
Bigre no74 – Octobre 1991 – Actes JTASPEFL’91, Bordeaux. 33

Relational Abstract Interpretation

of Higher Order Functional Programs

(extended abstract)

Patrick Cousot & Radhia Cousot

LIX, URA CNRS 1439
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1 Approximating functions by functions

Most applications of the abstract interpretation framework[2] have been for
analyzing functional programs use functions on abstract values to approxi-
mate functions, thus assuming that functions may be called at all arguments.
When the abstract domain is finite, this approach can easily be generalized
to higher order functional languages as shown for example by [1]. In practice
this leads to combinatorial explosion problems as observed, for example, in
strictness analysis of higher order functional languages.

2 Minimal Function Graphs

However it is often only necessary to analyze a functional program for inputs
satisfying a given specification so that functions are called only for some the
possible abstract values of their arguments. Therefore we proposed [3] to
solve the fixpoint system of equations φi(X) = Fi(φ)(X), i ∈ [1, n] (corre-
sponding to a first order functional program) on the necessary arguments
only, an idea later popularized by Jones and Mycroft under the name of min-

imal function graphs. Unfortunately, this minimal function graphs approach
has several defects :

1. Functions are approximated by functions (or function graphs which is
equivalent), which is not general and/or simple enough, as shown by
type checking where a function is more simply approximated by the
tuple of types of its arguments and result;

2. The minimal function graph semantics first consists in collecting the
set of all abstract arguments X on which each user defined function
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φi is to be or has been calculated, then in deriving the corresponding
value Fi(φ)(X) as well as any further arguments of φj which might
be needed in order to evaluate Fi(φ) on X, in joining them together
to yield an updated set of needed arguments and in iterating so on
until stabilization. This algorithm essentially corresponds to a forward
analysis, i.e. in the direction of the flow of control. It is not well suited
at all for backward analyses;

3. Since the analysis of a function cannot be done without knowing the
values of its arguments, it is not well adapted for separate analyses of
(say non-mutually recursive) functions (as the type checker is able to
do in ML). Hence it is not easily usable in separate compilations.

3 Relational Abstract Interpretation of First Or-

der Functional Programs

In [3] we suggested another method with consists in approximating functions
(or procedures in the case of imperative programs) by relations. These re-
lations can be further approximated by linear inequalities between values of
variables [4]. Let us illustrate this method using a Pascal example taken
from [6]:

procedure Hanoi (n : integer; var a, b, c : integer;
var Ta, Tb, Tc : Tower);

begin
{ n = n0 ∧ a = a0 ∧ b = b0 ∧ c = c0 }

if n = 1 then begin
b := b + 1; Tb[b] := Ta[a]; Ta[a] := 0; a := a − 1;
{ n = n0 = 1 ∧ a = a0 − 1 ∧ b = b0 + 1 ∧ c = c0 }

end else begin
{ n = n0 ∧ a = a0 ∧ b = b0 ∧ c = c0 }

Hanoi(n − 1, a, c, b, Ta, Tc, Tb);
{ n = n0 > 1 ∧ a = a0 − n+ 1 ∧ b = b0 ∧ c = c0 + n− 1 }

b := b + 1; Tb[b] := Ta[a]; Ta[a] := 0; a := a − 1;
{ n = n0 > 1 ∧ a = a0 − n ∧ b = b0 + 1 ∧ c = c0 + n− 1 }

Hanoi(n − 1, c, b, a, Tc, Tb, Ta);
{ n = n0 > 1 ∧ a = a0 − n ∧ b = b0 + n ∧ c = c0 }

end;
{ n = n0 ≥ 1 ∧ a = a0 − n0 ∧ b = b0 + n0 ∧ c = c0 }

end;
The result of analyzing this procedure, which is given above between

brackets {. . . } is independent of the values of the actual parameters provided
in calls. This is obtained by giving formal names n0, a0, b0 and c0 to the
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values of the actual parameters corresponding to the initial values of the
formal parameters n, a, b and c (array parameters Ta, Tb and Tc are simply
ignored) and by establishing a relation with the final value of these formal
parameters. The result is a precise description of the effect of the procedure
in the form of a relation between initial and final values of its parameters:

φ(n0, a0, b0, c0, n, a, b, c) = (n = n0 ≥ 1 ∧ a = a0−n0 ∧ b = b0+n0 ∧ c = c0)
Observe that it is automatically shown that n0 ≥ 1 is necessary (for termi-
nation).

In a function call, n0, a0, b0 and c0 are set equal to the values of the
actual parameters in φ and eliminated by existential quantification. For
example:

a := n; b := 0; c := 0;
{ n = a ∧ b = 0 ∧ c = 0 }
Hanoi(n, a, b, c, Ta, Tb, Tc);
{ ∃n0; a0; b0; c0 : n0 = a0 ∧ b0 = 0 ∧ c0 = 0 ∧ n = n0 ≥ 1 ∧ a = a0 − n0
∧ b = b0 + n0 ∧ c = c0 }

This last post-condition can be simplified by projection as :

{ a = 0 ∧ n = b ≥ 1 ∧ c = 0 }

In recursive calls, successive approximations of the relation φ must be
used, starting from the empty one. A widening (followed by a narrowing) [2]
can be used to ensure convergence.

This method can be extended to a functional language using a relation
between the formal values of the parameters of a function and its result.

4 Relational Abstract Interpretation of Higher Or-

der Functional Programs

The object of this paper is to extend this technique to higher order functional
programs (without calling on higher order relations). The advantages of doing
so are the following:

1. Functions are approximated by relations, which can be represented for-
mally as predicates on formal variables and further approximated to
get compact and easily computer-representable abstract values as illus-
trated by [7], [6] and [5];

2. Widening and narrowing operators of [2] are used to enforce conver-
gence (so that the lattice need not satisfy the ascending chain condition
as in [8]);
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3. Forward and backward analyses are handled in the same way;

4. Groups of mutually recursive functions can be analyzed separately.
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