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Abstract. This article presents a way of implementing abstract inter-
pretations that can be very efficient. The improvement lies in the use
of a symbolic representation of boolean functions called Typed Deci-
sion Graphs (TDGs), a refinement of Binary Decision Diagrams. A gen-
eral procedure for using this representation in abstract interpretation is
given; we examine in particular the possibility of encoding higher order
functions into TDGs. Moreover, this representation is used to design a
widening operator based on the size of the objects represented, so that
abstract interpretations will not fail due to insufficient memory. This
approach is illustrated on strictness analysis of higher-order functions,
showing a great increase in efficiency.

1 Introduction

One of the basic problems of program analysis is that, even theoretically speak-
ing, there are properties of programs which cannot always be computed, such as
termination. A way to circumvent this difficulty is to allow for partial or approx-
imate answers. Abstract interpretation is the theoretical framework to design
automatic program analysis based on sound approximations. Although this the-
ory deals very well with many problems of program analysis, it may become
unusable in practice when the analysis is too precise, because of the amount of
memory, or time required. The goal of this article is to show that it is some-
times possible, using compact representations of boolean functions, not only to
increase significantly the efficiency of the analysis, but also to balance the trade
off between precision and efficiency during the analysis.

In the second section of this paper, we will describe the symbolic represen-
tation of boolean functions. In section 3, we will show how to use it in abstract
interpretation. We will expose in detail the coding of higher order functions
through TDGs, and the use of those graphs in conjunction with data approxi-
mation. The last section is dedicated to a complete example of abstract inter-
pretation using TDGs: strictness analysis.

Because the most general framework of abstract interpretation is mathemat-
ical, most elements of this paper have been described mathematically. Conse-
quently some of the principles may come through unclear. The reader who is not
familiar with some concepts or does not want to read mathematical formulas
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should read the informal descriptions, which will give an idea of what is going
on. On the other hand, if the reader is already familiar with one notions, he is
invited to skip the informal presentation corresponding to this notion.

2 Typed Decision Graphs

Typed Decision Graphs [9], or TDGs, are powerful symbolic representations of
boolean functions. They are a refinement of the well-known Binary Decision
Diagrams [6], or BDD, which are already widely used in many fields, such as
circuits synthesis and verification [11, 12, 15], or protocols verification [13, 14]
but mostly unused in abstract interpretation (but see [20, 21]). The purpose of
this paper is to show that this representation of boolean functions can in some
cases have major applications in abstract interpretation.

2.1 Informal Presentation of Binary Decision Diagrams

A BDD, as introduced by Bryant in [6], is a compact representation of the
Shannon tree of a boolean expression.

Shannon Trees Shannon trees are used to represent boolean expressions. They
describe a way to evaluate the expression. First evaluate the value of one of the
boolean variables of the expression. If this variable is true, then we can represent
a boolean expression containing less variables, and if it is false, we represent
another boolean expression containing less variables. If, in the end, the boolean
expression does not contain any more variable, then its value is either true or
false.

As a result, each node of a Shannon tree is associated to a variable, the left
subtree represents the boolean expression when this variable is false and the
right subtree when it’s true.

In order to have a unique representation of a given boolean expression, the
variables of the expression are to be taken in a predetermined order.

For example, let’s consider the following expression: (x∧y)∨(y∧¬z)∨(z∧¬y).
We can represent this expression f using a table:

x 0 0 0 0 1 1 1 1
y 0 0 1 1 0 0 1 1
z 0 1 0 1 0 1 0 1
f 0 1 1 0 0 1 1 1

If x < y < z, the Shannon tree representing f will be:
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Reduction Rules Once a boolean expression is represented by a Shannon tree,
it is easy to see how to gain space. First, there’s no need to duplicate subtrees.
The action of merging redundant subtrees is called sharing. Instead of having
a binary tree, we will have a directed acyclic graph. In order to recognize left
subtrees from right subtrees we will draw the formers with dashed line. In our
example, f will be represented by:

x

�
�

�
�

???????

y

�
�
�

??????? y

o o o o o o o

z

�
�
�

???????? z

��������

�
�
� z

�
�

�
�

��������

0 1
The second reduction rule is the elimination of useless nodes, namely nodes

where the different possible values of the variable lead to the same result. After
this step, we have the BDD representing f :

x

�
�

�
�

???????

y

�
�
�

??????? y

o o o o o o o

��������������

z

�
�
�

???????? z

��������

�
�
�

0 1

2.2 Formalization Work on Binary Decision Diagrams

Abstract interpretation is a theoretical and formalized approach of program
analysis. So, to use BDDs in abstract interpretation we need to formalize them



very precisely. We shall first define the objects encoded by BDDs, which are
boolean functions and the names of the variables used to calculate them.

Let Var be a totally ordered set of variables. The order on Var will be
noted <v.

Varn
def= {V ⊆ Var | |V | = n}, where |V | is the size of the set V .

To simplify our notations, we always order the indexes of set of variables
according to the order on Var. So when we write {x1, . . . , xn} ∈ Varn it means
∀i, 1 ≤ i ≤ n, xi ∈ Var and x1 <

v . . . <v xn.

Bn
def= Varn × ({0, 1}n → {0, 1})

B def=
⋃
n

Bn

The pair ({x1, . . . , xn}, f) ∈ Bn, also noted f(x1, . . . , xn) in this paper, is the
semantics of a boolean expression with n (free) variables x1 <

v . . . <v xn whose
value is given by the function f . The variable x alone stands for ({x}, Id). The
symbols ¬, ∧ and ∨ have the usual meaning of the boolean operators “not”,
“and” and “or”. We define V(f(x1, . . . , xn)) def= {x1, . . . , xn}.

BDDs are based on Shannon trees, whose uniqueness is insured by Shannon’s
expansion theorem [1]. Written in our formalism, this theorem is:

Theorem 1 (Shannon’s expansion). Let f(x1, . . . , xn) ∈ Bn.
∀i, 1 ≤ i ≤ n, ∃!(fxi , fxi) ∈ (Bn−1 × Bn−1) such that:

f(x1, . . . , xn) = (¬xi ∧ fxi) ∨ (xi ∧ fxi)

A Shannon tree is a binary tree labeled with variables, 0 or 1. A binary tree
T can be defined as a partial function from {0, 1}?, the set of all finite words
on {0, 1}, to the set of labels, with the prefix closure property i.e. the domain is
not empty, and if a word uv is in its domain, then u is in its domain too1. The
Shannon tree representing f(x1, . . . , xn) is defined as follows:

St(f(x1, . . . , xn))(u) def= if |u| < n then x|u|+1

if u = a1a2 . . . an then f(a1, a2, . . . , an)

where |u| is the length of u.
As explained in the informal presentation, BDDs are compact representations

of Shannon trees, obtained by enforcing the two simple reduction rules: sharing
and elimination.

Sharing. This operation transforms the tree into a directed acyclic graph
(DAG) by sharing isomorphic subtrees. A binary decision DAG (BDD) can be
defined recursively as being either a node N of Var×bdd×bdd or a leaf in {0, 1}.
1 uv is the concatenation of u and v



As the transformation is described by the share function, it is obviously still
unique.

share(St) def= if St = root(k) then k else N(St(ε), St\0, St\1)

where ε is the empty word, root(k) is the tree with domain {ε} and value k, and
T\u is the subtree of T with domain dom(T\u) def= {v|uv ∈ dom(T )} and such
that T\u(v) def= T (uv).

The sharing results from the fact that if two subtrees are isomorphic the
mathematical objects representing these subtrees are equal. The results of share
on them are obviously identical.

Elimination of Superfluous Nodes. Once again, the transformation can be
written as transformation rules; the representation is still unique.

supp(N(x, d1, d2)) = if d1 = d2 then supp(d1) else N(x, supp(d1), supp(d2))

After applying this rule, a BDD does no longer represent one function of B,
but all the functions whose results are the same regardless of the assignment of
additional variables absent in the BDD. For example, if ∀x, y, z, f(x, y, z) = g(y)
then f(x, y, z) and g(y) are represented by the same BDD. This drawback does
not really matter for this work, because what we really manipulate are functions
from {0, 1}ω to {0, 1}.

2.3 TDGs

To reduce the size of the graph even further, we go back to Shannon trees and
try to produce new isomorphic subtrees. Then we will apply the same reduction
rules.

Typed Shannon Trees. The idea of typed Shannon trees [3] came from the
remark that:

¬f = ¬x ∧ ¬fx ∨ x ∧ ¬fx
This means that as far as Shannon trees are concerned, f and ¬f are identical
except for the leaves: 0 becoming 1 and 1 becoming 0. So instead of having
two different trees, we only need one tree and a sign. Typed Shannon trees are
merely trees with signs. To be more precise, the labeling set becomes {−,+} ×
(Var

⋃
{0, 1}). And if T such that T (ε) = (s, l) represents f then ¬f can be

represented by T if you change T (ε) in (−s, l).
Now, the problem is that when using simple Shannon trees and just adding

signs, canonicity is lost: 0 can be represented by (+, 0) or (−, 1) for example.
Let us simply make a choice, once for all. Here is one that provides good results
for the size of the graph [10]:

Tst(f(x1, . . . , xn))(a1 . . . ai)
def= if f(a1, . . . , ai, 1, . . . , 1) = 1

then (+,St(f(x1, . . . , xn))(a1 . . . ai))
else (−,St(¬f(x1, . . . , xn))(a1 . . . ai))



The resulting tree is represented in fig. 1. The signs have been put on the edges
instead of the labels, and only minus have been represented to get a more com-
pact representation.
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Fig. 1. Typed Shannon tree.

Resulting Graph. Now, if we simply apply the same reduction rules as for
a BDD, still assuring the uniqueness of the representation, and we get Typed
Decision Graphs. To know the value of the function for a given assignment,
follow the same method as for BDD, counting the number of − in the path. If
this number is odd then the result is 0, if it is even, 1.
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Fig. 2. The TDG for f(x, y, z) = (x ∧ y) ∨ (y ∧ ¬z) ∨ (z ∧ ¬y), and f(y, x, z) =
(y ∧ x) ∨ (x ∧ ¬z) ∨ (z ∧ ¬x).

The size of the TDGs looks quite reasonable, and it is in most case. But
there are still cases where it is exponential in the number of its variables [16]. If
we restrict the representation to boolean functions without explicit variables2,
2 It is possible to represent boolean functions with explicit variables using boolean

functions without explicit variables, so it could still be useful.



then it is sometimes possible to reduce the size of the TDG representing the
function by changing the order of the variables3. But there are cases where the
representation is still exponential, whatever the order of the variables.

2.4 Operators on TDGs

Not only does this representation save space, but it saves time too, assuming the
operators on boolean functions are correctly translated.

An operator is a function from Bn to B. The key property that allows for a
fast computation of operators is orthogonality [16].

Definition 1. Let Op be a n-operator. Op is said orthogonal iff:∀f1, . . . , fn ∈ B, ∀x ∈ Var,
Op(f1, . . . , fn) = ¬x ∧Op(f1x, . . . , fnx) ∨ x ∧Op(f1x, . . . , fnx)
∀k1, . . . , kn ∈ B0, Op(k1, . . . , kn) ∈ B0

For example, ¬, ∧ and ∨ are orthogonal operators.
An orthogonal operator on TDGs can be calculated by the following algo-

rithm:

OpTDG(k1, . . . , kn) = Op(k1, . . . , kn)
OpTDG(f1, . . . , fn) =

let x = inf
⋃

1≤i≤n

V(fi),

let T1 = OpTDG(f1x, . . . , fnx) and T2 = OpTDG(f1x, . . . , fnx)
if T1 = T2 then T1

if the sign of T2 is + then (+, N(x, T1, T2))
if the sign of T2 is − then (−, N(x,¬T1,¬T2))

The proof of this algorithm is by induction on |
⋃

1≤i≤n V(fi)|.
If we keep in memory the intermediate results, then the total cost in time of

the operator is O(|f1|× . . .×|fn|), where |fi| is the number of nodes of the TDG
representing fi. So most of the time4, calculation with orthogonal operators over
TDG are quite fast.

3 Abstract Interpretation

3.1 Informal Presentation of Abstract Interpretation

Abstract interpretation is a very general and formalized framework allowing to
deal with approximations. The rule of signs (positive multiplied by positive is
3 See fig. 2 for an example.
4 see section 2.3.



positive, etc.) can be seen as an abstract interpretation: the concrete domain (real
numbers) is abstracted by approximate values in an abstract domain ({positive
numbers, negative numbers, zero}), and the concrete operation (multiplication)
is approximated by an abstract operation (the rule of signs).

The aspects of abstract interpretation that we will use are:

– The possibility to lift automatically an abstract interpretation. That is to
say, given domains and their approximations, the possibility to approximate
functions over those domains.

– Widening operators. When the semantics of a program can be expressed as
the limit of the iteration of a given function (often given by the syntax of
the program), the abstract semantic can also be expressed as the limit of the
iteration of an abstract function. But in some cases, more approximation
is needed. Then abstract interpretation provides the possibility of using a
widening, which is an operator that alters the iteration, generally speeding
it, but at the cost of wider approximation.

3.2 Recall of Important Aspects

Taking the most general framework [17], all the possible behaviors of programs
are described in a standard semantics. From the point of view of abstract in-
terpretation however, only a certain class of these behaviors is interesting. This
class is the collecting semantics. Then the abstract semantics is usually an ap-
proximation of the collecting semantics5 that keeps for example only invariance
properties. All those properties are taken from sets called semantic domains, and
one of the most important tasks of an abstract interpretation is to describe the
relations between the abstract semantic domain P] and the concrete semantic
domain P\.

The concrete semantics of a program is often given by the limit of the iteration
of a concrete semantic function, F \, starting from a basis ⊥\, and using an
inductive join q\ to go to limit ordinals.

F \0
def= ⊥\

F \λ+1 def= F \(F \λ)
F \λ

def= q\β<λF \β when λ > 0 is a limit ordinal

To ensure convergence, P\ is often associated to a complete lattice structure,
the limit of the iteration being then the least fixpoint of F \ (lfp(F \)). The same
ideas apply to determine the abstract semantics of a program.

The relation between the concrete and abstract semantic can be described
by a soundness relation σ. 〈c, a〉 ∈ σ meaning that a is a sound approximation
of the property c. Moreover, one will want the approximation both sound and
5 the abstract semantics can be an approximation of whatever semantics, even another

abstract semantics, so for the purpose of relations between semantics, the approxi-
mated one will always be called concrete semantics.



“good”. To define this notion, abstract interpretation uses an approximation
order on properties, �. The soundness relation σ is then supposed to respect the
approximation order, namely if a �] a′ and 〈c, a〉 ∈ σ then 〈c, a′〉 ∈ σ. In this
case, we say that a is a better approximation than a′. In the most ideal case,
there will exist one best approximation for each property of P\. It will be given
by an abstract function α.

Sometimes, there is none or many best approximation. Even when there is
only one, the computation of the abstract property (possibly obtained by an
abstract iteration6) may be too long or even infinite. A solution for all these
problems is the use of a widening operator. A widening operator is a partial
function 5] from ℘(P]) to P] such that:

(5]A exists) ⇒ (∀c ∈ P\: (∃a ∈ A: 〈c, a〉 ∈ σ) ⇒ (〈c,5]A〉 ∈ σ))

Then we can use the following abstract iteration with widening:
F ]↑0

def= ⊥]

F ]↑λ+1 def= 5]{F ]↑λ, F ](F ]↑λ)}
F ]↑λ

def= 5](
⋃
{F ]↑β |β < λ}) when λ > 0 is a limit ordinal

If moreover there is an abstract function α, and 5] satisfy:

5]A exists ∧ c ∈ P\ ∧ a ∈ A ∧ α(c) �] a⇒ α(c) �] 5]A

q]i∈Ici exists ∧5]i∈Iai exists ∧ ∀i ∈ I:α(ci) �] ai ⇒ α
(
q]i∈Ici

)
�] 5]i∈Iai.

Consequently if the concrete iteration sequence and abstract iteration with
widening are convergent then their limits F \ε and F ]↑ε are such that α(F \ε) �]
F ]↑ε.

In fact, that limit might be a post-fixpoint, in which case the result can be
refined using a narrowing operator [4]. For more results and details on abstract
interpretation, see [17].

3.3 Using TDGs

Basically, TDGs can be used to encode the data handled by the abstract in-
terpretation. Let’s call β the encoding between P] and B, F [ the operator in-
duced by the abstract operator. Considering the properties of TDGs described
in section 2 —i.e. their compactness and the efficiency of their operators— the
replacement of the abstract iteration by the iteration of F [ on B will in general
fill considerably less space, and hopefully take less time than the iteration on
classical representations. But, while it is theoretically always possible to find an
encoding, not all encodings have these properties. As a trivial example, a coding
that associates a variable (and whatever function from {0, 1} to {0, 1}) to each
element of P] will just fill more space.
6 that is to say the limit of the F ]λ.



Although we have no general rule to find a good encoding, we provide some
generic tools that can help the design or the use of such an encoding. The first
tool will transform encodings of first order functions into encodings of higher
order functions. This tool makes the design of the encoding easier, because the
encoding of first order functions only is needed. Moreover, it applies to the
encoding of the abstract function itself into TDGs. The second tool is a widening
operator taking advantage of the structure of the TDGs. It can be used in any
abstract interpretation to produce approximations based on the complexity only.

Lifting an Abstract Interpretation.

Informal Presentation. Given the abstractions over two domains, it is possible to
abstract the set of functions over those two domains by using the set of functions
over the associated abstract domains. If those two domains are already encoded
into BDDs, it is then possible to code the functions over those domains using
BDDs. This cannot be straightforward, as functions over BDDs are not boolean
functions. The point in transforming these functions into BDDs is to replace the
variables representing BDDs by (more) boolean variables.

Bounding the number of possible BDDs the variable can represent is a nec-
essary condition to achieve that transformation. So we choose to bound the
number of variables of the BDDs that the variable represents. For example, we
will work under a limit of one boolean variable for the BDD variable f . For a
better understanding, let us come back to Shannon trees —the same can be done
with BDDs—. We can represent the function that takes f and gives a boolean
expression almost like a Shannon tree. The difference is that, there being four
different boolean expression with at most one boolean variable, one should have
four subtrees coming from f . The tree will have the following structure:
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This variable over BDDs can be replaced by two boolean variables, x1 and
x2, chosen to be taken before any variable in the subtrees:
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So we have replaced f by the following variable boolean expression with at
most one boolean variable y: ¬y∧x1∨y∧x2. This construction will be extended
and justified in the next paragraph.



Technical Aspect. Let P]1 and P]2 be two abstract semantics encoded into TDGs
by β1 and β2. Moreover we will suppose that P\1(�\1) ←−−→

γ1

α1 P]1(�]1) and P\2(�\2
) ←−−→

γ2

α2 P
]
2(�]2) are Galois connections7. As suggested in [2], such Galois connec-

tions can be lifted to functions:

P\1
m7−→ P\2(�\) ←−−−−−−−−−−−−→

λg.γ2◦g◦α1

λf.α2◦f◦γ1
P]1

m7−→ P]2(�])

is also a Galois connection, assuming � is the pointwise ordering8, and A m7−→ B
is the set of monotonic functions from A to B.

The lifted semantic domain contains functions from P]1 to P]2. It means that
if we want to extend directly the encoding to the lifted domain, we will need
functions over boolean functions, which are not directly representable by TDGs.
This is because we cannot make a binary choice after testing a functional vari-
able, as such a variable can take more than two different values. A solution is
to transform the tests of functional variables into a sequence of binary tests in
required number.

But a variable representing a TDG could take an infinite number of value,
as B is infinite. Accordingly, we will first restrain the set encoded into TDGs
to B↑

def=
⋃
nB
↑
n, where B↑n

def= ({0, 1}n → {0, 1}) → B, Var↑n being the set of

variables used in B↑n and Var↑ def=
⋃
n Var↑n.

Let λf.G ∈ B↑; then ∃n, f ∈ Var↑n, so that testing a value of f can be
replaced by testing the value of a finite set of binary variables. Three steps will
occur when transforming this expression into a boolean expression: first create
this set of binary variables (using v(f)), second link an assignment to this set of
variable to an assignment to f (using build(v(f))), at last replace f in λf.G by
the variable function just built. To understand those stages better, we will go
through them on a simple example, λf.λx.fx9. In this example, f ∈ Var↑1.

For the construction of the set of boolean variables, we use Shannon’s ex-
pansion theorem in the following form: a variable f of Var↑n+1 is equivalent to a
pair of variables (elsen(f), thenn(f)) ∈ Var↑n ×Var↑n, where elsen(f) represents
the value of f when its first variable is false, and thenn(f) when it is true. As we
want to ensure that those variables are distinct, we require the following prop-
erties for thenn and elsen: ∀f, g ∈ Var↑n+1, thenn(f) 6= elsen(g) and both thenn
and elsen are injections. We can now define the set of variables associated with
a variable f of Var↑, v(f) ∈ ℘(Var):

v(f) def= {b(f)} if f ∈ Var↑0

v(f) def= v(elsen(f)) ∪ v(thenn(f)) if f ∈ Var↑n+1

7 i.e. ∀c ∈ P\, ∀a ∈ P] : (c �\ γ(a)) ⇐⇒ (α(c) �] a).
8 f � g ⇐⇒ ∀x ∈ P1, f(x) �2 g(x).
9 To distinguish between functional variables and elements of Var, elements of Var are

noted x, y, xi, . . ., and functional variables f, g, . . .



where b is a bijection from Var↑0 to Var. It is easy to prove by induction that v(f)
is just a set of 2n distinct boolean variables, {x1, . . . , x2n}. Let us go back to the
simple example, v(f) = {x1, x2}, with x2 6= x1. Actually, two boolean variables
are exactly what is needed to represent the four different possible values of f .

Now we build the variable function associated to this set of boolean variables,
so that we can apply this set to boolean values.

build{x} def= x

build{x1, . . . , x2n}
def= λy.¬y ∧ build{x1, . . . , x2n−1} ∨ y ∧ build{x2n−1+1, . . . , x2n}

Once again, this definition is justified by Shannon’s expansion theorem. In our
example, build{x1, x2} = λy.¬y ∧ x1 ∨ y ∧ x2.

It is now easy to translate the assignment of a variable f of Var↑n by F ∈
({0, 1}n → {0, 1}) into an assignment of v(f): just assign to each variable of
v(f) the value of F applied to the correct boolean values, such that F equals
build(v(f)) in which all variables of v(f) have been instantiated. So, for exam-
ple, substituting the variable f of Var↑1 by the function λx.¬x is the same as
substituting v(f) = (x1, x2) by (1, 0).

We can now code B↑. Let λf.G ∈ B↑, then ∃n, f ∈ Var↑n. Let {y1, . . . , y2n} =
s(v(f)) where s is a permutation on Var such that y2n is less (for the order on
Var) than the smallest possible variable appearing in G. Then if the encoding is
called β↑:

β↑(λf.G) def= λy1, . . . , y2n .G[f/build{y1, . . . , y2n}]

Example: β↑(λf.λx.fx) = λx1.λx2.λx.¬x ∧ x1 ∨ x ∧ x2.
We now have an encoding of P]1→2, if we can code it into B↑. To achieve this,

we will assume the following hypothesis on β1: for all variable of P]1 there exists
a N such as each instantiation of the variable is coded in Bn with n ≤ N . Then
βv1 of such a variable is a variable in Var↑N . So

β1→2(λf.G) def= β↑(λβv1 (f).β2(G[f/βv1 (f)]))

This coding is interesting for abstract functions too, because if G = lfp(F2)
then λf.G = lfp(F1→2) where F1→2(λx.y) def= λx.F2(y). So if F ]2 is coded into
TDG, F ]1→2 can be coded into TDG too.

In the particular case where P]2 = P]1, we have coded functions over P]1. As
abstract functions are just functions over P]1, we can thus code them into TDG,
making the iteration faster10. To encode higher order functions on P]1, we just
have to iterate this construction, as now first order functions are just TDGs.
For example, the second order function λg(λfλx.g(f(x))) can be encoded the
following way: g ∈ V ar↑1 , so v(g) = {z1, z2} and so β↑(λg(λfλx.g(f(x)))) =
λ(z1, z2, x1, x2, x).¬(¬x ∧ x1 ∨ x ∧ x2) ∧ z1 ∨ (¬x ∧ x1 ∨ x ∧ x2) ∧ z2.
10 This is not the case if the entire abstract function is not needed. In the case of

chaotic iteration for example, we can find better encoding of abstract functions.



A Widening Operator on TDGs. The question of the size of a TDG is at
the core of efficiency. Of course taking smaller space is efficient in itself, but as
seen in section 2, the speed of operators upon a TDG depends directly on its
size. To reduce the size we can use less powerful representations without explicit
variables and try out different ordering for the variable. So far however, no really
satisfactory solution have been brought out, and some cases will always remain
exponential for any ordering. So the proposed solution —specific to abstract
interpretation— is a widening operator based on the size of the TDG. This
widening operator is very general and can be used whenever the size of the
abstract domain is too big. In such a case, the encoding of a single element of the
abstract domain can be too long for practical manipulation. It is possible by the
use of this widening operator to chose an approximate solution that is compact
enough for representation on a computer. This widening is quite different from
classical widenings used in abstract interpretation as it does not use any semantic
information to approximate the result, but only tries to approximate what fills
the most space, leaving as much information as possible in the computation
framework.

Prerequisites and Characteristics. This widening operator is closely related to
the approximation ordering upon P[, �[ induced by �], which should be com-
patible with the structure of the TDGs. In fact what the widening operator
exactly needs is a way to compute the least upper bound of two TDGs for �[,
and, as this operation will be essential to the widening operator, the cheaper the
way, the better.

Then, the widening operator takes in a limit size l and a TDG f . The result
5(l, f) is a TDG g such that |g| ≤ l11 and f �[ g. To make sure that it is always
possible (for all positive l), we set (+, 1) or (−, 1) as the top of P].

This operator can be used to produce a very classical widening operator as
defined in the beginning of this section: 5[A def= 5(l(max(A)),max(A)) where
max(A) is, if it exists, the maximum of A for the computational ordering12 (v[),
and l a function that yields the limit.

If the abstract function is coded into TDG too, then this widening operator
can be used to do static widening by approximating the abstract function. It can
be very profitable because if the TDG used to represent the abstract function
is too big, each step of the iteration will be too long, and sometimes the size
of the TDG representing the iterates will be directly related to the size of the
TDG representing the abstract function. Approximating the abstract function
is sound, as justified by the following property:

Property 1 Let F1 and F2 be monotonic functions (for v). If ∀f F1(f) � F2(f)
and F1 or F2 are monotonic for � then

lfp(F1) � lfp(F2)

11 |g| is the number of nodes of g, i.e. its “size”
12 the ordering used to ensure termination of the iterations.



Proof. f � g implies F1(f) � F2(g) because F1(f) � F1(g) by monotonicity
and F1(g) � F2(g) by hypothesis. F1(⊥) � F2(⊥) by hypothesis. The property
follows by induction on the iterates. ut

Algorithm. The problem is that for this widening operator we will have to find
the best possible g such that |g| ≤ l, in a decent amount of time. It is not
reasonable to search for the best solution13 as it would theoretically require to
explore all the possible derivations of a given TDG, which is exponential in the
size of the TDG.

Hence we will try to modify the TDG in order to apply one of the reduction
steps described in section 2. To obtain sharing, we just consider two nodes of
the TDG and, to make them equal, replace them by the least upper bound of the
two nodes. To obtain elimination of superfluous nodes, we replace a node
N(x, T1, T2) by the least upper bound of T1 and T2. Because of the properties
required on �[, this operation gives a TDG greater (for �[) than the previous
one.

The algorithm proceeds by steps: each step, if the size of the TDG is above
the limit, try each of the reductions above and take the best one; repeat. The
best one is the one with the highest rate

number of nodes above the limit gained
cost of the reduction

where the cost of the reduction is, for a sharing of T1 and T2:

cost(T1 → T ′)×mult(T1) + cost(T2 → T ′)×mult(T2)

and for an elimination of T = N(x, T1, T2):

(cost(T1 → T ′) + cost(T2 → T ′))×mult(T ).

Each reduction implies taking the least upper bound T ′ of two TDGs T1 and T2.
The computation of the least upper bound is supposed to yield cost(T1 → T ′)
and cost(T2 → T ′) 14. Mult is the multiplicity of the node, namely the number
of time the node would appear in the Shannon tree representation of the TDG,
so that changing a node shared by many would cost more than changing one
used by only one.

Each forced reduction will not automatically reduce the size of the TDG
because the least upper bound may contain more new nodes than gained through
the reduction. However, if the size of the TDG is greater than 1, it will contain
a node of the form N(x, (−, 1), (+, 1)). This is because it is the only possible
TDG with one variable, so the only possible node in which the greatest (for <v)
variable of the TDG appears. So, if (+, 1) or (−, 1) represents the top of P], the
reduction of this node into the top will always be tried, ensuring that at least
13 That is to say the min (for �[) of all the possible solutions.
14 This cost is supposed to express the loss of precision; for example it could be the

length of the maximum chain between Ti and T ′.



one of the modifications tried on the TDG within one step reduces the size of
the graph. Thus if the limit is positive the size of the TDG will at each step
either decrease or be less than or equal to the limit. Besides, after each step, the
new TDG is greater than the previous one for �[, so the algorithm is correct.

Example Consider the function f = (y ∧ x) ∨ (x ∧ ¬z) ∨ (z ∧ ¬x) defined in
the examples of BDDs, with the pointwise ordering for �[ based on 0 �[ 1. See
figure 3 for the possible solutions.
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Fig. 3. f and the two best approximates with 3 nodes or less.

Complexity. Considering that at each step, the size of the TDG is reduced by
one at least, the number of steps is smaller than the difference between the
limit and the size of the TDG. But this is still too much: this difference may
be exponential. To reach faster a size closer to the limit, we use a less refined
algorithm which assumes that (+, 1) or (−, 1) represents the top. For each node
such that the size of the TDG without that node 15 lies between the limit and
the limit plus half the difference between the limit and the size of the TDG, we
try to replace it by the top and take the one that gives the best result. That
way, each step of this algorithm at least halves the difference between the limit
and the size of the TDG.

The most precise algorithm requires each pair of node to be tested. The
multiplicity of each node can be calculated in a time polynomial in the number
of nodes by going through the TDG and tagging the nodes. As a result, if the
computation of the least upper bound (plus the computation of the costs) is poly-
nomial in the size of the TDGs, then the most precise algorithm is polynomial
in the size of the TDG.

Thus we can combine the two algorithms in a way such that if the difference
of the size of the TDG and the limit l is bigger than P (l) —where P is a
polynomial— then use the rough algorithm else use the other one. Assuming
that the limit is polynomial in the number of variables of the TDG, then the
global algorithm is polynomial in the number of variables.
15 i.e. after replacing this node by the top.



4 A Complete Example: Strictness Analysis

In this section we describe a complete example of program analysis using abstract
interpretation and TDGs. Let’s define first the property to be computed.

Definition 2. A function f is said to be strict in one of its arguments x if
everytime the evaluation of that argument fails, the evaluation of f(x) fails

The evaluation fails if it ends with an error or does not terminate.
The goal of a strictness analysis is to determine whether a function is strict in

any of its arguments. This can be useful for example in the compilar optimization
of a call-by-need prgramming language. The principle of such an implementation
is to keep the arguments of functions in a closure until they are first needed in
the evaluation of the function and then evaluate them. If a function is strict in an
argument then that argument will be always needed, so the compiler can evaluate
the argument anyway16, saving in the meantime the space for the closure.

Strictness analysis is a good example of application of TDGs because it is
a useful analysis —in a compiler for example— but the most precise abstract
interpretations known so far are too slow to be used at higher order.

4.1 Standard Strictness Analysis

What we call standard analysis is the abstract interpretation which will be coded
into TDGs. The well-known analysis we use as a basis is one developed by Alan
Mycroft in [5], that still seems to be one of the most precise, and that has the
advantage of being already coded into boolean functions.

The Concrete Domain. Mycroft’s analysis deals with first order functions
from base types to base types. The concrete semantic domain P\ is the set of
relations from D to D [19] where D is a complete domain with infimum ⊥ and the
values from the base types, such as integers. ⊥\ def= λx.⊥. The concrete semantic
function is constructed by induction on the syntax of the expression defining the
function: F \ = S[[f(x)=e]].

S[[f(x)=b(e1,...,en)]](g) def= {(x, b(v1, . . . , vn))|
∧

1≤i≤n

(x, vi) ∈ S[[f(x)=ei]](g)}

S[[f(x)=x]](g) def= {(x, x)|x ∈ D}

S[[f(x)=f(e)]](g) def= {(x,w)|(x, v) ∈ S[[f(x)=e]](g) ∧ (v, w) ∈ g}

Where b are constants of the language, such as +, integers or the conditional. b
is the corresponding constant in P\. For example 2 = 2, and cond(x1, x2, x3) =
if x1 = ⊥ then ⊥, if x1 =true then x2 and if x1 =false then x3.
16 Assuming there is no side effect.



The Abstract Domain. The abstract domain introduced by Mycroft is the set
of monotonic functions from {0, 1} to {0, 1}, with the ordering 0 �] 117, which
can be interpreted as:

– λx.0 the function never terminates,
– λx.x the function is strict in x and
– λx.1 we do not know.

⊥] def= λx.0. The abstract semantic function is also defined by induction on the
syntax:

S][[f(x)=b(e1,...,en)]](g]) def= b](S][[f(x)=e1]](g]), . . . , S][[f(x)=en]](g]))

S][[f(x)=x]](g]) def= λx.x

S][[f(x)=f(e)]](g]) def= g] ◦ S][[f(x)=e]](g])

b] represents b on P]. For example 2] = 1 and ite](f1, f2, f3) = f1 ∧ (f2 ∨ f3).

The Relations Between the Two Semantics. The soundness relation be-
tween P\ and P] is described by a Galois connection, P\ ←−−→

γ

α P]:

α(f)(0) def= if {x|(⊥, x) ∈ f} = {⊥} then 0 else 1

α(f)(1) def= if {y|x ∈ D ∧ (x, y) ∈ f} = {⊥} then 0 else 1

γ(λx.0) def= λx.⊥

γ(λx.x) def= {(⊥,⊥)} ∪ ((D − {⊥})×D)

γ(λx.1) def= D ×D

To ensure that F ] is a good approximation of F we shall make a few more
assumptions on the constants:

if ∀i, α(fi) �] g]i then

b](g]1, . . . , g
]
n) �] α({(x, b(v1, . . . , vn)|

∧
1≤i≤n

(x, vi) ∈ fi})

Then

Property 2 α(lfp(F )) �] lfp(F ]).

Proof. By induction on the syntax, we shall first prove that ∀f ∈ P\ and
∀g] ∈ P], α(f) �] g] implies that α(F (f)) �] F ](g]), then as α(⊥\) = ⊥]
the inequation on the fixpoints will follow by induction on the iterates.
17 The computational ordering is the same as the approximation ordering.



So let’s suppose α(f) �] g].

α(S[[f(x)=b(e1,...,en)]](f))

= α({(x, b(v1, . . . , vn))|
∧

1≤i≤n

(x, vi) ∈ S[[f(x)=ei]](f)})

�] b](S][[f(x)=e1]](g]), . . . , S][[f(x)=en]](g]))
�] S][[f(x)=b(e1,...,en)]](g])

The first line is given by definition of S, the second by hypothesis of induction
the third by the property of the abstract constants, and finally the fourth by
definition of S].

α(S[[f(x)=x]](f)) = α({(x, x)|x ∈ D})
= λx.x

= S][[f(x)=x]](g])

For the last step of the proof we need a few more results on the composition
of relations. R1 ◦ R2

def= {(x,w)|(x, v) ∈ R2 ∧ (v, w) ∈ R1}. Suppose α(R1) ◦
α(R2)(a) = 0. If α(R2)(a) = 0 then {y|x ∈ A ∧ (x, y) ∈ R2} = {⊥}18 and
{y|(⊥, y) ∈ R1} = {⊥}, so {y|x ∈ A ∧ (x, v) ∈ R2 ∧ (v, y) ∈ R1} is {⊥}, so
α(R1 ◦ R2)(x) = 0. If α(R2)(a) = 1 then {y|(x, y) ∈ R1} = {⊥} so {y|x ∈
A ∧ (x, v) ∈ R2 ∧ (v, y) ∈ R1} is {⊥}, so α(R1 ◦R2)(x) = 0. It means that ∀Ri,
α(R1 ◦R2) �] α(R1) ◦ α(R2).

α(S[[f(x)=f(e)]](f)) = α({(x,w)|(x, v) ∈ S[[f(x)=e]](f) ∧ (v, w) ∈ f})
= α(f ◦ S[[f(x)=e]](f))
�] α(f) ◦ α(S[[f(x)=e]](f))
�] g] ◦ S][[f(x)=e]](g])
�] S][[f(x)=f(e)]](g])

The first line is the definition of S. Then use the definition of the composition of
relations, then what was just proved above on composition and α. The last lines
use the fact that α(f) �] g] by hypothesis, α(S[[f(x)=e]](f)) �] S][[f(x)=e]](g])
by hypothesis of induction, and g] is monotonic as every function in P]. ut

It is interesting to notice that Mycroft’s analysis gives more than just the
strictness result: it gives results useful in further analysis using this function. For
example f(x)=f(x) will give λx.0 so f is strict in x. With the only information
that f is strict in x we cannot say that g defined by g(y)=f(0) is also strict.

4.2 The Encoding

To code the abstract domain, we merely add variable names and P[ becomes B1.
Abstract functions could be coded using the method presented in the previous
18 If a = 0 then A = {⊥} and if a = 1 then A = D.



section, as they are functions from B1 to B1. The problem when dealing with
higher order functions is that, since the size of the type is increasing and each
step of the iteration requires every possible value of the previous iterate, we will
lose all the interest of the TDG for recursive functions. Accordingly we prefer to
code each recursive call by a new variable, keeping the arguments of the recursive
call. That way, each step of the iteration will only need to make substitutions in
the previous iterate, the number of which will be polynomial in the size of the
program.

So this abstract interpretation can easily be lifted to higher order functions.
As the encoding is very close to the abstract domain, we can have a better build
function that associates the boolean function to the set of variables, keeping
only monotonic functions: build{x1, . . . , x2n}

def= λy.∧ build{x1, . . . , x2n−1}∨ y∧
build{x2n−1+1, . . . , x2n}.

Given P[ for higher order functions, here is the abstract function:

S[[[b(e1,...,en)]]ρ(g[) def= b[(S[[[e1]]ρ(g[), . . . , S[[[en]]ρ(g[))

S[[[x]]ρ(g[) def= ρ(x)

S[[[e1e2]]ρ(g[) def= S[[[e1]]ρ(g[)S[[[e2]]ρ(g[)

S[[[λx.e]]ρ(g[) def= S[[[e]]ρ[x→ build(v(x))](g[)

ρ is an environment function. It maps program variables to TDGs. If the variable
is associated to a previously analyzed function, it gives the TDG representing
the result. If it is a free variable, it gives the TDG as constructed in the pre-
vious section representing a variable function, which is, if f is such a function,
build(v(f)). We use the type of the variable in order to know what v(f) is, that
is to say the exact number of boolean variables needed. If the variable represents
the function defined (recursive call), then ρ returns a single boolean variable,
and each time it is applied it is replaced by a new variable that will represent
the application.

Example:
s x y z = (x z)(y z)19.
The type of x is α → β → γ, and so it can take at least 24 different values.

So we need four boolean variables v(x) = {x1, x2, x3, x4} to represent all the
different possible states of x.

ρ(x) = λa.λb.x1 ∨ x3 ∧ a ∨ (x2 ∨ x4 ∧ a) ∧ b.
lfp(S[[[(x z)(y z)]]ρ) is the TDG represented on fig. 4. As, if (x1, x2, x3, x4) =

(0, 0, 0, 0), the TDG is 0, s is strict in x. But if x1 = 1, the TDG is 1, so the
interpretation tells us nothing about the strictness of s in y or z.

The ordering on P[ is the implication, so the max of two TDG is very easy
to compute; it is ∧ which is orthogonal. So we can use the widening operator
on that example. Moreover, the pointwise ordering on the abstract functions
leads to the same ordering (implication) on the representations of the abstract
19 This function is one of the most famous higher ordre functions as with s, k (k x y

= x) and i (i x = x), one can code the entire λ-calculus.
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function, so that the same widening can be applied to the abstract set and to
the abstract functions.

4.3 Practical Results

Strictness analysis have been implemented using TDGs20, and tested on exam-
ples given by Sebastian Hunt to compare the efficiency of this implementation
with the one he developed based on ‘frontiers’. All the results below are for the
interpreted version (in camllight) and could be improved by compilation. Besides
the implementation of Sebastian Hunt was only a prototype implementation, so
the comparison might be unfair. However, this results should not be taken as
comparable with state of the art strictness analysis, but as an indication of what
can be gained using TDGs in program analysis.

no frontiers TDG
1 10 sec 3 sec
2 5 min 2 sec
3 30 min 4 sec
4 never ended 1 hour

The problems raised by these examples are typical and standard for strictness
analysis. The first three examples didn’t require the use of the widening operator,
so the results have the same accuracy as with frontiers. The first one is a quite
classic nqueen solver, using few higher order functions. The results are quite
good with both methods. The second one uses map and foldr21. The third one
uses foldr at a higher order, applying it to append, so the result of the analysis
is much bigger.

The fourth example analyzes foldr written in continuation passing style, lead-
ing to a drastic increase in the type order. Two functions are analyzed with type
(α list → α list → (α list → β) → β) → α list list → α list
→ (α list → β) → β. It is interesting because the result is so huge that
it cannot be computed and intermediate results couldn’t be stored by the com-
puter. So it seems to be an example where the TDG representation is exponential
that shows the usefulness of the widening presented above. Of course, the result
of the analyze is approximate due to the use of this operator.

For the last example, a good alternative to a complete analysis was presented
in [23], that gives results in a few seconds. However, this analysis only answers
one question and so is not usable for separate compilation. Moreover, the same
technique could be applied using TDGs to answer the same question.

5 Conclusion

This approach proved to be efficient in strictness analysis and could be advanta-
geously used in many other abstract interpretations, whatever the context, as its
20 The TDG package used for this implementation is the one developed by Brace,

Rudell and Bryant, as a subset of COSMOS.
21 foldr is the classical function that applies recursively a binary function to a list.



idea is based on the semantic domain not on a fixpoint algorithm. For instance it
would work with backward and forward analysis, total or partial fixpoint compu-
tation, etc. But the last example shows that it may still be too slow to be usable
in practice. This work is totally compatible with the theoretical framework of
abstract interpretation, so it could be used in association with other works on
this subject. The idea of lazy evaluation of abstract functions from Ferguson and
Hughes was mentioned above, but the results of Baraki22 on interpretation of
polymorphic functions in [22] would be very useful for this approach too, as it
could lead to a compact analysis usable in separate analysis. The author believes
that the combination of these techniques could give analyzers based on abstract
interpretation for higher order functions efficient enough to be usable in practice.
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