Embedding PROLOG
in HASKELL

Silvija Seres ~ Michael Spivey

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD, U.K.

Abstract

The distinctive merit of the declarative reading of logic programs is the
validity of all the laws of reasoning supplied by the predicate calculus with
equality. Surprisingly many of these laws are still valid for the procedural
reading; they can therefore be used safely for algebraic manipulation,
program transformation and optimisation of executable logic programs.

This paper lists a number of common laws, and proves their validity
for the standard (depth-first search) procedural reading of PROLOG. They
also hold for alternative search strategies, e.g. breadth-first search. Our
proofs of the laws are based on the standard algebra of functional program-
ming, after the strategies have been given a rather simple implementation
in Haskell.

1 Introduction

Logic programming languages are traditionally explained in terms of their declar-
ative and procedural semantics. For a given logic program, they are respectively
considered its specification and its model of execution.

It is regarded as the responsibility of the programmer to ensure the con-
sistency of the two readings. This paper aims to help in this, by codifying
algebraic laws which apply equally to both readings. In some sense, a sufficient
collection of these laws would provide an additional algebraic semantics for a
logic language, intermediate between the declarative and procedural semantics.
The general role of algebra in bridging the gap between abstract and concrete
theories is argued in [8].

A proof of the validity of our laws in the declarative reading is unnecessary,
because they express properties of Boolean algebra. To prove that they are true
of the procedural reading requires us to construct a model of execution. This
we do by implementing the operators of the logic language as a library of higher
order functions in the functional language Haskell. This makes available all the
algebraic reasoning principles of functional programming [3], from which it is
quite straightforward to derive the laws we need. Many of these are familiar

properties of categorical monads, but a knowledge of category theory is not
needed for an understanding of this paper.

It is worth stressing that our implementation is a shallow embedding of a
logic language in a functional one; it is not the same as building an interpreter.
We do not extend the base functional language; rather, we implement in the lan-
guage a set of functions designed to support unification, resolution and search.

Our implementation is strikingly simple, and the basic ideas that it builds
upon are not new. The embedding of a logic language to a functional one by
translating every predicate to a function was explored in e.g. LOGLISP [14, 15]
or PorLog [11], although the base language was non-lazy in each case. The
use of the lazy stream-based execution model to compute the possibly infinite
set of answers is also well known, e.g. [1]. Nevertheless, we believe that the
combination of these two known ideas is well worth our attention, and the
algebraic semantics for logic programs that naturally arises from our embedding
is a convincing example.

To some extent, use of our library of functions will give functional pro-
grammer a small taste of the power of a functional logic language. But current
functional logic languages are much more powerful; they embody both rewriting
and resolution and thereby result in a functional language with the capability to
solve arbitrary constraints for the values of variables. The list of languages that
have been proposed in an attempt to incorporate the expressive power of both
functional and logic paradigms is long and impressive [2, 6]; some notable exam-
ples are Kernel-LEAF [5], Curry [7], Escher [9] and Babel [12]. Our research goal
is different from the one set by these projects. They aspire to build an efficient
language that can offer programmers the most useful features of both worlds; to
achieve this additional expressivity they have to adopt somewhat complicated
semantics. Our present goal is a conspicuous declarative and operational se-
mantics for the embedding, rather that maximal expressivity. Nevertheless, the
extensions of our embedding to incorporate both narrowing and residuation in
its operational semantics do not seem difficult and we hope to make them a
subject of our further work.

In this paper we use Prolog and Haskell as our languages of choice, but
the principles presented are general. Prolog is chosen because it is the domi-
nant logic language, although we only implement the pure declarative features
of it, i.e., we ignore the impure but practically much used features like cut,
assert and retract, although the cut is quite an easy extension of our mod-
els. Haskell is chosen because it is a lazy functional language with types and
lambda-abstractions, but any other language with these properties could be
used.

In the remainder of the paper we proceed to describe the syntax of the
embedding and the implementation of the primitives in sections 2 and 3. In
section 4 we list some of the algebraic properties of the operators and in section
5 we study the necessary changes to the system to accommodate different search
strategies. We conclude the paper with section 6 where we discuss related work
and propose some further work in this setting.

2 Syntax

Prolog offers the facility of defining a predicate in many clauses and it allows
the applicability of each clause to be tested by pattern matching on the formal
parameter list. In our implementation of Prolog, we have to withdraw these
notational licences, and require the full logical meaning of the predicate to be
defined in a single equation, with the unifications made explicit on the right
hand side, together with the implicit existential quantification over the fresh
variables.

In the proposed embedding of Prolog into a functional language, we aim to
give rules that allow any pure Prolog predicate to be translated into a Haskell
function with the same meaning. To this end, we introduce two data types,
Term and Predicate, into our functional language, together with the following
four operations:

(&), (|]) : Predicate — Predicate — Predicate,
(=) : Term — Term — Predicate,
exists : (Term —» Predicate) —> Predicate.

The intention is that the operators & and || denote conjunction and disjunction
of predicates, = forms a predicate expressing the equality of two terms, and
the operation ezists expresses existential quantification. We shall abbreviate
the expression exists (Az — p z) by the form 3z — p z in this paper, although
the longer form shows how the expression can be written in any lazy func-
tional language that has A-expressions. We shall also write 3z, y — p(z,y) for
Jz = (Jy = p(z,y)).

These four operations suffice to translate any pure Prolog program, provided
we are prepared to exchange pattern matching for explicit equations, to bind
local variables with explicit quantifiers, and to gather all the clauses defining a
predicate into a single equation. These steps can be carried out systematically,
and could easily be automated. As an example, we take the well-known program
for append:

append([1, Ys, Ys) :- .
append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).
As a first step, we remove any patterns and repeated variables from the head
of each clause, replacing them by explicit equations written at the start of the
body. These equations are computed by unification in Prolog.
append(Ps, Qs, Rs) :-
Ps = [1, Qs = Rs.
append(Ps, Qs, Rs) :-
Ps = [X[Xs], Rs = [X|Ys], append(Xs, Qs, Ys).

The head of each clause now contains only a list of distinct variables, and by
renaming if necessary we can ensure that the list of variables is the same in

each clause. We complete the translation by joining the clause bodies with
the || operation, the literals in a clause with the & operation, and existentially
quantifying any variables that appear in the body but not in the head of a
clause:

append(Ps, Qs, Rs) =
(Ps = nil & Qs = Rs) ||
(3X, Xs, Ys — Ps = cons(X, Xs) & Rs = cons(X, Ys) &
append(Xs, Qs, Ys)).

Here nil is used for the value of type Term that represents the empty list, and
cons is written for the function on terms that corresponds to the Prolog list
constructor [|]. We assume the following order of precedence on the operators,
from highest to lowest: =, &, |, 3.

The function append defined by this recursive equation has the following
type:

append :: (Term, Term, Term) — Predicate.

The Haskell function append is constructed by making the declarative reading
of the Prolog predicate explicit. However, the relationship between the Haskell
function and the Prolog predicate extends beyond their declarative semantics.
The next section shows that the procedural reading of the Prolog predicate is also
preserved through the implementation of the functions & and ||. The embedding
essentially allows the mapping of the computation of the Prolog program into
lazy lists by embedding the structure of a SLD-tree of a Prolog program into a
Haskell stream.

3 Implementation

The translation described above depends on the four operations &, ||, = and
erists. We now give definitions to the type of predicates and to these four
operations that correspond to the depth-first search of Prolog. Later, we shall
be able to give alternative definitions that correspond to breadth-first search,
or other search strategies based on the search tree of the program.

The key idea is that each predicate is a function that takes an ‘answer’,
representing the state of knowledge about the values of variables at the time the
predicate is solved, and produces a lazy stream of answers, each corresponding
to a solution of the predicate that is consistent with the input. This approach is
similar to that taken by Wadler [18]. An unsatisfiable query results in an empty
stream, and a query with infinitely many answers results in an infinite stream.!

type Predicate = Answer — Stream Answer.

LFor clarity, we use the type constructor Stream to denote possibly infinite streams, and
List to denote finite lists. In a lazy functional language, these two concepts share the same
implementation.

An answer is (in principle) just a substitution, but we augment the substitution
with a counter that tracks the number of variables that have been used so far, so
that a fresh variable can be generated at any stage by incrementing the counter.
A substitution is represented as a list of (variable, term) pairs, and the Haskell
data-type Term is a straightforward implementation of Prolog’s term type:

type Answer = (Subst, Int),

type Subst = [(Var, Term)],

data Term = Func Fname [Term|] | Var Vname,
type Fname = String,

data Vname = Name String | Auto Int.

Constants are functions with arity 0, in other words they are given empty ar-
gument lists. For example the Prolog list [a,b] can be represented in the
embedding as Func "cons" [Func "a" [], Func "cons" [...]]. With the use of
the simple auxiliary functions cons, atom and nil the same Prolog list can be
embedded as the Haskell expression cons a (cons b nil).

We can now give definitions for the four operators. The operators & and ||
act as predicate combinators; they slightly resemble the notion of tacticals [13],
but in our case they combine the computed streams of answers, rather that
partially proved statements.

The || operator simply concatenates the streams of answers returned by its
two operands:

(1) :: Predicate — Predicate — Predicate
Pl z=pat+quz

This definition implies that the answers are returned in a left-to-right order as
in Prolog. If the left-hand argument of || is unsuccessful and returns an empty
answer stream, it corresponds to an unsuccessful branch of the search tree in
Prolog and backtracking is simulated by evaluating the right-hand argument.

For the & operator, we start with applying the first argument to the incoming
answer; this produces a stream of answers, to each of which we apply the second
argument of &. Finally, we concatenate the resulting stream of streams into a
single stream:

(&) :: Predicate — Predicate — Predicate
p & q = concat - map q - p.

Because of Haskell’s lazy evaluation, the function p returns answers only when
they are needed by the function ¢. This corresponds nicely with the backtracking
behaviour of Prolog, where the predicate p & ¢ is implemented by enumerating
the answers of p one at a time and filtering them with the predicate ¢q. Infinite
list of answers in Prolog are again modelled gracefully with infinite streams.

We can also define primitive predicates true and false, one corresponding to
immediate success and the other to immediate failure:

true :: Predicate false :: Predicate

true & = [z]. false z =]

The pattern matching of Prolog is implemented by the operator =. It is defined
in terms of a function unify which implements J.A. Robinson’s standard algo-
rithm for s unification of two terms relative to a given input substitution. The
type of unify is thus:

unify :: Subst — (Term, Term) — List Subst.

More precisely, the result of unify s (¢,u) is either [s > r], where r is a most
general unifier of ¢[s] and u[s], or [] if these two terms have no unifier.? Thus
if unify s (¢,u) = [s'], then s’ is the most general substitution such that s C s’
and t[s'] = u[s']. The coding is routine and therefore omitted.

The = operator is just a wrapper around unify that passes on the counter
for fresh variables:

(=) :: Term — Term —> Predicate
(t=u) (s,n) =[(s'sn) | s unify s (t, u)]

Finally, the operator exists is responsible for allocating fresh names for all the
local (or existentially quantified) variables in the predicates. This is necessary
in order to guarantee that the computed answer is the most general result. It
is defined as follows:

exists :: (Term —» Predicate) — Predicale

exists p (s,n) = p (makevar n) (s,n + 1),

where makevar n is a term representing the n’th generated variable. The
slightly convoluted flow of information here may be clarified by a small ex-
ample. The argument p of exists will be a function that expects a variable, such
as (AX — append(t,X,u)). We apply this function to a newly-invented vari-
able v = makevar n to obtain the predicate append(t,v,u), and finally apply
this predicate to the answer (s,n+1), in which all variables up to the n’th are
marked as having been used.

The function solve evaluates the main query. It simply applies its argument,
the predicate of the query, to an answer with an empty substitution and a zero
variable counter, and converts the resulting stream of answers to a stream of
strings.

solve :: Predicate —» Stream String
solve p = map print (p ([],0)),

2We use s > r to denote composition of substitutions s and r, and ¢[s] to denote the instance
of term ¢ under substitution s. We use s C s’ to denote the preorder on substitutions that
holds iff s’ = s > r for some substitution r.

where print is a function that converts an answer to a string by having pruned it
to show only the values of the original query variables This is the point where all
the internally generated variables are filtered out in our present implementation,
but another, possibly cleaner, solution might be to let the 3 operator do this
filtering task before it returns.

We do not provide proofs of the soundness and completeness relative to the
procedural reading of Prolog since we feel that the encoding we have described
is about the simplest possible mechanised formal definition of a Prolog-like pro-
cedural reading. Nevertheless, a soundness proof for the embedding could be
carried out relative to the declarative semantics by defining of a mapping decl
between our embedding and a declarative semantics of a logic program. Given
a function herb with type Answer — Set Subst:

herb(s,n) = {s;t | t € Subst},

where herb(s, n) describes a set of all substitutions that refine (i.e. extend) the
substitution part s of the input answer (s, n). The mapping from our embedding
to the declarative semantics can then be defined as:

decl = (fold union) (map herbd).

Namely, if P is a predicate then decl - P is its declarative semantics. A soundness
proof for the embedding would then be obtained by proving the equations:

decl - (P || Q)
decl - (P & Q)

C (decl - P) U (decl - Q),
C (decl - P) N (decl - Q),

for the operators || and &, and similar equations for the operators 3 and =.

4 Algebraic Laws

The operators & and || enjoy many algebraic properties as a consequence of
their simple definitions in terms of streams. We can deduce directly from the
implementation of & and true that the & operator is associative with unit
element true. This is a consequence of the fact that map, concat and true form
a structure that category theory calls a monad, and the composition operator
& is obtained from this by a standard construction called Kleisli composition.
We wish to show that these properties of the logic programming primitives &
and true, and several others regarding also || and false, can be alternatively
proved with no reference to category theory. The proofs we sketch show how a
standard tool in functional programming, equational reasoning, can be applied
to logic programming by means of our embedding.

All the algebraic properties we quote here can be proved equationally using
only the definitions of the operators and the standard laws (see [4]) for concat,

map and functional composition. As an example, given:

map [- concat = concat - map (map f), (

—_
~

concat - concat = concat - map concat,

map (f - g) = (map f) - (map g, (3)

—
[\
~

we can prove the associativity of & by the following rewriting;:

(P&q)&r

= concat - map r - concat - map q-p by defn. of &
= concat - concat - map (map r) - map q-p by (1)
= concat - map concat - map (map r)-map q-p by (2)
= concat - map (concat - map r-q) - p by (3)
=p&(qg&m). by defn. of &

The proofs of the following properties are at least as elementary as this. The
predicate false is a left zero for &, but this operator is strict in its left argument,
so false is not a right zero. This corresponds to the feature of Prolog that
false & q has that same behaviour as false, but p & false may fail infinitely if p
does. Owing to the properties of concat and [], the || operator is associative
and has false as a left and right identity.

Other identities that are satisfied by the connectives of propositional logic
are not shared by our operators because in our stream-based implementation,
answers are produced in a definite order and with definite multiplicity. This
behaviour mirrors the operational behaviour of Prolog. For example, the ||
operator is not idempotent, because true || true produces its input answer twice
as an output, but true itself produces only one answer. The & operator also
fails to be idempotent, because the predicate

(true || true) & (true || true)

produces the same answer four times rather than just twice.
We might also expect

p&(gllr)={(&q) |l (p &),

that is, for & to distribute over ||, but this is not the case. For a counterex-
ample, take for p the predicate X = a || X = b, for ¢ the predicate ¥ = ¢, and
for r the predicate Y = d. Then the left-hand side of the above equation pro-
duces the four answers [X=a, Y=c|; [X=q, Y=d]; [X=b, Y=c]; [X=0b, Y=d]
in that order, but the right-hand side produces the same answers in the order
[X=a, Y=¢]; [X=b, Y=¢]; [X=a, Y=d]; [X=b, Y=d].

However, the other distributive law,

Pl &r=(p&r) | (¢&r),

does hold, and it is vitally important to the unfolding steps of program trans-
formation. The simple proof depends on the fact that both map r and concat
are homomorphisms with respect to ++:

()@ &r) s

= concat (map r (p ¢ +H ¢ z)) by defn. of ||, &
= concat (map r (p =) + map r (q z)) map
= concat (map r (p z)) + concal (map r (q x)) concat
=((p&r) || (¢&1)) =. by defn. of &

The declarative reading of logic programs suggests that also the following prop-
erties of = and 3 ought to hold, where p z and ¢ z are predicates and u is a
term not containing z:

(Fz = p(z) | ¢(z)) = Gz — p(2)) || Bz — q(z)),
(Fz =z =u& p(z)) = p(u),
(Fz = Fy = p (z,9) =3y = (Fz = p(z,9)))-

These properties are important in program transformations that manipulate
quantifiers and equations, since they allow local variables to be introduced and
eliminated, and allow equals to be substituted for equals in arbitrary formulas.

However, these properties of = and 3 depend on properties of predicates p
and ¢ that are not shared by all functions of this type, but are shared by all
predicates that are defined purely in terms of our operators. In future work,
we plan to formulate precisely the ‘healthiness’ properties of definable predi-
cates on which these transformation laws depend, such as monotonicity and
substitutivity.

It might be seen as a weakness of our approach based on a ‘shallow’ embed-
ding of Prolog in Haskell that these properties must be expressed in terms of
the weak notion of a predicate definable in terms of our operators, when a ‘deep’
embedding (i.e., an interpreter for Prolog written in Haskell) would allow us to
formulate and prove them as an inductive property of program texts. We believe
that this is a price well worth paying for the simplicity and the clear declarative
and operational semantics of our embedding.

5 Different Search Strategies

Our implementation of ||, together with the laziness of Haskell, causes the
search for answers to behave like depth-first search in Prolog: when computing
p x + ¢ z all the answers corresponding to the p z part of the search tree are
returned before the other part is explored. A fair search strategy would share
the computation effort more evenly between the two parts. Similarly, our im-
plementation of & results in a left-to-right selection of the literals of a clause.
A fair selection rule would allow one to chose the literals in a different order.

One possible solution (inspired by [10]) is to interleave the streams of an-
swers, taking one answer from each stream in turn. A function twiddle that
interleaves two lists can be defined as:

twiddle :: [a] — [a] — [a]
twiddle [] ys = ys
twiddle (x : zs) ys = x : (twiddle ys xs).

The operators || and & can be redefined by replacing + with twiddle and
recalling that concat = foldr (+) [:

(» |l ¢) = = twiddle (p) (q z)
(p & q) = = foldr twiddle []- map q - p).

This implementation of & is fairer, producing in a finite time solutions of ¢
that are based on later solutions returned by p, even if the first such solution
produces an infinite stream of answers from g. The original implementation of
& produces all solutions of ¢ that are based on the first solution produced by p
before producing any that are based on the second solution from p.

Note that this implementation of operators does not give breadth-first search
of the search tree; it deals with infinite success but not with infinite failure. Even
in the interleaved implementation, the first element of the answer list has to be
computed before we can ‘switch branches’; if this takes an infinite number of
steps the other branch will never be reached.

To implement breadth-first search in the embedding, the Predicate data-type
needs to be changed. It is no longer adequate to return a single, flat stream
of answers; this model is not refined enough to take into account the number
of computation steps needed to produce a single answer. The key idea is to
let Predicate return a stream of lists of answers, where each list represents the
answers reached at the same depth, or level, of the search tree. These lists of
answers with the same cost are always finite since there is only a finite number
of nodes at each level of the search tree. The new type of Predicate is thus:

Predicate :: Answer — Stream (List Answer).

Intuitively, each successive list of answers in the stream contains the answers
with the same computational “cost”. The cost of an answer increases with
every resolution step in its computation. This can be captured by adding a new
function step in the definition of predicates. For example, append should be
coded as:

append(Ps, Qs, Rs) =
step((Ps = nil & Qs = Rs) ||
(3X,Xs,Ys — Ps = cons(X, Xs) & Rs = cons(X, Ys) &
append(Xs, Qs, Ys))).

10

In the depth-first model, step is the identity function on predicates, but in the
breadth-first model it is defined as follows:

step :: Predicate — Predicate
steppz=1[]:(p x).

Thus, in the stream returned by step p, there are no answers of cost 0, and for
each n, the answers of step p with cost n+1 are the same as the answers of p
that have cost n.

The implementations of the Predicate combinators || and & need to be
changed so that they no longer operate on lists but on streams of lists. They
must preserve the cost information that is embedded in the input lists. Since
the cost corresponds to the level of the answer in the search tree, only resolution
steps are charged for, while the applications of ||, & and equals are cost-free.
The || operator simply zips the two streams into a single one, by concatenating
all the sublists of answers with the same cost. If the two streams are of different
lengths, the zipping must not stop when it reaches the end of the shorter stream.
We give the name mergewith to a specialized version of zipwith that has this
property, and arrive at this implementation of || in the breadth-first model:

(|l 9) = = mergewith (+) (p z) (¢ z).

The implementation of & is harder. The cost of each of the answers to (p & q)
is a sum of the costs of the computation of p and the computation of ¢. The
idea is first to compute all the answers, and then to flatten the resulting stream
of lists of streams of lists of answers to a stream of lists of answers according
to the cost. This flattening is done by the shuffle function which is explained
below. The &-operator is thus:

p & q = shuffle - map (map q) - p

We write S for streams and L for finite lists for sake of brevity. The result of
map (map q) - p is of type SLSL. It can be visualised as a matrix of matrices,
where each element of the outer matrix corresponds to a single answer of p.
Each such answer is used as an input to ¢ and consequently gives rise to a
new stream of lists of answers, which are represented by the elements of the
inner matrices. The rows of both the main matrix and the sub-matrices are
finite, while the columns of both can be infinite. For example, the answers of
map (map q) - p with cost 2 are marked in the drawing below:

11

The function shuffle collects all the answers marked in the drawing into a single
list, the third in the resulting stream of lists of answers. It is given an SLSL of
answers, and it has to return an SL. Two auxiliary functions are required to do
this: diag and transpose. A stream of streams is converted to a stream of lists
by diag, and a list of streams can be converted to a stream of lists by transpose:

diag :: Stream (Stream a) —> Stream (List a)
diag zss =[[(xzss Vi) ! (n— i) | i < [0..n]] | n < [0.]],

transpose :: List (Stream a) — Stream (List a)

transpose xss = map hd xss : transpose (map tl xss).

Given diag and transpose, the function shuffle can be implemented as follows.
The input to shuffle is of type SLSL. The application of map transpose swaps
the middle SL to a LS, and gives SSLL. Then the application of diag converts
the outermost SS to SL and returns SLLL. This can now be used as input to
map (concal - concat) which flattens the three innermost levels of lists into a
single list, and returns SL:

shuffle = map (concat - concat) - diag - map transpose.

A very interesting aspect of this breadth-first model of logic programming is
that all the algebraic laws listed in the previous section still hold, if we ignore
the ordering of the answers within each sublist in the main stream. This can
be achieved by implementing the type of predicates as a function from answers
to streams of bags of answers. Each of the bags contains the answers with the
same computational cost, so we know that all the bags are finite. This is because
there are only a finite number of branches in each node in the search tree. Hence
all the equalities in our laws are still computable.

To implement both depth-first search and breadth-first search in the em-
bedding, the model has to be further refined. It is not sufficient to implement
predicates as functions returning streams of answer lists; they have to operate
on lists of trees. The operators || and & are redefined to be operations on lists
of trees, where the first one connects two lists of trees in a single one and the
second ‘grafts’ trees with small subtrees at the leaves to form normal trees. If
just trees were used, rather than lists of trees, p || ¢ would have to combine their
trees of answers by inserting them under a new parent node in a new tree, but
that would increase the cost of each answer to p || ¢ by one. We describe this
general model fully in [16].

It is interesting how concise the definitions of || and & remain in all three
models. To recapitulate the three definitions of & in the depth-first model,
breadth-first model and the tree model which accommodates both search strate-
gies, respectively:

p & q = concat - map q - p,

p & q = shuffle - map (map q) - p,
p & q = graft - treemap q - p.

12

These closely parallel definitions hint at a deeper algebraic structure, and in
fact the definitions are all instances of the so-called Kleisli construction from
category theory. Even greater similarities between the three models exist, and
we give a more detailed study of the relation between the three in [16].

6 Further Work

The work presented in this paper has not addressed the question of an efficient
implementation of these ideas, although a language implementation based on
our embedding is conceivable. Rather, this work is directed towards producing
and using a theoretical tool (with a simple implementation) for the analysis of
different aspects of logic programs. The simplicity is the key idea and the main
strength of our embedding, and it has served well in opening several directions
for further research.

We are presently working on two applications of the embedding. One is a
study of program transformation by equational reasoning, using the algebraic
laws of the embedding. The other is a categorical study of a model in which trees
are used as the data-structure for the answers, and we show that there exists a
morphism of monads between this most general model and the two models that
is presented in this paper. This line of research is inspired by [17, 19].

Among other questions that we plan to address soon are also the imple-
mentation of higher-order functions and the implementation of nested functions
in the embedded predicates. Constraint logic programming also has a simple
model in our embedding: one has to pass equations (instead of substitutions) as
parts of answers. These equations are evaluated when they become sufficiently
instantiated. An efficient language implementation is also a challenging goal in
this setting.

References

[1] Abelson and Sussman. Structure and Interpretation of Computer Programs,
chapter 4. 1985.

[2] M. Bellia and G. Levi. The relation between logic and functional languages:
a survey. Journal of Logic Programming, 3(3):317-236, 1986.

[3] R. Bird and O. de Moor. Algebra of Programming. Prentice Hall, 1997.

[4] R. Bird and P. Wadler. Introduction to Functional Programming. Prentice
Hall, 1988.

[5] E. Giovanetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel-LEAF: A
logic plus functional language. Journal of Computer and System Sciences,
42(2), 1991.

[6] M. Hanus. The integration of functions into logic programming: From
theory to practice. Journal of Logic Programming, 19(20):583-628, 1994.

13

[7] M. Hanus, H. Kuchen, and J.J. Moreno-Navarro. Curry: A truly functional
logic language. In Proc. ILPS’95 Workshop on Visions for the Future of
Logic Programming, pages 95-107, 1995.

[8] C.A.R. Hoare and H. Jifeng. Unifying Theories of Programming. Prentice
Hall, 1998.

[9] J.W. Lloyd. Declarative programming in Escher. Technical Report CSTR-~
95-013, Department of Computer Science, University of Bristol, June 1995.

[10] R. McPhee and O. de Moor. Compositional logic programming. In Pro-
ceedings of the JICSLP’96 post-conference workshop: Multi-paradigm logic
programming, Report 96-28. Technische Universitat Berlin, 1996.

[11] Mellish and Hardy. Integrating prolog in the POPLOG environment. In
J. Campbell, editor, Implementations of Prolog. 1984.

[12] J. Moreno-Navarro and M. Roderiguez-Artalejo. Logic programming with
functions and predicates: The language Babel. Journal of Logic Program-
ming, 12(3):191-223, 1992.

[13] L.C. Paulson. Lessons learned from LCF: a survey of natural deduction
proofs. Computer Journal, (28), 1985.

[14] J.A. Robinson. Beyond LogLisp: combining functional and relational pro-
gramming in a reduction setting. Machine intelligence, 11, 1988.

[15] J.A. Robinson and E.E. Sibert. LogLisp: An alternative to Prolog. Machine
Intelligence, 10, 1982.

[16] S. Seres, J.M. Spivey, and C.A.R. Hoare. Algrebra of logic programming.
submitted to International Conference on Logic Programming, 1999.

[17] J.M. Spivey. A categorical approach to the theory of lists. In Mathematics
of Program Construction. Springer LNCS 375, 1989.

[18] P. Wadler. How to replace failure by a list of successes. In 2’nd Inter-
national Conference on Functional Programming Languages and Computer
Architecture, Nancy, France, September 1985. Springer-Verlag.

[19] P. Wadler. The essence of functional programming. In 19’th Annual Sym-
posium on Principles of Programming Languages, January 1992.

14

