `

c Mi : B · · · i∈I

Γ `c

pm V as {. . . , (i, x).Mi, . . .} : B

Γ `v V : A Γ `v V ′ : A′

Γ `v (V, V ′) : A × A′

Γ `v V : A × A′ Γ, x : A, y : A′ `c M : B

Γ `c

pm V as (x, y).M : B

· · · Γ `c Mi : B
i

· · · i∈I

Γ `c λ{. . . , i.Mi, . . .} :
Q

i∈I
B

i

Γ `c M :
Q

i∈I
B

i

ı̂ ∈ I
Γ `c ı̂‘M : B

ı̂

Γ, x : A `c M : B

Γ `c λx.M : A → B

Γ `v V : A Γ `c M : A → B

Γ `c V ‘M : B

Fig. 1. Terms of Call-By-Push-Value

To avoid confusion between tags and identifiers, we adopt the convention
that tags begin with #, and identifiers do not.



Computational Effects

CBPV can be extended with many different computational effects. We consider
the example of printing, given by the typing rule

Γ `c M : B

Γ `c print c. M : B

where c ranges over an alphabet A.

3 Traditional Operational Semantics

We give operational semantics in two traditional styles, before moving on to the
jumping semantics. The first is a first-order definitional interpreter [Rey72], that
evaluates every closed computation to a terminal computation of the same type.
The terminal computations are defined by

T ::= return V | λ{. . . , i.Mi, . . .} | λx.M

and the interpreter is shown in Fig. 2.

To evaluate

– λx.M , return λx.M
– return V , return return V
– λ{. . . , i.Mi, . . .}, return λ{. . . , i.Mi, . . .}
– force thunk M , evaluate M
– M to x. N , evaluate M , and if this returns return V , then evaluate N [V/x]
– V ‘M , evaluate M , and if this returns λx.N , then evaluate N [V/x]
– ı̂‘M , evaluate M , and if this returns λ{. . . , i.Mi, . . .}, then evaluate Mı̂

– print c. M , print c and then evaluate M .

Fig. 2. First-Order Definitional Interpreter For CBPV

The other traditional style is the CK-machine [FF86], also based on [Rey72].
At any point in time, the machine has configuration M,K when M is the compu-
tation we are evaluating and K is a stack of contexts. In this stack, we abbreviate
the context V ‘[·] as V , and the context ı̂‘[·] as ı̂. The CK-machine is shown in
Fig. 3.

The classification of λx.M as a computation (and of function types as com-
putation types) often surprises people familiar with call-by-value. But it makes
sense when we look at the CK-machine. We see that

– V ‘ can be regarded as an instruction “push V ”
– λx can be regarded as an instruction “pop x”.



Initial Configuration

M nil

Transitions

let V be x. M K
Ã M [V/x] K

M to x. N K
Ã M [·] to x. N :: K

return V [·] to x. N :: K
Ã N [V/x] K

force thunk M K
Ã M K

pm (̂ı, V ) as {. . . , (i, x).Mi, . . .} K
Ã Mı̂[V/x] K

pm (V, V ′) as (x, y).M K
Ã M [V/x, V ′/y] K

ı̂‘M K
Ã M ı̂ :: K

λ{. . . , i.Mi, . . .} ı̂ :: K
Ã Mı̂ K

V ‘M K
Ã M V :: K

λx.M V :: K
Ã M [V/x] K

print c. M K

Ã
c

M K

Terminal Configurations

return V nil

λ{. . . , i.Mi, . . .} nil

λx.M nil

Fig. 3. CK-Machine For CBPV



This reading is made, in the call-by-name setting, in [Kri85]—see Sect. 7.
The contexts on the stack that are of the form [·] to x. M are called frames.

In general, the stack will consist of frames, values and tags. For a call-by-value
language, the stack would consist only of frames.

4 Jumping Semantics: An Informal Account

4.1 Requirements

Putting the ideas of Sect. 1.1 into a CBPV form, we require a jumping machine
that embodies the following intuitions.

– A thunk is a point. When we force the thunk, we jump to it.
– A frame is a point. When we return a value to a frame, we pop the frame

from the stack and jump to it.

4.2 Graphical Syntax

We write a program using a graphical syntax, depicted in Fig. 4, in which

– we write thunk as •, because it is a point
– each instruction, other than sequencing, is enclosed in a pentagon
– each sequencing to is enclosed in a hexagon

– binding occurrences of identifiers are placed on edges, enclosed in

The link-point of a polygon is its leftmost vertex, which usually leads to
the next instruction. In certain cases (e.g. conditional branching), there is more
than one possibility, and we tag the edges accordingly. In other cases (e.g. jump),
there are none. The frame-point of a hexagon is its rightmost vertex. We give the
name jumpabout to this kind of tree of pentagons, hexagons, edges and points
(again, this is informal at this stage).

4.3 Principles of Execution

During execution, there are two jumpabouts:

– the code, which does not change
– the trace, which grows throughout execution.

The cycle of execution can be described (in the von Neumann idiom) as
“fetch, decode, execute”.

fetch We copy a polygon, including its inscription, from the code to the trace.
decode We decode the inscription in the newly created trace polygon by

– replacing each • by pt i, where i is the position of the •
– replacing each identifier by the value it is bound to, determined by look-

ing up the branch of the trace.
This gives us an instruction.



Term syntax Graphical syntax

print "hello".

print "goodbye".

force x print "goodbye"

force x

print "hello"

pm x as {
(#jan,y). (

pm y as (u,v)

λ {
#mon. return u

#tue. return (u,u)

}
)

(#feb,y). force y

}

force y

λ

return u return (u,u)

pm y as

pm x as

y y

(u,v)

#mon

#feb
#jan

#tue

print "hello".

let thunk (

λ x.

return x.

) be u.

(

(#jan,()) ‘

force u

) to y.

return y

return y

to

force u

λ

return x(#jan,()) ‘

let

print "hello"

be

u

y x

Fig. 4. Examples of Graphical Syntax



execute We execute the instruction. At the same time, we draw an edge from
the link-point, unless the instruction is a jump i.e. force or return, in which
case we draw an edge from the destination of the jump.

Every point in the trace has a teacher, which is the point in the code it was
copied from; similarly for pentagons, hexagons and edges. The function mapping
each point, polygon and edge to its teacher is a jumpabout homomorphism, and
it grows as the trace jumpabout grows.

4.4 Example

To illustrate how this works, we take the last example from Fig. 4. For ease
of reference, we have numbered all the polygons, and numbered all the points
(though there is only one).

return y

to

force u

λ

return x(#jan,()) ‘

let

print "hello"

0

1

2 3

4 5 6

7

0
be

u

y x

Initially, the code polygon is the root (numbered 0 in our example). As in
the CK-machine, the stack is nil.

Cycle 0: fetch We copy code polygon 0 to the trace, so the trace looks like
this:

print "hello"

0

J

Thus the teacher of trace polygon 0 is code polygon 0. We use the symbol
J for “where we are now”.

Cycle 0: decode We obtain the instruction print "hello".
Cycle 0: execute We print hello, and draw an edge from the link-point.

print "hello"

0

J

Cycle 1: fetch We copy code polygon 1 to the trace, which now looks like this:

let

print "hello"

0

1
0

be J



Thus teacher of trace polygon 1 is code polygon 1, and the teacher of trace
point 0 is code point 0.

Cycle 1: decode To decode the inscription let • be, we replace • by pt0, and
obtain the instruction letpt0be.

Cycle 1: execute We make a binding to pt0, on an edge drawn from the link-
point.

let

print "hello"

0

1
0

be

J

u 7→ pt0

Cycle 2: fetch We copy code polygon 2 to the trace, so the trace looks like
this:

to

let

print "hello"

0

1

2

0
be

J

u 7→ pt0

where the teacher of trace polygon 2 is code polygon 2.
Cycle 2: decode We obtain the instruction to.
Cycle 2: execute We place trace hexagon 2 on the stack, which becomes hgon2 ::

nil, and draw an edge from the link-point.

to

let

print "hello"

0

1

2

0
be

J

u 7→ pt0

Cycle 3: fetch We copy code polygon 4 to the trace, so the trace looks like
this:

to

(#jan,()) ‘

let

print "hello"

0

1

2

0
be

J

u 7→ pt0

where the teacher of trace polygon 2 is code polygon 2



Cycle 3: decode We obtain the instruction (#jan,()) ‘.
Cycle 3: execute We push (#jan,()), making the stack (#jan,()) ::hgon2

::nil, and draw an edge from the link-point.

to

(#jan,()) ‘

let

print "hello"

0

1

2

0
be

J

u 7→ pt0

Cycle 4: fetch We copy code polygon 7 to the trace, which now looks like this:

to

force u

(#jan,()) ‘

let

print "hello"

0

1

2

0

4

be

J

u 7→ pt0

where the teacher of trace polygon 4 is trace polygon 7.
Cycle 4: decode To decode the inscription force u, we must replace u by its

binding. Looking up the branch of the trace, we see that u is bound to pt0.
So we obtain the instruction force pt0.

Cycle 4: execute We jump to trace point 0, and draw an edge from it:

to

force u

(#jan,()) ‘

let

print "hello"

0

1

2

0

4

be

J

u 7→ pt0



Cycle 5: fetch We copy code polygon 3 to the trace:

to

force u

λ

(#jan,()) ‘

let

print "hello"

0

1

2

0

4

5

be

J

u 7→ pt0

where the teacher of trace polygon 5 is code polygon 3.
Cycle 5: decode We obtain the instruction λ.
Cycle 5: execute We pop the value (#jan,()) from the stack, which becomes

hgon2 ::nil. We make a binding to this value on the edge drawn from the
link-point:

to

force u

λ

(#jan,()) ‘

let

print "hello"

0

1

2

0

4

5

be

J

u 7→ pt0

x 7→ (#jan,())

Cycle 6: fetch We copy code polygon 6 to the trace:

to

force u

λ

return x(#jan,()) ‘

let

print "hello"

0

1

2

6

0

4

5

be

J

u 7→ pt0

x 7→ (#jan,())

where the teacher of trace polygon 6 is code polygon 6.



Cycle 6: decode Replacing x by its binding, which is (#jan,()), we obtain
the instruction return (#jan,()).

Cycle 6: execute We remove hgon2 from the stack, which becomes nil, jump
to the frame-point of hexagon 2, and draw an edge from it. We make a
binding to return (#jan,()) on this edge.

to

force u

λ

return x(#jan,()) ‘

let

print "hello"

0

1

2

6

0

4

5

be

J

u 7→ pt0

y 7→ (#jan,()) x 7→ (#jan,())

Cycle 7: fetch We copy code polygon 5 to the trace:

return y

to

force u

λ

return x(#jan,()) ‘

let

print "hello"

0

1

2

6

0

4

5

7

be

J

u 7→ pt0

y 7→ (#jan,()) x 7→ (#jan,())

where the teacher of trace polygon 7 is code polygon 5.

Cycle 7: decode Replacing y by its binding, which is (#jan,()), we obtain
the instruction return (#jan,()).

Cycle 7: execute Since the stack is empty, we terminate.

The final instruction is thus return (#jan,()).

5 Exercise

The reader is invited to try executing the following example (21 cycles), which
could be used to illustrate to students the concept of static binding.



to λ

return ()

force f

(#jan,(#aug,())) ‘ print "yes"

λ

pm x as

return

return y

return y

#jan

let

force z(#jan,(#sep,()) ‘

force f

to

#feb

0

1 2

3 54 6

7 8 9 10

11 13

14

12

15 16

17

0

1

be

#tue ‘

#tue ‘

f

x

y

#mon

z

w

y

#tue

This example makes it clear how easy it is to execute a program on paper
using the jumping machine.

6 Correctness

There is a lock-step correspondence between the jumping machine and the CK-
machine. More precisely, suppose we take a computation M , and create the trace
using the jumping machine. Then to each trace polygon r we can associate a
closed computation θ(r) of type B. Similarly to each stack k that appears in
the jumping execution, we can associate a stack θ(k) of the CK-machine. If the
sequence of trace points and stacks is

(polygon r0, stack k0), (polygon r1, stack k1), . . .

and the sequence of the CK-machine is

M,K = M0,K0 Ã M1,K1 Ã · · ·

then the two sequences have the same length and θ(ri) = Mi and θ(ki) = Ki.

The computation θ(r) is obtained from the (decoded) instruction of r by
substituting for points (including link-points and frame-points), and likewise
the stack θ(k). For the example in Sect. 4.4, we therefore know not only that
the CK-machine execution has 7 transitions, but also that it terminates in the
configuration

return(#jan, ()) nil



7 Comparison With CEK And Krivine Machine

Both the Krivine machine [Kri85] and the CEK-machine [FF86] can be seen as
lying on a spectrum between the CK-machine and the jumping machine. Alhough
the Krivine machine was presented for CBN, and the CEK-machine for CBV,
both styles of machine can be adapted for CBPV.

The intuition underlying the Krivine machine is described in [Kri85] as fol-
lows, slightly paraphrased:

– λx.M means: pop x, then do M

– MN [translated into CBPV as (thunk N)‘M ] means: push the address of
N , then do M

– x [translated into CBPV as force x] means: go to the address that x is
bound to.

The Krivine machine contains a “T” component, which points into the code. In
our terminology, it is the teacher of the current polygon. So the jumping about
the code is made clear. But the jumping about the trace is not apparent. Instead,
the machine contains an “environment” component, which is changed with every
jump.

The CEK machine is closer still to the CK-machine. Instead of the “T” com-
ponent pointing into the code, it contains a “C” component which is the subterm
itself. So there is no jumping at all, not even about the code. We can therefore
think of these machines as lying on a spectrum:

CEK-machine Krivine machine
CK-machine jumping machine
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