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Abstract. Set-based program analysis has many potential applications, includ-
ing compiler optimisations, type-checking, debugging, verification and planning.
One method of set-based analysis is to solve a set of set constraints derived
directly from the program text. Another approach is based on abstract inter-
pretation (with widening) over an infinite-height domain of regular types. Up
till now only deterministic types have been used in abstract interpretations,
whereas solving set constraints yields non-deterministic types, which are more
precise. It was pointed out by Cousot and Cousot that set constraint analysis of
a particular program P could be understood as an abstract interpretation over
a finite domain of regular tree grammars, constructed from P . In this paper we
define such an abstract interpretation for logic programs, formulated over a do-
main of non-deterministic finite tree automata, and describe its implementation.
Both goal-dependent and goal-independent analysis are considered. Variations
on the abstract domains operations are introduced, and we discuss the associated
tradeoffs of precision and complexity. The experimental results indicate that this
approach is a practical way of achieving the precision of set-constraints in the
abstract interpretation framework.

1 Introduction

Recursively defined sets of terms are familiar to us as approximations of the runtime
values of program variables. For example, the expression intlist ::= [ ]; [int|intlist]
defines a set called intlist containing all lists of integers, where int denotes the set of
integers. Such expressions are sometimes used by the programmer to restrict the values
that an argument or variable is allowed to take, but in this paper we are concerned with
deriving such descriptions statically, rather than prescribing them.

Derivation of set expressions such as these has many applications including type
inference [16, 8], debugging [24], assisting compiler optimisations [25, 34], optimising a
theorem prover [14], program specialisation [20], planning [4] and verification [8]. The
first work in this area was by Reynolds [33]; other early research was done by Jones and
Muchnick [27, 26]. In the past decade two different approaches to deriving set expressions
have been followed. One approach is based on abstract interpretation [25, 34, 19, 13, 30],
and the other on solving set constraints derived from the program text [22, 16, 21, 2,
1, 28, 9, 32]. In abstract interpretation the program is executed over an abstract type
domain, program variables taking on abstract values represented by types rather than



standard values. In set-constraint analysis, program variables are also interpreted as
taking on sets of values, but a set of inclusion relations is derived from the program
text and then solved.

Cousot and Cousot pointed out [13] that set constraint solving of a particular pro-
gram P could be understood as an abstract interpretation over a finite domain of tree
grammars, constructed from P . Set constraint analysis can be seen as one of a range
of related “grammar-based” analyses. One practical advantage of seeing set constraint
solving as abstract interpretation (noted by Cousot and Cousot) is that set-constraint-
based analysis can be combined with other analysis domains, using well established
principles. A second advantage is that various tradeoffs of precision against efficiency
can be exploited without departing from the abstract interpretation framework.

In this paper we pursue the idea of an abstract interpretation corresponding to
set constraints in more depth. After reviewing the basic notions of non-deterministic
finite tree automata in Section 2, we construct an abstract domain for a given logic
program in Section 4. In Section 5 we construct abstract interpretations for logic pro-
grams over this domain. These include two variants that we call the variable-based
and the argument-based interpretations. We also consider both goal-dependent and
goal-independent interpretations. Our implementation is described in Section 6 and the
results of experiments in Section 7. The results are discussed in Section 8.

2 Preliminaries

Let Σ be a set of ranked function symbols. We refer to elements of Σ as f
nj

j where
nj ≥ 0 is the rank (arity) of function symbol (functor) fj . If nj = 0 we call fj a constant.
The set of ground terms (or trees) TermΣ associated with Σ is the least set containing
the constants and all expressions f

nj

j (t1, . . . , tnj
) such that t1, . . . , tnj

are elements of
TermΣ .

Finite tree automata provide a means of finitely describing possibly infinite sets of
ground terms, just as finite automata describe sets of strings. A non-deterministic finite
tree automaton (NFTA) is defined as a quadruple 〈Q, q0, Σ,∆〉, where Q is a finite set
of states, q0 ∈ Q is called the accepting state, Σ is a set of ranked function symbols and
∆ is a set of transitions. Each element of ∆ is of the form f

nj

j (q1, . . . , qnj )→ q, where
f

nj

j ∈ Σ and q, q1, . . . , qnj
∈ Q.

Let R = 〈Q, q0, Σ,∆〉 be an NFTA; a derivation in R is a labelled tree τ such that
each node of τ is labelled with a term from TermΣ and a state from Q, satisfying the
following condition. The state labelling the root node is q0, and if any node p is labelled
with term f

nj

j (t1, . . . , tnj ) and state q then there is a transition f
nj

j (q1, . . . , qnj )→ q ∈ ∆
and p has nj children p1, . . . , pnj labelled with terms t1, . . . , tnj and states q1, . . . , qnj

respectively. In particular, if p is a leaf node, then p is labelled with a constant f0
j and

some state q, and there is a transition f0
j → q.

We say that a term t is accepted by automaton R if there is a derivation in R whose
root node is labelled with t. The set of all terms accepted by automaton R is called
the (tree) language of R, denoted L(R). Two automata R1, R2 are equivalent, written
R1
∼= R2, iff L(R1) = L(R2). empty(R) is true iff L(R) is empty, and nonempty(R) is the

same as ¬empty(S). An automaton R1 is contained in automaton R2, written R1 � R2

iff L(R1) ⊆ L(R2).
An automaton with transitions ∆ is called (top-down) deterministic if there are

no two transitions in ∆ with both the same right-hand-side q and the same function



symbol f
nj

j on the left. Deterministic automata are less expressive than NFTAs in
general, unlike finite automata for string languages. There are NFTAs for which there
is no equivalent deterministic finite tree automaton.

Let R1 = 〈Q1, q1, Σ,∆1〉 and R2 = 〈Q2, q2, Σ,∆2〉 be NFTAs. The product automa-
ton R1 ×R2 is defined as the automaton 〈Q1 ×Q2, (q1, q2), Σ,∆1 ×∆2〉 where

∆1 ×∆2 = {fnj

j ((q1, q
′
1), . . . , (qnj

, q′nj
)))→ (q, q′) |

f
nj

j (q1, . . . , qnj )→ q ∈ ∆1

f
nj

j (q′1, . . . , q
′
nj

)→ q′ ∈ ∆2}

The language accepted by R1 ×R2 is L(R1) ∩ L(R2).
NFTAs can be extended to allow ε-transitions, without altering their expressive

power. An ε-transition is of the form q → q′. Such transitions can be removed from
∆, after adding all transitions f

nj

j (q1, . . . , qnj
) → q′ such that there is a transition

f
nj

j (q1, . . . , qnj
) → q in ∆, and q′ is reachable from q using only ε-transitions. Given

a set of transitions ∆ containing ε-transitions, the result of eliminating them will be
called elimε(∆).

NFTAs are quite expressive, as we will see from examples, yet key properties are
decidable. It is decidable whether an automaton is empty, and whether a given term is
accepted by an automaton. Containment, and hence equivalence, is also decidable.

We will use the following shorthand notation. If we name an automaton Rq0 then
q0 is its accepting state. If two automata Rq1 and Rq2 appear in the same context, we
mean that they differ only in their accepting state.

If Rq contains two transitions f
nj

j (q1, . . . , qnj
) → q and f

nj

j (q′1, . . . , q
′
nj

) → q, and
Rqk
� Rq′

k
for 1 ≤ k ≤ nj , then the transition f

nj

j (q1, . . . , qnj
)→ q is redundant. Clearly

we can remove redundant transitions from an automaton without altering its language.
As we will be applying NFTAs in the context of logic programming, it will be

convenient to adopt the notation of regular unary logic (RUL) programs to describe
NFTAs. An RUL clause is a formula of the form q(f(x1, . . . , xn))← q1(x1), . . . , qn(xn)
where x1, . . . , xn are distinct variables. An NFTA 〈Q, q0, Σ,∆〉 can be translated to
an RUL program where Q is a set of unary predicate symbols, and each transition
f

nj

j (q1, . . . , qnj
) → q ∈ ∆ is represented as the RUL clause q(fnj

j (x1, . . . , xnj
)) ←

q1(x1), . . . , qnj
(xnj

). Thus in this representation, ∆ is an RUL program. There is then
a straightforward correspondence between derivations and acceptance in NFTAs and
logic program computations. In particular, the term t is accepted by the automaton Rq

iff ∆ ∪ {← q(t)} has an SLD refutation, where ∆ is the set of transitions of R.
Further details on NFTAs and their properties can be found elsewhere [12].

3 Core Semantics

In this section we develop bottom-up semantics for definite logic programs, parame-
terised by a domain of interpretation, and certain operations on that domain. Thus
we follow the established method in abstract interpretation of providing core semantics
that can be instantiated to yield either the standard (concrete) semantics, or some other
abstract semantics.

We start from the familiar TP operator associated with a definite program P . We
write the definition of TP as follows, introducing operators project, reduce and

⊔
that



will be abstracted later on.

TP (I) =
⊔

P {project(H, θ) | H ← B ∈ P, θ ∈ reduce(B, I)}

Let BP be the Herbrand base of P , and DP = 2BP . The concrete domain (DP ,⊆, ∅, BP )
is a complete lattice. In the concrete semantics, I ∈ DP , reduce((B1, . . . , Bk), I) is the
set of all ground substitutions θ, whose domain is vars(B1, . . . , Bk) and range is the
Herbrand universe of P , such that {B1θ, . . . , Bkθ} ⊆ I. project(H, θ) is Hθ, and

⊔
P (S)

set of ground instances (over the Herbrand universe of P ) of elements of S.
This can easily be seen to be equivalent to the more familiar presentation of TP [29],

and we have the well known result that the least fixed point (lfp) of TP (with respect to
the partial order on DP ) is the least Herbrand model of P , M[P ]. The least fixed point
is the limit of the sequence {Tn

P (∅)}, n = 0, 1, . . ..
In the following sections, we will develop abstract instances of the core semantics.

We start by defining abstract domains, and then we define the abstract versions of
reduce, project and

⊔
.

4 Abstract Domains of NFTAs

Let P be a definite logic program and M[P ] its minimal Herbrand model. Consider
the set of occurrences of subterms of the heads of clauses in P , including the heads
themselves; call this set headterms(P ). headterms(P ) is the set of program points that
we want to observe. We are interested in analysing the set of terms that can occur at
each of these positions in instances of clauses satisfied by M[P ].

A function S will be defined from headterms(P ) to a set of identifiers. The states of
an NFTA will be constructed from these identifiers in Section 4; in fact, an automaton
state will correspond to a set of identifiers. For instance, we might assign an identifier,
say qX , to an occurrence of a variable X in some clause head. The set of terms accepted
at state {qX} in the automaton that is produced (Section 5) will approximate the set of
terms that could appear as instances of X at that position. There will be one or more
transitions in the automaton of the form f(Q1, . . . , Qk)→ {qX}, where Q1, . . . , Qk are
themselves sets of identifiers.

Thus if S maps two distinct elements of headterms(P ) to the same state, then we
will not be able to distinguish the sets of terms that occur at the two positions. We
will consider two variants of the mapping, called SP

var, the variable-based mapping, and
SP

arg, the argument-based mapping, which differ in the degree to which they distinguish
different positions.

The S mapping is built from several components, representing the mappings of
arguments, variables, and other terms that occur in the clause heads. Let Q,Args and
V be disjoint infinite sets of identifiers. The mapping idP is chosen to be any injective
mapping headterms(P ) → Q. The set of argument positions is the set of pairs 〈p, j〉
such that p is an n-ary predicate of the language and 1 ≤ j ≤ n. The function argpos
is some injective mapping from the set of argument positions to Args, that is, giving a
unique identifier to each argument position. Let varid be an injective mapping from the
set of variables of the language to V. Let type and any be distinguished identifiers not
in Q ∪ Args ∪ V.

We will assume for convenience that the clauses of programs have been standardised
apart; that is, no variable occurs in more than one clause. The following definitions
define two different mappings from clause head positions to states.



Definition 1. SP
var

Let P be a definite program. The function SP
var : headterms(P )→ Q ∪ V ∪ {type} is

defined as follows.
SP

var(t) = if t is a clause head, then type
else if t is a variable, then varid(t)
else idP (t)

Definition 2. SP
arg

Let P be a definite program. The function SP
arg : headterms(P )→ Q∪Args∪V∪{type}

is defined as follows.
SP

var(t) = if t is a clause head, then type
else if t occurs as argument j of predicate p, then argpos(〈p, j〉)
else if t is a variable, then varid(t)
else idP (t)

Example 1. Let P be the append program.

append([ ], A, A)← true append([B|C], D, [B|E])← append(C,D,E)

Taking them in textual order headterms(P ) is the following set. We can imagine the
different occurrences of the same term (such as A) to be subscripted to indicate their
positions, but we omit this extra notation.

{append([ ], A, A), [ ], A, A, append([B|C], D, [B|E]), [B|C], B,C, D, [B|E], B,E}.

Let Q = {q1, q2, . . .}; let idP map the ith element of headterms(P ) (in the given order)
to qi; let Args = {app1, app2, app3} and let argpos be the obvious mapping into this set;
let V = {a, b, c, d, . . .}, and let varid(A) = a, varid(B) = b etc. Then SP

var is the following
mapping.

append([ ], A, A) 7→ type append([B|C], D, [B|E]) 7→ type D 7→ d
[ ] 7→ q2 [B|C] 7→ q6 [B|E] 7→ q10

A 7→ a B 7→ b B 7→ b
A 7→ a C 7→ c E 7→ e

The mapping SP
arg is given as follows.

append([ ], A, A) 7→ type append([B|C], D, [B|E]) 7→ type D 7→ app2

[ ] 7→ app1 [B|C] 7→ app1 [B|E] 7→ app3

A 7→ app2 B 7→ b B 7→ b
A 7→ app3 C 7→ c E 7→ e

It can be seen that SP
var distinguishes more states than SP

var, and hence will lead to
a finer-grained analysis.

4.1 The Abstract Domains

We now define two sets of NFTAs. The variable-based domain is the more fine-grained,
and is intended to capture a separate set of terms for each position in each clause head.
The argument-based domain only captures one set corresponding to each argument of
a predicate.



Define ∆Σ
any to be the set of transitions {fnj

j ({any}, . . . , {any})→ {any} | fnj

j ∈ Σ},
where Σ is a finite set of function symbols. Every element in TermΣ is accepted by the
NFTA 〈{any}, {any}, Σ,∆Σ

any〉. The state {any}, though it can be regarded as if it were
an ordinary state, is treated specially for efficiency reasons. In particular, we do not
eliminate ε-transitions of the form {any} → q.

Definition 3. Variable-Based and Argument-Based Domains
Let P be a definite logic program, and let Σ be the set of function and predicate

symbols in P . Let RP
d = range(SP

d ), d ∈ {var, arg} and let QP
d = 2RP

d . Let ∆P
d be the

set of transitions {fnj

j (q1, . . . , qnj
)→ q | fnj

j ∈ Σ, {q1, . . . , qnj
, q} ⊆ QP

d }. Note that the
states q1, . . . , qnj

, and q are not elements of range(SP
d ), but rather sets of elements.

Then the variable-based domain for P , called Dvar
P is the following set of automata.

{〈QP
var, {type}, Σ,∆′ ∪∆Σ

any〉 | ∆′ ⊆ ∆P
var}

The argument-based domain for P , called Darg
P is the following set of automata.

{〈QP
arg, {type}, Σ,∆′ ∪∆Σ

any〉 | ∆′ ⊆ ∆P
arg}

In the above definition, it can be seen that the two domains Dvar
P and Darg

P differ only
in the choice of the set of states of the automata, which are determined by the range
of the SP

var and SP
arg functions respectively. Note that range(SP

var) and range(SP
arg) are

finite, and hence the domains Dvar
P and Darg

P are finite.
Let R1 = 〈Q, {type}, Σ,∆1〉 and R2 = 〈Q, {type}, Σ,∆2〉 be two elements of Dd

P , d ∈
{var, arg}. We have a partial order v such that R1 v R2 iff ∆1 ⊆ ∆2. The minimal ele-
ment Rmin

d is 〈QP
d , {type}, Σ, ∅〉, and the maximal element Rmax

d is 〈QP
d , {type}, Σ,∆P

d ∪
∆Σ

any〉, d ∈ {var, arg}, and we have complete lattices (DP
d , {type}, Rmin

d , Rmax
d ).

Define the concretisation functions γd : Dd
P → DP , d ∈ {var, arg}, as γd(R) = L(R),

where L(R) is the language of the NFTA R. γd is monotonic with respect to the partial
orders on Dd

P and DP .
States that are sets containing more than one identifier represent products. For

instance, in the transition f({q1, q2}, {q3}) → {q}, the state {q1, q2} represents the
product state. The set of terms accepted by R{q1,q2} is the product of R{q1} and R{q2}.
When representing an automaton, we write down only the transitions whose right hand
side is a singleton, and the transitions for the products are not explicitly included.
For convenience we will often refer to a singleton state {q} simply as q, especially in
examples.

5 Abstract Semantic Operations

We now proceed to define the operations reduce, project, and
⊔

for the variable-based
and argument-based interpretations. As for the abstract domains, we define operations
parameterised where necessary by a variable d that stands for either var or arg.

The reduce operation takes a clause body B and an element R of Dd
P . For con-

venience in presenting the operation, we use the RUL representation of R, that is, a
transition f(q1, . . . , qnj

) → q in R is represented in the form q(fnj

j (x1, . . . , xnj
)) ←

q1(x1), . . . , qnj
(xnj

). Let B be a clause body p1(t̄1), . . . , pm(t̄m): then type(B) is the
conjunction type(p1(t̄1)), . . . , type(pm(t̄m)).



Definition 4. reduce
Let P be a definite program, B be a clause body in P , and R ∈ Dd

P be an NFTA,
with transitions ∆ represented as an RUL program. Let τ be an SLD-tree for ∆ ∪ {←
type(B)}. Then define reduce(B,R) = {E1, . . . , Er}, where ← E1, . . . ,← Er is the set
of all goals from τ , satisfying the conditions that

(i) ← Ei is the first goal on its branch of τ that contains no function symbols, for
0 ≤ i ≤ r;

(ii) for each set of predicates in Ei all of which have the same argument, say {q′1, . . . , q′p},
nonempty(Rq̄) holds, where q̄ = q′1 × · · · × q′p, for 0 ≤ i ≤ r.

The idea of reduce is to “solve” a clause body with respect to an NFTA. We can think of
it as “partially evaluating” the clause body (after transforming it by the type operation)
using the transitions of the NFTA, until all the predicate and function symbols in B
have been eliminated. The order of selection of literals in the construction of the SLD
tree does not affect the values of {E1, . . . , Er}. If there are k function symbols in B,
then exactly k resolution steps are required to remove them, since each transition (RUL
clause) contains exactly one function symbol in its left hand side, and no function
symbol can be introduced by a resolution step, since all the head variables of RUL
clauses are distinct, and each head variable occurs exactly once in the body. We then
have to perform an emptiness check on the product of the automata corresponding to
repeated variables.

The projectd operation (d ∈ {var, arg}) takes a clause head H and one of the con-
junctions E returned by the reduce operation. It returns a set of transitions.

Definition 5. projectd
Let P be a definite program, H ← B be a clause in P , R ∈ Dd

P be an NFTA, and
E ∈ reduce(B,R). Then projectd(H,E) is a set of transitions defined as follows.

projectd(H,E) =
{f({q1}, . . . , {qn})→ {q} | f(t1, . . . , tn) is a subterm of H,

SP
d (f(t1, . . . , tn)) = q,

SP
d (ti) = qi, 1 ≤ i ≤ n}⋃

{q′ → {q} | x is a variable in H,
SP

d (x) = q,
q′ = restrict(E, x)}

The subsidiary function restrict(E, x) returns {any}, if x does not occur in E, otherwise
it returns {q1, . . . , qm}\{any}, if q1(x), . . . , qm(x) are the occurrences of predicates with
argument x in E.

The abstract interpretation is completed by defining
⊔d

P (S) (where S is a set of sets
of transitions) to be the NFTA 〈QP

d , {type}, Σ,∆〉 where ∆ = elimε(
⋃

S) ∪∆Σ
any. Thus

the result of
⊔P

d (S) is an element of Dd
P . Finally, define the abstract interpretation to

be lfp(T d
P ), where

T d
P (R) =

⊔d
P {projectd(H, θ) | H ← B ∈ P, θ ∈ reduce(B,R)}.

As noted as the end of Section 4, we do not represent product automata explicitly.
However, when eliminating ε-transitions of the form {q1, . . . , qn} → {q}, we have to
calculate the product corresponding to {q1, . . . , qn}, in order to derive the transitions
with right hand side {q}.



Example 2. Let P be the append program. In the first application of TP
var we have:

reduce(true, Rmin) = {true} reduce(append(C,D,E), Rmin) = ∅.

For the first clause, projectvar(append([ ], A, A) gives these transitions.

append(q2, a, a)→ type [ ]→ q2 any→ a

No transitions are returned from the second clause. On the second iteration, the first
clause returns the same result. reduce applied to append(C,D,E) returns the conjunc-
tion (q2(C), a(D), a(E)), since we can unfold append(C,D,E) using the transition (in
RUL form) type(append(X, Y, Z))← q2(X), a(Y ), a(Z) obtained on the first step. Thus
project gives the following transitions for the second clause head.

append(q6, d, q10)→ type [b|c]→ q6 [b|e]→ q10 q2 → c
a→ d a→ e any→ b

Adding these to the results of the first iteration and eliminating ε-transitions we obtain
the following.

append(q6, d, q10)→ type [b|c]→ q6 [b|e]→ q10 [ ]→ c
any→ d any→ e any→ b

The third iteration yields the following new transitions, after eliminating ε-transitions.

[b|c]→ c [b|e]→ e

No new transitions are added on the fourth iteration, thus the least fixed point has been
reached.

The argument-based approximation generates the following sequence of results: (only
the new transitions on each iteration are shown).

(1) append(app1, app2, app3)→ type [ ]→ app1 any→ app2 any→ app3

(2) [b|c]→ app1 [ ]→ c [b|e]→ app3 any→ e any→ b
(3) [b|c]→ c [b|e]→ e

Considering the first argument of append, we can see that the variable-based analysis
is more precise. For instance, the term append([a], [ ], [ ]) is accepted by the second
automaton but not by the first. This is because the two clauses of the append program
are distinguished in the first, with two states (q2 and q6) describing the first argument
in the two clauses respectively. A single state app1 describes the first argument in the
argument-based analysis. However, in this case (though not always), the precision of
the variable-based analysis could be recovered from the argument-based analysis. We
will discuss this further in Section 8. Further, note that the derived automata are not
minimal in the number of states. For example the states c and e could be eliminated in
the argument-based analysis, giving an equivalent more compact result.

append(app1, app2, app3)→ type [ ]→ app1 any→ app2 any→ app3

[b|app1]→ app1 [b|app3]→ app3 any→ b



5.1 Soundness of the Abstract Interpretations

The convergence of the sequence depends on the monotonicity of T var
P and T arg

P re-
spectively, and the finiteness of the domains Dvar

P and Darg
P . Space does not permit

a detailed proof of monotonicity, but it follows from the monotonicity of reduce in its
second argument.

To show the soundness of the analyses requires proving that lfp(TP ) ⊆ γd(lfp(T d
P )),

d ∈ {var, arg}. Again, only a brief justification can be given here. The result follows
in the framework of abstract interpretation [13] after showing that for all R ∈ DP

d ,
TP (γd(R)) ⊆ γd(T d

P (R)). Informally, if t can be “generated” by applying TP to the set
of atoms accepted by automaton R (that is, γd(R)), then we can show that t is accepted
by the automaton “generated” by applying T d

P to R.

6 Implementation Aspects

We have implemented both the variable-based and the argument-based analyses. They
share the same core semantics, and the code differs only in the part implementing the
project operators, which takes into account the different relationships between program
points and automata states.

6.1 Domain-Independent Optimisations

The presentation in Section 5 is naive from the implementation point of view, as it
suggests that the sequence of approximations converging to the fixed point is computed
by applying T var

P (or T arg
P ) repeatedly to the complete accumulated result.

Various domain-independent optimisations are well known and have been applied
in our implementation. We followed the pattern of our previous work on bottom-up
analysis of logic programs [19, 18, 17]. The most important optimisations are the de-
composition into strongly connected components (SCCs) of the predicate dependency
graph of the program being analysed, and a variant of the “semi-naive” optimisation.

There are other domain-independent optimisations that could be included, such as
the “chaotic iteration strategy” of Bourdoncle [3], and “eager evaluation” [36].

6.2 Domain-Dependent Optimisations

The operation
⊔

P for the two interpretations is defined as the union of sets of transi-
tions, followed by the elimination of ε-transitions. This accords with the partial order on
the domains, and has a conceptual simplicity. The successive applications of T d

P simply
keep on adding transitions until no new ones are generated. However, many redundant
transitions can be generated, and the number of transitions is the major factor in the
cost of expensive operations such as computing products of automata.

Thus in our implementation of
⊔

P the redundant transitions are removed from the
automata. In the example in Section 5, the transition [b|e] → e can be removed from
the variable-based analysis, and the transitions [b|e] → app3 and [b|e] → e from the
argument-based analysis.

This optimisation implies that the sequence of automata generated in the sequence
does not necessarily monotonically increase with respect to the partial order on the



domain, since transitions can be removed as well as added. Convergence is still guaran-
teed due to the finiteness of the domain (and we take care not to introduce the same
transition more than once). Soundness is obviously preserved since γd(R) = γd(R′) if
R differs from R′ only in the presence of redundant transitions. Alternatively, we could
use the standard technique of constructing a domain and partial order on the domain,
based on equivalence classes of automata with respect to the equivalence relation ∼=.
Clearly removing redundant transitions from an automaton yields an element of the
same equivalence class.

6.3 Checking Non-Emptiness of Product Automata

Our experiments show that large numbers of states and transitions can be generated
from user-written programs, as can be seen from Tables 1 and 2. It is therefore essential
to implement the basic domain operations as efficiently as possible. In particular, the
check for emptiness within the reduce operation is critical. Non-emptiness of an automa-
ton can be checked in time linear in the size of the automaton, but we are required to
check the emptiness of product automata, which is EXPTIME-complete [12].

We store the non-empty products that arise during the analysis as a table of tuples
〈q′1, . . . , q′p〉. Suppose that during the reduce operation we have to check nonempty(Rq̄)
where q̄ = q′1 × · · · × q′p. We first check to see whether Rq̄ has already been shown
to be non-empty, that is, whether 〈q′1, . . . , q′p〉 is already tabulated. If so, then the
monotonicity of T d

P implies that it is still non-empty even if the definitions of q′1, . . . q
′
p

have changed since non-emptiness was established. To check non-emptiness of a product
that has not yet been shown to be non-empty, we must first compute the transitions
in the product. However, the table of non-empty products can be exploited again. As
described by Comon et al. the non-emptiness check involves treating each transition
f(q1, . . . , qn) → q as a propositional formula q1 ∧ . . . ∧ qn → q. Non-emptiness of an
automaton Rs reduces to checking that s follows from the set of propositional Horn
formulas obtained from the transitions of Rs. For each such formula derived from the
product automaton we can strike out any qj that is already known to be non-empty
(since in the propositional form it is already true).

Example 3. The use of the table of non-empty products is illustrated by the analysis of
the naive reverse program.

rev([ ], [ ])← true rev([A|B], C)← rev(B,D), append(D, [A], C)

The definition of append is as before, and assume that it has already been analysed (as
the lowest SCC component) using the argument-based interpretation. The first iteration
on rev yields transitions

rev(rev1, rev2)→ type [ ]→ rev1 [ ]→ rev2

The next iteration applies reduce to the body of the second clause for rev. This re-
quires checking the non-emptiness of the product rev2× app1 due to the repeated vari-
able D. Computing the product of rev2 and app1 we obtain the propositional formula
true → (rev2 × app1), hence rev2 × app1 is non-empty. Thus the following transitions
are generated.

[a|b]→ rev1 any→ rev2 any→ a [ ]→ b



On the third iteration, we again must check non-emptiness of rev2 × app1 but since it
is already known to be non-empty we do not need to recompute the product. Note that
the product is in fact larger than on the first iteration. The final transition to be added
is [a|b]→ b.

We use a balanced 2-3-4 tree structure (that is, a B-tree of order 4) to store the
transitions and the table of non-empty products. In the tree of transitions, the primary
key is the state on the right-hand-side of the transition; within each record we use the
function symbol on the left of the transition as a secondary key.

The elimination of unnecessary states, as illustrated in Example 2, trades off in
general with an increase in the number of transitions. The choice of whether to eliminate
is thus in general a heuristic matter. We adopt the following strategy. Any state {q} that
is defined by a single ε-transition q′ → {q} (before the elimination of ε-transitions in
the

⊔
operation) is eliminated and replaced by q′ wherever it occurs. Thus we eliminate

states without increasing the number of transitions. We can keep a list of such eliminated
states during the analysis, in case we need to access information about the program point
(which will always be a variable in a clause head) represented by {q}. The analysis results
given by q′ can be applied to that program point.

For goal-dependent analysis we used “query-answer” transformations, related to
“magic-set” transformations, to achieve a goal-dependent analysis in a bottom-up se-
mantic framework [11, 15, 19]. This is a fairly crude but easily implemented technique
for goal-directed analysis. Techniques such as “induced magic” [10] would doubtless
improve performance.

7 Experiments

Some of the potential applications of set-constraint-based analysis were mentioned in
Section 1. Our experiments were selected to show a range of different kinds of analysis,
ranging from goal-independent type inference to planning and verification problems.

The implementation was developed in Ciao-Prolog [5]. The experiments were run in
SICStus Prolog v. 3.8.6 under Solaris using a machine with two Ultrasparc processors
running at 200 MHz.

Table 1 shows the results for goal-independent analysis, and Table 2 gives the results
of analysing the program with respect to a goal. The first group of benchmarks consists
of a standard set of test programs widely available. To these we added the Aquarius
compiler of Van Roy [35]. The second set of benchmarks are planning programs, which
we obtained from [4]. For these, there is a given goal, and the aim of the analysis is
to show that the goal has no solution. For these, an indication is provided (

√
) as to

whether the analysis did prove the failure of the goal (the “F” column in Table 2). The
variable-based analysis is more precise over these examples, showing failure in several
cases where the argument-based analysis cannot.

The programs in the first group of benchmarks do not always have a clear entry
point, and sometimes contain dead code with respect to the apparent entry point, so
the significance of the goal-dependent analyses is variable. The goal-dependent result
for the Aquarius compiler in particular seems meaningless. They are all included for
completeness. A “-” indicates that the analysis did not terminate in the resources avail-
able.



Variable-Based Argument-Based

Program Clauses Preds Transitions Time (secs) Transitions Time (secs)

cs r 109 37 462 0.56 245 0.26
disj r 80 43 220 0.23 132 0.17
gabriel 45 20 165 0.18 82 0.08
kalah 88 45 297 0.30 176 0.19
peep 227 22 832 1.19 279 0.57
pg 18 10 62 0.07 32 0.04
plan 29 16 118 0.09 67 0.08
press 155 50 627 0.97 302 0.35
qsort 6 3 31 0.04 11 0.01
queens 9 5 29 0.03 15 0.02
read 161 43 438 0.55 186 0.42
aquarius 4192 1471 20075 41.46 7464 14.30

odd even 4 3 8 0.01 5 0.01
wicked oe 5 4 10 0.01 10 0.01
appendlast 5 3 22 0.01 16 0.01
reverselast 5 3 17 0.02 13 0.01
nreverselast 7 4 30 0.03 21 0.02
schedule 13 7 62 0.04 40 0.05
multisetl 6 4 14 0.02 11 0.01
multiseto 8 2 13 0.02 8 0.02
blockpair2o 16 4 88 0.04 77 0.05
blockpair3o 16 4 105 0.07 55 0.06
blockpair2l 15 6 117 0.07 104 0.02
blockpair3l 15 6 134 0.11 112 0.06
blocksol 14 6 109 0.07 98 0.05

Table 1. Results for Goal-Independent Analysis

The results show that the argument-based interpretation is faster than the variable-
based interpretation. Both execution time and the number of transitions in the final
result is typically approximately halved in the argument-based interpretation.

8 Discussion and Conclusions

The results in Section 7 show that the argument-based interpretation is faster than the
variable-based interpretation. Although there is a loss of precision associated with the
argument-based interpretation, it can often be regained. Simply apply the T var

P function
to the result of the argument-based analysis. That is, compute T var

P (lfp(T arg
P )). This

projects the results of the argument-based analysis onto the domain of the variable-
based analysis, producing a separate result for each position in the clause heads. In
general, lfp(T var

P ) ⊆ T var
P (lfp(T arg

P )), but we have not yet made a detailed comparison
of the relative precision of the two analyses. For many programs, the two are identical.
To increase precision further, we could compute the limit (or any finite prefix) of the
finite decreasing sequence A, T var

P (A), T var
P (T var

P (A)), . . ., where A = lfp(T arg
P )).



Variable-Based Argument-Based

Program Clauses Preds Transitions Time (secs) Transitions Time (secs) F

cs r 225 74 971 3.29 372 1.03
disj r 154 86 360 1.18 254 0.89
gabriel 83 40 203 0.50 108 0.29
kalah 171 90 67 0.27 50 0.28
peep 318 44 888 2.91 393 1.1
pg 34 20 88 0.36 74 0.17
plan 58 32 152 0.37 57 0.16
press 278 100 838 4.16 554 1.93
qsort 13 6 47 0.10 16 0.04
queens 18 10 40 0.06 24 0.07
read 352 86 236 1.23 125 0.98
aquarius 9122 2942 129 23.21 32 25.38

F F

odd even 9 6 14 0.02
√

9 0.02
√

wicked oe 13 8 15 0.03
√

15 0.03
√

appendlast 10 6 25 0.03
√

18 0.02
√

reverselast 10 6 31 0.05
√

23 0.03 ×
nreverselast 14 8 48 0.08 × 36 0.06 ×
schedule 25 14 62 0.16

√
47 0.13

√

multisetl 12 8 23 0.04
√

20 0.07 ×
multiseto 16 4 67 0.26

√
36 0.12

√

blockpair2o 62 14 - - × - - ×
blockpair3o 62 14 - - × - - ×
blockpair2l 26 12 276 2.4

√
250 1.12 ×

blockpair3l 26 12 223 2.62
√

258 1.11 ×
blocksol 24 12 223 1.85 206 0.65

Table 2. Results for Goal-Dependent Analysis

8.1 Comparison With Type Inference by Abstract Interpretation

Comparing our analyses with other abstract interpretations over type domains [25,
34, 19, 13, 30], the main difference is that all previous work is based on deterministic
types. That is, a type may have have at most one “case” for each function symbol.
These correspond roughly to deterministic finite tree automata, and as noted in Section
2, these have less expressive power than NFTAs. For example, it is not possible to
represent the set of lists terminating in the element a using deterministic automata.
The relative precision non-deterministic regular types compared to deterministic ones
is discussed by Podelski and Charatonik [7]. The other aspect of existing type analyses
based on abstract interpretations is that they are defined on an infinite domain, and
so require a widening in order for the analysis to terminate. Mildner [30] has made a
detailed comparison of various widenings in the literature.

The use of an infinite domain of NFTAs along with a widening is in principle more
precise than our approach, since widening can be delayed an arbitrary number of it-
erations. The widenings that appear in the literature do not give more precision; our
goal-dependent analysis produces the same accuracy as the examples discussed by Van
Hentenryck et al., including those “that require the widening to be rather sophisticated”
[34]. However, existing abstract interpretations are based on deterministic types; the



combination of non-deterministic types and widening has not been investigated, to our
knowledge.

In summary, the method we presented seems to compare favourably, both in pre-
cision and efficiency, to all other type inference abstract interpreters known to us. For
applications such as planning and verification, the extra precision of non-deterministic
types over deterministic ones is significant.

8.2 Comparison with Set-Constraint Analysis

The variable-based analysis can be compared with set-constraint analysis [22, 21] via the
monadic approximation of a program presented by Frühwirth et al. [16]. The minimal
model of the monadic program is equivalent to the solution of the set-constraints for the
program. Our projectvar operator can be seen as performing the monadic transformation
dynamically during the analysis. We claim that our variable-based analysis computes
the minimal model of the corresponding monadic program (our projectvar operator
mimics the monadic transformation), and thus can be seen as a method of solving
set-constraints for logic programs.

The monadic transformation is attractive from the point of view of presenting set-
constraint analysis, but direct use of the monadic transformation in the implementation
of the analysis seems to be inadvisable. The transformation produces one copy of each
clause body for every variable in its head. Solving these separately would be very inef-
ficient. The somewhat awkward “pretend” variable, that is introduced in the monadic
transformation of clauses with ground heads, is avoided in our approach.

We do not have an implementation of set-constraint solving against which to com-
pare our implementation. Judging by our experiments and results reported in the liter-
ature, our approach is a practical alternative to set-constraint-solving algorithms. How-
ever, it does not seem likely that there are any inherent advantages in our approach to
solving set-constraints. The main interest comes from combining set constraints with
other analyses, in the framework of abstract interpretation.

8.3 Complexity and Scalability

Charatonik and Podelski remark that the worst-case complexity of set-based analysis
is seldom encountered since types in user-written programs tend to be relatively small
[7]. This does indeed seem to be true for “type analysis” applications of set constraints.
However, for verification and planning problems, the types can grow very large since they
can be combinatorial combinations of initial states present in the top goal. For instance,
some of the planning problems discussed by Bruynooghe et al. [4] contain a procedure for
checking equality of multisets. The procedure generates all permutations of the elements
of one of the multisets. Set-based analysis is precise enough to generate a type containing
all the permutations too, when the input sets are given. The two planning problems
“blockpair2o” and ”blockpair3o” were too complex for our implementation and ran out
of memory. In summary, the precision of set-based analysis is sometimes too good to
be practical, and coarser domains or widening operators may be needed in the abstract
interpretations. A coarser domain, such as one containing deterministic automata only,
could be used for more intractable examples. Introduction of widenings is arguably more
systematic and conceptually easier in the abstract interpretation approach than in the
original framework of set constraints. The generic correctness conditions for widening



operators are established, and the invention of widenings follows a pattern of identifying
invariant parts of the approximations from one iteration to the next.

8.4 Future Work

An advantage of our approach to set constraint analysis is that it can be incorporated
into existing abstract interpretation frameworks such as PLAI [6, 31] which forms part
of the Ciao-Prolog pre-processor [24]. The aims of integrating set-constraint analysis
into PLAI are to allow combination with other abstract domains, especially numerical
approximations like convex hulls, and to have access to features of PLAI such as incre-
mental analysis [23]. The pre-processor already includes a type analyser, and the greater
precision available from set-based-analysis would increase its scope. To implement an ab-
stract interpretation for a given domain in PLAI, a small number of domain-dependent
operations have to be provided, such as abstract unification and projection. The transi-
tions of the automata would be carried around the AND-OR tree of PLAI as “abstract
substitutions”. We can see no difficulty in principle in performing the integration, and
this is the next stage in our research.

In conclusion, we have demonstrated that abstract interpretation over NFTAs for
set-based analysis of logic programs is feasible, and we argue that there are conceptual
and practical advaantages in following this approach. Future research will focus on
integrating the analysis into a generic abstract interpretation framework, combining it
with other abstract interpretations.
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