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Abstract

Even well-typed programs can go wrong, by encountering a
pattern-match failure, or simply returning the wrong answer. An
increasingly-popular response is to allow programmers to write
contracts that express semantic properties, such as crash-freedom
or some useful post-condition. We study the static verification of
such contracts. Our main contribution is a novel translation to
first-order logic of both Haskell programs, and contracts written
in Haskell, all justified by denotational semantics. This translation
enables us to prove that functions satisfy their contracts using an
off-the-shelf first-order logic theorem prover.

1. Introduction

Haskell programmers enjoy the benefits of strong static types and
purity: static types eliminate many bugs early on in the develop-
ment cycle, and purity simplifies equational reasoning about pro-
grams. Despite these benefits, however, bugs may still remain in
purely functional code and programs often crash if applied to the
wrong arguments. For example, consider these Haskell definitions:

f xs = head (reverse (True : xs))
g xs = head (reverse xs)

Both f and g are well typed (and hence do not “go wrong” in
Milner’s sense), but g will crash when applied to the empty list,
whereas f cannot crash regardless of its arguments. To distinguish
the two we need reasoning that goes well beyond that typically
embodied in a standard type system.

Many variations of dependent type systems (Norell 2007; Swamy
et al. 2011; Xi 2007) or refinement type systems (Knowles and
Flanagan 2010; Rondon et al. 2008) have been proposed to address
this problem, each offering different degrees of expressiveness or
automation. Another line of work aiming to address this challenge,
studied by many researchers as well (Blume and McAllester 2006;
Findler and Felleisen 2002; Knowles and Flanagan 2010; Siek
and Taha 2006; Wadler and Findler 2009), allows programmers to
annotate functions with contracts, which are forms of behavioural
specifications. For instance, we might write the following contract
for reverse:

reverse ∈ (xs : CF)→ {ys | null xs <=> null ys}

This contract annotation asserts that if reverse is applied to a
crash-free (CF) argument list xs then the result ys will be empty
(null) if and only if xs is empty. What is a crash-free argument?
Since we are using lazy semantics, a list could contain cons-cells
that yield errors when evaluated, and the CF precondition asserts
that the input list is not one of those. Notice also that null and
<=> are just ordinary Haskell functions, perhaps written by the
programmer, even though they appear inside contracts.

With this property of reverse in hand, we might hope to prove
that f satisfies the contract

f ∈ CF→ CF

But how do we verify that reverse and f satisfy the claimed con-
tracts? Contracts are often tested dynamically, but our plan here is
different: we want to verify contracts statically and automatically.

It should be clear that there is a good deal of logical reasoning to
do, and a now-popular approach is to delegate the task to an off-
the-shelf theorem prover such as Z3 (De Moura and Bjørner 2008)
or Vampire (Hoder et al. 2010), or search for counterexamples with
a finite model finder (Claessen and Sörensson 2003). With that in
mind, we make the following new contributions:

• We give a translation of Haskell programs to first-order logic
(FOL) theories. It turns out that lazy programs (as opposed to
strict ones!) have a very natural translation into first-order logic
(Section 3).

• We give a translation of contracts to FOL formulae, and an
axiomatisation of the language semantics in FOL (Section 3.5).

• Our main contribution is to show that if we can prove the for-
mula that arises from a contract translation for a given program,
then the program does indeed satisfy this contract. Our proof
uses the novel idea of employing the denotational semantics as
a first-order model (Section 4).

• We show how to use this translation in practice for static con-
tract checking with a FOL theorem prover (Section 4.5), and
how to prove goals by induction (Section 5).

This work is a first step towards practical contract checking for
Haskell programs, laying out the theoretical foundations for further
engineering and experimentation. Nevertheless, we have already
implemented a prototype for Haskell programs that uses GHC as
a front-end. We have evaluated the practicality of our approach
on many examples, including lazy and higher-order programs, and
goals that require induction. We report this initial encouraging
evaluation in Section 6.

To our knowledge no one has previously presented a translation of
lazy higher-order programs to first-order logic, in a provably sound
way with respect to a denotational semantics. Furthermore, our ap-
proach to static contract checking is distinctly different to previous
work: instead of wrapping and symbolic execution (Xu 2012; Xu
et al. 2009), we harness purity and laziness to directly use the de-
notational semantics of programs and contracts and discharge the
obligations with a FOL theorem prover, side-stepping the wrapping
process. Instead of generating verification conditions by pushing
pre- and post- conditions through a program, we directly ask a the-
orem prover to prove a contract for the FOL encoding of a program.
We discuss related work in Section 8.
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Programs, definitions, and expressions
P ::= d1 . . . dn
d ::= f a (x :τ) = u
u ::= e | case e of K y → e
e ::= x Variables

| f [τ ] Function variables
| K[τ ](e) Data constructors (saturated)
| e e Applications
| BAD Runtime error

Syntax of closed values
v, w ::= Kn[τ ](en) | fn[τ ] em<n | BAD

Contracts
C ::= {x | e} Base contracts

| (x : C1)→ C2 Arrow contracts
| C1&C2 Conjunctions
| CF Crash-freedom

Types
τ, σ ::= T τ Datatypes

| a | τ → τ

Type environments and signatures
Γ ::= · | Γ, x
∆ ::= · | ∆, a | ∆, x:τ
Σ ::= · | Σ, T :n | Σ, f :∀a.τ | Σ,Kn:∀a.τn → T a

Auxiliary functions
(·)− = ·
(∆, a)− = ∆−

(∆, (x:τ))− = ∆−, x

Figure 1: Syntax of λHALO and its contracts

2. A higher-order lazy language and its contracts
To formalise the ideas behind our implementation, we define a
tiny source language λHALO: a polymorphic, higher-order, call-by-
name λ-calculus with algebraic datatypes, pattern matching, and
recursion. Our actual implementation treats all of Haskell, by using
GHC as a front end to translate Haskell into language λHALO.

2.1 Syntax of λHALO

Figure 1 presents the syntax of λHALO. A program P consists of
a set of recursive function definitions d1 . . . dn. Each definition
has a left hand side that binds its type-variable and term-variable
parameters; if f has n term-variable parameters we say that it has
arity n, and sometimes write it fn. The right hand side u of a
definition is either a case expression or a case-free expression e.
A case-free expression consists of variables x, function variables
f [τ ] fully applied to their type arguments, applications e1 e2, data
constructor applications K[τ ](e). As a notation, we use xn for
sequences of elements of size n. When n is omitted x has a size
which is implied by the context or is not interesting.
A program crashes if it evaluates the special value BAD. For exam-
ple, we assume that the standard Haskell function error simply
invokes BAD, thus:
error :: String -> a
error s = BAD

Moreover, we assume that all incomplete pattern-matches are com-
pleted, with the missing case yielding BAD. For example:

head :: [a] -> [a]
head (x:xs) = x
head [] = BAD

In our context, BAD is our way to saying what it means for a
program to “go wrong”, and verification amounts to proving that
a program cannot invoke BAD.

Our language embodies several convenient syntactic constraints:
(i) λ abstractions occur only at the top-level, (ii) case-expressions
can only immediately follow a function definition, and (iii) con-
structors are fully applied. Any Haskell program can be trans-
formed into this restricted form by lambda-lifting, case-lifting,
and eta-expansion respectively, and our working prototype does
just this. However this simpler language is extremely convenient
for the translation of programs to first-order logic.

λHALO is an explicitly-typed language, and we assume the existence
of a typing relation Σ ` P , which checks that a program conforms
to the definitions in the signature Σ. A signature Σ (Figure 1)
records the declared data types, data constructors and types of
functions in the program P . The well-formedness of expressions is
checked with a typing relation Σ ; ∆ ` u : τ , where ∆ is a typing
environment, also in Figure 1. We do not give the details of the
typing relation since it is standard. Our technical development and
analysis in the following sections assume that the program has been
checked for type errors. The typing judgement should check that all
pattern matches are exhaustive; as mentioned above, missing cases
should return BAD.

The syntax of closed values is also given in Figure 1. Since we
do not have arbitrary λ-abstractions, values can only be partial
function applications fn[τ ] em<n, data constructor applications
K[τ ](e), and the error term BAD.

The operational semantics of λHALO is entirely standard, and we
do not give it here. We write P ` u ⇓ v to mean “in program P,
right-hand side u evaluates to value v”,

2.2 Contracts

We now turn our attention to contracts. The syntax of contracts is
given in Figure 1 and includes base contracts {x | e}, arrow con-
tracts (x : C1) → C2, conjunctions C1&C2 and crash-freedom CF.
Previous work (Xu et al. 2009) includes other constructs as well,
but the constructs we give here are enough to verify many programs
and exhibit the interesting theoretical and practical problems.

We write e ∈ C to mean “the expression e satisfies the contract
C”, and similarly for functions f . We will say what contracts mean
formally in Section 4.3. However, here is their informal meaning:

• e ∈ {x | e′}means that e does not evaluate to a value or e[e′/x]
evaluates to True or does not evaluate to a value. Notice that
e′ is an arbitrary expression (in our implementation, arbitrary
Haskell expressions), rather than being restricted to some well
behaved meta-language. This is great for the programmer be-
cause the language and its library functions is familiar, but it
poses a challenge for verification because these expressions in
contracts may themselves diverge or crash.

• e ∈ (x : C1)→ C2 means that whenever e′ satisfies C1, it is the
case that (e e′) satisfies C2[e′/x].

• e ∈ C1&C2 means that e satisfies both C1 and C2.

• e ∈ CF means that e is crash free; that is e does not crash
regardless of what context it is plugged into (see Section 3.6).
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Terms
s, t ::= x Variables

| f(t) Function applications
| K(t) Constructor applications
| sel Ki(t) Constructor selectors
| fptr | app(t, s) Pointers and application
| unr | bad Unreachable, bad

Formulae
ϕ ::= cf(t) Crash-freedom

| t1 = t2 Equality
| ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ
| ∀x.ϕ | ∃x.ϕ

Abbreviations
app(t, sn) = (. . . (app(t, s1), . . . sn) . . .)
ϕ1 ⇒ ϕ2 = ¬ϕ1 ∨ ϕ2

Figure 2: Syntax of FOL

3. Translating λHALO to first-order logic

Our goal is to answer the question “does expression e satisfy con-
tract C?”. Our plan is to translate the expression and the contract
into a first-order logic (FOL) term and formula respectively, and
get a standard FOL prover to do the heavy lifting. In this section
we formalise our translation, and describe how we use it to verify
contracts.

3.1 The FOL language

We begin with the syntax of the FOL language, which is given in
Figure 2. There are two syntactic forms, terms and formulae. Terms
include saturated function applications f(t), saturated constructor
applications K(t), and variables. They also include, for each data
constructor Kn in the signature Σ with arity n a set of selector
functions sel Ki(t) for i ∈ 1 . . . n. The terms app(t, s) and fptr
concern the higher-order aspects of λHALO (namely un-saturated ap-
plications), which we discuss in Section 3.3. Finally we introduce
two new syntactic constructs unr and bad. As an abbreviation we
often use app(t, s) for the sequence of applications to each si, as
Figure 2 shows.

A formula ϕ in Figure 2 is just a first-order logic formula, aug-
mented with a predicate cf(t) for crash-freedom, which we discuss
in Section 3.6.

3.2 Translation of expressions to FOL

What exactly does it mean to translate an expression to first-order
logic? We are primarily interested in reasoning about equality, so
we might hope for this informal guiding principle:

If we can prove1 in FOL that E{{e1}} = E{{e2}} then e1 and
e2 are semantically equivalent.

where E{{e}} is the translation of e to a FOL term. That is, we can
reason about the equality of Haskell terms by translating them into
FOL, and then using a FOL theorem prover. The formal statement
of this property is Corollary 4.5

The translation of programs, definitions, and expressions to FOL is
given in Figure 3. The function P{{P}} translates a program to a
conjunction of formulae, one for each definition d, using D{{d}} to

1 From an appropriate axiomatisation of the semantics of programs.

P{{P}} = ϕ P{{d}} =
∧
D{{d}}

D{{d}} = ϕ

D{{f a (x:τ) = u}} = ∀x.U(f(x)){{u}}

∧ ∀x. f(x) = app(fptr, x)

U(s){{u}} = ϕ

U(s){{e}} = (s = E{{e}})
U(s){{case e of K y → e′}}

= (t = bad⇒ s = bad)

∧ (∀y.t = K1(y)⇒ s = E{{e′1}}) ∧ . . .

∧ (t6= bad ∧ t6=K1(sel K1i(t)) ∧ . . .⇒ s = unr)

where t = E{{e}}

E{{e}} = t

E{{x}} = x

E{{f [τ ]}} = fptr

E{{K[τ ](e)}} = K(E{{e}})

E{{e1 e2}} = app(E{{e1}}, E{{e2}})
E{{BAD}} = bad

C{{e ∈ C}} = ϕ

C{{e ∈ {(x:τ) | e′}}} = t=unr

∨ t′[t/x]=unr

∨ t′[t/x]=True
where t = E{{e}} and t′ = E{{e′}}

C{{e ∈ (x:C1)→ C2}} = ∀x.C{{x ∈ C1}} ⇒ C{{e x ∈ C2}}

C{{e ∈ C1&C2}} = C{{e ∈ C1}} ∧ C{{e ∈ C2}}

C{{e ∈ CF}} = cf(E{{e}})

Figure 3: Translation of programs and contracts to logic

translate each definition. The first clause inDs right-hand side uses
U to translate the right hand side u, and quantifies over the x. We
will deal with the second clause of D in Section 3.3.

Ignoring case for now (which we discuss in Section 3.4), the
formula U(f(x)){{e}} simply asserts the equality f(x) = E{{e}}.
That is, we use a new function f in the logic for each function
definition in the program, and assert that any application of f is
equal to (the logical translation of) f ’s right hand side. Notice that
we erase type arguments in the translation since they do not affect
the semantics. You might think that the translation f(x) = E{{e}}
is entirely obvious but, surprisingly, it is only correct because we
are in a call-by-name setting. The same equation is problematic in
a call-by-value setting – an issue we return to towards the end of
Section 4.4.

Lastly E{{e}} deals with expressions. We will deal with functions
and application shortly (Section 3.3), but the other equations for
E{{e}} are straightforward. Notice that E{{BAD}} = bad, and recall
that BAD is the λHALO-term used for an inexhaustive case or a call
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Theory T
Axioms for bad and unr
AXAPPBAD ∀x.app(bad, x)= bad

AXAPPUNR ∀x.app(unr, x)=unr

AXDISJBU bad 6= unr

Axioms for data constructors
AXDISJC ∀xnym.K(x) 6= J(y)

for every (K:∀a.τn → T a) ∈ Σ
and (J :∀a.τm → S a) ∈ Σ

AXDISJCBU (∀xn.K(x) 6= unr ∧ K(x) 6= bad)

for every (K:∀a.τn → T a) ∈ Σ

AXINJ ∀yn. sel Ki(K(y)) = yi

for every Kn ∈ Σ and i ∈ 1..n

Axioms for crash-freedom
AXCFC ∀xn.cf(K(x))⇔

∧
cf(x)

for every (K:∀a.τn → T a) ∈ Σ

AXCFBU cf(unr) ∧ ¬cf(bad)

Figure 4: Theory T : axioms of the FOL constants

to error. It follows from our guiding principle that for any e, if
we manage to prove in FOL that E{{e}} = bad, then the source
program e must be semantically equivalent to BAD, meaning that it
definitely crashes.

3.3 Translating higher-order functions

If λHALO was a first-order language, the translation of function calls
would be easy:

E{{f [τ ] e}} = f(E{{e}})
At first it might be surprising that we can also translate a higher-
order language λHALO into first order logic, but in fact it is easy to
do so, as Figure 3 shows. We introduce into the logic (a) a single
new function app, and (b) a nullary constant fptr for each function
f (see Figure 2). Then, the equations for E{{e}} translate application
in λHALO to a use of app in FOL, and any mention of function f in
λHALO to a use of fptr in the logic. For example:

E{{map f xs}} = app(app(mapptr, fptr), xs)

assuming that map and f are top-level functions in the λHALO-
program, and xs is a local variable. Once enough app applications
stack up, so that mapptr is applied to two arguments, we can invoke
the map function directly in the logic, an idea we express with the
following axiom:

∀xy . app(app(mapptr, x), y) = map(x, y)

These axioms, one for each function f , are generated by the second
clause of the rules for D{{d}} in Figure 3. (The notation app(f, x)
is defined in Figure 2.) You can think of mapptr as a “pointer to”,
or “name of” of, map. The app axiom for map translates a saturated
use of map’s pointer into a call of map itself.

This translation of higher-order functions to first-order logic may
be easy, but it is not complete. In particular, in first-order logic
we can only reason about functions with a concrete first-order
representation (i.e. the functions that we already have and their
partial applications) but, for example, lambda expressions cannot
be created during proof time. Luckily, the class of properties we
reason about (contracts) never require us to do so.

3.4 Data types and case expressions

The second equation for U(s){{u}} in Figure 3 deals with case
expressions, by generating a conjunction of formulae, as follows:

• If the scrutinee t is bad (meaning that evaluating it invokes BAD)
then the result s of the case expression is also bad. That is,
case is strict in its scrutinee.

• If the scrutinee is an application of one of the constructors Ki

mentioned in one of the case alternatives, then the result s is
equal to the corresponding right-hand side, e′i, after quantifying
the variables y bound by the case alternative.

• Otherwise the result is unr. The bit before the implication⇒
is just the negation of the previous preconditions; the formula
t 6=K1(sel K1(t)) is the clumsy FOL way to say “t is not built
with constructor K1”.

Why do we need the last clause? Consider the function not:

not :: Bool -> Bool
not True = False
not False = True

Suppose we claim that not ∈ CF→ CF, which is patently true. But
if we lack the last clause above, the claim is not true in every model;
for example not might crash when given the (ill-typed but crash-
free) argument 3. The third clause above excludes this possibility
by asserting that the result of not is the special crash-free constant
unr if the scrutinee is ill-typed (i.e. not bad and not built with the
constructors of the type). This is the whole reason we need unr in
the first place. In general, if E{{e}} = unr is provable in the logic,
then e is ill-typed, or divergent.

Of course, we also need to axiomatise the behaviour of data con-
structors and selectors, which is done in Figure 4:

• AXDISJCBU explains that a term headed by a data constructor
cannot also be bad or unr.

• AXINJ explains how the selectors sel Ki work.

• AXDISJC tells the prover that all data constructors are pairwise
disjoint. There are a quadratic number of such axioms, which
presents a scaling problem. For this reason FOL provers some-
times offer a built-in notion of data constructors, so this is not a
problem in practice, but we ignore this pragmatic issue here.

3.5 Translation of contracts to FOL

Now that we know how to translate programs to first order logic,
we turn our attention to translating contracts. We do not translate
a contract per se; rather we translate the claim e ∈ C. Once we
have translated e ∈ C to a first-order logic formula, we can ask a
prover to prove it using axioms from the translation of the program,
or axioms from Figure 4. If successful, we can claim that indeed e
does satisfy C. Of course that needs proof, which we address in
Section 4.4.

Figure 3 presents the translation C{{e ∈ C}}; there are four equa-
tions corresponding to the syntax of contracts in Figure 1. The
last three cases are delightfully simple and direct. Conjunction of
contracts turns into conjunction in the logic; a dependent function
contract turns into universal quantification and implication; and the
claim that e is crash-free turns into a use of the special term cf(t)
in the logic. We discuss crash-freedom in Section 3.6.

The first equation, for predicate contracts e ∈ {x | e′}, is sightly
more complicated. The first clause t = unr, together with the ax-
ioms for unr in Figure 4, ensures that unr satisfies every contract.
The second and third say that the contract holds if e′ diverges or
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is semantically equal to True. The choices embodied in this rule
were discussed at length in earlier work (Xu et al. 2009) and we do
not rehearse it here.

3.6 Crash-freedom

The claim e ∈ CF, pronounced “e is crash-free”, means that e
cannot crash regardless of context. So, for example (BAD, True)
is not crash-free because it can crash if evaluated in the context
fst (BAD, True). Of course, the context itself should not be the
source of the crash; for example (True,False) is crash-free even
though BAD (True,False) will crash.

We use the FOL term cf(t) to assert that t is crash-free. The axioms
for cf are given in Figure 4. AXCFC says that a data constructor
application is crash-free if and only iff its arguments are crash-free.
AXCFBU says that unr is crash-free, and that bad is not. That
turns out to be all that we need.

3.7 Summary

That completes our formally-described — but so far only informally-
justified — translation from a λHALO program and a set of contract
claims, into first-order logic. To a first approximation, we can now
hand the generated axioms from the program and our axiomatisa-
tion to an FOL theorem prover and ask it to use them to prove the
translation of the contract claims.

4. Soundness through denotational semantics
Our account so far has been largely informal. How can we be sure
that if the FOL prover says “Yes! This FOL formula is provable”,
then the corresponding λHALO program indeed satisfies the claimed
contract?

To prove this claim we take a denotational approach. Most of what
follows is an adaptation of well-known techniques to our setting
and there are no surprises — we refer the reader to (Winskel 1993)
or (Benton et al. 2009) for a short and modern exposition of the
standard methodology.

4.1 Technical preliminaries

We will assume a program P , well-formed in a signature Σ, so that
Σ ` P . Given a signature Σ we define a strict bi-functor F on
complete partial orders (cpos), below:

F (D−, D+) = (
∏
n1
D+ Kn1

1 ∈ Σ
+ . . . . . .
+

∏
nk
D+ K

nk
k ∈ Σ

+ (D− ⇒c D
+)

+ 1bad )⊥

The bi-functor F is the lifting of a big sum: that sum consists of (i)
products, one for each possible constructor (even across different
data types), (ii) the continuous function space from D− to D+,
and (iii) a unit cpo to denote BAD values. The notation

∏
nD

abbreviates n-ary products of cpos (the unit cpo 1 if n = 0). The
product and sum constructions are standard, but note that we use
their non-strict versions. The notation C ⇒c D denotes the cpo
induced by the space of continuous functions from the cpo C to the
cpo D. We use the notation 1bad to denote a single-element cpo –
the bad subscript is just there for readability. The notation D⊥ is
lifting.

Observe that we have dropped all type information from the source
language. The elements of the products corresponding to data con-
structors are simplyD+ (instead of more a precise description from

[[e]]〈·,·〉 : (FunVar⇒c D∞)× (Var⇒c D∞)⇒c D∞
[[x]]〈σ,ρ〉 = ρ(x)

[[f [τ ]]]〈σ,ρ〉 = σ(f)

[[K [τ ] (e)]]〈σ,ρ〉 = K([[e]]〈σ,ρ〉)
[[e1 e2]]〈σ,ρ〉 = app([[e1]]〈σ,ρ〉, [[e2]]〈σ,ρ〉)

[[BAD]]〈σ,ρ〉 = Bad

[[u]]〈·,·〉 : (FunVar⇒c D∞)× (Var⇒c D∞)⇒c D∞

[[e]]〈σ,ρ〉 = [[e]]〈σ,ρ〉

[[case e ofK y → eK ]]〈σ,ρ〉 = [[eK ]]〈σ,ρ,y 7→d〉
if [[e]]〈σ,ρ〉 = K(d)
and K is a case branch

= Bad if [[e]]〈σ,ρ〉 = Bad
= ⊥ otherwise

[[P ]] : (FunVar⇒c D∞)⇒c (FunVar⇒c D∞)

[[P ]]σf = Fun(λd1. . . .Fun(λdn.[[u]]〈σ,x 7→d〉) . . .)
if (f a x = u) ∈ P

= ⊥ otherwise

Figure 5: Denotational semantics of λHALO

type information) and the return types of data constructors are sim-
ilarly ignored. This is not to say that a more type-rich denotational
semantics is not possible (or desirable even) but this simple deno-
tational semantics turns out to be sufficient for formalisation and
verification.
Now we can define D∞ as the solution to this recursive domain
equation

D∞ ≈ F (D∞, D∞)

We can show that D∞ exists using the standard embedding-
projection pairs methodology. Moreover, we define the value do-
main V∞ thus:

V∞ =
∏
n1
D∞ Kn1

1 ∈ Σ
+ . . . . . .
+

∏
nk
D∞ K

nk
k ∈ Σ

+ (D∞ ⇒c D∞)
+ 1bad

The following continuous functions also exist:

ret : D ⇒c D⊥
bindf :D⇒cE⊥ : D⊥ ⇒c E⊥

roll : (V∞)⊥ ⇒c D∞
unroll : D∞ ⇒c (V∞)⊥

However in what follows we will always elide these functions to
reduce clutter.
To denote elements of V∞ we use the following notation.

• K(d1, . . . , dn) denotes the injection of the n-ary product of
D∞ into the component of the sum V∞ corresponding to the
n-ary constructor K.

• Fun(d) is the injection of an element of D∞ ⇒c D∞ into the
function component of V∞

• Bad is the unit injection into V∞.

4.2 Denotational semantics of expressions and programs

Figure 5 gives the denotational interpretations of expressions e,
right hand sides u, and programs P , in terms of the domain-
theoretic language and combinators we have defined.
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[[C]]ρ ⊆ D∞

[[x | e]]ρ = {d | d = ⊥ ∨ [[e]]ρ,x 7→d ∈ {True,⊥}}

[[(x:C1)→ C2]]ρ = {d | ∀d′∈ [[C1]]ρ . app(d, d′) ∈ [[C2]]ρ,x7→d′}

[[C1&C2]]ρ = {d | d ∈ [[C1]]ρ ∧ d ∈ [[C2]]ρ}

[[CF]]ρ = F∞cf
where

F∞cf = {⊥}
∪ { K(d) | Kn ∈ Σ, di ∈ F∞cf }
∪ { Fun(d) | ∀d′ ∈ F∞cf . d(d′) ∈ F∞cf }

Figure 6: Denotations of contracts

First, the denumerable set of term variable names x1, . . . induces
a discrete cpo Var and the denumerable set of function variable
names f1, . . . induces a discrete cpo FunVar. We define, semantic
term environments to be the cpo (Var ⇒c D∞), and semantic
function environments to be the cpo (FunVar⇒c D∞).

Figure 5 defines the denotational semantics of expressions [[e]]
as a continuous map from these two environments to D∞. It is
entirely straightforward except for application, which depends on
the continuous function app : D∞ ×D∞ ⇒c D∞, defined thus2:

app(d, a) = df (a) if d = Fun(df )
= Bad if d = Bad
= ⊥ otherwise

That is, application applies the payload df if the function d comes
from the appropriate component of V∞, propagates Bad, and oth-
erwise returns ⊥.

The semantics of right-hand sides [[u]] is defined similarly. The
semantics of a case expression is the semantics of the matching
branch, if one exists. Otherwise, like application, it propagates Bad.
In all other cases we return ⊥, not Bad; all the missing cases
can only be constructors of different datatypes than the datatype
that K belongs to, because all case expressions are complete
(Section 2.1). This treatment corresponds directly to our treatment
of unr in Section 3.4.

Finally, Figure 5 gives the semantics of a program P , which should
be read recalling its syntax in Figure 1. Since [[P ]]) is continuous,
its limit exists and is an element of the cpo FunVar⇒c D∞.
Definition 4.1. We will refer to the limit of the [[P ]] as [[P ]]∞ in
what follows. Moreover, to reduce notational overhead below, for
a program with no free variables we will use notation [[e]] to mean
[[e]]〈[[P ]]∞,·〉, and [[e]]ρ to mean [[e]]〈[[P ]]∞,ρ〉

Although we have not presented a formal operational semantics,
we state the usual soundness and adequacy results:
Theorem 4.1 (Soundness and adequacy). Assume Σ ` P and u
with no free term variables. Then (i) if P ` u ⇓ v then [[u]] = [[v]];
and (ii) if [[e]] 6= ⊥, then ∃v such that P ` e ⇓ v.

4.3 Denotational semantics of contracts

Now we are ready to say formally what it means for a function to
satisfy a contract. We define the semantics of a contract as the set

2 A small technical remark: we write the definition with pattern matching
notation app(d, a) (instead of using π1 for projecting out d and π2 for
projecting out a) but that is fine, since × is not a lifted construction. Also
note that we are, as advertised, suppressing uses of bind, roll, etc.

of denotations that satisfy it:

[[C]]ρ ⊆ D∞
where C is a contract with free term variables in the semantic
environment ρ. Figure 6 gives the definition of this function. A base
contract {x | e} is satisfied by⊥ or or by a computation that causes
the predicate e to become ⊥ or return True3. The denotation of an
arrow contract, and of conjunction, are both straightforward.

The CF contract is a little harder. Intuitively an expression is crash-
free iff it cannot crash if plugged into an arbitrary crash-free con-
text. Of course this is a self-referential definition so how do we
know it makes sense? The original paper (Xu et al. 2009) specified
that an expression is crash free iff it cannot crash when plugged
into a context that syntactically does not contain the BAD value.
This is a reasonable definition in the operational semantics world,
but here we can do better because we are working with elements
of D∞. Using techniques developed by Pitts (Pitts 1996) we can
define crash-freedom denotationally as the greatest solution to the
recursive equation for F∞cf in Figure 6. Technically, since the equa-
tion involves mixed-variance recursion, to show that such a fixpoint
exists we have to use minimal invariance. In addition we get the fol-
lowing, which will be useful later on for induction:
Lemma 4.2. ⊥ ∈ Fcf and F∞cf is admissible, that is if all elements
of a chain are in F∞cf then so is its limit.

4.4 Soundness of the logic translation

We have developed a formal semantics for expressions as well as
contracts, so it is time we see how we can use this semantics to
show that our translation to first-order logic is sound with respect
to this semantics.

Our plan is to give an interpretation (in the FOL sense of the term)
to our translated FOL terms, using the carrier setD∞ as our model.
Happily this is straightforward to do:

I(f(t)) = app([[f ]], I(t))
I(app(t1, t2)) = app(I(t1), I(t2))

I(fptr) = [[f ]]

I(K(t)) = K(I(t))
I(sel Ki(t)) = di if I(t) = K(d)

= ⊥ otherwise
I(unr) = ⊥
I(bad) = Bad

The essential soundness theorem that states that our interpretation
makes sense is the following.
Theorem 4.3 (Interpretation respects denotations). Assume that
Σ ` P and expression e does not contain any free variables. Then,
if E{{e}} = t then I(t) = [[e]].

The proof is an easy induction on the size of the term e.

Our soundness results are expressed with the following theorem
Theorem 4.4. If Σ ` P then 〈D∞, I〉 |= T ∧ P{{P}}

As a corollary we get our “guiding principle” from the introduction.
Corollary 4.5. Assume that Σ ` P and e1 and e2 contain no free
term variables. The following are true:

• [[e1]] = [[e2]] iff I(E{{e1}}) = I(E{{e2}}).
• If T ∧ P{{P}} ` E{{e1}} = E{{e2}} then [[e1]] = [[e2]].

3 In previous work (Xu et al. 2009) the base contract also required crash-
freedom. We changed this choice only for reasons of taste; both choices are
equally straightforward technically.
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Proof. The first part follows directly from Theorem 4.3. For the
second part the left-hand side implies that E{{e1}} and E{{e2}} are
equal in all models of T ∧P{{P}}, in particular (using Theorem 4.4)
by 〈D∞, I〉 and by the first part the case is finished.

Theorem 4.6. Assume that e and C contain no free term variables.
Then the FOL translation of the claim e ∈ C holds in the model if
and only if the denotation of e is in the semantics of C. Formally:

〈D∞, I〉 |= C{{e ∈ C}} ⇔ [[e]] ∈ [[C]]

Completeness of axiomatisation TheD∞ domain has a complex
structure and there are many more facts that hold about elements of
D∞ that are not reflected in any of our axioms in T . For instance,
here are some admissible axioms that are valid:

∀xn.app(fptr, x) 6= unr ∧ app(fptr, x) 6= bad

∧ ∀yk.app(fptr, x) 6= K(y)

for every (f a xm = u) ∈ P and K ∈ Σ with m > n

These axioms assert that partial applications cannot be equated to
any constructor, ⊥ nor Bad. If the reader is worried that without a
complete formalisation of all equalities of D∞ it is impossible to
prove any programs correct, we would like to reassure them that
that is not the case as we shall see in the next section.

Lazy semantics simplifies the translation We have mentioned
previously (Section 3.2) that the laziness of λHALO helps in keeping
the translation simple, and here we explain why.

Whenever we use universal quantification in the logic, we re-
ally quantify over any denotation, including ⊥ and Bad. In a
call-by-name language, given a function f x = True, the axiom
∀x.f(x) = True is true in the intended denotational model. How-
ever, in a call-by-value setting, x is allowed to be interpreted as ⊥.
That means that the unguarded axiom is actually not true, because
f ⊥ 6= True. Instead we need the following annoying variation:

∀x.x 6= bad ∧ x 6= unr ⇒ f(x) = t

Moreover, the axioms for the app(·, ·) combinator have to be mod-
ified to perform checks that the argument is not ⊥ or Bad before
actually calling a function. In a call-by-name language these guards
are needed only for case and the function part of app.

These complications lead to a more complex first-order theory in
the call-by-value case.

4.5 Contract checking as satisfiability

Having established the soundness of our translation, it is time we
see in this section how we can use this sound translation to verify a
program. The following theorem is then true:
Theorem 4.7 (Soundness). Assume that e and C contain only
function symbols from P and no free term variables. Let Tall =
T ∧ P{{P}}. If Tall∧¬C{{e ∈ C}} is unsatisfiable then 〈D∞, I〉 |=
C{{e ∈ C}} and consequently [[e]] ∈ [[C]].

Proof. If there is no model for this formula then its negation must
be valid (true in all models), that is ¬Tall ∨ C{{e ∈ C}} is valid.
By completeness of first-order logic Tall ` C{{e ∈ C}}. This
means that all models of Tall validate C{{f ∈ C}}. In particular, for
the denotational model we have that 〈D∞, I〉 |= Tall and hence
〈D∞, I〉 |= C{{e ∈ C}}. Theorem 4.6 finishes the proof.

Hence, to verify a program e satisfies a contract C we need to do
the following:

• Generate formulae for the theory T ∧ P{{P}}

• Generate the negation of a contract translation: ¬C{{e ∈ C}}
• Ask a SAT solver for a model for the conjunction of the above

formulae

Incremental verification Theorem 4.7 gives us a way to check
that an expression satisfies a contract. Assume that we are given
a program P with a function f ∈ dom(P ), for which we have
already shown that 〈D∞, I〉 |= C{{f ∈ Cf}}. Suppose next that we
are presented with a “next” goal, to prove that 〈D∞, I〉 |= C{{h ∈
Ch}}. We may consider the following three variations of how to do
this:

• Ask for the unsatisfiability of:

T ∧ P{{P}} ∧ ¬C{{h ∈ Ch}}
The soundness of this query follows from Theorem 4.7 above.

• Ask for the unsatisfiability of:

T ∧ P{{P}} ∧ C{{f ∈ Cf}} ∧ ¬C{{h ∈ Ch}}
This query adds the already proven contract for f to the theory.
If this formula is unsatisfiable, then its negation is valid, and we
know that the denotational model is a model of the theory and of
C{{f ∈ Cf}} and hence it must also be a model of C{{h ∈ Ch}}.

• Ask for the unsatisfiability of:

T ∧ P{{P \ f}} ∧ C{{f ∈ Cf}} ∧ ¬C{{h ∈ Ch}}
This query removes the axioms associated with the definition of
f , leaving only its contract available. This makes the proof of
h’s contract insensitive to changes in f ’s implementation. Via a
similar reasoning as before, such an invocation is sound as well.

5. Induction

An important practical extension is the ability to prove contracts
about recursive functions using induction. For instance, we might
want to prove that length satisfies CF→ CF.

length [] = Z
length (x:xs) = S (length xs)

In the second case we need to show that the result of length xs
is crash-free but we do not have this information so the proof gets
stuck, often resulting in the FOL-solver looping.

A naive approach would be to perform induction over the list argu-
ment of length – however in Haskell datatypes may be lazy infi-
nite streams and ordinary induction is not necessarily a valid proof
principle. Fortunately, we can still appeal to fixpoint induction. The
fixpoint induction sheme that we use for length above would be
to assume that the contract holds for the occurence some function
length_rec inside the body of its definition, and then try to prove
it for the function:

length [] = Z
length (x:xs) = S (length_rec xs)

Formally, our induction scheme is:
Definition 5.1 (Induction sheme). To prove that [[g]] ∈ [[C]] for a
function g a x:τ = e[g] (meaning e contains some occurrences of
g), we perform the following steps:

• Generate function symbols g◦, g•
• Generate the theory formula

ϕ = T ∧ P{{P ∪ g• a x:τ = e[g◦]}}
• Prove that the query ϕ ∧ C{{g◦ ∈ C}} ∧ ¬C{{g• ∈ C}} is

unsatisfiable.
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Why is this approach sound? The crucial step here is the fact that
contracts are admissible predicates.
Theorem 5.1 (Contract admissibility). If di ∈ [[C]] for all elements
of a chain d1 v d2 v . . . then the limit of the chain tdi ∈ [[C]].
Moreover, ⊥ ∈ [[C]].

Proof. By induction on the contract C; for the CF case we get the
result from Lemma 4.2. For the predicate case we get the result
from the fact that the denotations of programs are continuous in
D∞. The arrow case follows by induction.

We can then prove the soundness of our induction scheme.
Theorem 5.2. The induction scheme in Definition 5.1 is correct.

Proof. We need to show that: [[P ]]∞(g) ∈ [[C]] and hence, by
admissibility it is enough to find a chain whose limit is [[P ]]∞(g)
and such that every element is in [[C]]. Let us consider the chain
[[P ]]k(g) so that [[P ]]0(g) = ⊥ and [[P ]]k+1(g) = [[P ]]([[P ]]k)(g)
whose limit is [[P ]]∞(g). We know that ⊥ ∈ [[C]] so, by using
contract admissiblity, all we need to show is that if [[P ]]k(g) ∈ [[C]]
then [[P ]]k+1(g) ∈ [[C]].

To show this, we can assume a model where the denotational
interpretation I has been extended so that I(g◦) = [[P ]]k(g) and
I(g•) = [[P ]]k+1(g). By proving that the formula

ϕ ∧ C{{g◦ ∈ C}} ∧ ¬C{{g• ∈ C}}

is unsatisfiable, since 〈D∞, I〉 |= ϕ and 〈D∞, I〉 |= C{{g◦ ∈ C}},
we learn that 〈D∞, I〉 |= C{{g• ∈ C}}, and hence [[P ]]k+1(g) ∈
[[C]].

Note that contract admissibility is absolutely essential for the
soundness of our induction scheme, and is not a property that holds
of every predicate on denotations. For example, consider the fol-
lowing Haskell definition:

ones = 1 : ones
f (S x) = 1 : f x
f Z = [0]

Let us try to check if the ∀x.f(x) 6= ones is true in the denota-
tional model, using fixpoint induction. The case for ⊥ holds, and
so does the case for the Z constructor. For the S x case, we can
assume that f(x) 6= ones and we can easily prove that this implies
that f(S x) 6= ones. Nevertheless, the property is not true – just
pick a counterexample [[s]] where s = S s. What happened here is
that the property is denotationally true of all the elements of the
following chain

⊥ v S(⊥) v S(S(⊥)) v . . .

but is false in the limit of this chain. In other words 6= is not
admissible and our induction scheme is plain nonsense for non-
admissible predicates.

Finally, we have observed that for many practical cases, a straight-
forward generalization of our lemma above for mutually recursive
definitions is required. Indeed, our tool performs mutual fixpoint
induction when a recursive group of functions is encountered. We
leave it as future work to develop more advanced techniques such
as strengthening of induction hypotheses or identifying more so-
phisticated induction schemes.

6. Implementation and practical experience

Our prototype contract checker is called Halo. It uses GHC to
parse, typecheck, and desugar a Haskell program, translates it into
first order logic (exactly as in Section 3), and invokes a FOL theo-
rem prover (Equinox, Z3, Vampire, etc) on the FOL formula. The
desugared Haskell program is expressed in GHC’s intermediate
language called Core (Sulzmann et al. 2007), an explicitly-typed
variant of System F. It is straightforward to translate Core into our
language λHALO.

6.1 Expressing contracts in Haskell

How does the user express contracts? We write contracts in Haskell
itself, using higher-order abstract syntax and a GADT, in a manner
reminiscent of the work on typed contracts for functional program-
ming (Hinze et al. 2006):

data Contract t where
(:->) :: Contract a

-> (a -> Contract b)
-> Contract (a -> b)

Pred :: (a -> Bool) -> Contract a
CF :: Contract a
(:&:) :: Contract a -> Contract a -> Contract a

A value of type Contract t is a a contract for a function of type t.
The connectives are :-> for dependent contract function space, CF
for crash-freedom, Pred for predication, and :&: for conjunction.
One advantage of writing contracts as Haskell terms is that we can
use Haskell itself to build new contract combinators. For example,
a useful derived connective is non-dependent function space:

(-->) :: Contract a -> Contract b -> Contract (a -> b)
c1 --> c2 = c1 :-> (\_ -> c2)

A contract is always associated with a function, so we pair the two
in a Statement:

data Statement where
(:::) :: a -> Contract a -> Statement

In our previous mathematical notation we might write the following
contract for head:

head ∈ CF & {xs | not (null xs)} → CF

Here is how we express the contract as a Haskell definition:

c_head :: Statement
c_head = head ::: CF :&: Pred (not . null) --> CF

If we put this definition in a file Head.hs, together with the
supporting definitions of head, not, and null, then we can run
halo Head.hs. The halo program translates the contract and the
supporting function definitions into FOL, generates a TPTP file,
and invokes a theorem prover. And indeed c_head is verified by
all theorem provers we tried.

For recursive functions halo uses fixpoint induction, as described
in Section 5.

6.2 Practical considerations

To make the theorem prover work as fast as possible we trim
the theories to include only what is needed to prove a property.
Unnecessary function pointers, data types and definitions for the
current goal are not generated.

When proving a series of contracts, it is natural to do so in depen-
dency order. For example:
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reverse :: [a] -> [a]
reverse [] = []
reverse (x:xs) = reverse xs ++ [x]

reverse_cf :: Statement
reverse_cf = reverse ::: CF --> CF

To prove this contract we must first prove that (++) ∈ CF →
CF→ CF; then we can prove reverse’s contract assuming the one
for (++). At the moment, halo asks the programmer to specify
which auxiliary contracts are useful, via a second constructor in the
Statement type:

reverse_cf = reverse ::: CF --> CF
‘Using‘ append_cf

6.3 Dependent contracts

halo can prove dependent contracts. For example:

filter ∈ (p : CF→ CF)→ CF→ CF & {ys | all p ys}
This contract says that under suitable assumptions of crash-freedom,
the result of filter is both crash-free and satisfies all p. Here
all is a standard Haskell function, and p is the functional argu-
ment itself.

In our source-file syntax we use (:->) to bind p.

filter_all :: Statement
filter_all =

filter ::: (CF --> CF) :-> \p ->
CF --> (CF :&: Pred (all p))

The contract looks slightly confusing since it uses two “arrows”,
one from :->, and one from the -> in the lambda. This contract is
proved by applying fixed point induction.

6.4 Higher order functions

Our tool also deals with (very) higher order functions. Consider this
function withMany, taken from the library Foreign.Util.Marshal:

withMany :: (a -> (b -> res) -> res)
-> [a] -> ([b] -> res) -> res

withMany _ [] f = f []
withMany withFoo (x:xs) f = withFoo x (\x’ ->

withMany withFoo xs (\xs’ -> f (x’:xs’)))

For withMany, our tool proves

withMany ∈ (CF→ (CF→ CF)→ CF)→
(CF→ (CF→ CF)→ CF)

6.5 Experimental Results

We have run halo on a collection of mostly-small tests, some of
which can be viewed in Figure 7. Our full testsuite and tables can
be downloaded from https://github.com/danr/contracts/
blob/master/tests/BigTestResults.md. The test cases in-
clude:

• Crash-freedom of standard functions ((++), foldr1, iterate,
concatMap).

• Crash-freedom of functions with more complex recursive pat-
terns (Ackermann’s function, functions with accumulators).

• Partial functions given appropriate preconditions (foldr1,
head, fromJust).

• The risers example from Catch (Mitchell and Runciman
2008).

Description equinox Z3 vampire E
ack CF - 0.04 0.03 -
all CF - 0.00 3.36 0.04
(++) CF - 0.03 3.30 0.38
concatMap CF - 0.03 6.60 -
length CF 0.87 0.00 0.80 0.01
(+) CF 44.33 0.00 3.32 0.10
(*) CF 6.44 0.03 3.36 -
factorial CF 6.69 0.02 4.18 31.04
exp CF - 0.03 3.36 -
(*) accum CF - 0.03 3.32 -
exp accum CF - 0.04 4.20 0.12
factorial accum CF - 0.03 3.32 -
reverse CF 13.40 0.03 28.77 -
(++)/any morphism - 0.03 - -
filter satisfies all - 0.03 - -
iterate CF 5.54 0.00 0.00 0.00
repeat CF 0.06 0.00 0.00 0.01
foldr1 - 0.01 1.04 24.78
head 18.62 0.00 0.00 0.01
fromJust 0.05 0.00 0.00 0.00
risersBy - - 1.53 -
shrink - 0.04 - -
withMany CF - 0.00 - -

Figure 7: Theorem prover running time in seconds on some of the
problems in the test suite on contracts that hold.

• Some non-trivial post-conditions, such as the example above
with filter and all, and also any p xs || any p ys =
any p (xs ++ ys).

We tried four theorem provers, Equinox, Z3, Vampire and E, and
gave them 60 seconds for each problem. For our problems, Z3
seems to be the most successful theorem prover.

7. Discussion
Contracts that do not hold In practice, programmers will often
propose contracts that do not hold. For example, consider the fol-
lowing definitions:

length [] = Z
length (x:xs) = S (length xs)

isZero Z = True
isZero _ = False

Suppose that we would like to check the (false) contract:

length ∈ CF→ {x | isZero x}
A satisfiability-based checker will simply diverge trying to construct
a counter model for the negation of the above query; we have
confirmed that this is indeed the behaviour of several tools (Z3,
Equinox, Eprover). Why? When a counter-model exists, it will
include tables for the function symbols in the formula. Recall that
functions in FOL are total over the domain of the terms in the
model. This means that function tables may be infinite if the terms
in the model are infinite. Several (very useful!) axioms such as the
discrimination axioms AXDISJC may in fact force the models to
be infinite.

In our example, the table for length is indeed infinite since [] is
always disjoint from Cons x xs for any x and xs. Even if there
is a finitely-representable infinite model, the theorem prover may
search forever in the “wrong corner” of the model for a counterex-
ample.
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From a practical point of view this is unfortunate; it is not accept-
able for the checker to loop when the programmer writes an erro-
neous contract. Tantalisingly, there exists a very simple counterex-
ample, e.g. [Z], and that single small example is all the program-
mer needs to see the falsity of the contract.

Addressing this problem is a challenging (but essential) direction
for future work, and we are currently working on a modification
of our theory that admits the denotational model, but also permits
finite models generated from counterexample traces. If the theory
can guarantee the existence of a finite model in case of a coun-
terexample, a finite model checker such as Paradox (Claessen and
Sörensson 2003) will be able find it.

A tighter correspondence to operational semantics? Earlier
work gave a declarative specfication of contracts using operational
semantics (Xu et al. 2009). In this paper we have instead used a
denotational semantics for contracts (Figure 6). It is natural to ask
whether or not the two semantics are identical.

From computational adequacy, Theorem 4.1 we can easily state the
following theorem:
Corollary 7.1. Assume that e and C contain no term variables
and assume that C{{e ∈ {x | ep}}} = ϕ . It is the case that
〈D∞, I〉 |= ϕ if and only iff either P 6` e ⇓ or P 6` ep[e/x] ⇓ or
P ` ep[e/x] ⇓ True.

Hence, the operational and denotational semantics of predicate
contracts coincide. However, the correspondence is not precise for
dependent function contracts. Recall the operational definition of
contract satisfaction for a function contract:

e ∈ (x:C1)→ C2 iff
for all e′ such that (e′ ∈ C1) it is e e′ ∈ C2[e′/x]

The denotational specification (Figure 6) says that for all denota-
tions d′ such that d′ ∈ [[C1]], it is the case that app([[e]], d′) ∈
[[C2]]x 7→d′ .

Alas there are more denotations than images of terms in D∞, and
that breaks the correspondence. Consider the program:

loop = loop

f :: (Bool -> Bool -> Bool) -> Bool
f h = if (h True True) && (not (h False False))

then if (h True loop) && (h loop True)
then BAD else True

else True

Also consider now this candidate contract for f :

f ∈ CF→ (CF→ CF→ CF)→ CF

Under the operational definition of contract satisfaction, f indeed
satisfies the contract. To reach BAD we have to pass both condition-
als. The first ensures that h evaluates at least one of its arguments,
while the second will diverge if either argument is evaluated. Hence
BAD cannot be reached, and the contract is satisfied.

However, denotationally it is possible to have the classic parallel-or
function, por, defined as follows:

por ⊥ ⊥ = ⊥
por ⊥ True = True
por True ⊥ = True
por False False = False

We have to define por in the language of denotational semantics,
because we cannot write it in Haskell — that is the point! For
convenience, though, we use pattern matching notation instead
of our language of domain theory combinators. The rest of the
equations (for BAD arguments) are induced by monotonicity and

we may pick whatever boolean value we like when both arguments
are BAD.

Now, this is denotationally a CF → CF → CF function, but it
will pass both conditionals, yielding BAD. Hence app(f, por) =
Bad, and f’s contract does not hold. So we have a concrete case
where an expression may satisfy its contract operationally but not
denotationally, because of the usual loss of full abstraction: there
are more tests than programs in the denotational world. Due to
contra-variance we expect that the other inclusion will fail too.

This is not a serious problem in practice. After all the two defini-
tions mostly coincide, and they precisely coincide in the base case.
At the end of the day, we are interested in whether main ∈ CF, and
we have proven that if is crash-free denotationally, it is definitely
crash-free in any operationally-reasonable term.

Finally, is it possible to define an operational model for our FOL
theory that interpreted equality as contextual equivalence? Proba-
bly this could be made to work, although we believe that the formal
clutter from syntactic manipulation of terms could be worse than
the current denotational approach.

Polymorphic crash-freedom Observe that our axiomatisation of
crash-freedom in Figure 4 includes only axioms for data construc-
tors. In fact, our denotational interpretation F∞cf allows more ax-
ioms, such as:

∀xy.cf(x) ∧ cf(y)⇒ cf(app(x, y))

This axiom is useful if we wish to give directly a CF contract to
a value of arrow type. For instance, instead of specifying that map
satisfies the contract (CF → CF) → CF → CF one may want to
say that it satisfies the contract CF → CF → CF. With the latter
contract we need the previous axiom to be able to apply the function
argument of map to a crash-free value and get a crash-free result.

In some situations, the following axiom might be beneficial as well:

(∀x.cf(f(x)))⇒ cf(fptr)

If the result of applying a function to any possible argument is
crash-free then so is the function pointer. This allows us to go in the
inverse direction as before, and pass a function pointer to a function
that expects a CF argument. However notice that this last axiom
introduces a quantified assumption, which might lead to significant
efficiency problem.

Ideally we would like to say that [[CF]] = [[CF→ CF]], but that is not
quite true. In particular,

(∀x.cf(app(y, x)))⇒ cf(y)

is not valid in the denotational model. For instance consider the
value K(Bad) for y. The left-hand side is going to always be true,
because the application is ill-typed and will yield ⊥, but y is not
itself crash-free.

8. Related work

There are very few practical tools for the automatic verification of
lazy and higher-order functional programs. Furthermore, our ap-
proach of directly translating the denotational semantics of pro-
grams does not appear to be well-explored in the literature.

Catch (Mitchell and Runciman 2008) is one of the very few tools
that address the verification of lazy Haskell, and have been evalu-
ated on real programs. Using static analysis, Catch can detect pat-
tern match failures, and hence prove that a program cannot crash.
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Some annotations that describes the set of constructors that are ex-
pected as arguments to each function may be necessary for the anal-
ysis to succeed. Our aim in this paper is to achieve similar goals,
but moreover to be in a position to assert functional correctness.

Liquid Types (Rondon et al. 2008) is an influential approach to call-
by-value functional program verification. Contracts are written as
refinements in a fixed language of predicates (which may include
recursive predicates) and the extracted conditions are discharged
using an SMT-solver. Because the language of predicates is fixed,
predicate abstraction can very effectively infer precise refinements,
even for recursive functions, and hence the annotation burden is
very low. In our case, since the language of predicates is, by design,
the very same programming language with the same semantics, in-
ference of function specifications is harder. The other important
difference is that liquid types requires all uses of a function to sat-
isfy its precondition, whereas in the semantics that we have chosen,
bad uses are allowed but the programmer gets no guarantees back.

Rather different to Liquid Types, Dminor (Bierman et al. 2010) al-
lows refinements to be written in the very same programming lan-
guage that programs are written. Contrary to our case however, in
Dminor the expressions that refine types must be pure — that is,
terminating — and have a unique denotation (e.g. not depending
on the store). Driven from a typing relation that includes logic en-
tailment judgements, verification conditions are extracted and dis-
charged automatically using Z3. Similar in spirit, other dependent
type systems such as Fstar (Swamy et al. 2011) also extract verifica-
tion conditions that are discharged using automated tools or interac-
tive theorem provers. Hybrid type systems such as Sage (Knowles
and Flanagan 2010) attempt to prove as many of the goals statically,
and defer the rest as runtime goals.

Boogie (Barnett et al. 2005) is a verification back end that supports
procedures as well as pure functions. By using Z3, Boogie verifies
programs written in the BoogiePL intermediate language, which
could potentially be used as the back end of our translation as well.
Recent work on performing induction on top of an induction-free
SMT solver proposes a “tactic” for encoding induction schemes as
first-order queries, which is reminiscent of the way that we perform
induction (Leino 2012).

The recent work on the Leon system (Suter et al. 2011) presents
an approach to the verification of first-order and call-by-value
recursive functional programs, which appears to be very efficient
in practice. It works by extending SMT with recursive programs
and “control literals” that guide the pattern matching search for
a counter-model, and is guaranteed to find a model if one exists
(whereas that is not yet the case in our system, as we discussed
earlier). It treats does not include a CF-analogous predicate, and no
special treatment of the ⊥ value or pattern match failures seems
to be in the scope of that project. However, it gives a very fast
verification framework for partial functional correctness.

The tool Zeno (Sonnex et al. 2011) verifies equational properties
of functional programs using Haskell as a front end. Its proof
search is based on induction, equality reasoning and operational
semantics. While guaranteeing termination, it can also start new
induction proofs driven by syntactic heuristics. However, it only
considers the finite and total subset of values, and we want to reason
about Haskell programs as they appear in the wild: possibly non-
terminating, with lazy infinite values, and run time crashes.

First-order logic has been used as a target for higher-order lan-
guages in other verification contexts as well. Users of the interac-
tive theorem prover Isabelle have for many years had the opportu-
nity to use automated first-order provers to discharge proof obliga-
tions. This work has recently culminated in the tool Sledgehammer
(Blanchette et al. 2011), which not only uses first-order provers,

but also SMT solvers as back ends. There has also been a version of
the dependently typed programming language Agda in which proof
obligations could be sent to an automatic first-order prover (Abel
et al. 2005). Both of these use a translation from a typed higher-
order language of well-founded definitions to first-order logic. The
work in this area that perhaps comes closest to ours, in that they
deal with a lazy, general recursive language with partial functions,
is by Bove et al. (2012), who use Agda as a logical framework to
reason about general recursive functional programs, and combine
interaction in Agda with automated proofs in first-order logic.

The previous work on static contract checking for Haskell (Xu et al.
2009) was based on wrapping. A term was effectively wrapped
with an appropriately nested contract test, and symbolic execution
or aggressive inlining was used to show that BAD values could
never be reached in this wrapped term. In follow-up work, Xu (Xu
2012) proposes a variation, this time for a call-by-value language,
which performs symbolic execution along with a “logicization” of
the program that can be used (via a theorem prover) to eliminate
paths that can provably not generate BAD value,. The “logicization”
of a program has a similar spirit to our translation to logic,a but
it is not clear which model is intended to prove the soundness
of this translation and justify its axiomatisation. Furthermore, the
logicization of programs is dependent on whether the resulting
formula is going to be used as a goal or assumption in a proof. We
believe that the direct approach proposed in this paper, which is
to directly encode the semantics of programs and contracts, might
be simpler. That said, symbolic execution as proposed in (Xu 2012)
has the significant advantage of querying a theorem prover on many
small goals as symbolic execution proceeds, instead of a single
verification goal in the end. We have some ideas about how to
break large contract negation queries to smaller ones, guided by
the symbolic evaluation of a function, and we plan to integrate this
methodology in our tool.

9. Conclusions and future work
Static verification for functional programming languages seems
an under-studied (compared to the imperative world) and very
promising area of research. In practical terms, our most immediate
goal is to ensure that we can find finite counter-examples quickly,
and present them comprehensibly to the user, rather allowing the
theorem prover to diverge. As mentioned in Section 7 we have well-
developed ideas for how to do this. It would also be interesting to
see if triggers in SMT 2.0 could also be used to support that goal.

We would like to add support for primitive data types, such as
Integer, using theorem provers such as T-SPASS to deal with the
tff (typed first-order arithmetic) part of TPTP. Another approach
might be to generate theories in the SMT 2.0 format, understood
by Z3, which has support for integer arithmetic and more. Another
important direction is finding ways to split our big verification goals
into smaller ones that can be proven significantly faster. Finally, we
would like to investigate whether we can automatically strengthen
contracts to be used as induction hypotheses in inductive proofs,
deriving information from failed attempts.

Acknowledgements Thanks to Richard Eisenberg for helpful
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