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Abstract

A constraint programming system combines two essential components: a constraint solver and a
search engine. The constraint solver reasons about satisfiability of conjunctions of constraints, and
the search engine controls the search for solutions by iteratively exploring a disjunctive search
tree defined by the constraint program. In this paper we give a monadic definition of constraint
programming where the solver is defined as a monad threaded through the monadic search tree. We
are then able to define search and search strategies as first class objects that can themselves be built
or extended by composable search transformers. Search transformers give a powerful and unifying
approach to viewing search in constraint programming, and the resulting constraint programming
system is first class and extremely flexible.

1 Introduction

A constraint programming (CP) (Marriott & Stuckey, 1998) system combines two essential
components: a constraint solver and a search engine. The constraint solver reasons about
conjunctions of constraints and its principal job it to determine unsatisfiability of a con-
junction. The search engine controls the search for solutions by iteratively exploring an
OR search tree defined by the program. Whenever the conjunction of constraints in one
path defined by the search tree is unsatisfiable, search changes to explore another part of
the search tree.

Constraint programming is a declarative programming formalism, where the constraints
are defined declaratively, but the underlying constraint solvers are highly stateful, and
indeed to specify complex search CP programs rely on reflecting state information from
the solver. So in that sense constraint programming is not so declarative after all.

In this paper we give a monadic definition of constraint programming where the solver
is defined as a monad threaded through a monadic search tree. We are then able to define
search and search strategies as first class objects that can themselves be built or extended
by composable search transformers. Search transformers give a powerful and unifying
approach to viewing search in constraint programming. The resulting CP system is first
class and extremely flexible.
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Fig. 1. A solution to the 8 queens problem

Example 1 We use the well known n queens problem as a running example throughout
this paper. The n queens problem requires the placing of n queens on an n×n chessboard,
so that no queen can capture another. Since queens can move vertically, horizontally, and
diagonally this means that

1. No two queens share the same column.
2. No two queens share the same row.
3. No two queens share the same diagonal.

A standard model of the n queens problem is as follows. Since we have n queens to
place in n different columns, we are sure that there is exactly one queen in each column.
We can thus denote the row position of the queen in column i by the integer variable qi.
These variables are constrained to take values in the range 1..n. This model automatically
ensures the column constraint is satisfied. We can then express the row constraint as

∀1≤ i < j ≤ n : qi 6= q j

and the diagonal constraint as

∀1≤ i < j ≤ n : qi 6= q j +( j− i) ∧ q j 6= qi +( j− i)

since queens i and j, with i < j, are on the same descending diagonal iff qi = q j +( j− i),
and similarly they are on the same ascending diagonal iff q j = qi +( j− i).

A solution to the 8 queens problem is shown in Figure 1. The solution illustrated has
q1 = 8, q2 = 4, q3 = 1, q4 = 3, q5 = 6, q6 = 2, q7 = 7, q8 = 5.

�

The first role of a constraint programming language is to be able to succinctly model
problems. We will define constraint programming in Haskell which allows the model of
the n queens problem shown in Figure 2. Note how similar it is to the mathematical model.

The next important part of a constraint programming solution is to be able to program the
search. We will construct a language for search that allows us to express complex search
strategies succinctly, and in a composable manner.

Search is separated into components: specifying the search tree, the basic order for
visiting the search tree, and then the search transformers which transform the search tree
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nqueens n = exist n $ \queens -> model queens n

model queens n = queens ‘allin‘ (1,n) /\

alldifferent queens /\

diagonals queens

allin queens range = conj [q ‘in_domain‘ range | q <- queens ]

alldifferent queens = conj [ qi @\= qj | qi:qjs <- tails queens,

qj <- qjs ]

diagonals queens = conj [ qi @\== (qj @+ d) /\ qj @\== (qi @+ d)

| qi:qjs <- tails queens, (qj,d) <- zip qjs [1..]]

conj = foldl (/\) true

Fig. 2. Haskell code for modelling n queens.

or the way it is visited. Examples of search orders are depth-first search (dfs), breadth-
first search (bfs) or best-first search. Examples of search transformers are depth bounded
search (db n never visits nodes at depth below n), node bounded search (nb n visits at
most n nodes), limited discrepancy search (ld n visits only nodes requiring at most n right
branches), or branch-and-bound optimization (bb f applies a tree transformation f for
eliminating non-optimal solutions). These search transformers are composable, so we can
apply multiple transformations in order.

Example 2 For example, using our search framework we can succinctly define complex
search strategies. The following calls show how to solve 8 queens with:

• depth first search, first applying a node bound of 100, then a depth bound of 25, then
using newBound branch and bound

• breadth first search, first applying a depth bound of 25, then a node bound of 100,
then using newBound branch and bound

• breadth first search, first limited discrepancy of 10, then a node bound of 100, then
using newBound branch and bound

can be expressed in our framework as:

> solve dfs (nb 100 :- db 25 :- bb newBound) $ nqueens 8

> solve bfs (db 25 :- nb 100 :- bb newBound) $ nqueens 8

> solve bfs (ld 10 :- nb 100 :- bb newBound) $ nqueens 8

Clearly exploring different search strategies is very straightforward. �

We hope that his paper will illustrate to the functional programming community how the
abstractions and mechanisms from functional programming such as monads, higher-order
functions, continuations and lazy evaluation are valuable notions for defining and building
constraint programming systems.

Functional abstractions have been used throughout the development of constraint pro-
gramming. Indeed in the evolution of constraint programming we have seen a series of
increasingly complex abstractions as the field became better understood. The original
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CLP(X) framework (Jaffar & Lassez, 1987) already abstracted the constraint language
and solver from the rest of the language. CLP languages such as ECLIPSE (ECLiPSe,
2008) provided search abstractions that allowed features of search such as variable and
value selection to be defined by users code. The Oz (Smolka, 1995) language separated
the definition of the search tree, from the method used to explore it, providing functional
abstractions for defining the search. OPL (Van Hentenryck et al., 2000) provided for the
first time search strategy transformers in the form of search limiters, and mechanisms to
define these transformers. Most recently Comet (Van Hentenryck & Michel, 2006) defined
search through continuations and provided functional abstractions to thread complex state
through a search in order to build complex search strategies.

Our work can be viewed as encapsulating the functional abstractions previously used
in constraint programming in a functional programming language, and using the power of
functional programming to take a further step in the increasingly abstract view of search
and constraint programming. The contributions of this paper are:

• We show how monads provide a powerful tool for implementing constraint pro-
gramming abstractions, which allows us to build a highly generic framework for
constraint programming.
• We define search strategy transformers which are composable transformers of search,

and show how we can understand existing search strategies as constructed from more
fundamental transformers.
• We open up a huge space of exploration for search transformers.
• The code is available at http://www.cs.kuleuven.be/~toms/Haskell/.

The remainder of the paper is organized as follows. In Section 2 we give a generic
definition of a constraint solver and show how it can be instantiated by a simple Finite
Domain (FD) solver. In Section 3 we define a structure for representing conjunctive con-
straint models. In Section 4 we extend the structure to model disjunctive constraint models,
and now have sufficient expressiveness to run a model for the first time. In Section 5 we
extend the modelling structure to allow dynamic definitions of the model, and are now
able to define a basic CP system, with user defined search. In Section 6 we introduce basic
search strategies which define the order in which nodes in the dynamic search tree are
visited. In Section 7 we introduce search strategy transformers, which allow us to modify
a given search as it proceeds. In Section 8 we extend search strategy transformers to be
composable, so that we can apply multiple transformations to an underlying search. In
Section 9 we discuss related work, and in Section 10 we conclude and discuss future work.

2 Constraint Solvers

The core component of a constraint programming system is the constraint solver. This is
the engine that determines if conjunctions of constraints may be satisfiable, and can reflect
information that it knows about a conjunction of constraints.

We define a fully generic constraint solver interface in what follows, and then we show
how this interface can be instantiated for our finite domain constraint solver for n queens.
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2.1 Generic Solver Interface

Our generic constraint solver interface is captured by the Solver type class:

class Monad solver => Solver solver where

type Constraint solver :: *

type Term solver :: *

newvar :: solver (Term solver)

add :: Constraint solver -> solver Bool

run :: solver a -> a

This type class requires that solver be a monad, which allows it to encapsulate its state. A
solver has two associated types (Schrijvers et al., 2008), the type of supported constraints
(Constraint solver) and the type of terms that constraints range over (Term solver).

The terms of interest are of course the constraint variables; a fresh variable is generated
by the newvar function. Constraints over terms are added to the solver’s current set of
constraints (its state) by the add function. The function also returns whether this addition
leads to a possibly consistent set of constraints—it returns False if the solver knows that
the conjunction of constraints is inconsistent. As this is the only operation that may fail, it
is undesirable to require that solver is an error monad. Resorting to a monad transformer
to indicate the potential failure of add, e.g., by giving it signature Constraint solver

-> MaybeT solver (), strikes us as overkill too.
Finally, the run function allows us to run an action in the solver monad and get back a

result.

2.2 A Simple Finite Domain Solver

To illustrate the above generic solver interface, we now present a simple instantiation,
without going into the implementation details.

Our solver type is called FD and its instance of the Solver class is:

instance Solver FD where

type Constraint FD = FDConstraint

type Term FD = FDTerm

newvar = newvarFD

add = addFD

run = runFD

The FDTerm type is abstract, and of course the details of the member functions are not
exposed. All the programmer needs to know are the details of the FDConstraint type.
Our small FD solver only supports three constraints:

data FDConstraint = FDIn FDTerm (Int,Int)

| FDEQ FDTerm Int

| FDNE FDTerm FDTerm Int

The first, FDIn, restricts a variable to a range, the second, FDEQ, forces a variable to take
a value, and the third, FDNE, expresses that a variable is not equal to the sum of another
variable and an integer. Formally, the semantics can be expressed as:
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[[FDIn t (l,u)]] =[[t]] ∈ {l, . . . ,u}
[[FDEQ t d]] =[[t]] = d

[[FDNE s t i]] =[[s]] 6= [[t]]+ i

We use Overton’s FD solver (Overton, 2008) for the concrete implementation.
The above is sufficient to express our n-queens model. However, it is a rather primitive

way of writing a model, directly against the constraint solver interface. In the next section,
we define a more suitable generic model abstraction that is further away from the constraint
solver interface.

Note that global constraints, such as alldifferent (Régin, 1994), an important feature
of constraint programming, may be supported directly by the solver by making them part
of the Constraint solver type. They can also be defined succinctly by decomposition
to more primitive constraints (as we do for alldifferent in Figure 2) using the primitive
solver interface.

3 Model Tree

We wish to represent the constraint model as a separate data type rather than a composition
of functions from the constraint solver interface. This has many obvious advantages for
manipulating and inspecting the model, which will come in handy later-on.

Although right now our model is only a heterogeneous sequence, we call the model data
type Tree.

data Tree solver a

= Return a

| NewVar (Term solver -> Tree solver a)

| Add (Constraint solver) (Tree solver a)

This data type has the two obvious constructors NewVar and Add that mimic the corre-
sponding functions from the solver interface. Finally, the Return constructor is the base
case and marks the end of a model.

The type Tree has two type parameters: solver is the obvious constraint solver type,
while a is a value returned in the Return node. It turns the Tree type into its own free
monad:

instance Monad (Tree solver) where

return = Return

(>>=) = bind

(Return x) ‘bind‘ k = k x

(NewVar f) ‘bind‘ k = NewVar (\v -> f v ‘bind‘ k)

(Add c t) ‘bind‘ k = Add c (t ‘bind‘ k)

Observe that bind effectively extends a model by replacing the base case Return by
another model.

In terms of this new model data type, we can express the auxiliary functions of the n-
queens problem as well. They are shown in Figure 3. exist n k creates n new variables
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exist n k = f n []

where f 0 acc = k acc

f n acc = NewVar $ \v -> f (n-1) (v:acc)

v ‘in_domain‘ r = Add (FDIn v r)

v1 @= n = Add (FDEQ v1 n)

data FDPlus = FDTerm :+ Int

(@+) = (:+)

v1 @\= v2 = Add (FDNE v1 v2 0)

v1 @\== (v2 :+ n) = Add (FDNE v1 v2 n)

true = Return ()

(/\) = (>>)

Fig. 3. Solver interface as Tree generator for n queens.

passed as an argument to k, v in domain r constrains variable v to be in range r, @=,
@\= and @\== are syntactic sugar for the underlying constraint of equality, disequality and
disequality with offset, true represents the always true constraint, and conjunction /\ is
simply the monadic >> bind operation.

Because the model itself now does not run the problem through the solver, we must
provide a separate “evaluation” function:

solve :: Solver solver => Tree solver a -> a

solve = run . eval

eval :: Solver solver => Tree solver a -> solver a

eval (Return x) = return x

eval (Add c t) = add c >> eval t

eval (NewVar f) = newvar >>= \v -> eval (f v)

4 Disjunctive Model Tree

Finite domain solvers, as well as most other constraint solvers, are incomplete; that is
when given a conjunction of constraints they can give three possible answers: satisfiable,
unsatisfiable or unknown (when the solver cannot determine if the conjunction is satisfiable
or not). In order to complete a constraint solver and find one or more solutions, additional
constraints must be added until the solver establishes a solution—or inconsistency. Of
course, it is not a priori known what constraints need to be added in order to find a solution;
one must try out different alternatives.

For this purpose we extend the model tree data type with two new constructors:

data Tree solver a

= ...

| Try (Tree solver a) (Tree solver a)

| Fail
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The Try constructor denotes two disjoint alternatives, for exploring the space of candidate
solutions. The Fail constructor denotes a dead end. The bind function is extended in the
obvious manner to cover these new constructors:

Fail ‘bind‘ k = Fail

(Try l r) ‘bind‘ k = Try (l ‘bind‘ k) (r ‘bind‘ k)

Note that the binary Try constructor could be generalized to an arbitrary number of al-
ternatives, giving it the signature Try :: [Tree solver a] -> Tree solver a. For
the simplicity of the presentation, we avoid doing so. Moreover, no expressiveness is lost
as variadic disjunctions are easily decomposed into binary disjunctions.

4.1 Solving with Branches: Solver State Snapshots

We need to extend our solver to handle Try nodes. In order to do so we make a minimal
extension to the constraint solver interface:

class Monad solver => Solver solver where

...

type Label solver :: *

mark :: solver (Label solver)

goto :: Label solver -> solver ()

The solver must now support a “label” type, that represents a solver state in one way
or another. The mark function returns a label for the current solver state, and the goto

function brings the solver back into an earlier state.
It is up to the solver to choose a representation for its labels and what strategy to use for

returning to a previous state from the current one. Two common techniques are copying
and trailing. In the former approach, a label is a copy of the whole solver state and the two
functions are obvious. A copying solver could also use adaptive recomputation (Schulte,
1999).

In the latter approach, a label is a trail of incremental changes. Navigating from the
current state to a previous state happens as follows:

• We determine all common incremental changes between the trails of the two states,
starting at the root.
• All other changes of the current state are undone.
• All other changes of the previous state are redone.

The idea is that the incremental changes are cheaper to undo and redo than actual full
recomputation.

Now the solving strategy goes down one branch, but remembers to revisit the other
branch: the branch is pushed onto a worklist together with a label for the current solver
state. The code for solve is shown in Figure 4. Here the worklist is a stack and the search
is implicitly depth-first left to right.

Example 3 With these new constructors, we can now extend the n-queens model to enu-
merate the possible values of each variable in different disjunctions. The resulting code is
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solve = run . eval

eval :: Solver solver => Tree solver a -> solver [a]

eval model = eval’ model []

eval’ (Return x) wl = do xs <- continue wl

return (x:xs)

eval’ (Add c t) wl = do b <- add c

if b then eval’ t wl

else continue wl

eval’ (NewVar f) wl = do v <- newvar

eval’ (f v) wl

eval’ (Try l r) wl = do now <- mark

eval’ l ((now,r):wl)

eval’ Fail wl = continue wl

continue [] = return []

continue ((past,t):wl) = do goto past

eval’ t wl

Fig. 4. Code for solve showing how a model tree is evaluated by threading a solver along its
branches.

nqueens n = exist n $ \queens -> model queens n /\

enumerate queens [1..n]

enumerate queens values = conj [ enum queen values | queen <- queens ]

enum var values = disj [ var @= value | value <- values ]

disj = foldl (\/) false

(\/) = Try

false = Fail

Fig. 5. Model for n queens with explicit enumeration of variables values.

shown in Figure 5. The enumerate function creates a conjunction of enumerations using
enum var values which creates a disjunction setting the variable to each of the given
values. Note how disjunction \/ is simply Try and the false constraint is Fail.

The enumerate function constructs a tree of disjunctive constraints, for example for 2
queens it constructs the tree shown in Figure 6 which is represented by the term

Try (Add (q1 @= 1) -- 1

(Try (Add (q2 @= 1) -- 2

Return ()) -- 4

(Try (Add (q2 @= 2)

Return ()) -- 5

Fail))

(Try (Add (q1 @= 2)
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54

2

1q1=1

q2=1 q2=2

76

3

q1=2

q2=1 q2=2

Fig. 6. Enumeration tree for 2-queens.

(Try (Add (q2 @= 1) -- 3

Return ()) -- 6

(Try (Add (q2 @= 2)

Return ()) -- 7

Fail)))

Fail))

We can now run the code:

> solve (nqueens 1)

[()]

> solve (nqueens 2)

[]

> solve (nqueens 3)

[]

> solve (nqueens 4)

[(),()]

Each () indicates a solution. �

As the example above shows, running the solver is not very informative. The result tells
us there are two solutions, but does not tell us what they actually are. Yet, what we are
really interested in are of course the actual solutions.

One way to return the actual solutions is to modify the enumerate function and make
it generate a Return leaf that lists the assignments made. However, in the next section we
will see a much more concise way to achieve the same effect.

5 Dynamic Model Tree

The full n-queens model tree has an overwhelming nn leaves as well as a proportional
number of internal Try nodes. Even though lazy evaluation will avoid constructing all of
this tree, many of the choices immediately lead to failure. We can do much more efficient
and interesting search if we can make use of dynamic information in the solver.

In this section, we show several techniques for dynamically building a smaller tree, based
on the solver state. Importantly we only build the tree for the parts of the search space we
actually explore. For this purpose, we add one more constructor to the tree data type:
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nqueens n = exist n $ \queens -> model queens n /\

enumerate queens

enumerate = Dynamic . label

label [] = return ()

label (v:vs) = do d <- domain v

return $ enum v d /\ enumerate vs

Fig. 7. Code for enumerating the search for n queens.

data Tree solver a

= ...

| Dynamic (solver (Tree solver a))

The evaluation function deals with this new constructor as follows:

eval’ (Dynamic m) wl = do t <- m

eval’ t wl

Note that the Dynamic m adds additional expressiveness because the generated tree is not
fixed statically, but depends on the dynamic solver state.

5.1 Branching on the Dynamic Range

Earlier, we branched the n-queens model on the full static range (1,n) of each variable.
However, many of the values in this range will directly result in inconsistency. Indeed,
finite domain constraint solvers keep track of each variable’s set of possible values. This
domain dynamically shrinks as new constraints are added. By the time that possible values
are enumerated a queen’s domain has shrunk to a set d ⊆ {1..n}. Any attempt to assign a
value v where v 6∈ d is in vain. By dynamically inspecting the variable’s current domain,
we can avoid generating these redundant attempts.

Example 4 We assume that the FD constraint solver exposes a function domain :: FDTerm

-> FD [Int] to inspect a variable’s current domain. Then we can dynamically generate
the enumeration subtree, based on each variable’s dynamic domain. The code is shown in
Figure 7.

�

5.2 Variable and Value Selection

So far we have selected the queen variables for value assignment in their natural order.
However, there is no particular semantic reason to do so: any order yields the same solu-
tions, though perhaps in a different order. However, the size of the search tree may be quite
different. It turns out that for n-queens we get a much smaller search tree, if we select the
variable with the smallest domain first; this is called the first-fail principle. The idea behind
first-fail is that straining the bottleneck, the variable with the smallest degree of freedom,
exposes inconsistency more quickly.
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enumerate vs = Dynamic . (label firstfail middleout vs)

label varsel valsel vs = do vs’ <- varsel vs

label’ vs’

where label’ [] = return ()

label’ (v:vs) = do d <- valsel $ domain v

return $ enum v d /\

Dynamic . (label varsel valsel vs)

firstfail vs = do ds <- mapM domain vs

return [ v | (d,v) <- zip ds vs

, then sortWith by (length d) ]

middleout l = let n = (length l) ‘div‘ 2 in

interleave (drop n l) (reverse $ take n l)

interleave [] ys = ys

interleave (x:xs) ys = x:interleave ys xs

Fig. 8. Code for generic labelling predicate and examples of first fail variable selection and
middleout value ordering.

Similarly we can order the way in which we try values for each queen. This does not
change the size of the search tree, but may push the solutions to the left of the search tree
so in left-to-right search they are found earlier. For the n-queens problem it is known that
trying the values of a variable from the middle of the board outwards is beneficial.

Figure 8 gives generic code for a labelling function that takes two arguments: varsel
reorders a list of variables so that the selected variable is first, while valsel reorders
a list of values so that they are tried in the left to right order. The figure also shows
implementations of first-fail variable selection and middleout value ordering. First-fail
variable selection chooses the variable with least domain size. Middleout ordering tries
values closest to the middle of the domain first, implemented by splitting the list in half
and interleaving the reverse of the first half with the second half.

5.3 Running the Solver Revisited

If the FD solver exposes a function value :: FDTerm -> FD Int that returns the value
assignment of a variable, the Dynamic constructor allows us to return the solution in a
highly convenient way:

Example 5 Let’s extend our n-queens code, so that the solutions are returned. We simply
need to capture the assignments of the variables at a solution, and return them. The code is
shown in Figure 9. Now, running the solver, we get to see the actual solutions:

> solve (nqueens 1)

[[1]]

> solve (nqueens 2)

[]

> solve (nqueens 3)
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nqueens n = exist n $ \queens -> model queens n /\

enumerate queens /\

assignments queens

assignments = mapM assignment

assignment q = Dynamic $ value q >>= (return . Return)

Fig. 9. Code to output the solutions to an n queens problem.

1
2
3
4

1 2 3 4
1
2
3
4

1 2 3 4
Fig. 10. The two solutions to the 4-queens problem.

[]

> solve (nqueens 4)

[[2,4,1,3],[3,1,4,2]]

The two solutions to the four queens problem are shown in Figure 10. �

5.4 Alternate Labelling Strategies

Being able to flexibly define a dynamic model tree is a key capability for constraint pro-
gramming. To show the importance of the right labelling approach we compare some
different approaches.

Table 1 compares the number of nodes visited to find all solutions, or just the first
solution, for 4 different strategies:

• in order, the default approach defined in Figure 7,
• first fail (ff) using the code of Figure 8 with enumerate = Dynamic . (label

firstfail id),
• ff + middle out using the code of Figure 8, and
• ends out where variables are selected alternately from each end of the board (a bad

search order).

Clearly first fail significantly improves upon in order, while ff + middle out usually
improves again for finding the first solution (for all solutions it is identical to first fail).
The ends out search approach is very bad.
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Table 1. Table comparing the number of Try nodes visited to find All or the First solution,
using various labelling strategies. — indicates more than 100,000 nodes.

n in order first fail ff + middle out ends out
All First All First All First All First

1 9 8 9 8 9 8 9 8
2 13 13 13 13 13 13 13 13
3 23 23 23 23 23 23 23 23
4 84 52 84 52 84 44 84 52
5 282 62 280 62 280 62 288 64
6 329 117 325 113 325 103 369 139
7 1,531 107 1,479 107 1,479 109 1,683 129
8 4,378 254 4,286 252 4,286 138 5,166 228
9 17,496 190 16,756 186 16,756 166 21,318 290

10 54,141 285 52,371 221 52,371 205 73,515 423
11 — 261 — 293 — 259 — 839
12 — 514 — 494 — 276 — 566
13 — 370 — 544 — 354 — 1,848
14 — 1,995 — 501 — 375 — 2,487
15 — 1,555 — 421 — 473 — 4,465
16 — 9,738 — 480 — 518 — 33,418
17 — 6,430 — 584 — 544 — 17,070
18 — 37,797 — 665 — 683 — —
19 — 3,631 — 761 — 647 — —
20 — — — 748 — 830 — —
21 — — — 954 — 1,358 — —
22 — — — 845 — 861 — —
23 — — — 901 — 905 — —
24 — — — 1,008 — 996 — —
25 — — — 1,082 — 1,534 — —
26 — — — 1,137 — 1,195 — —
27 — — — 1,219 — 1,251 — —
28 — — — 1,536 — 1,362 — —
29 — — — 1,664 — 1,532 — —
30 — — — 1,893 — 1,525 — —
31 — — — 1,679 — 1,817 — —
32 — — — 1,800 — 3,390 — —
33 — — — 5,670 — 2,060 — —
34 — — — 2,081 — 2,529 — —
35 — — — 2,309 — 2,057 — —
36 — — — 2,194 — 2,610 — —
37 — — — 2,372 — 2,272 — —
38 — — — 2,443 — 2,985 — —
39 — — — 2,745 — 2,655 — —
40 — — — 3,492 — 2,608 — —

6 Search Strategies

The way our evaluation function is implemented it visits the nodes in the tree in a depth-first
order, i.e. realizing depth-first search (DFS). DFS is not always the best search strategy, if
we want to get the first solution as quickly as possible. For instance, if the solution resides
far to the right in the tree, DFS will find it late in the search. Then breadth-first search
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(BFS) may be a better choice. Another approach is best-first search (BeFS) which orders
the nodes to visit based on a heuristically determined priority.

It is common folklore that all of these search strategies are instances of a single primitive
search strategy that is parametric in the queuing data type. We capture the generic queuing
data type interface in the Queue type class:

class Queue q where

type Elem q :: *

emptyQ :: q -> q

isEmptyQ :: q -> Bool

popQ :: q -> (Elem q,q)

pushQ :: Elem q -> q -> q

where Elem q is the type of the elements in the queue, and the obvious functions are
supported.

The evaluation function is adapted to use this Queue interface:

eval’ :: (Solver solver, Queue q, Elem q ~ (Label solver,Tree solver a))

=> Tree solver a -> q -> solver [a]

eval’ (Return x) wl = ...

...

eval’ (Try l r) wl = do now <- mark

continue $ pushQ (now,l) $ pushQ (now,r) wl

...

continue wl | isEmptyQ wl = return []

| otherwise = let ((past,t), wl’) = popQ wl

in do goto past

eval’ t wl’

By choosing a LIFO queue (a stack), a FIFO queue or a priority queue we obtain
respectively DFS, BFS and BeFS:

instance Queue [a] where

type Elem [a] = a

emptyQ _ = []

isEmptyQ = Prelude.null

popQ (x:xs) = (x,xs)

pushQ = (:)

instance Queue (Data.Sequence.Seq a) where

type Elem (Data.Sequence.Seq a) = a

emptyQ _ = Data.Sequence.empty

isEmptyQ = Data.Sequence.null

popQ (Data.Sequence.viewl -> x Data.Sequence.:< xs) = (x,xs)

pushQ = flip (Data.Sequence.|>)

solveDFS = run . eval []
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solveBFS = run . eval Data.Sequence.empty

eval = flip eval’

7 Search Strategy Transformers

Many more search strategies can be expressed naturally in terms of transformations of
the above primitive queue-based search strategy. For example, node-bounded search only
explores a certain number of nodes, depth-bounded search only explores nodes up to a
certain depth, limited-discrepancy limits the number of right branches, . . .

Hence, we introduce a type class of SearchTransformers.

class Transformer t where

type EvalState t :: *

type TreeState t :: *

...

A search transformer t has its own state to base decisions for steering the search on.
This state is composed of two separate parts: the EvalState t is threaded through the
evaluation from one visited tree node to the next, while the TreeState t is threaded
top-down through the tree from a parent tree node to its children. The usefulness of these
two state components will become clear when we consider specific search transformer
instances.

The search transformer acts as an extra layer on top of the primitive search. Whenever
a new node is selected for processing, the search transformer gets to see it first, and, when
it’s done, the transformer delegates the node to the primitive search.

This means that we have to modify the code of the evaluation function to carry around
the transformer and its state, and to call the transformer at the appropriate times.

type SearchSig solver q t a =

(Solver solver, Queue q, Transformer t,

Elem q ~ (Label solver,Tree solver a,TreeState t))

=> Tree solver a -> q -> t -> EvalState t -> TreeState t -> solver [a]

eval’ :: SearchSig solver q t a

The two fundamental changes to the code are in the Try case of eval’ and in continue.

eval’ (Try l r) wl t es ts =

do now <- mark

let wl’ = pushQ (now,l,leftT t ts) $ pushQ (now,r,rightT t ts) wl

continue wl’ t es

continue wl t es

| isEmptyQ wl = return []

| otherwise = let ((past,tree,ts),wl’) = popQ wl

in do goto past

nextT tree wl’ t es ts
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The new functions leftT, rightT and nextT are methods of the Transformer type class:

leftT, rightT :: t -> TreeState t -> TreeState t

leftT _ = id

rightT = leftT

nextT :: SearchSig solver q t a

nextT = eval’

...

With leftT and rightT, the transformer specifies how the tree state is inherited from a
Try node. The default implementation for the right child does the same as the left child,
and the latter simply copies the parent’s node state.

The nextT method is a proxy for eval’, and by default it simply calls eval’. Note that
they have the same signature.

In order to start a new search, we provide the main evaluation function:

eval tree q t = let (es,ts) = initT t

in eval’ tree q t es ts

which uses the last method of the Transformer class, for initializing the global and node
states.

initT :: t -> (EvalState t,TreeState t)

7.1 Transformer Implementations

Now that we have the infrastructure, let us look at a few concrete search transformers.

Depth-Bounded Search Transformer In depth-bounded search, we do not explore any
nodes beyond a certain depth in the tree. For this purpose, the tree state represents the depth
of the node and the eval state simply records if any depth pruning occurred (this will be
useful later).

newtype DepthBoundedST = DBST Int

instance Transformer DepthBoundedST where

type EvalState DepthBoundedST = Bool

type TreeState DepthBoundedST = Int

initT (DBST n) = (False,n)

leftT _ ts = ts - 1

nextT tree q t es ts

| ts == 0 = continue q t True

| otherwise = eval’ tree q t es ts

The initial depth limit is embedded in the DepthBoundedST value. We see in leftT that
each time a left (and through defaulting also right) branch is taken, the limit decreases.
When the limit hits 0, then nextT does not continue evaluation at the current node, and
changes the eval state to True to indicate pruning. This effectively cuts off the model tree
at the given depth, fully orthogonal to the queuing strategy.
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Node-Bounded Search Transformer In node-bounded search, at most n nodes in the tree
are explored. Hence, its eval state Int denotes the number of remaining nodes and the tree
state is unused.1

newtype NodeBoundedST = NBST Int

instance Transformer NodeBoundedST where

type EvalState NodeBoundedST = Int

type TreeState NodeBoundedST = ()

initT (NBST n) = (n,())

nextT tree q t es ts

| es == 0 = return []

| otherwise = eval’ tree q t (es - 1) ts

The implementation of the node-bounded search transformer is almost identical to that
of the depth-bounded search transformer. However, the subtle interchange of the roles of
the two states, has quite a different impact on where the tree is cut off. Unlike the previous
transformer, the impact of the current transformer is sensitive to the underlying queuing
strategy.

Limited Discrepancy Search Transformer In limited discrepancy search, the left-most
path in the tree is visited, and any other path that deviates at most n alternatives from the
left-most path.

newtype LimitedDiscrepancyST = LDST Int

instance Transformer LimitedDiscrepancyST where

type EvalState LimitedDiscrepancyST = Bool

type TreeState LimitedDiscrepancyST = Int

initSearch (LDST n) = (False,n)

leftT _ ts = ts

rightT _ ts = ts - 1

nextT tree q t es ts

| ts == 0 = continue q t True

| otherwise = eval’ tree q t es ts

The effect of the above three search transformers is sketched in Figure 11.

7.2 Solver-Dependent Transformers

The Transformer type class forces the transformer to be fully independent of the con-
straint solver used. However, in some cases we want the transformer to be aware of it.
For instance, assume that the FD solver keeps track of the number of times constraints are
woken up and reconsidered for propagation, which can be queried with wakeUps :: FD

1 We use Haskell’s unit type () to denote empty state.
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Fig. 11. The effect of the various search transformers on the search are shown: black nodes are
visited and white nodes are not. From left to right: depth bound 4, node bound 10 and limited
discrepancy 1.

Int. Now we want a transformer that limits the overall number of wake-ups; it obviously
has to be aware that the FD solver is being used to call the wakeUps function.

We can solve this problem by specifying what solver a transformer depends on:

class Solver (ForSolver t) => Transformer t where

type ForSolver t :: * -> *

The above transformers of course keep on working for any solver, by adding the solver
as a phantom type parameter e.g.:

data DepthBoundedST solver = DBST Int

instance (Solver solver) => Transformer (DepthBoundedST solver) where

type ForSolver (DepthBoundedST solver) = solver

However, we can now also express the wake-up bounded transformer, which only works
for the FD solver:

newtype WakeUpBoundedST = WBST Int

instance Transformer WakeUpBoundedST where

type EvalState WakeUpBoundedST = Int

type TreeState WakeUpBoundedST = ()

type ForSolver WakeUpBoundedST = FD

initT (WBST n) = (n,())

nextT tree q t es ts =

do w <- wakeUps

if es - w < 0 then return []

else eval’ tree q t (es - w) ts

We’ll see more fundamental uses of solver-dependency later.

7.3 Other Transformers

In the above, the transformer interacts with the evaluator when pushing and popping the
queue. As an obvious extension of the same principle, the transformer can be made to inter-
act at other points. We obtain a general transformer-evaluation interaction systematically,
if we replace each call to eval’ and continue with a call to a distinct function in the
Transformer type class.
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Randomizing Search Transformer An application of this is the randomizing search
transformer, which is applied every time a Try node is evaluated. It randomly swaps the
order of the two children of the Try node. The randomizing search transformer only makes
use of the eval state which stores a randomly generated lazy list of Booleans indicating
whether to swap the order of the next Try node or not.

newtype RandomizeST = RDST Int

instance Transformer RandomizeST where

type EvalState RandomizeST = [Bool]

type TreeState RandomizeST = ()

initT (RDST seed) = (randoms $ mkStdGen seed,())

tryT (Try l r) q t (b:bs) ts =

if b then eval’ (Try r l) q t bs ts

else eval’ (Try l r) q t bs ts

There are many other search transformers we can define in this manner including: find-
ing only the first k solutions, adding a counter to the search (e.g. to return the number of
nodes explored), changing the labelling strategies at some depth, . . . .

8 Composable Search Transformers

We observe that many search transformers can conceptually be composed to obtain more
complex and advanced ones. For instance, a combination of limited discrepancy search and
depth-bounded search, with well-chosen limits, realizes a different pruning of the tree than
either independently.

Unfortunately, the approach of the previous section does not support this compositional
view at all: a conceptual composition of transformers means writing a new transformer
from scratch. What we want is a plug-and-play solution, where we can easily compose
complex search transformers from simple ones, maximizing reuse and programmer conve-
nience.

Composable Transformer Interface Hence, we define a new type class CTransformer
of composable transformers:

class CTransformer c where

type CEvalState c :: *

type CTreeState c :: *

initCT :: c -> (CEvalState c, CTreeState c)

leftCT, rightCT :: c -> CTreeState c -> CTreeState c

leftCT _ = id

rightCT = leftCT

nextCT :: CSearchSig solver c a

The interface of this type class is quite close to that of Transformer. The difference is
hiding in the type of nextCT:
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type CSearchSig solver c a =

(Solver solver, CTransformer c)

=> Tree solver a -> c -> CEvalState c -> CTreeState c

-> (EVAL solver c a) -> (CONTINUE solver c a) -> solver [a]

On the one hand, it is simpler than that of nextT, because the queue type is no longer
mentioned: at this point we do not expect the transformer to manipulate the queue.

On the other hand, it has two new parameters: EVAL solver c a and CONTINUE solver

c a. These parameters are necessary for compositionality. As the transformer now does
not (necessarily) run on top of a primitive search, but (possibly) on top of a stack of
other transformers, it is not allowed to call eval’ and continue directly. Doing that
would simply bypass all other transformers. Hence, EVAL solver c a is an abstraction
of eval’ that takes care of the other transformers in the stack before calling the actual
eval’; similarly for CONTINUE solver c a and continue:

type EVAL solver c a = (Tree solver a -> CEvalState c -> solver [a])

type CONTINUE solver c a = (CEvalState c -> solver [a])

One can think of these functions as continuations. The former proceeds with the search,
while the latter aborts the search at the current location in the tree and continues with the
next location in the queue.

Transformer Composition Composable transformers are composable because we can
compose them into new composable transformers. In particular we compose them by
stacking them.

We define the composition as a data type:

data Composition es ts where

(:-) :: (CTransformer a, CTransformer b)

=> a -> b

-> Composition (CEvalState a,CEvalState b) (CTreeState a,CTreeState b)

which contains two composable transformers. The components, as existential types, are
hidden; only their states are exposed.

The whole point of such a composition is that it is a composable transformer again:

instance CTransformer (Composition es ts) where

type CEvalState (Composition es ts) = es

type CTreeState (Composition es ts) = ts

initCT (c1 :- c2) = let (es1,ts1) = initCT c1

(es2,ts2) = initCT c2

in ((es1,es2),(ts1,ts2))

leftCT (c1 :- c2) (ts1,ts2) = (leftCT c1 ts1,leftCT c2 ts2)

rightCT (c1 :- c2) (ts1,ts2) = (rightCT c1 ts1,rightCT c2 ts2)

nextCT tree (c1 :- c2) (es1,es2) (ts1,ts2) eval’ continue =

nextCT tree c1 es1 ts1

(\tree’ es1’ -> nextCT tree’ c2 es2 ts2

(\tree’’ es2’ -> eval’ tree’’ (es1’,es2’))
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(\es2’ -> continue (es1’,es2’)))

(\es1’ -> continue (es1’,es2))

The above code is fairly straightforward. The function of interest is nextT, which in
continuation passing style first calls the first component, and then the next. Note that neither
component needs to know about the other.

Composable Transformers as Transformers Now, we can turn any composable trans-
former (usually a stack of composable transformers) into an ordinary transformer by means
of the TStack transformer:

data TStack es ts where

TStack :: CTransformer c

=> c -> TStack (CEvalState c) (CTreeState c)

instance Transformer (TStack es ts) where

type EvalState (TStack es ts) = es

type TreeState (TStack es ts) = ts

initT (TStack c) = initCT c

leftT (TStack c) = leftCT c

rightT (TStack c) = rightCT c

nextT tree q t@(TStack c) es ts =

nextCT tree c es ts

(\tree’ es’ -> eval’ tree’ q t es’ ts)

(\es’ -> continue q t es’)

Here we see that the base continuations are indeed eval’ and continue, as expected.

8.1 Composable Transformer Implementations

The implementation of composable transformers is much the same as that of ordinary trans-
formers. For instance, here is the adapted, now composable, depth-bounded transformer:

newtype CDepthBoundedST = CDBST Int

instance CTransformer CDepthBoundedST where

type CEvalState CDepthBoundedST = Bool

type CTreeState CDepthBoundedST = Int

initCT (CDBST n) = (False,n)

leftCT _ ts = ts - 1

nextCT tree c es ts eval’ continue

| ts == 0 = continue True

| otherwise = eval’ tree es

Combining this one with limit 40 with a composable node-bounded transformer with
limit 20, and running the search is as easy as writing:

solve model = run $ eval model [] (TStack (CNBST 20 :- CDBST 40))
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Table 2. Composable Transformer Library
Short-Hand Notation Description
it identity transformer
db n depth bound n
nd n node bound n
ld n limited discrepancy n
fs first solution only
ra n randomizing with seed n
bb f branch-and-bound with bound updater f

Table 3. Comparing the results of search transformers on default in order labelling for n
queens.

n it ra 13 ld 10 ld 10 :- ra 13 ra 13 :- ld 10

1 8 8 8 8 8
2 13 13 13 13 13
3 23 23 23 23 23
4 52 53 52 53 53
5 62 62 62 62 62
6 117 128 117 128 128
7 107 107 107 107 107
8 254 180 254 180 180
9 190 201 190 201 201

10 285 494 285 490 489
11 261 266 261 266 266
12 514 545 513 543 543
13 370 486 370 486 486
14 1,995 1,619 8,930 4,919 1,683
15 1,555 3,183 1,366 1,120 1,104
16 9,738 3,342 137,720 11,854 9,584
17 6,430 6,430 3,759 6,640 4,931

We have implemented a small library of composable transformers, summarized in Ta-
ble 2. With this library, we can simply plug-and-play, and try out lots of different combi-
nations.

For instance, we can experiment with the effect of different search strategies on finding
the first solution of n queens. Table 3 compares randomizing search (seed 13), limited
discrepancy (with limit 10) and their composition on in order labelling. The results show
that randomizing can improve a poor labelling, while LDS can be significantly worse, and
combining them ameliorates the worst of the LDS. They also illustrate how the transform-
ers do not commute, it’s better to randomise before LDS than after.

8.2 Branch-and-Bound Optimization

The branch-and-bound search strategy is a classic approach to optimization. After it has
found a solution, it is only interested in finding better solutions next. In other words, it tries
to prune the search tree by eliminating subtrees that do not yield a better solution.

The quality of a solution is based on an objective constraint variable. The value assigned
to this variable determines the quality. Usually, the smaller the value is, the better the
solution.
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We can easily add a generic branch-and-bound strategy as a composable transformer
in our framework. This transformer is parametric in a NewBound solver action. This
action should be called when a solution is found; it returns a function, Bound solver, for
imposing constraints on further subtrees to only look for better solutions.

newtype CBranchBoundST (solver :: * -> *) = CBBST (NewBound solver)

type Bound solver = forall a. Tree solver a -> Tree solver a

type NewBound solver = solver (Bound solver)

The transformer keeps track, in its evaluation state, of the above Bound solver function
and applies it in nextCT. As an optimization, we want to apply each new function only
once to any given subtree. Hence, the solver keeps track of the current function’s version
number in its evaluation state, and of the version number of each subtree in its tree state.

data BBEvalState solver = BBP Int (Bound solver)

instance Solver solver => CTransformer (CBranchBoundST solver) where

type CEvalState (CBranchBoundST solver) = BBEvalState solver

type CTreeState (CBranchBoundST solver) = Int

type CForSolver (CBranchBoundST solver) = solver

initCT _ = (BBP 0 id,0)

nextCT tree c es@(BBP nv bound) v

| nv > v = evalCT (bound tree) c es nv

| otherwise = evalCT tree c es v

returnCT (CBBST newBound) (BBP v bound) continue =

do bound’ <- newBound

continue $ BBP (v + 1) bound’

In the above, the returnCT function is an addition to the CTransformer type class, that
allows interaction when a new solution is found. This function is used to obtain the new
bounding function.

Note that Bound solver is a rank-2 type: it forces genericity in a, the result type of the
whole computation.

Let us illustrate the branch-and-bound transformer for the FD solver with a small exam-
ple. Assuming that objective :: FD FDVar returns the variable to be minimized, this
is achieved by the following solver function:

solve model = runSM $ eval model [] (TStack (CBBST newBound))

newBound :: NewBound FD

newBound =

do obj <- objective

val <- value obj

return ((\tree -> obj @< val /\ tree) :: Bound FD)

Whenever a new solution is found with objective value val, the tree transformer is changed
to add a constraint demanding a better solution, i.e. with objective value smaller than val.
This assumes that the variable to be minimized is fixed in any solution.
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gmodel n = NewVar $ \_ -> path 1 n 0

path :: Int -> Int -> Int -> Tree FD Int

path x y d = if x == y

| x == y = return d

| otherwise = disj [ Label (fd_objective >>= \o ->

return (o @> (d+d’ - 1) /\

(path z y (d+d’))))

| (z,d’) <- edge x

]

edge i | i < 20 = [ (i+1,4), (i+2,1) ]

| otherwise = []

Fig. 12. Code to create a search tree for finding paths.

Here is a new twist on the traditional branch-and-bound algorithm. Optimistically, we
assume that a solution can be found that is twice as good, i.e. whose objective value is
less than half the current solution’s objective value. Hence, we look for a new solution in
the bottom half of the interval [0,val− 1] first. However, for completeness sake we also
consider the upper half of that interval.

newBoundBis =

do obj <- objective

val <- value obj

let m = val ‘div‘ 2

return ((\tree -> (obj @< (m + 1)

\/

(obj @> m /\ obj @< val))

/\ tree) :: Bound FD)

If the optimistic assumption is right a lot of the time, we make progress more quickly than
in the previous approach.

Note that this kind of optimization search, called optimistic partitioning, is commonly
used in restart optimization, where we restart the search from scratch after each solution
is found. But we are unaware of any literature that uses this transformation during search,
while it’s only a small change to our code.

Example 6 To illustrate branch-and-bound search we introduce a new example program.
The code in Figure 12 defines a shortest path program. The solver only involves a single
variable representing the path length, which is constrained by the labelling predicate path.
path builds a search tree based on edge i which returns the list of nodes reachable from
i with their edge lengths.

The graph we use is a simple linear graph with edges from i to i +1 of length 4, and to
i+2 of length 1 (see Figure 13).

Table 4 compares the number of search tree nodes visited for different search strate-
gies on the path program to find the best solution: without bounding (so looking for all
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Fig. 13. Example graph for shortest path search.

solutions), using branch and bound and bisection branch and bound, and using best-first
search.

Best-first search differs in the queue data type from depth-first search: a priority queue
maintains the subtrees to visit. A priority is assigned based on the (heuristic) likeliness of
yielding a short path. For this purpose, we use the lower-bound of the objective variable’s
domain, i.e. the distance so far. In other words, this best-first search realizes a greedy
strategy, always extending the current shortest (partial) path.

We can see the significant improvements in using branch-and-bound search, and how
bisection branch-and-bound search improves upon this. Of course for these examples best-
first search, which is an informed search strategy is significantly better, but informed search
strategies are usually not available in typical constraint programming problems. �

8.3 Restarting Transformer

Some search strategies revisit a tree—usually different parts of it—multiple times. Two
typical examples are iterative deepening and restart optimization. Iterative deepening re-
peatedly performs a depth-bounded search, each time increasing the depth-limit. Restart
optimization is similar to branch-and-bound but restarts from scratch: each time it tightens
the bound on the objective variable using the previous solution found.

We propose the following generic RestartST transformer that captures the common
pattern of iterative deepening and restart optimization. As we present this new transformer,
we will introduce the necessary extensions of our framework as we go.

Firstly, the restart transfomer looks like:
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Table 4. Comparison of search strategies to find paths in the program shown in Figure 12
using: depth-first search finding all solutions (DFS ALL), depth-first search with branch
and bound (DFS BB), depth-first search with bisection branch and bound (DFS BB-Bis),
and best-first search (BeFS) (which requires the queueing strategy to be made aware of the
distance so far).

destination DFS ALL DFS BB DFS BB-Bis BeFS FS
1 2 2 2 2
2 33,450 45 52 5
3 20,682 56 57 9
4 25,570 110 110 13
5 23,722 176 126 17
6 24,458 252 197 21
7 24,226 395 263 25
8 24,394 504 337 29
9 24,458 757 464 33

10 24,642 910 716 37
11 24,906 1,317 780 49
12 25,354 1,525 1,147 53
13 26,050 2,141 1,220 73
14 27,242 2,426 1,777 77
15 29,002 3,048 1,734 105
16 32,290 3,433 2,487 109
17 36,458 4,265 3,086 145
18 46,218 4,793 3,425 149
19 54,114 5,978 4,266 201
20 87,562 6,704 4,718 205
21 87,562 8,416 5,883 214

data RestartST c a where

RestartST :: CTransformer c

=> [c]

-> (Tree (CForSolver c) a -> (CForSolver c) (Tree (CForSolver c) a))

-> RestartST c a

I.e., it captures a sequence of composable transformers to iterate through, and a function
for updating trees.

The restart transformer is a regular transformer and not a composable one:

instance Solver (CForSolver c) => Transformer (RestartST c a) where

type ForSolver (RestartST c a) = CForSolver c

type EvalState (RestartST cs a) = RestartState c a

type TreeState (RestartST cs a) = CTreeState c

...

Most of the time, the restart transformer lets one of the captured transformers do its job.
Hence, the tree state is that of c. The evaluation state is more involved:

data RestartState c a = RS { current :: c

, next :: [c]

, current_state :: CEvalState c
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, init_label :: Label (CForSolver c)

, init_tree :: Tree (CForSolver c) a }

i.e., it maintains the currently active composable transformer and its evaluation state, as
well as the remaining composable transformers. The last two components are the initial
model tree and the associated initial solver state. In order to allow for the initialization, we
generalize the signature of initT to allow for the following implementation:

initT (RestartST (c:cs) _) tree =

let (esc,tsc) = initCT c

in do l <- markSM

let es = RestartST { current = c

, current_state = esc

, next = cs

, init_label = l

, init_tree = tree }

return (es,tsc)

Observe that, as the type of the evaluation state now depends on a, the search’s result
type, the transformer now also depends on that type. We express this by adding an addi-
tional associated type family to the Transformer class:

type ForResult (RestartST c a) = a

We omit most of the method implementations, as these are simply delegated to current.
However, there is one new transformer method endT that is called when the queue has run
out of elements to process. This method allows the restart transformer to start the worklist
anew with the initial tree:

endT wl t@(RestartST _ f) es

| null (next es) = return []

| completeCT (current es) (current_state es) = return []

| otherwise

= let (esc,tsc) = initCT c

in do tree’ <- f (init_tree es)

let es’ = es {current = head $ next es

,next = tail $ next es}

node = (init_label es,tree’,tsc)

continue (pushQ node wl) t es’

If there are no more composable transformers, then the search should end. Otherwise, if
the last run completely visited the tree, the search should end as well. We’ve added the
completeCT member to the CTransformer type class. In all other cases, the initial tree
is pushed onto the queue (after transformation by f), and the next composable transformer
becomes the current one.

Now we can easily express iterative deepening as the restart optimization (RestartST

(map db [1..]) return) and restart optimization as (RestartST (repeat fs) opt)

where opt is defined as:
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opt tree = do f <- newBound

return (f tree)

8.4 Composable vs. Basic Transformers

As our framework provides both composable and basic search transformers, there may be
a question of where to articulate a particular search strategy. Indeed, the same effect can be
achieved in different ways. For instance, a combination of several composable transformers
can also be implemented as a single monolithic basic search transformers.

In general, we would suggest to aim for increased flexibility. A composable search
transformer is more readily reused as part of a different complex search strategy than a
basic search transformer. The same holds for a basic search transformer and a primitive
queue data structure versus a dedicate queue data structure with advanced behavior.

9 Related Work

Since our approach combines constraint and functional programming there is a broad
spectrum of related work.

Constraint Programming Constraint logic programming languages such as ECLIPSE (ECLiPSe,
2008) and SICSTUS PROLOG (SICStus, 2008) allow programmable search using the builtin
search of the paradigm. Each system provides predicates to define search, analogous to
the Dynamic nodes in the model tree. ECLIPSE provides a search library which allows:
user programmable variable and value selection (as in Section 5.2) as well as different
search transformers including depth bounded search, node bounded search, limited dis-
crepancy search, and others. One transformation cannot be applied to another, although
one can change strategy for example when the depth bound finishes to another strategy.
The user cannot define their own search transformers in the library, though they could be
programmed from scratch.

The SALSA (Laburthe & Caseau, 2002) language is an imperative domain-specific lan-
guage for implementing search algorithms on top of constraint solvers. Its center of focus
is a node in the search process. Programmers can write custom “Choice” strategies for
generating next nodes from the current one; SALSA provides a regular-expression-like
language for combining these Choices into more complex ones. In addition, SALSA allows
custom procedures to be run at the exits of each node, i.e. right after visiting it. We
believe that SALSA’s Choice construct is orthogonal to our approach, and could be easily
incorporated. The custom exit procedures show similarity to our transformers, but no
support is provided for composing transformers.

The Oz (Smolka, 1995) language was the first language to truly separate the definition of
the disjunctive constraint model from the search strategy used to explore it (Schulte, 1997).
Here computation spaces capture the solver state, as well as possible choices (effectively
the Dynamic nodes). Search strategies such as DFS, BFS, LDS, Branch and Bound and
Best first search are constructed by copying the computation space and committing to one
of the choices in the space. Search strategies themselves are monolithic, there is no notion
of search transformers.
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The original versions of the constraint programming language OPL (Van Hentenryck,
1999; Van Hentenryck et al., 2000) provided a user programmable search language facility
using a try construct, analogous to the Dynamic nodes in a model tree. The resulting tree
could then be explored using a programmed exploration strategy (or built in exploration
strategies such as DFS, LDS, BFS or BeFs). These explorations were based on a priority
queue of nodes and programmed by giving a priority to each node, and well as a test
to determine when to examine the next element in the queue rather than the children
of the current node. This provided something equivalent to the Queue class. Exploration
strategies could be modified by limit strategies which effectively created search transform-
ers equivalent to our depth-bounded or node-bounded search transformers. These limit
strategies appear to have been stackable.

The closest work to this paper is the search language (Van Hentenryck & Michel, 2006)
of Comet (Van Hentenryck & Michel, 2005). Search trees are specified using try and
tryall constructs (analogous to Try and Dynamic nodes), but the actual exploration
is delegated to a search controller which defines what to do when starting or ending a
search, failing or adding a new choice. The representation of choices is by continuations
rather than the more explicit tree representation we use. The SearchController class
of Comet is roughly equivalent to the Transformer class. Complex search hybrids can
be constructed by building search controllers. The Comet approach shares the same core
idea as our monadic approach, to allow a threading of state through a complex traversal
of the underlying search tree using functional abstractions, and using that state to control
the traversal. The Comet approach does not support a notion of composable search trans-
formers. Interestingly the Comet approach to search can also be implemented in C++ using
macros and continuations (Michel et al., 2006).

Functional (Constraint) Logic Programming Several programming languages have been
devoted to the integration of Functional Programming and (Constraint) Logic Program-
ming. On the one hand, we have CLP languages with support for a functional notation
of predicates, such as MERCURY (Somogyi et al., 1996) and CIAO (Casas et al., 2006).
MERCURY allows the user to program search strategies by using the underlying depth-
first search, much like any CLP language. CIAO offers two alternative search strategies,
breadth-first search and iterative deepening, in terms of depth-first search by means of
program transformation.

On the other hand, we have functional programming languages extended with logic
programming features (non-determinism, logical variables). The most prominent of these
is the CURRY language, or language family. The PACS CURRY compiler is implemented
on top of SICSTUS PROLOG and naturally offers access to its constraint solver libraries; it
has a fixed search strategy. However, the KICS CURRY system, implemented in HASKELL,
does not offer any constraint solvers; yet, it does provide reflective access to the program’s
search tree (Brassel & Huch, 2007), allowing programmed or encapsulated search. As far
as we can tell, their implementation technique prevents this programmed search from being
combined with constraint solving.

Embedding Logic Programming in Functional Programming As far as we know, Con-
straint Programming has gotten very little attention from mainstream Functional Program-
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ming researchers. Most effort has gone towards the study of the related domain of Logic
Programming, whose built-in unification can be seen as an equality constraint solver for
Herbrand terms.

There are two aspects to Logic Programming, which can and have been studied either
together or separately: logical variables and unification on the one hand and (backtracking)
search on the other hand.

The former matter can be seen as providing an instance of a Herbrand term equality
constraint solver for our Solver type class. However, it remains an open issue how to fit
the works of Claessen and Ljunglöf (Claessen & Ljunglöf, 2000) and Jansson and Jeuring
(Jansson & Jeuring, 1998) for adding additional type safety to solver terms into our solver-
independent framework.

Logic Programming and Prolog have also inspired work on search strategies in Func-
tional Programming. That is to say, work on Prolog’s dedicated search strategy: depth-
first search with backtracking. Most notable is the list-based backtracking monad—which
Wadler pioneered before the introduction of monads (Wadler, 1985)—upon which various
improvements have been made, e.g. breadth-first search (Seres & Spivey, 1999), Prolog’s
pruning operator cut (Hinze, 2001), and fair interleaving (Kiselyov et al., 2005).

The Alma-0 (Apt et al., 1998) has a similar objective in an imperative setting: it adds
Prolog-like depth-first search and pruning features to Modula-2.

FaciLe is a finite domain constraint library for OCaml, developed as part of the Ph.D.
thesis of Nicolas Barnier (Barnier, 2002). FaCiLe’s fixed search stratgy is depth-first search;
on top of this, optimization is possible by means of both the branch-and-bound and restart
strategies. The implementation relies on mutable state.

In recent preliminary work, Fischer (Fischer, 2008) discusses how to add constraints to
any instance of MonadPlus, with the goal of modeling Functional Logic programming in
Haskell. In his approach, the search strategy is determined by the particular MonadPlus
instance. There are no separate provisions for a queuing type or (composable) search
strategy transformers.

Search in Functional Programming Various specific instances of search-related prob-
lems have been solved in Haskell, of which the Sudoku puzzle is perhaps the most famous.
While the Sudoku puzzle can be solved by many approaches, it is one at which Finite
Domain constraint programming excels: state-of-the-art FD solvers solve 9-by-9 puzzles
in milliseconds. Yet, of the 19 Haskell Sudoku solvers currently on http://haskell.

org/haskellwiki/Sudoku, only one, by David Overton, considers an implementation
in terms of an FD solver, and even that one implements a fixed depth-first search. Typical
Haskell solutions, such as Bird’s (Bird, 2006), implement problem specific solvers with a
hard-wired search strategy.

10 Conclusion & Future Work

We have given a monadic specification of constraint programming in terms of a monadic
constraint solver threaded through a monadic search tree. We show how the tree can
be dynamically constructed through so called labelling methods, and the order in which
the nodes are visited controlled by a search strategy. The base search strategy can be
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Fig. 14. The components of a constraint programming model with composable search transformers
and how they fit together.

transformed by search transformers, and indeed these can be constructed as composable
transformations. Our framework allows the simple specification of complex search strate-
gies, and illustrates how complex search strategies, like branch-and-bound, or iterative
deepening can be built from smaller components. It also gives great freedom to explore new
search strategies and transformers, for example the optimistic branch-and-bound search.

Overall by trying to be as generic and modular as possible in defining monadic constraint
programming we have a powerful tool for experimentation and understanding of search in
constraint programming. The components: solver, search tree, labelling, queue, and search
transformers are separate but nest together as shown in Figure 14.

In future work we would like to:

• generalize our search framework to arbitrary search problems.
• integrate a Haskell implementation of Constraint Handling Rules (Frühwirth, 1998)

with the framework to provide the combination of programmable search and pro-
grammable solving.
• make state-of-the-art constraint solver implementations (e.g. Gecode (Schulte et al.

, 2009)) available, by binding them to Haskell using the C foreign function interface
and have them implement the Solver type class.
• investigate the connection between our composable search transformers and mix-

ins (Cook, 1989), and in particular develop monadic mixins suitable for hiding the
transformers’ state.
• explore the performance characteristics of the framework:

1. the overhead of the search strategy transformers with respect to the basic search
strategies, and

2. the overhead of the FFI bindings and search strategies with respect to native
search strategies for state-of-the-art solvers.
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