
Combining Constraint Programming and Abstract Interpretation
for Value Analysis of Floating-point Programs

Olivier Ponsini, Claude Michel and Michel Rueher
University of Nice–Sophia Antipolis, I3S/CNRS
BP 121, 06903 Sophia Antipolis Cedex, France

Email: firstname.lastname@unice.fr

Abstract—Abstract interpretation-based value analysis is a
classical approach for verifying programs with floating-point
computations. However, state-of-the-art tools compute an over-
approximation of the variable values that can be very coarse.
Constraint solvers have recently been used to significantly
refine the approximations computed by such tools. In this
paper, we introduce a hybrid approach that combines abstract
interpretation and constraint programming techniques in a
single static and automatic analysis. First experiments showed
that this approach can successfully analyze programs that
could not be handled by abstract interpretation or constraint
programming tools alone.

Keywords-program verification; abstract interpretation; con-
straint solving; floating-point computation

I. INTRODUCTION

Value analysis consists in computing the set of all possible
values for the variables of a program. In program verifica-
tion, this analysis is often used to check the absence of run-
time error, such as invalid integer or floating-point opera-
tions, as well as simple user assertions [1]. Here, we focus on
programs with floating-point computations. Such programs
control complex and critical physical systems in various
domains as transportation, nuclear energy, or medicine.
Floating-point computations are error-prone because of the
many pitfalls of floating-point arithmetic [2]. Floating-point
computations are usually derived from mathematical models
on real numbers. As real and floating-point computation
models are different, value analysis can also help in estimat-
ing the precision of floating-point computations with respect
to the same sequence of operations in an idealized semantics
of real numbers.

FLUCTUAT [3] is a static analyzer of C programs based
on abstract interpretation that deals with floating-point and
real numbers. However, it may roughly over-approximate
the possible variable values for some programming con-
structs and expressions. We showed in [4] that constraint
programming solvers can improve these results. However,
the proposed approach requires an exhaustive analysis of all
execution paths in a program.

Here, we propose a hybrid approach for the value analysis
of floating-point programs. More precisely, we propose to
combine abstract interpretation and constraint programming

techniques in a single static and automatic analysis to
avoid the combinatorial explosion of the number of paths
to explore. Before going into the details, let us recall the
main advantages of abstract interpretation and constraint
programming.

II. ABSTRACT INTERPRETATION

Abstract interpretation captures a superset of all possible
executions of a program. This allows to compute safe over-
approximations of variable values. Systems like FLUCTUAT
use the weakly relational abstract domain of zonotopes [5].
Zonotopes are sets of affine forms that improve over interval
arithmetic: linear correlations between variables are pre-
served. They offer a good trade-off between performance and
precision for floating-point and real number computations.
Indeed the analysis:

• is fast and scales well;
• processes accurately linear expressions;
• computes accurate approximations of some unbounded

loops;
• keeps track of the statements involved in the loss of

accuracy of floating-point computations.
However, over-approximations computed by FLUCTUAT

may be very large because the abstract domains used do not
handle well conditional statements and non-linear expres-
sions.

III. CONSTRAINT PROGRAMMING

Over real numbers, constraint solvers compute safe ap-
proximations of continuous solution sets using correctly
rounded interval methods and filtering algorithms. We de-
veloped FPCS [6], a constraint solver correct over floating-
point numbers, i.e. it does not lose any solution. FPCS is
based on 2B-consistency [7] along with projection functions
adapted to floating-point arithmetic.

In a previous work [4], we proposed to build a constraint
system for each execution path in a program. This was done
on-the-fly while parsing the program and non-executable
paths were discarded as soon as the inconsistency of the
associated constraint system was detected. So, we could
take advantage of the refutation capabilities of filtering



algorithms to refine the approximations of variable values
computed by abstract interpretation.

This approach could reduce drastically the over-
approximations computed by FLUCTUAT on programs with
conditional statements or non-linear expressions. However,
it did not scale well because of the combinatorial explosion
of the number of paths to explore: all executable paths had to
be explored and loops needed to be bounded and unfolded.

IV. HYBRID APPROACH

Here, we propose to take advantage of the strengths
of both techniques in a hybrid approach. The idea is to
avoid the path combinatorial explosion of the constraint
programming approach while still improving the accuracy
of the abstract interpretation-based analysis. To this end,
the variable values in each program conditional branch are
merged as soon as the branches join, as in a standard
abstract interpretation-based analysis. Let n be the number
of conditional statements of a program, we explore at most
2n branches instead of the 2n paths of our previous work.

For each piece of program comprised between two merge
points, we call FLUCTUAT to compute a first approximation
of the variable domains. Then, the piece of program is con-
verted into constraints with the approximation from abstract
interpretation as initial domains for the variables. We apply
shaving techniques [7], [8] to reduce the domains. Over real
numbers, we use the combination of hull and box consis-
tencies implemented in REAL PAVER [9]. Over floating-point
numbers, we use 2B-consistency as implemented in FPCS.

The cooperation between abstract interpretation and con-
straint solvers allows to handle loops in two ways. On the
one hand, FLUCTUAT unfolds a fixed number of times each
loop. This may help to compute a better approximation for
the whole loop. Constraint solving can then improve the
approximation of abstract interpretation for the unfolded part
of the loop, and therefore for the whole loop. On the other
hand, the approximation computed by abstract interpretation
for a loop can be substituted to the loop in the constraint
programming approach when the loop cannot be completely
unfolded.

V. DISCUSSION

The proposed hybrid approach relies on an analysis that
explores each conditional branch in a program instead of
each execution path as in our previous work [4]. As ex-
pected, this approach is faster than our previous one. How-
ever, it may be less accurate: merging variable values when
conditional branches join may yield an over-approximation
for some execution paths. The converse is observed with
respect to abstract interpretation alone: the hybrid approach
is slower but more accurate. More interesting, the hybrid ap-
proach may compute good approximations of variable values
of programs for which neither the abstract interpretation nor
the constraint programming approach alone can.

As a perspective, the collaboration between abstract in-
terpretation and constraint programming could be tighter.
In [10], the authors devised an extension to the abstract
domain of zonotopes that integrates constraints. The col-
laboration could then take place at the level of the abstract
domain instead of the variable values.

REFERENCES

[1] P. Cousot, R. Cousot, J. Feret, A. Miné, L. Mauborgne,
D. Monniaux, and X. Rival, “Varieties of static analyzers:
A comparison with ASTRÉE,” in First Joint IEEE/IFIP
Symposium on Theoretical Aspects of Software Engineering
(TASE’07). IEEE Computer Society, 2007, pp. 3–20.

[2] D. Goldberg, “What every computer scientist should know
about floating point arithmetic,” ACM Computing Surveys,
vol. 23, no. 1, pp. 5–48, 1991.

[3] D. Delmas, E. Goubault, S. Putot, J. Souyris, K. Tekkal, and
F. Védrine, “Towards an industrial use of fluctuat on safety-
critical avionics software,” in 14th International Workshop on
Formal Methods for Industrial Critical Systems (FMICS’09),
ser. Lecture Notes in Computer Science, vol. 5825. Springer,
2009, pp. 53–69.

[4] O. Ponsini, C. Michel, and M. Rueher, “Refining
abstract interpretation-based approximations with a
floating-point constraint solver,” in Fourth International
Workshop on Numerical Software Verification, 2011,
http://users.polytech.unice.fr/˜rueher/Publis/nsv11.pdf.

[5] E. Goubault and S. Putot, “Static analysis of numerical algo-
rithms,” in 13th International Symposium on Static Analysis
(SAS’06), ser. Lecture Notes in Computer Science, vol. 4134.
Springer, 2006, pp. 18–34.

[6] C. Michel, “Exact projection functions for floating-point
number constraints,” in 7th International Symposium on
Artificial Intelligence and Mathematics (AIMA’02), 2002,
http://rutcor.rutgers.edu/ amai/aimath02/PAPERS/21.ps.

[7] O. Lhomme, “Consistency techniques for numeric CSPs,” in
13th International Joint Conference on Artificial Intelligence
(IJCAI’93), 1993, pp. 232–238.

[8] P. Martin and D. B. Shmoys, “A new approach to computing
optimal schedules for the job-shop scheduling problem,” in
5th International IPCO Conference. Springer, 1996, pp. 389–
403.

[9] L. Granvilliers and F. Benhamou, “Algorithm 852: Realpaver:
an interval solver using constraint satisfaction techniques,”
ACM Transactions on Mathematical Software, vol. 32, no. 1,
pp. 138–156, 2006.

[10] K. Ghorbal, E. Goubault, and S. Putot, “A logical product
approach to zonotope intersection,” in 22nd International
Conference on Computer Aided Verification (CAV’10), ser.
Lecture Notes in Computer Science, vol. 6174. Springer,
2010, pp. 212–226.


