1

An introduction to abstract
interpretation

Samson Abramsky and Chris Hankin, Imperial College, London, UK

1. INTRODUCTION

A significant proportion of the code in most modern production compilers
is devoted to the optimization of generated code. All too often the run-time
behaviour of the optimized program is inconsistent with the pre-optimization
behaviour; in other words, the optimization has affected the semantics of the
program as well as the pragmatics. This problem normally arises because
insufficient rigour has been applied to the correctness proof of the optimiza-
tion. For programming languages with defined mathematical semantics there
is a growing set of tools that provides a basis for semantically correct
transformation; one such tool is abstract interpretation. This book is mainly,
but not exclusively, devoted to the presentation of various uses of abstract
interpretation in the compile-time analysis of declarative programming
languages. Declarative languages are being increasingly used as the basis for
rapid prototyping systems; tools such as abstract interpretation increase the
possibility of turning the runnable specifications into efficient, production
programs,

In this chapter, we will review some of the major stages in the development
of the field. We will also present some of the basic ideas from denotational
semantics that are required by later chapters. However, first we introduce
two non-computing examples of abstract interpretation which will serve to
establish the principles underlying the approach.

Suppose that we are faced with the prospect of travelling somewhere; one
decision that must be made is whether we walk, drive or fly. Rather than
make our decision by trial and error, we use a property of the journey, the
distance (which can be measured on a map), to decide which is the most
appropriate mode of transport. The map is an abstract representation of the
journey and by measuring the distance we abstract the travelling process.

A second, more formal, example is the use of the rule of signs to determine
the sign of the result of a calculation. Asked for the sign of

151515(—235)
we immediately answer that the result is negative. Instead of performing the

10 AN INTRODUCTION TO ABSTRACT INTERPRETATION [Ch. 1

multiplication, we use the rule of signs that tells us that multiplying a positive
number by a negative number always gives us a negative result. This second
example is a bit closer to programming than the first and so we shall study
it in a bit more detail. To produce our answer, we had to translate the task
into the following form:

+* -
where * is the rule of signs version of multiplication:
02 +=02—-=+20=—-20=0
+L4+=-2_=
+ 3 = =
and then execute this, much simpler, calculation.
So far we have not considered the correctness of the interpretations but it
should be clear that we can get completely accurate answers in both examples.
The situation becomes much less clear if we extend the calculations of the

second example to include addition. The first few rules of the rule of signs
version of addition present little problem:

+40=04+=+

but the rest are slightly problematical:

++-—=77

-+ 4+ ="
If we arbitrarily choose a sign (0, + or —)in place of 7? we shall get incorrect
answers some of the time because the answer to the real calculation will
depend on the actual magnitude of the two numbers. How can we characterize

a correct choice for 7?7 In order to do this we must consider what the signs
in the abstract calculation represent:

0={0}
+ = {n|n> 0}
~ = {n|n <0}

then the abstract calculation is correct if the real answer is a member of the
set that the abstract answer represents. If this is the case, we say that the
abstract interpretation if safe. By using ?? to represent the set of integers, we
get a safe version of addition by adding the rules:

M+s=5+77=774+77="7 where s€{0, +, —}

We leave it as an exercise for the reader to extend the rule of signs for
multiplication.
How is abstract interpretation useful in computing? Many of the traditional

Ch. 1] AN INTRODUCTION TO ABSTRACT INTERPRETATION M1

optimizations based on control-flow and data-flow analysis fit within the
abstract interpretation framework. Some of the particular analyses that are
important for declarative languages are listed below.

Strictness Analysis: An analysis that allows the optimization of lazy
functional programs by identifying the parameters that can be passed
by value thus avoiding the need to build closures and opening up
opportunities for parallel evaluation. Chapters 4 and 12 address this
area and we consider two other approaches later in this chapter.

In-place Update Analysis: This analysis allows us to determine the points
in a program at which it is safe to destroy a data object because there
are no longer any references to it. Results in this area are reported by
Hudak. A notable result is that, for the first time, a functional version
of the quicksort algorithm can be made to run in linear space.

Relevant Clause Analysis: In many of the prototype fifth generation
architectures programs are able to make non-local access to function
definitions. This implies that there is a communication overhead
associated with program execution. By using this particular analysis it
is possible to identify the parts of the function definition that are relevant
to a particular application and thus reduce the overhead.

Mode Analysis: Significant performance improvements can be achieved in
PROLOG interpreters if it is known how the logical variables are used
in a relation (i.e. as input or output variables or a mixture of the two).
This problem is addressed by both Mellish’s chapter and also Jones and
Sondergaard’s chapter.

As the declarative language community become more aware of abstract
interpretation, new applications are being discovered. A common feature of
the compiler optimization applications is that they abstract properties of
programs that are essentially undecidable. Thus the issue of correctness
becomes critical. Optimization based on safe abstract interpretations are
probably correct. Translated into our examples safety implies that:

o If strictness analysis determines that a function is strict in an argument
then it definitely is but the analysis will fail to detect some parameters
that could be passed by value

o If in-place update analysis indicates that we can destructively update a
cell then we can but we will still copy some objects that could have been
destroyed

o Relevant clause analysis will cause us to communicate a superset of the
code that is actually needed for a particular application

e Mode analysis will sometimes fail to detect that a logical variable is
used exclusively as an input(output) variable

But even with this unavoidable inaccuracy, there are still significant per-
formance payoffs.

In the rest of this chapter we shall try to convey in a much more precise
way how abstract interpretation is used in computing and in particular in
declarative programming. We start with some elementary domain theory, we

12 AN INTRODUCTION TO ABSTRACT INTERPRETATION [Ch. 1

then present overviews of a number of important contributions to the field.
The Cousots’ work is included since it is seminal; although their framework
was developed for the analysis of flowchart programs it served to establish
the approach. Mycroft developed the first applications of abstract inter-
pretation to functional languages and our own work is a natural extension
of his. Throughout the chapter we have provided appropriate cross references
to later chapters.

2. MATHEMATICAL PRELIMINARIES

A number of chapters assume some familiarity with domain theory and
denotational semantics. In order to make the book reasonably self-contained,
we shall briefly review some basic concepts in domain theory. For excellent
textbook presentations of denotational semantics, see [Gor79b], [Sch86] and
[Sto77].

Firstly, what problems was domain theory introduced to solve? The
essential one was to give meaning to recursive definitions of

(1) programs
(2) data types

A naive approach to denotational semantics would attempt to base itself on
sets and functions. To see how this leads to problems, consider the definition:

[: Bool = Bool
f(x)=not f(x) (1)

which (with minor syntactic modifications) is a valid program in any language
allowing recursive functions or procedures. If we regard the type Bool as a set:

Bool = {11, ff'}

and f as a function on this set, then it is easy to see that no such function
satisfies the equation (1), and so we have not succeeded in defining anything
at all! Thinking computationally about this example, we see that what in
fact is going on is that f is a non-terminating program. This suggests the
device of introducing partial elements to model non-termination, and hence
restoring f to the status of a well-defined function:

Bool, = n\ /

1 non-termination
if we extend not in the obvious way by
not L=1
then we see that, for xe Bool,
f(x)= 1 =not L =not f(x)

and we have recovered a consistent definition.
The basic strategy of domain theory is thus to expand the class of definitions

Ch. 1} AN INTRODUCTION TO ABSTRACT INTERPRETATION 13

Total elements

Partial elements

Fig. 1.

(in particular, recursive definitions) to which we can give meaning by replacing
inconsistency with non-termination, which is objectified or denotationalized
into partial elements.

Thus we may think of domains as sets plus an infrastructure of partial
clements representing partially defined approximations to the ordinary total
clements. This imposes a structure of partial elements approximating more
defined ones, which is usually formulated as a partial ordering (the infor-
mation or approximation ordering). Computable functions between domains
preserve this structure.

On this basis, we can formulate some axioms for domains:

(Axiom 1) Domains are partially ordered sets (D, =) with least elements
1, with

Lp=d, VdeD

(Axiom 2) Computable functions between domains are monotonic (pre-
serve the ordering)

f:D—E is monotonic =Vd, eeD.dEe= fd= fe

Moreover, we want to compute meanings in domains as ‘limits of finite
approximations’. This will require that

(1) suitable limits exist
(2) computable functions preserve them

which gives the following two axioms:

(Axiom 3) Domains are complete partial orders (cpos):
for each increasing sequence (or chain) {x,} in D (i.e. x, = X, = X+,
= ---) the least upper bound of this sequence, written

[]
I__I x,eD

n=0

exists

14 AN INTRODUCTION TO ABSTRACT INTERPRETATION (Ch.1
(The defining properties of the least upper bound are

1) vax,C Cj X,

=0

(2) VdeD.(Vn.x,Ed)= |:| x, =d)

n=0

(Axiom 4) Computable functions are continuous (preserve limits).

w [
f:D - E is continuous = for every chain {x,} in D, f (L x,,) =11f(x,)
a=0 n=0

2.1 Examples of domains
(1) Given a set S, let S, =Su {1} and define a ordering &= on S, by:
xCy=sx=lorx=y
The least element is 1. Any chain has the form:
.. ELCsE.. . Cst...
==
or nxo
l=slclic...

This construction of flat domains is a recipe for making domains out of sets
by adding a single partial element to represent non-termination.

(2) A domain of tapes or output streams (see Fig. 2). This domain comprises
all finite and infinite sequences of Os and 1s, ordered by:

st = s is an initial subsequence of ¢
Examples of this ordering are:
001010

=0 (infinite sequences of zeroes)
L]

(3) If D and E are cpos, then

(D~ E]

Ch. 1] AN INTRODUCTION TO ABSTRACT INTERPRETATION 15

the set of all continuous functions from D to E ordered pointwise by:
fSg=VdeD. f(d) = g(d)
is a cpo. The least element is
AxeD. 1,
Given a chain of functions:

{fa}
in [D — E], the least upper bound is defined pointwise by:

(Ll f,,)(d) = U@

(4) If D and E are cpos, then
D x E = {(d,e)|deD and ecE}
the Cartesian product, ordered by:
ded={de>=d=d and e e’
is a cpo. The least element is
{lp:lp>

Given a chain {{d,.e,)} in D x E, {d,} forms a chain in D and {e,} forms a
chain in E and:

a [] <}
L—I <dﬂ’eh> = < L-Id’l’ L] ell>
A=Q n=0 n=0
2.2 Fixed points
The axioms presented earlier may seem very abstract. However as an

immediate and spectacular payoff, we get:

The Fixed Point Theorem If f:D — D is a continuous function on a domain
D, it has a least fixed point deD, satisfying:

(1) f(d)=d
(2) VeeE.f(e)=e=>de

Moreover, d is defined by:
d=L1|/(Lp)

n=0

(where f°(x) = x and f**(x)=f(f"(x))

Proof Firstly,
1p= f(Lp) (Lp is the least element)

16 AN INTRODUCTION TO ABSTRACT INTERPRETATION {Ch. 1

Moreover,
e L)=r" (L= %1y (f is monotonic)

and so by induction the sequence {f™(Lp)} is a chain.
Now -

f(gf’@,,)) = ,!;I)f” YLp) (f is continuous)

= (L)

n=0

and so |:| ™1 p) is a fixed point of f.
=0

Finally, suppose e is a fixed point of f, that is f(e) =e. We show that
fYLp)Ee of all n by induction. The basis is just:

S o(-LD) =1lpe
For the induction step,

Lo Ee=f(f(Lp)=fle)=e
This shows that e is an upper bound of the chain {f"(1p)} and hence,

«©
l_l fM(Lp)=e -
a=0
Note that this proof uses all of our four axioms for domains.
The fixed point theorem enables us to interpret recursive definitions

x=f(x)

as least fixed points and thus solves the problem with which we started. It
also forms the basis for a number of practical algorithms in abstract
interpretation, as we shall see.

3. THE COUSOTS - SOME BASIC NOTATION

The first people to attempt to construct a rigorous framework for abstract
interpretation were Patrick and Radhia Cousot. Many of the basic concepts
and definitions that recur in later work may be traced, albeit in modified
form, to the Cousots’ work. They were primarily interested in the flow analysis
of flowchart programs although their work provided the inspiration for
Mycroft’s thesis work and much that has followed since.

A program is represented by a graph; the nodes correspond to program
operations and the arcs record control flow. To fix notation we follow the
Cousots and use a simple language in which each node is labelled by one of
the following classes of operation: Entry, Assignment, Test, Junction and
Exit. Each node has a set of successor nodes and a set of predecessor nodes
associated with it; these sets are given by the following functions:

n-succ, n-pred: Nodes — 2¥°%

Ch. 1] AN INTRODUCTION TO ABSTRACT INTERPRETATION 17

that satisfy:
men-succ(n)<>nen-pred(m)

For each type of node there are constraints on the cardinalities of the
successor and predecessor sets; for example, for Test nodes we have:

|n-pred(n)| = 1
In-suce(n)| = 2 a true and a false successor

For Test nodes we will also have the functions n-succ-t and n-succ-f which
select the true and false successors respectively. The set of Arcs of a program
is a subset of Nodes x Nodes defined by:

Arcs = {{m,n)|(meNodes) and (nen-succ(m)}

The functions a-succ, a-pred, a-succ-t and a-succ-f are defined analogously to
the above. A program is then represented as the directed graph (Nodes,
Arcs); for example the ubiquitous factorial program (see Fig. 3).

The semantics of such programs can be given in the following way. Firstly
we need a state; this is represented by an arc (the program counter) and a
memory (called the environment in the Cousots’ work) that records the

18 AN INTRODUCTION TO ABSTRACT INTERPRETATION [Ch.1

current bindings of identifiers to values. Thus we define

Values = Bool + Num + ---
Env = Ident — Values
States = Arcs, x Env

where Ident is a set of identifiers and we use the standard domains of booleans
and numbers and + is disjoint sum. (The Cousots require that the various
sets involved be complete lattices but this is an unnecessary restriction.) The
semantics are given by a state transition function:

next:States — States

next({m,n>,p) = case n in
Assignments:(a-succi(n), p[val[expr(n)] p/id(n)])

Tests: cond(val[[test(n)] p,(a-succ-t(n), p),(a-succ-f (n), p))
Junctions:(a-succ(n), p)
Exits:({m,n},p)

esac

where

(1) expr, id and test are the obvious syntactic selector functions
(2) val is a semantic function

val: Expressions — Env — Values

that gives meanings to expressions
(3) plv/I] where peEnv, Icldent and ve Values is the result of updating
p at I withv

ply/)r =v,I=r
pl', otherwise

For simplicity we shall consider programs which have a single input
parameter which is associated with the identifier read. The initial states are

characterized by: o
Istates = {(a-succ(m),Aie Ident.if i = read then initial-value else 1)|meEntries,
initial-valuee Values}
and the meaning of the program is the solution of the equation:
P =nextoP
which is given by
JSix(A f.nextof)

In the Cousots’ framework all abstract interpretations are defined in terms
of the static semantics (the collecting interpretation of Mycroft). The static
semantics is in some sense the least abstract of the abstract interpretations;
it collects together all of the environments that might be associated with a

Ch. 1] AN INTRODUCTION TO ABSTRACT INTERPRETATION 19

program point (arc) during program execution. Any property of interest can
be inferred by analysis of these sets.

In the static semantics a context, which is a member of the powerset of
environments, is associated with each arc:

Contexts = 2E™
The context associated with a particular arc, g, is defined as:
{e|3n >0, Jielstates, {q,e) = next"(i)}

Contexts is a complete lattice with ¢J as the bottom element, Env as the top,
& as the ordering and U and N as join and meet operations.

The static semantics is uncomputable because it gives exact information
about program properties. We therefore consider abstract interpretations
which are computable at the price of giving less precise information. An
abstract interpretation is given by a complete lattice of abstract contexts and
aninterpretation function. But which abstract interpretations are permissible?
The Cousots establish a correspondence between concrete and abstract
contexts via a pair of functions « (abstraction) and y(concretization) that have
the following properties:

a:Contexts — Abstract
y: Abstract — Contexts
VxeAbstract. x = a(y(x))
or acy = identity spurace
VxeContexts. x = 9(a(x))
or yoa 2 identitycomex:s
This defines («,y) as an adjoined pair of functions. If these functions can be
established for a particular abstract interpretation, then the correctness of

the interpretation follows. (Correctness means that the concretized abstract
context includes the concrete context — recall the rule of signs example).

Abstract Abstract interpretation Abstract
contexts contexts

Abstraction l

I Concretization

|

| '
L

>0

Contexts ‘

Static semantics
Fig 4.

20 AN INTRODUCTION TO ABSTRACT INTERPRETATION {Ch.1

As a first example we extend the rule of signs to flowchart programs. It
simplifies the treatment to consider programs which only use one identifier,
the input parameter read, but the reader should have little difficulty in
generalizing the example. An immediate implication of restricting ourselves
to one identifier is that we can treat the concrete contexts as sets of integers
rather than environments. The abstract contexts are signs drawn from the
following lattice:

/?'?\
- +
\I/
ros:Arcs, x (Arcs, — Sign)— Sign
ros({m,n),S) = case m in
Entries:sign of the initial value
Junctions:join,, .. .4mS(4)
Tests.case (m,n) in
{a-succ-t(m)}:|] {s|s = S(a-pred(m))
and rvaltest(m)] s 2 true}

{a-succ-f(m)}:|_| {s|s = S(a-pred(m))
and tval[test(m)]s 2 false}

The interpretation is then given by

esac
Assignments:sign[expr(m)] S(a-pred(m))
esac

where join is the usual join operation on lattices and tval and sign are
non-standard semantic functions

sign: Expressions — Sign — Sign

tval: Expressions — Sign — Truval
that apply the rule of signs described in the Introduction to evaluate
expressions. (In a more general solution the Sign parameter for each function

would be replaced by a sign environment, Ident — Sign). The domain of truth
values, Truval, is a complete lattice:

truefalse
true” > Jalse

The top element is the valpe of expressions that do not have a clearcut value,
for example:

+2+

~.. - — ——————

Ch.1} AN INTRODUCTION TO ABSTRACT INTERPRETATION 21

The abstraction map is defined in the following way:

a:Contexts — Sign
A(C)=1,C={}
0,C={0}
+,C={cle >0}
—,C={clc<0}
77, otherwise
and the concretization map is given by
y:Sign — Contexts
W)={}LS=1
{0},§=0
{s|]s=0},S=+
{sls<0},S=—
{s|s an integer}, otherwise
It is a trivial exercise to show that these satisfy the adjoinedness property.
How do we use such an abstract interpretation? We want to annotate
every arc in the program with an element of Sign that safely represents the
possible values that the identifier might have at that point in the program.
Initially we have no information; all arcs have L associated with them. After
applying the interpretation once we shall know the sign of the initial value.
Repeated application of the interpretation will propagate sign information
throughout the program. We have just described the usual process of iterating
towards a fixed point. The required information can be found as the fixed
point of the following functional:
F:(Arcs, — Sign) — Arcs, — Sign
F = AS.Ar.ros(r,S)

using:
Aredres,. 1

to start the iteration.

A second example which uses a simpler abstract domain is an analysis
which determines which nodes in a program are reachable. We include this
analysis because it is closely related to the strictness analysis problem that
is discussed later. The abstract contexts are elements of the two-point domain:

T

I
1

and the interpretation is given by:

reach:Arcs, x (Arcs, - Reach) - Reach
reach({m,n>,R) = case m in

22 AN INTRODUCTION TO ABSTRACT INTERPRETATION [Ch.1

Entries: T

Junctions:join ., ,eunR(9)
Tests:case {m,n) in

{a-succ-t(m)}:|_| {r|r = R(a-pred(m))

and tvalftest(m) }r 2 true}
{a-succ-f(m)}:|_] {rir = R(a-pred(m))

and tval{test(m)]r 2 false}
esac

Assignments: R(a-pred(m))
esac

where tval is the obvious modification of the function of the same name used
in the first example. The abstraction and concretization maps are defined as
follows:

a:Contexts — Reach
oC)=L,C={}

T, otherwise
¥:Reach — Contexts

WR)={},R=1
{rir an integer}, otherwise

Again it is a trivial exercise to show that this pair of maps satisfy the
adjoinedness property. The reader is invited to work through some examples
of these two interpretations.

A notable omission from the foregoing discussion is the distinction between
Jorwards and backwards analysis. In the examples we showed analyses that
propagate information forwards from the entry points; we could equally well
start with exit properties and use these to infer input constraints. We shall
not dwell on this issue here; the reader is referred to Chapter 4 and Burn’s
thesis where backwards analysis is used to perform strictness analysis on
functional programs that operate on structured data.

Nielson’s work may be seen as a generalization of the Cousots’; he provides
a framework that applies to any language that can be given a denotational
semantics (rather than just flowcharts). As stated at the beginning of this
section, the notation introduced by the Cousots pervades the subject but
Chapters 2, 5 and 9 provide alternative frameworks. Chapters 6 and 8, on
analysing PROLOG programs, are closely based on the Cousots’ work.

4. MYCROFT - ABSTRACT INTERPRETATION IN THE
APPLICATIVE IDIOM 1

At first sight it 1s not clear how to apply the ideas of the last section to
functional programs. There is no clear notion of program point in functional

- AN INTRODUCTION TO ABSTRACT INTERPRETATION 23
programs and the powerset framework does not allow us to perform certain
analyses that are of interest. Graph reduction implementations of functional
languages are self-optimizing to a certain extent so that, rather than the
classical analyses, questions of termination become much more interesting
(cf. strictness analysis). Based on these observations, Mycroft gives cogent
reasons for moving to the use of powerdomains for the static semantics rather
than powersets. Indeed, Mycroft shows that the powerset interpretation
is an abstraction of the collecting interpretation (Mycroft’s term for static
semantics).

4.1 Powerdomains

Powerdomains inherit structure from the underlying domains. Distinct sets
from the powerset become identified in the powerdomain; which sets are
identified depends on the particular powerdomain construction that we use.
A domain element, x, approximates another, y, (x = y) if every property
satisfied by x is also satisfied by y. Properties can be represented as the set
of objects that satisfy them. More formally, if we have a characteristic function:

S:D—2 (D any domain, 2={1, T })
then we can define property P by
P={deD|fd=T}

We shall be interested in finitely observable properties; these are properties
which have continuous characteristic functions (these sets are the Scott Open
sets). For domain element x, we write x satisfies property P if x is a member
of the above set.

There are two ways of extending this notion of satisfaction of a property,
P, to sets of elements, S:

(1) VseS. seP
ie. S< P, read S must satisfy P
(2) 3seS. seP
ie. SNP # &, read S may satisfy P
From this we can derive three orderings:

(1) RZ,S=V observable P. R may satisfy P=S may satisfy P
(2) RL,S=V observable P. R must satisfy P=>S must satisfy P
(3) R&,38S=RLC;Sand RC,S

and each has an equivalence associated with it:

For a powerdomain construction we may choose one of these orderings with
elements that are canonical representatives for the associated equivalence
classes. In particular, there is a largest set in each equivalence class (with

24 AN INTRODUCTION TO ABSTRACT INTERPRETATION [Ch.1

respect to set inclusion). In the powerdomain based on ,, these sets are
exactly the Scott Closed subsets which we therefore choose as the canonical
representatives. A Scott Closed set is a set X such that:

(1) Vchains {y,} = X,| |{y.}eX
(2) VyeD such that y = x for some xeX, yeX. (X is left-closed)

Using these elements =, becomes <. This is the Hoare (or lower)
powerdomain. Similar descriptions can be given for the other two standard
powerdomain constructions; the Smyth (or upper) powerdomain and the
Plotkin powerdomain.

We now return to Mycroft’s thesis work.

4.2 Mycroft’s framework

Mycroft uses a language of first-order recursion equations. An abstract syntax
for such a language is:

Prog.= Exp where (Fun(Var,...Var,)= Exp)*

Exp:= Atom|Var|Basic(Exp,,...,Exp,)| Fun(Exp,,..., Exp,)

A schematic semantics can be given in the following way:

M:Prog—D
M[E where F,(x,,...,x,)=E,...] =E[E]p where

p={(ix. L, fix(Arr[My, ..., y)E[EJ([y;/x;,r)/F))
E.Exp—Env—D

Env = Varenv x Funenv

Varenv = Var—D
Funenv= Fun—D*—-D
E[A]lp=a

E[x](p1,p3) = p,(x)

E[B(E,....,E)]p = HTupl(E[E,]p, ... E[E,]p))
E[F(E,,...,E)](p,.p;) = po(F)(Tuple(E[E,](p,, p,).....E[E](p1. p2)))

where Tuple constructs a tuple of arguments for the function.

In order to make this a complete specification of the semantics we need
to specify the domain D and the meanings of Atoms and basic functions
(plus,times,if,...). The standard semantics is given by choosing D to be a
disjoint union of numbers, booleans and other primitive types and taking
the usual meanings for basic functions.

Mycroft follows the Cousots in providing a static semantics which he calls
the collecting interpretation; he uses the Plotkin powerdomain construction
as the basis for this interpretation. Thus the choice for D is the powerdomain
of primitive values and the basic functions are lifted in the usual wav. For
the collecting interpretation we have:

Ch. 1] AN INTRODUCTION TO ABSTRACT INTERPRETATION 25

Values = Num + Bool + -
D = P(Values)
and for example:
+:P(D*)— P(D)
+(5) = (P+)(8) = { +(x, p)l(x,y)eS}*

where {—}* is a closure operator that ensures that the set is an element of
the Plotkin powerdomain, the details of which need not concern us. Other
abstract interpretations are related to the collecting interpretation by a pair
of functions (Abs, Conc). However, the Plotkin powerdomain is not necessarily
a complete lattice so that Cousots’ framework does not directly apply. With
the powerdomain there is an associated subset ordering [Hen78]. There is
a continuous operation called union with satisfies the standard axioms and
gives us a natural definition of subset:

Il Clz@llulz = ’2

An abstract interpretation involves specifying a domain (not necessarily a
complete lattice) for D and a set of basic functions. We require Abs and Conc
to obey the following equations:

Abs°Conc = id
ConceAbs o id

Having defined the A4bs function, the Conc function is determined by these
properties:

Conc(m) = () {I|Abs() = m}
The correctness theorem of Mycroft shows that
g < Concoheo Abs

where g is a function in the collecting interpretation and k is a function in
the abstract interpretation.

An example is strictness analysis. This analysis allows us to detect whether
a function is strict; a function f is strict if:

fl=1

Of course, from the foregoing discussion it is not possible to detect all such
information. As stated in the introduction the importance of such an analysis
is that the parameters in which a function is strict may be passed by value.
In a sequential setting this avoids the need for building a closure and in a
parallel setting allows us to evaluate those parameters in parallel with the
application.

For strictness analysis we choose D to be the two point domain, 2:

1

|
0

26 AN INTRODUCTION TO ABSTRACT INTERPRETATION [Ch.1

Intuitively, the 0 is used to represent the undefined element (non-termination)
and 1 represents possible termination. The abstraction function is defined in
the following way:

HALT:P(Values)— 2
HALT(v)=0,if v={1}
1, otherwise
For strict basic functions we use conjunction:

Oanda=aand 0=0 a=0 or a=1
land 1 =1
so that
+*x,y)=xand y
(Mycroft uses the # superscript to represent the strictness analysis inter-

pretation for a function.) For the conditional, Mycroft suggests the following
interpretation:

if*(x,y,z) = x and (y or 2)

where or has the obvious definition; this captures the intuition that the
conditional must evaluate its predicate but we cannot know until run-time
which of the consequent or alternative is needed (this is where the inaccuracy
creeps into our interpretation).

Thus deviating slightly from the original syntax, the abstract interpretation
for the factorial function:

fac(x) = !f(= (X,O), *(x,fac(- (X, 1))))
is given by
fac*(x)=(x and 1) and (1 or x and fac*(x and 1))

(notice that atoms are definitely defined and thus get mapped to 1 by the
abstract interpretation). After simplification we get:

fac*(x) = x and fac*(x)

and we can give meaning to this by the usual fixed point techniques (the first
iteration being 4x.0). The fixed point gives:

fac*(x)=0
and we can use this to infer that fac is strict since
Jfac*0)=0 (le.fac L = 1)

The Burn, Hankin and Abramsky framework described later in this chapter
is an extension of this approach to higher-order languages and Wadler’s
chapter addresses the problem of analysing structured data (lists) within this
framework.

Mycroft shows how his framework may be applied to other optimizations

Ch. 1] AN INTRODUCTION TO ABSTRACT INTERPRETATION 27

of functional languages. The major example 1s in-place update analysis. This
is a rather complex analysis that involves three different interpretations; an
alternative, more recent approach is reported in Hudak’s chapter.

5. NIELSON - A GENERAL FRAMEWORK

The most general framework to date has been presented by Flemming Nielson
in his thesis and developments therefrom. A lucid account of this work is
given in Nielson’s chapter and we shall not rehearse it here. He and his
co-workers have used the framework for a variety of traditional flow analysis
problems and, more recently, strictness analysis and in-place update analysis
for functional programs.

6. BURN, HANKIN AND ABRAMSKY - ABSTRACT
INTERPRETATION IN THE APPLICATIVE IDIOM 11

Mycroft’s pioneering work on strictness analysis in his thesis was confined
to the case of first-order functions over flat domains of basic data. In order
to make strictness analysis really applicable to practical functional program-
ming, two extensions were essential:

(1) To non-flat domains, e.g. lazy lists, trees etc. This is the topic of the
Chapters 4 and 12, and is also mentioned as an application of his
methods by Jones.

(2) To higher-order (and preferably polymorphic) functions. This topic
was addressed in a number of papers which appeared at about
the same time [Bur86b], [Hud86b], [Mau86] and [Wra85]. Since
[Bur86b] is referenced by a number of chapters in this volume, we shall
give a summary of the main ideas here.

6.1 A Syntax for Higher-order Functions

We shall take the typed A-calculus as a simple system in which the essential
ideas can be expressed. Firstly, we have type expressions, given by the syntax:

o=Alog—1t

where A ranges over some collection of base types.

Examples If int, bool are base types, then
(int — int) — bool
(int — int) - (int — int)
are type expressions.
Next, we have typed terms (i.e. ‘programs’) described as follows. For each

type ¢ we have a set of variables Var, = {x%°,2°...}. We also have a
collection of typed constants, c,. Then we form terms M of type o (written

28 AN INTRODUCTION TO ABSTRACT INTERPRETATION {Ch.1

M) according to the following rules:
(1) x°o
(2) c,i0
(3) M:ic—+t N:eo=>MN:1
4) M:t=xM:c-1

We want to consider both standard and abstract interpretations of the
calculus. The general concept of which these are both instances is inter-
pretation. An interpretation / assigns a domain D to each base type A. This
is then extended to all types o by:

D;..=[D;-D;]

Moreover I assigns a denotation c/eD! to each constant ¢, of type 6. This
is then extended to all terms by the semantic function [M]'p, which maps a
term M:¢ and an environment p to an element of D!. (An environment is a
map from variables x to elements of D). []' is defined as follows:

[xT'o=px°

[c)'p=c:

[MNT'p = ([M]'p) ([N]'p)
[Ax°.M]'p = 2deDL[M]'p[d/x")

Thus an interpretation is determined by the domains it assigns to base types,
and the values it assigns to constants.

Example Suppose the base types are int and bool, and the constants are:
0:int
tt, ff :bool
succ, pred:int — int
zero:int — bool
for each o, if,:bool g 200

The standard interpretation St would be:

Ditt=NJ.
D3, = Bool
0%=0
suceL =1
succn=n+1
ifglxy=1
ifS'uxy=x
ifsfixy=y

etc. Now an abstract interpretation will be just another interpretation Abs.
The abstract interpretation for strictness analysis will be the obvious extension
of Mycroft’s. For our example. this is as follows (we have followed Mycroft

Ch. 1] AN INTRODUCTION TO ABSTRACT INTERPRETATION 29

in calling this interpretation #):
D* = D! , =2, the two-point domain
succ® = pred* = zero* = the identity function on 2

More generally, if f:4,—---— A,— A is a (curried) first-order function of n
arguments, and strict in each argument, then:

ff2s.. 022
is an n-ary conjunction:
f¥b,,....b,)=b, and...and b,
Finally, the conditional:

iffoxy=0
ifflxy=xlly

where x L1y is the least upper bound (computed pointwise). This always exists,
since each D! is a lattice. In the case when ¢ is a ground type, this yields
Mycroft’s original interpretation of the conditional.

This then is our abstract interpretation. To see how we may actually use
it to obtain strictness information, consider a term of the form:

Mo —...oag,—~A4

To test if this term (denotes a function which) is strict in the ith argument,
we can test:

[MPFTS, L8 TE,=0 *

where T# 1% are the top and bottom elements respectively in the domain
D!. (For simplicity, we assume that M is closed and ignore the environment).
Since all the objects and operations in the abstract domain are finite and
can be explicitly tabulated, (*) is an effective test, which can be implemented
in a compiler. For further discussion of how this abstract interpretation can
be used to guide efficient compilation, see [Han86].

The question remains, however, whether (*) is actually correct; that is,
whether we can soundly infer from (*) being satisfied that M is indeed strict
in its ith argument in the standard semantics, and therefore in its actual
computational behaviour. To guarantee that this is so, we obviously must
relate the standard and abstract interpretations in such a way as to guarantee
that properties inferred by calculations in the abstract domain are satisfied
in the standard domains. The main thrust of [Bur86b] is to establish this

relationship. Da e st woll
The idea is to define abstraction functions 5 maq el ses tol
abs,: DS - D* PR el snts 7]

which satisfy some crucial properties:

(1) abs preserves 1:
abs, 1% = 1"

P

30 AN INTRODUCTION TO ABSTRACT INTERPRETATION {Ch.1

(2) abs reflects 1:
abs,d=L4=>d=1%
(3) abs is a semi-homomorphism of semantics:
For each M:s, and environment p%,
abs ([M)*p) = [M]*(absp)
(4) abs is a semi-homomorphism of application:
abs(fd) < abs, . f)abs,(d)
From (1)—(4), the main result of [Bur86b] can easily be proved:

Soundness Theorem For Strictness Analysis
For Mg, —».--—0,— A,
[M]*T# ... 1% ...T# =0=For all d,eD',...,d,eD}":
[M]]s'd,---.l.§5~'-d,,= 15

In other words, the inference back from our test to actual computational
behaviour is valid.

Proof of the Soundness Theorem

[M]*T% ... L% ... T# =0=abs [M]™abs,(d,)...abs,(L5)...abs,(d,)=0
by (1), (3) and monotonicity

= abs,([M]*d, - L$--d)=0 by (4)
=>[M]*d,---L3-d,=L5 by(2) B

How can we define abstraction functions satisfying (1)-(4) above? The cases
for base types are easy — they just follow Mycroft’s definition of his HALT
function:

abs d=0ifd= L%
1, otherwise.

The extension to higher-order types is less obvious. In [Bur86b] it is done
using the formalism of powerdomains. [Abr85b] gives an equivalent but
simpler definition;

Definition
abs,_. . fb=|_|{(abs. f)d|abs,d = b}.
Intuitively, given f: D'

St and beD*, we must consider all those de D' which
are safely related to b, i.e. for which abs,d =b. We then consider the set of
all abstractions of images of such d under f. The result of our abstraction of
f applied to b must be safely related to everything in this set - must
be an upper bound - but should lose as little information as possible in doing
so - hence the least upper bound.

The technical development in [Bur86b] is concerned with showing that
these functions have the required properties. [Abr85b] puts these ideas in a

Ch. 1] AN INTRODUCTION TO ABSTRACT INTERPRETATION 3t

wider context relating them to standard notions in the 4-calculus (logical
relations) and category theory (Kan extensions). The extension of the ideas
of [Bur86b] to polymorphic functions is investigated in [Abr86].

CONCLUSIONS

We have presented a selection of the major developments in abstract
interpretation that form the background for the other chapters in the book.
Mycroft’s Jones’ and Foster’s chapters present alternative approaches to the
subject.

This chapter would not be complete without some mention of the people
and organizations that have assisted us in our work on abstract interpretation.
Firstly, we must thank Geoff Burn who has collaborated with us for the last
two years and who first introduced us to these ideas through his thesis work.
Secondly, we must thank everyone who attended our workshop at the
University of Kent in 1985, the Alvey Directorate who funded that event and
Richard Sykes who organized it.

Bibliography

This bibliography is primarily compiled from references cited in the text. Some
additional references have been added from a bibliography on abstract interpretation
which has been prepared by Flemming Nielson. Abstract interpretation is closely
related to flow analysis; [Muc81] contains an excellent bibliography of this area.

ABBREVIATIONS

ACM Association of Computing Machinery
CACM Communications of the ACM
ICALP International Colloguium on Automata, Languages and Programming

IFIP International Federation of Information Processing
JACM Journal of the ACM
JIMA Journal of the Institute of Mathematical Applications

LNCS Lecture Notes in Computer Science

MFCS Symposium on Mathematical Foundations of Computer Science
POPL ACM Symposium on Principles of Programming Languages
TOPLAS ACM Transactions on Programming Languages and Systems

[Abr85a] Abramsky S. and Sykes R. SECD-M: A virtual machine for applicative
programming, Proceedings I F1P Symposium on Functional Programming Languages
and Computer Architecture, LNCS 201, Springer-Verlag, 1985

[Abr85b] Abramsky S. Abstract Interpretation, logical relations and Kan extensions,
unpublished manuscript, 1985

{Abr86] Abramsky S. Strictness Analysis and polymorphic invariance, Proceedings of
the DIKU Workshop on Programs as Data Objects, LNCS 217, Springer-Verlag, 1986

[Aho77] Aho A. V. and Ullman J. D. Principles of compiler design, Addison-Wesley,
1977

[Al176] Allen F. E. and Cocke J. A program data flow analysis procedure, CACM 19(3),
137-147, 1976

[And87] Anderson N. Approximating term rewriting systems by regular tree grammars,
forthcoming, 1987

[Aug84] Augustsson L. A compiler for tazy ML, Proceedings of the ACM Symposium
on Lisp and Functional Programming, 1984

[Bac75) Backhouse R. C. and Carre B. A. Regular algebra applied to path-finding
problems, JIMA 15, 161-186, 1975

[Bac78] Backus J. Can programming be liberated from the von Neumann style? A
functional style and its algebra of programs, CACM 21(8), 1978

[Bar77] Barth J. M. Shifting garbage collection overhead to compile time, CACM
20(7), 513-518, 1977

[Bar83] Barbuti R. and Martelli A. A structural approach 1o static semantics
correctness. Science of Computer Programming 3. 279-311, 1983

[Bar84] Barendregt H. P. The Lambda Calculus - Its Syntax and Semantics, North-
Holland. 1984

BIBLIOGRAPHY 277

[Bau85] Bauer I. L. et ul The Munich Project CIP-Vol 1. The wide spectrum CIP-L,
LNCS 183, Springer-Verlag, 1985

(Bra69] Brainerd W. S. Tree generating regular systems, Information and Control 13,
217-231, 1969

{Bra82a] Bramson B. D. and Goodenough S. J. Data use analysis for computer
programs, unpublished R.S.R.E. report, 1982

[Bra82b] Bramson B. D. Information flow analysis for computer programs, unpublished
R.S.R.E. report, 1982

[Bry85] Bryant R. E. Graph-based algorithms for boolean function manipulation, CMU-
CS-85-135, Department of Computer Science, Carnegie-Mellon University, 1985

[Bur80] Burstall R, MacQueen D. and Sannella D. HOPE: An Experimental
Applicative Language, Proceedings of the ACM Conference on Lisp and Functional
Languages, 1980

[Bur85] Burn G. L. Why the problem of polymorphism and strictness analysis has not
been solved, Note on the FP Bulletin Board, 1985

[Bur86a) Burn G. L., Hankin C. L. and Abramsky S. The theory of strictness analysis
for higher order functions, Proceedings of the DIKU Workshop on Programs as Data
Objects, LNCS 217, Springer-Verlag, 1986

[Bur86b] Burn G. L., Hankin C. L. and Abramsky S. Strictness analysis for higher
order functions, Science of Computer Programming 7, 249-278, 1986

[Bur87] Burn G. L. Abstract Interpretation and the Parallel Evaluation of Functional
Languages, PhD thesis, University of London, 1987

{Car79] Carre B. A. Graphs and networks, Oxford University Press, 1979

[Cla77] Clark D. W. An empirical study of list structure in Lisp, CACM 20(2), 78-87,
1977

[Cla85] Clack C. D. and Peyton Jones S. L. Strictness Analysis — a practical approach,
Proceeding IF1P Symposium on Functional Programming Languages and Computer
Architecture, LNCS 201, Springer-Verlag, 1985

[Cle86] Clement D., Despeyroux J., Despeyroux T. and Kahn G. A simple applicative
language: Mini-ML, Proceedings of the ACM Conference on Lisp and Functional
Programming, 1986

[Cou76] Cousot P. and Cousot R. Static determination of dynamic properties of
programs, Proceedings of the 2nd International Symposium on Programming, 1976

[Cou77a] Cousot P. and Cousot R. Abstract interpretation: A unified lattice model for
static analysis of programs by construction of approximation of fixpoints, 4th POPL,
pp 238-252, 1977

[Cou77b] Cousot P. and Cousot R. Static determination of dynamic properties of
generalised type unions, ACM SIGPLAN Notices 12(3), 77~-94, 1977

[Cou77¢c] Cousot P. and Cousot R. Automatic synthesis of optimal invariant assertions
mathematical foundations, ACM SIGPLAN Notices 12(8}, 1977

[Cou78a] Cousot P. and Cousot R. Static Determination of Dynamic Properties of
Recursive Procedures, in Formal Descriptions of Programming Concepts, edited by
Neuhold E. J., North-Holland, 1978

[Cou78b] Cousot P. and Halbwachs N. Automatic discovery of linear restraints
among variables of a program, 5th POPL, 1978

[Cou78c] Cousot P. Méthodes itératives de construction et d'approximation de point
fixes dopérateurs monotone sur un treillis analyse sémanitique des programmes, Thése
Docteur des Sciences Mathématiques, Grenoble, France, 1978

[Cou79] Cousot P. and Cousot R. Systematic design of program analysis frameworks,
6th POPL, 1979

{Cou80] Cousot P. and Cousot R. Semantic Analysis of Communicating Sequential
Processes, ICALP 1980, LNCS 85, Springer-Verlag, 1980

[Cou81] Cousot P. Semantic foundations of program analysis, in Program Flow
Analysis: Theory and Applications, edited by Muchnick S. S. and Jones N. D,
Prentice-Hall, 1981

[Cur81] Currie 1. F., Edwards P. W. and Foster J. W. Flex firmware, R.S.R.E. Report
81009, 1981

278 BIBLIOGRAPHY

(Cur85a] Curien P-L. Categorical Combinators, Sequential Algorithms and Functional
Programming, CNRS-Université Paris VII, LITP, 1985

[Cur85b] Curtis K., Hamond P. D. and Taylor P. D. Flex Pascal: an implementation of
the 1SO-Pascal programming language, R.S.R.E. Memorandum 3908, 1985

[Dar81] Darlington J. and Reeve M. Alice —~ A Multi-processor reduction machine for
the parallel evaluation of applicative languages, Proceedings of the ACM Conference
on Functional Languages and Computer Architecture, New Hampshire, 1981

[Deb85] Debray S. Automatic Mode Inference for Prolog programs, Report #85/019,
Department of Computer Science, SUNY at Stony Brook, New York, 1985

[Deb86] Debray S. Dataflow analysis of logic programs, Draft report, Department of
Computer Science, SUNY at Stony Brook, New York, 1986

[Dij76] Dijkstra E. A Discipline of Programming, Prentice-Hall, 1976

[Don78] Donzeau-Gouge V. Utilisation de la sémantique dénotationelle pour I'étude
d'interpretations non-standard, INRIA rapport 273, 1978

[Fai82] Fairbairn J. Ponder and its type system, Technical Report 31, University of
Cambridge Computer Laboratory, 1982

[Fai85) Fairbairn J. Removing redundant laziness from Super-combinators, Proceed-
ings of the Workshop on Implementation of Functional Languages, Aspenacs, Sweden,
1985

[Fos76] Fosdick L. D. and Osterweil L. J. Data flow analysis in software reliability,
ACM Computing Surveys 8(3), 305-330, 1976

[Fos85] Foster J. M. Regular expression analysis of procedures and exceptions, R.S.R.E.
Report 85008, 1985

[Fos86] Foster J. M. Validating microcode algebraically, Computer Journal, 2%(5),
416442, 1986

(Fri77) Friedman D. and Wise D. S. Aspects of applicative programming for file
systems, Proceedings of the ACM Conference on Language Design for Reliable
Software, ACM SIGPLAN Notices 12(3), 1977

{Gan86] Ganzinger H. and Jones N. D. (eds) Program as Data Objects, LNCS 217,
Springer-Verlag, 1986

[Géc84] Gécseg F. and Steinby M. Tree Automata, Akademiai Kiado, Budapest, 1984

{Gie81] Giegerich R., Moncke U. and Withelm R. I'nvariance of Approximate Semantics
with respect to Program Transformations, Springer IFP 50, 1981

[Gie83] Gicgerich R. A Formal Framework for the Derivation of Machine-Specific
Optimizers, TOPLAS 5(3), 1983

[Gog76] Goguen J. A., Thatcher J. W, Wagner E. G. and Wright J. B. Some
fundamentals of order algebra semantics, Proceedings of MFCS 1976, LNCS 45,
Springer-Verlag, 1976

[Gog77] Goguen J. A, Thatcher J. W.,, Wagner E. G. and Wright J. B. Initial algebra
semantics and continuous algebras, JACM 24(1), 1977

[Goo86] Goodenough S. J. Ten!$5 and the RSRE Ada Flex compiler, Ada User, 1986

[Gor79a] Gordon M., Milner R. and Wadsworth C. Edinburgh LCF, LNCS 78,
Springer-Verlag, 1979

[Gor79b] Gordon M. J. C. The Denotational Description of Programming Languages,
Springer-Verlag, 1979

[Han86] Hankin C. L., Burn G. L. and Peyton Jones S. L. A safe approach to parallel
combinator reduction, Proceedings of the European Symposium on Programming,
LNCS 213, Springer-Verlag, 1986

[Hec77] Hecht M. Flow Analysis of Computer Programs, North-Holland, 1977

{Hen78] Hennessey M. and Plotkin G. Full Abstraction for a simple paraliel
programming language, Proceedings of MFCS 1978, LNCS 64, Springer-Verlag,
1978

[Hen82] Henderson P. Purely Functional Operating Systems, in Functional Pro-
gramming and its Applications, Cambridge University Press, 1982

[Hin69] Hindley R. The principal type-scheme of an object in combinatory logic,
Transactions of the American Mathematical Society 146(1), 29-60, 1969

[Hoa62] Hoare C. A. R. Quicksort, Computing Journal §4), 10-15, 1962

BIBLIOGRAPHY 279

(Hud34] Hudak P. and Kranz D. A Combinator-based Compiler for a Functional
Language, 1/th POPL, 1984

{Hud85a] Hudak P. and Bloss A. The aggregate update problem in functional
programming systems, /2th POPL, 300-314, 1985

[Hud85b] Hudak P. and Young J. A set-theoretic characterisation of function strictness
in the lambda calculus, Technical Report YALEU/DCS/RR-391, Yale University,
1985

[Hud86a] Hudak P. Collecting interpretations of expressions, Research report 497,
Yale University, Department of Computer Science, 1986

[Hud86b] Hudak P. and Young J. Higher-order Strictness Analysis in untyped lambda
calculus, 13th POPL, 1986

[Hue79] Huet G. and Lévy J. J. Call by need computations in nonambiguous linear term
rewriting systems, Report 359, INRIA, France, 1979

[Hug84] Hughes J. Why functional programming matters, Programming Methodology
Group Report 16, CTH Gothenburg, Sweden, 1984

(Hug86] Hughes J. Strictness Detection in Non-flat Domains, Proceedings of the
DIKU Workshop on Programs as Data Objects, LNCS 217, Springer-Verlag, 1986

[Joh84] Johnsson T. Efficient compilation of lazy evaluation, Proceedings of the
ACM/SIGPLAN Notices Conference on Compiler Construction, 1984

[Joh85] Johnsson T. Lambda lifting: transforming programs to recursive equations,
Proceedings IFIP Symposium on Functional Programming Languages and Computer
Architecture, LNCS 201, Springer-Verlag, 1985

[Jon79a] Jones N. D. and Muchnick S. S. Flow analysis and optimisation of LISP-like
structures, 6th POPL, 244-256, 1979

[Jon79b] Jones N. D. and Muchnick S. S. Complexity of flow analysis, inductive
assertion synthesis, and a language due to Dijkstra, Proceedings of the 20th
Conference on Foundations of Computer Science, 1979

[Jon81] Jones N. D. Flow analysis of lambda expressions, ICALP 1981, LNCS 115,
Springer-Verlag, 1981

[Jon82] Jones N. D. and Muchnick S. S. A flexible approach to interprocedural data
flow analysis and programs with recursive data structures, 9th POPL, 66-74, 1982

[Jon84] Jones S. B. A range of purely functional Operating Systems, Stirling University,
Scotland, 1984

[Jon85a] Jones N. D., Sestoft P. and S¢gndergaard H. An experiment in partial
evaluation: the generation of a compiler generator, in Rewriting Techniques and
Applications, LNCS 202, Springer-Verlag, 1985

[Jon85b] Jones N. D. Concerning the abstract interpretation of Prolog, draft paper,
DIKU, Copenhagen, 1985

[Jon86] Jones N. D. and Mycroft A. Data flow analysis of applicative programs using
minimal function graphs, 13th POPL, 1986

[Jou85] Jouannaud J. P. Proceedings of the Conference on Functional Programming
Languages and Computer Architecture, LNCS 201, Springer-Verlag, 1985

[Kam77] Kam J. B. and Ullman J. D. Monotone data flow analysis frameworks, Acta
Informatica 7, 305-317, 1977

[Kar85] Karlsson K. Strictness analysis, talk delivered at the Workshop on Abstract
Interpretation, University of Kent, 1985

[Kar86] Karp R. M. Combinatorics, complexity and randomness, CACM 29(2), 98-
111, 1986

[Kel81] Keller R. M, Lindstrom G. and Patil S. A loosely coupled applicative multi-
processing system, AFIPS, 1979

{Kie83] Kicburtz R. Precise typing of abstract data type specifications, 10th POPL,
1983

[Kic85] Kicburtz R. Strictness detection in non-flat domaiins, talk delivered at Oxford
University, 1985

[Kor79] Kornfeld W. Combinatorially implosive algorithms, Computer Laboratory,
MIT, 1986

[Lio84] Lloyd J. W. Foundations of Logic Programming, Springer-Verlag, 1984

280 BIBLIOGRAPHY

[Mac82] MacQueen D. B. and Sethi R. A semantic model of types for applicative
languages, Proceedings of the ACM Conference on Lisp and Functional Programming,
1982 .

[Mau86] Maurer D. Strictness Computations Using Generalised i-expressions,
Proceedings of the DIKU Workshop on Programs as Data Objects, LNCS 217,
Springer-Verlag, 1986

[Mci84] Meira S. Optimised combinatoric code for applicative language implement-
ation, Proceedings of the 6th International Symposium on Programming, Springer-
Verlag, 1984

[Mel81] Mellish C. S. The Automatic Generation of Mode Declarations for Prolog
Programs, DAI Research Paper 163, Department of Artificial Intelligence, Univers-
ity of Edinburgh, 1981

[Mel85] Mellish C. S. Some global optimisations for a Prolog compiler, Journal of
Logic Programming 2(1), 4366, 1985

[Mel86] Melton A, Schmidt D. A. and Strecker G. E. Galois connections and
computer science applications, Proceedings of the Workshop on Category Theory and
Computer Programming, LNCS 240, Springer-Verlag, 1986

[Mez67] Mezei J. and Wright J. B. Algebraic automata and context-free sets,
Information and Control 11, 3-29, 1967

{Mil76a] Milner R. E. and Strachey C. A Theory of Programming Language Semantics,
Chapman and Hall, 1976

[Mil76b] Milner R. Program Semantics and Mechanised Proof, Mathematical Centre
Tracts 82, Amsterdam, 1976

[Mil76c] Milner R. Models of LCF, Mathematical Centre Tracts 82, Amsterdam
1976

[Mil78] Milner R. A theory of type polymorphism in programming, Journal of
Computer and System Sciences 17, 348-375, 1978

[Mil80] Milner R. A Calculus of Communicating Systems, LNCS 92, Springer-Verlag,
1980

{Mis84] Mishra P. and Keller R. M. Static inference of properties of applicative
programs, 11th POPL, 1984

[Mis85] Mishra P. Static inference in applicative languages, PhD thesis, University of
Utah, 1985

[Mos81] Mosses P. D. A semantic algebra for binding constructs, DIAMI teport PB-
132, Department of Computer Science, Aarhus University, 1981

[Mos82] Mosses P. D. Abstract semantic algebras, Proceedings of IFIP TC2 Working
Conference on formal description of programming concepts 11, North-Holland, 1982

[Muc81] Muchnick S. S. and Jones N. D. (eds) Program Flow Analysis: Theory and
Applications, Prentice-Hall, 1981

[Myc80] Mycroft A. The theory and practice of transforming call-by-need into call-by-
value, Proceedings of the 4th International Symposium on Programming, LNCS 83,
Springer-Verlag, 1980

[Myc81] Mycroft A. Abstract interpretation and optimising transformations for
applicative programs, PhD thesis, University of Edinburgh, 1981

{Myc83] Mycroft A. and Nielson F. Strong abstract interpretation using power
domains, ICALP 1983, LNCS 154, Springer-Verlag, 1983

[Myc86] Mycroft A. and Jones N. D. A relational framework for abstract interpret-
ation, Proceedings of the DIKU Workshop on Programs as Data Objects, LNCS 217,
Springer-Verlag, 1986

[Nie82] Nielson F. A denotational framework for data flow analysis, Acta Informatica
18 265-287, 1982

[Nie84] Nielson F. Abstract interpretation using domain theory, PhD thesis, University
of Edinburgh, 1984

[Nie85a] Nielson F. Program transformations in a denotational setting, TOPLAS 7(3),
359-379, 1985

[Nie85b] Nielson F. Tensor products generalize the relational data flow analysis
method. Proceedings of the 4th Hungarian Computer Science Conference. 1985

BIBLIOGRAPHY 281

[Nie86a] Nielson F. Abstract interpretation of denotational definitions, Proceedings
STACS 1986, LNCS 210. 1986

[Nie86b] Nielson F. Expected forms of data flow analysis, Proceedings of the DIKU
Workshop on Programs as Data Objects, LNCS 217, Springer-Verlag, 1986

[Nie86c] Nielson F. Strictness analysis and denotational abstract interpretation,
unpublished manuscript, 1986

[Nie86d] Nielson H. R. and Nielson F. Pragmatic aspects of two-level denotational
meta-languages, Proceedings of the European Symposium on Programming, LNCS
213, Springer-Verlag, 1986

[Nie86e] Nielson H. R. and Nielson F. Code generation from two-level denotational
meta-languages, Proceedings of the DIKU Workshop on Programs as Data Objects,
LNCS 217, Springer-Verlag, 1986

[Nie86f] Nielson H. R. and Nielson F. A tutorial on TM L, the meta-language of the PSI
project, Aalborg University, Denmark, 1986

[Nie86g] Nielson H. R. and Nielson F. Semantics Directed Compiling for Functional
Languages, Proceedings of the ACM Conference on Lisp and Functional Programm-
ing, 1986

[Pan84a] Panangaden P. and Mishra P. 4 category theoretic formalism for abstract
interpretation, Manuscript, 1984

[Pan84b] Panangaden P. and Mishra P. Abstraction and indeterminacy, Technical
Report UUCS-84-006, University of Utah, 1984

{Pey86] Peyton Jones S. L. Functional programming languages as a software
engineering tool, in Software Engineering — the Critical Decade, Peter Peregrinus,
1986

(Pey87] Peyton Jones S. L. Implementing Functional Languages using Graph Reduction,
Prentice-Hall, 1987

[Pla84] Plaisted D. The occur-check problem in Prolog, Proceedings of the Intern-
ational Symposium on Logic Programming, New Jersey, 1984

(Plo80] Plotkin G. Lambda definability in the full type hierarchy, in [Sel80]

[Rao84] Raoult J.-C. and Sethi R. The global storage needs of a subcomputation, 11th
POPL, 148-157, 1984

[Rey69] Reynolds J. Automatic computation of data set definitions, Information
Processing 68, 456-461, North-Holland, 1969

[Rey74] Reynolds J. On the relation of direct and continuation semantics, ICALP
1974, LNCS 14, Springer-Verlag, 1974

[Rey83] Reynolds J. Types, abstraction and parametric polymorphism, IFIP ‘83,
North-Holland, 1983 ,

{Ros80] Rosen B. K. Monoids for rapid data flow analysis, SIAM Journal of
Computing 9, 159-196, 1980

{Sal66] Salomaa A. Two complete axiom systems for the algebra of regular events,
JACM 13(1), 158-169, 1966

[Sch78] Schwarz J. Verifying the safe use of destructive operations in applicative
programs, in Program Transformations — Proceedings of the 3rd International
Symposium on Programming, edited by Robinet B., Dunod Informatique, 1978

[Sch85] Schmidt D. A. Detecting global variables in denotational specifications,
TOPLAS 72), 299-310, 1985

{Sch86] Schmidt D. A. Denotational Semantics, Allyn and Bacon, 1986

(Sco76] Scott D. S. Data types as lattices, SIAM Journal of Computing 5(3), 522-587,
1976

{Sco82] Scott D. S. Domains for denotational semantics, ICALP 1982, LNCS 140,
Springer-Verlag, 1982

[Sel80] Seldin J. P. and Hindley J. R. To H. B. Curry: Essays on Combinatory Logic,
Lambda Calculus and Formalism, Academic Press, 1980

[Scha77) Shamir A. and Wadge W. W. Data types as objects, ICALP 1977, LNCS 52,
1977

[Sic76] Sickel S. A search technique for clause interconnectivity graphs, IEEE
Transactions on Computers 25(8), 1976

282 BIBLIOGRAPHY

[Sin72] Sintzoff M. Calculating properties of programs by valuation on specific
models, Proceedings of the ACM Conference on Proving Assertion about Programs,
ACM SIGPLAN Notices (1), 203-207, 1972

{Smy82] Smyth M. B. and Plotkin G. D. The category-theoretic solution of recursive
domain equations, SIAM Journal of Computing 11(4), 1982

[Sen86] Sgndergaard H. An application of abstract interpretation of logic programs:
Occur check reduction, Proceedings of the European Symposium on Programming,
LNCS 213, Springer-Verlag, 1986

[Sto77] Stoy J. E. Denotational Semantics: The Scott-Strachey Approach to Programm-
ing Language Theory, MIT Press, Cambridge, Mass., 1977

{Tar81] Tarjan R. E. A unified approach to path programs, JACM 28(3), 577-593,
1981

[Tar55] Tarski A. A lattice-theoretical fixpoint theorem and its applications, Pacific
Journal of Mathematics 8, 285-309, 1955

(Ten74] Tenenbaum A. Automatic types analysis in a very high level language, PhD
thesis, New York University, 1974

{Ten81] Tennent R. D. Principles of Programming Languages, Prentice-Hall, 1981

[Tha73] Thatcher J. Tree automata: an informal survey, in Currents in the theory of
Computing, edited by Aho A. V., Prentice-Hall, 1973

[Tur80] Turchin V. The language REF AL, the theory of compilation, and metasystem
analysis, Courant Institute Report 20, New York, 1980

[Tur81] Turner D. A. The semantic elegance of applicative languages, Proceedings of
the ACM Symposium on Functional Languages and Computer Architecture, New
Hampshire, 1981

(Tur85] Turner D. A. Miranda: a non-strict functional language with polymorphic
types, Proceedings IFIP Symposium on Functional Programming Languages and
Computer Architecture, LNCS 201, Springer-Verlag, 1985

[Wad85] Wadler P. An introduction to Orwell, Programming Research Group, Oxford
University, 1985

[Weg75] Wegbreit B. Property extraction in well-founded property sets, IEEE
Transactions on Software Engineering 1, 270-285, 1975

[Wra85] Wray S. A new strictness detection algorithm, Proceedings of the Workshop on
Implementation of Functional Languages, Aspenaes, Sweden, 1985

ik

