
A Concurrent Constraint Handling Rules Implementation in
Haskell with Software Transactional Memory

Edmund S. L. Lam
School of Computing, National University of Singapore

S16 Level 5, 3 Science Drive 2, Singapore 117543

lamsoonl@comp.nus.edu.sg

Martin Sulzmann
School of Computing, National University of Singapore

S16 Level 5, 3 Science Drive 2, Singapore 117543

sulzmann@comp.nus.edu.sg

Abstract
Constraint Handling Rules (CHR) is a concurrent committed-
choice constraint logic programming language to describe trans-
formations (rewritings) among multi-sets of constraints (atomic
formulae). CHR is widely used in a range of applications spanning
from type system design to artificial intelligence. However, none
of the existing CHR implementations we are aware of exploits
concurrency or parallelism explicitly. We give a concurrent CHR
implementation using GHC (Glasgow Haskell Compiler) with sup-
port for Software Transactional Memory. We achieve some sig-
nificant performance improvements compared to a single-threaded
CHR implementation. We obtain a further speed-up, in some cases
nearly close to the optimum of 100%, when running programs un-
der under a dual-core processor architecture. Our results show that
CHR can be implemented efficiently on a multi-core architecture.

1. Introduction
Constraint Handling Rules (CHR) [5] is a concurrent committed-
choice constraint logic programming language to exhaustively
transform (rewrite) multi-sets of constraints (atomic formulae) into
simpler ones. Initially, developed to specify incremental constraint
solvers, CHR are now used as a general purpose concurrent con-
straint programming language. CHR is also used in a multitude of
other applications such as type system design, agent specification
and planning etc [7].

CHR naturally support concurrent programming. Conjunction of
constraints can be regarded as interacting collections of multiple
asynchronous agents or processes. Their interaction is specified via
transformation rules which can be applied simultaneously if the
transformation rules do not interfere. Hence, one would expect to
run CHR faster by executing transformation rules in parallel on a
multi-core machine architecture. To the best of our knowledge, all
existing CHR implementations [2] are single threaded and neither
exploit concurrency nor parallelism.

In this paper, we present our initial studies of a concurrent CHR
implementation in Haskell [10] that makes use of Software Trans-
actional Memory (STM) [9] as supported by GHC [8]. Specifically,
we make the following contributions:

• We discuss a concurrent implementation of CHR where each
transformation rule is implemented by a single thread. (Sec-
tion 4). We use STM operations to avoid inconsistencies of
CHR programs, i.e. set of transformation rules, manipulating
a shared constraint store. Our implementation is very intuitive
and matches precisely the declarative semantics of CHR [5].

• The common CHR implementations adopt the refined CHR
semantics [3]. We give a concurrent formulation of the refined
semantics and discuss our implementation in Haskell STM. In
contrast to the standard declarative semantics where we have
n threads for n transformation rules, in the concurrent refined

semantics we have n active constraints (threads) which seek for
the missing partner constraints such that a transformation rule
applies (Section 5).

• We provide some initial experimental results of the execution
time of CHR programs compiled with GHC 6.6. under a dual
core architecture. (Section 6). Our results show that we obtain
some significant performance improvements compared to a sin-
gle threaded implementation under a single core architecture.

In the next section, we give an overview of the key ideas of our
work. In Section 3, we review the syntax and declarative semantics
of CHR. In Section 4 and 5, we describe the concurrent implemen-
tation of the declarative and refined semantics of CHR respectively.
Section 6 summarizes our preliminary experiment results and we
conclude in Section 7. Throughout the paper, we assume that the
reader has some basic knowledge of Haskell and STM as supported
by GHC.

2. Overview
We start off with a simple example to explain the basic concepts be-
hind CHR. We introduce two CHR simplification rules to compute
the greatest common divisor among a set of numbers.

rule Gcd(0) <==> True
rule Gcd(m),Gcd(n) <==> m>=n && n>0 | Gcd(m-n),Gcd(n)

Each CHR rule has one or more constraints on its left-hand and
right-hand side. The constraint True represents the always true
constraint. Guard constraints such as m>=n && n>0 test whether
rules are applicable. We can apply a CHR rule if we find constraints
in the constraint store which match the left-hand side of the rule.
Then, we replace (simplify) these constraints with the right-hand
side. In case the CHR rule has a guard constraint the rule only
applies if the guard constraints hold.

For example, we find that

Gcd(3), Gcd(9)
� Gcd(3), Gcd(6)
� Gcd(3), Gcd(3)
� Gcd(3), Gcd(0)
� Gcd(3)

(2.1)

We write C � C′ to denote a CHR derivation step where we apply
a CHR rule on the constraint store C resulting in the constraint store
C′. We say a constraint store is final if no further CHR rules can be
applied. In the above, we apply the second CHR three times before
applying the first CHR once which leads to the final constraint store
Gcd(3). This shows that 3 is the greatest common divisor of 3 and
9. Similarly, we find that

Gcd(4), Gcd(8) �∗ Gcd(4) (2.2)

where �∗ denotes zero or more derivation steps.

1 2007/1/9

CHR satisfy a monotonicity property. That is, we can straightfor-
wardly combine two derivations as long as they do not interfere.
Hence, we find that

Gcd(3), Gcd(9), Gcd(4), Gcd(8) �∗
Gcd(3), Gcd(4) �∗

Gcd(1)

In terms of the operational behavior of CHRs this means that we
can build derivations 2.1 and 2.2 concurrently. Under a dual core
architecture, we can then run both derivations in parallel. Accord-
ing to Früwirth [6] this form of CHR concurrency/parallelism is
referred to as weak concurrency/parallelism. At the end of this sec-
tion, we will briefly discuss strong concurrency/parallelism.

In Sections 4, we give a concurrent implementation of the declara-
tive semantics where each concurrent thread corresponds to a CHR
rule seeking constraints in the constraint store matching its left-
hand side. Section 5 presents a concurrent variant of the refined se-
mantics which is commonly found in CHR implementations. The
execution of CHR is driven by active constraints which seek for
missing partners such that a CHR applies.

In both cases, we model the constraint store as a shared linked list
and employ STM operations to prevent inconsistencies when ap-
plying CHR rules. Each CHR application is split into a sequence
of search and insert/delete STM operations. A subtle point is that
making the entire search an atomic operation easily leads to in-
terleaving of CHR derivation steps. For example, the concurrent
execution of

Gcd(3), Gcd(9) � Gcd(3), Gcd(6) ‖
Gcd(4), Gcd(8) � Gcd(4), Gcd(4)

requires us to spawn two concurrent threads scanning the constraint
store Gcd(3),Gcd(9),Gcd(4),Gcd(8) for constraints match-
ing the left-hand side of the second CHR rule. If both threads
start scanning the store from left to right, only one of the threads
will be successful but the other thread will become invalid and
has to ”retry” in the STM sense. Specifically, say the first thread
searches for Gcd(3),Gcd(9) and the second thread searches for
Gcd(4),Gcd(8). The first thread will be faster and will then
replace Gcd(3),Gcd(9) by Gcd(3),Gcd(6). But this will in-
validate the transaction log of the second thread which contains
Gcd(3),Gcd(9) because of the left to right search strategy.

Therefore, we use a ”small step” search strategy where only the
individual (but not the entire) search steps between neighboring
nodes are atomic. Of course, we need to re-check the found con-
straints before the actual rule application. We also use different en-
try points to avoid ”overlap” among the search threads. In essence,
we use a shared circular list.

CHR also support a stronger form of concurrency/parallelism [6]
which we will ignore here for brevity. Briefly, the two CHR deriva-
tions

Gcd(3), Gcd(9) �∗ Gcd(3)

and
Gcd(3), Gcd(12) �∗ Gcd(3)

share the common constraint Gcd(3). In our current (naive) im-
plementation, Gcd(3) is removed and added again each time the
second CHR applies. Hence, we cannot concurrently execute the
above CHR derivations. The important point to note that is that
there is only one copy of Gcd(3). However, both derivations do
not alter Gcd(3). When applying

rule Gcd(m),Gcd(n) <==> m>=n && n>0 | Gcd(m-n),Gcd(n)

we only remove the first constraint Gcd(m) by Gcd(m-n) but the
second constraint Gcd(n) remains unchanged. Hence, there should
not be any problem executing both derivations concurrently. Our
implementation can be adjusted to deal with such cases but we
postpone a discussion till a later version of this paper.

Another issue which we will ignore here is confluence. We say a
set of CHR rules is confluent iff different derivations starting from

Terms s, t ::= x | 0 | 1 | −1 | ...
t− t | t + t | ...
(t, ..., t) | K t...t

Guards g ::= g||g | g&&g | t > t | ...
Atoms at ::= P t
CHR r ::= rule P1 t1 ... Pn tn ⇐⇒

g | Q1 s1 ... Qm sm

Figure 1. CHR Syntax

the same point can always be brought together again. The above
CHR rules are clearly confluent, because their left-hand side do not
overlap. The situation changes if we drop the guard n>0 from the
second rule.

rule Gcd(0) <==> True
rule Gcd(m),Gcd(n) <==> m>=n | Gcd(m-n),Gcd(n)

Then, both rules are applicable on Gcd(0),Gcd(0), however, the
set of CHR rules remains confluent. We can check for confluence
by checking that all “critical pairs” are joinable [1]. This confluence
check is decidable if the CHR rules are terminating. We say a set
of CHR rules are terminating iff for each initial constraint there
exists a final constraint store. In theory, many CHR rules are non-
confluent. But non-confluence does not arise in practice because
the critical pair state can never be reached. We refer to [6, 4] for a
discussion.

3. Syntax and Semantics of CHR
We review the syntax and declarative semantics of CHR. For our
purposes, we assume CHR simplification rules of the form de-
scribed in Figure 1. CHR also support simpagation and propagation
rules and builtin constraints such as equality which we ignore for
brevity here. The syntax of CHR in Figure 1 follows closely our
implementation which is embedded into Haskell. We assume that
K refers to a value constructor of a user-definable data type. The
term and guard language is essentially the same as in Haskell. We
adopt Haskell syntax and assume that variable names start with a
lowercase letter and predicate and constructor names start with a
uppercase letter. In the standard CHR syntax it is exactly the other
way around.

As usual, we refer to the left-hand side of a CHR rule as the rule
head and the right-hand side (excluding the guard) as the rule body.
The guard is assumed to be true if omitted.

We assume that CHR rules are variable-restricted, i.e. all variables
occurring on the right-hand side already occur on the left-hand side.

The declarative semantics of CHR is explained by exhaustive ap-
plication of CHR rules on an initial constraint store until we reach
a final constraint store where no further CHR rules are applicable.
A constraint store is simply a multi-set of atoms to which we often
refer to as constraints.

A single derivation step is formally defined as follows. A (re-
named) CHR rule r of the form rule P1 t1 ... Pn tn ⇐⇒
g | Q1 s1 ... Qm sm applies to a multi-set C of atoms iff there
exist P1 t’1 ... Pn t’n in C such that φ(ti) = t′

i for i =
1, ..., n for some substitution φ. Then, we replace P1 t’1 ...
Pn t’n in C by Q1 φ(s1) ... Qm φ(sm) if φ(g) evaluates to
true. We refer to the resulting constraint as C′ and write C �r C′

to denote the application of CHR r to C with result C′.

Readers familiar with Prolog will notice the two important differ-
ences between Prolog and CHR. CHR applies forward reasoning
whereas Prolog uses backward reasoning. In CHR, we seek for
matchings where in Prolog we use unification to fire rules.

2 2007/1/9

Derivation d1

Atomic Search and Rewrite
Read C1: Gcd(0)
Rewrite C1 with True
Commit: Success

Derivation d2

Atomic Search and Rewrite
Read C1: Gcd(0)
Read C2: Gcd(6)
Read C3: Gcd(3)
Rewrite C2, C3 with Gcd(3),Gcd(3)
Commit: Fail

Figure 2. ”Big step” search

4. A Concurrent Implementation of the
Declarative Semantics

In this section, we discuss a concurrent implementation of the
declarative CHR semantics. The declarative CHR semantics does
not specify a specific order in which we apply the CHR rules.
Hence, we can assume the simultaneous application of CHR rules
on a shared constraint store. In our implementation, we spawn a
new thread for each CHR rule. We could of course have several
threads for the same CHR rule but we ignore this possibility here.
Each thread/CHR rule searches the constraints in the store that
match the rule head and replaces them with the rule body if the
guard constraints hold. If there is no interference among CHR rule
applications, we can execute the CHR rules concurrently as the
following example shows.

Gcd(0), Gcd(6), Gcd(3)
↙ ↘

Gcd(0) �r1 ∅ ‖ Gcd(6), Gcd(3) �r2 Gcd(3), Gcd(3)
↘ ↙

Gcd(3), Gcd(3)

To guarantee consistency we demand that any computation of the
concurrent execution of rules must be obtainable by a sequential
execution of the same rules. We enforce consistency by imple-
menting the shared constraint store as a shared linked list stored
using Haskell with Software Transactional Memory (STM). CHR
rule applications are implemented by composing STM read/write
operations on the linked list. Then, consistency is guaranteed by
the atomicity of the STM operations. Haskell with STM uses lock
free optimistic synchronization, where each STM operation accu-
mulates a local transaction log recording all read and write opera-
tions. This transaction log is validated at the end of the operation
and the runtime system determines if the operation can commit or
must retry.

Consistency can be easily enforced by composing the entire CHR
derivation as a single atomic STM operation. First, the constraint
store is searched, say from the head of the shared linked list, for
matching constraints. Then, we apply a CHR rule if a match is
found. Unfortunately, this strategy will likely force most deriva-
tions to be interleaved. Each search operation will accumulate reads
of a prefix of the shared constraint store. Hence, writes to any con-
straint in the prefix will force the (atomic) derivation to retry. In
general, atomic derivations are interleaved as long as their search
operations over-lap.

Figure 2 shows a possible accumulation of transaction logs which
causes the above CHR derivations to interleave. We assume that
the constraint store contains three shared memory locations C1, C2

and C3 containing Gcd(0), Gcd(6) and Gcd(3) respectively. We
see that derivation d2 fails to commit because of d1’s write into
C1. This is undesirable as d2 has over-accumulated its transaction
log with reads to locations (C1) containing unrelated constraints.
Our idea is to perform a ”small step” search via a series of atomic
”hops” within the shared constraint store. Since the small step
search is unsafe, we must atomically re-verify (read C2 and c3

again) that all matching constraints found during the search are
still present before we execute the CHR rule. Figure 3 illustrates a

Derivation d1

Atomic Hop 1:
Read C1: Gcd(0)
Commit: Success

Atomic Rewrite:
Verify C1 contains Gcd(0)
Rewrite C1 with True
Commit: Success

Derivation d2

Atomic Hop 1:
Read C1: Gcd(0)
Commit: Success

Atomic Hop 2:
Read C2: Gcd(6)
Commit: Success

Atomic Hop 3:
Read C3: Gcd(3)
Commit: Success

Atomic Rewrite:
Verify C2, C3 contains Gcd(6),Gcd(3)
Rewrite C2, C3 with Gcd(3),Gcd(3)
Commit: Success

Figure 3. ”Small step” search

possible concurrent execution of CHR derivations using the small
step search method.

We summarize. The execution of a CHR derivation step is split into
a small-step search step followed by a verification step which if suc-
cessful allows us to actually apply the CHR rule by deleting the left-
hand side constraints and inserting the right-hand side constraints.
As a further optimization, we perform in-place update rather then
delete followed by insert if the number of left-hand side constraints
is smaller than the number of right-hand side constraints. In prac-
tice, the declarative semantics is usually too inefficient. The com-
mon approach is to implement the refined semantics which we dis-
cuss next.

5. A Concurrent Implementation of the Refined
Semantics

We first review the refined semantics [3] where we process (ex-
ecute) constraints depth-first from left to right similar to Prolog.
Standard implementations use a single execution stack. We give
a concurrent variant of the refined semantics using multi-threaded
execution stacks and discuss some of the implementation issues.

5.1 The Refined Semantics
The refined operational semantics [3] introduces active constraints
to guide the search for constraints matching the CHR rule head. A
constraint remains active until the CHR rule corresponding to a par-
ticular matching has fired. Newly introduced constraints are added
to an execution stack E where active constraints are processed re-
peatedly until the stack is empty. Hence, the constraint store is split
into 〈E | C〉 where E is an execution stack and C is the constraint
store. We write ∅ to denote the empty constraint store and ε for the
empty execution stack. For example, we find the following deriva-
tion steps in the refined semantics.

〈[Gcd(0)#1, Gcd(4)#2, Gcd(4)#3] | ∅〉
� 〈[Gcd(0)#1, Gcd(4)#2, Gcd(4)#3] | {Gcd(0)#1}〉
� 〈[Gcd(4)#2, Gcd(4)#3] | ∅〉
� 〈[Gcd(4)#2, Gcd(4)#3] | {Gcd(4)#2}〉
� 〈[Gcd(4)#3] | {Gcd(4)#2, Gcd(4)#3}〉
� 〈[Gcd(0)#4, Gcd(4)#5] | ∅〉
� 〈[Gcd(0)#4, Gcd(4)#5] | {Gcd(0)#4}〉
� 〈[Gcd(4)#5] | ∅〉
� 〈ε | {Gcd(4)#5}〉

Notice that each constraint is attached with a unique identifier #n
to disambiguate multiple occurrences of the same constraint in
the (multi-set) constraint store. We refer to c#n as a numbered
constraint. Initially, all constraints are in the execution stack. Then,

3 2007/1/9

Interleaving Semantics: 〈E | C〉xi � 〈E | C〉xi

Simplification:

(Simp)
∃(H ′ ⇔ g | B′) ∃θ such that θ(H ′) = ({c}] Cons(H)) such that

θ(g) evals to True B ≡ Label(θ(B′), x, i)

〈(c#x′
j) : E | {c#x′

j}]H] C〉xi � 〈B++E | B] C〉x(i+|B|)

Drop 1 (No Rules Apply):

(D1)
∀(H ′ ⇔ g | B′) ¬∃H ⊆ C such that

∃θ such that θ(H ′) = ({c}] Cons(H)) θ(g) evals to True

〈(c#x′
j) : E | C〉xi � 〈E | C〉xi

Drop 2 (Active Constraint Absent):

(D2)
c#xj /∈ C

〈(c#xj) : E | C〉xi � 〈E | C〉xi

Concurrent Semantics: 〈E, E | C〉[x,x]

[i,i] � 〈E, E | C〉[x,x]

[i,i]

Interleaving Left:

(IL)
〈E1 | C〉1i � 〈E′

1 | C′〉1i′
〈E1, E2 | C〉[1,2]

[i,j] � 〈E′
1, E2 | C′〉[1,2]

[i′,j]

Interleaving Right:

(IR)
〈E2 | C〉2j � 〈E′

2 | C′〉2j′

〈E1, E2 | C〉[1,2]

[i,j] � 〈E1, E
′
2 | C′〉[1,2]

[i,j′]

Weak Concurrency:

(WC)
〈E1 | C1] C2]D〉1i � 〈E′

1 | C′
1] C2]D〉1i′

〈E2 | C1] C2]D〉2j � 〈E′
2 | C1] C′

2]D〉2j′

〈E1, E2 | C1] C2]D〉[1,2]

[i,j] � 〈E′
1, E

′
2 | C′

1] C′
2]D〉[1,2]

[i′,j′]

Figure 4. The CHR Concurrent Refined Semantics

the head of the stack is activated and introduced to the store,
followed by the search for matching rules. The activated constraint
is dropped once the search is completed and the CHR rule has fired.

5.2 The Concurrent Refined Semantics
In a concurrent setting, we wish to have n execution stacks oper-
ating simultaneously on the shared constraint store. Here is sample
derivation using two execution stacks.

〈[Gcd(0)#1, Gcd(4)#2], [Gcd(4)#3] |
{Gcd(0)#1, Gcd(4)#2, Gcd(4)#3}〉

� 〈[Gcd(4)#2], [Gcd(0)#4, Gcd(4)#5] |
{Gcd(0)#4, Gcd(4)#5}〉

� 〈ε, [Gcd(4)#5] | {Gcd(4)#5}〉
� 〈ε, ε | {Gcd(4)#5}〉

In contrast to the single-threaded refined semantics, we assume that
all constraints from the execution stacks are already copied into the
store. Making all constraints visible in the store immediately al-
lows possible matches to be found earlier. For the above example, if
Gcd(4)#2 is not immediately added to the store, the second execu-
tion stack is not able to make progress and hence drops Gcd(4)#3.
The first execution stack has then to do all the remaining work.
There is obviously the issue of a ”fair” distribution among the exe-
cution stacks which we will ignore here.

Figure 4 contains the formal description of our concurrent refined
semantics. For simplicity, we only consider the case of two exe-
cution stacks. In the concurrent semantics, each state 〈E1, E2 |
C〉[x,y]

[i,j] is indexed by the thread number x and y and the most re-
cently activated number i and j in each thread. Thus, each thread
can independently create unique identifiers when activating con-
straints in the interleaving semantics. The interleaving semantics
describes the possible derivation steps for each single execution
stack.

We first take a look at the interleaving semantics. In (Simp), fir-
ing of a CHR rule activates the right-hand side constraints B. As
said before, we add B to the execution stack and constraint store.
The auxiliary function Cons returns an un-numbered constraint

set and is defined as Cons(c1#n1, ..., cm#nm) = {c1, ..., cm}.
Function Label turns an un-numbered constraint into a num-
bered constraint and is defined as Label({c1, .., cn}, x, i) =
{c1#x1+i, .., cn#xn+i}. We write c#xi to denote a (concurrent)
numbered constraint with the identifier xi. We write] to denote
multi-set union. Execution stacks are represented by (Haskell) lists
and we write E1 + +E2 to denote list concatenation and c : E to
denote an execution stack with the top element c and tail E.

Rule (D1) covers the case of an active constraint which does not
trigger any CHR rule and therefore can be dropped (removed). Rule
(D2) applies if the active constraint is not in the store and hence
must have been consumed by an earlier derivation. We drop the
active constraint then.

Next, we take a look at the concurrent semantics. Rules (IL) and
(IR) describe the derivation step taken by using either execution
stack. Rule (WC) shows the concurrent execution of derivation
steps as long as they do not interfere.

Let us consider another example using two CHR rules ruleC ⇐⇒
B (R1) and rule A, B ⇐⇒ D (R2). We assume that A, B and C
are some primitive constraints. In the interleaving semantics, we
find that

T1 : 〈[A#2] | {C#1, A#2}〉 �D1 〈ε | {C#1, A#2}〉
and

T2 : 〈[C#1] | {C#1, A#2}〉 �R1 〈[B#3] | {B#3, A#2}〉
For simplicity, we drop the thread and number supply indices.
Thread T1 applies rule (D1) whereas thread T2 applies the CHR
rule (R1). It seems that there is the potential problem of failing
to apply CHR rule (R2). However, constraint B#3 is now active
in thread T2 and will eventually fire rule (R2). Hence, we can
guarantee the exhaustive application of CHR rules in the current
refined semantics.

5.3 Implementation Highlights
We have implemented the concurrent refined semantics (Figure
4) using the small step search strategy. In our implementation,
the choice between the interleaving and weak concurrency steps

4 2007/1/9

Multi-threaded Solver
Program Gcd Prime Blockworld

SMP Flags Off On Off On Off On
Threads 1 2 8 1 2 8 1 2 8 1 2 8 1 2 8 1 2 8

Solver A (sec) 92.5 109.0 152.0 95.0 120.5 149.0 32.0 48.5 53.5 32.0 45.0 55.5 21.0 31.5 39.0 22.5 25.0 32.5
Solver B (sec) 93.0 21.0 13.0 95.5 37.0 29.0 33.5 34.0 36.0 31.5 31.0 31.0 23.0 23.5 33.0 22.0 21.5 34.5
Solver C (sec) 91.0 28.5 13.0 92.0 18.0 9.5 34.0 35.5 35.0 34.0 22.0 21.5 23.5 24.0 34.0 23.0 13.5 23.5

Figure 5. Experimental Results

is decided by the search strategy and the STM runtime system.
Effectively, rule (WC) applies if the search yields non-overlapping
matches and the STM validates consistency and commits of both
derivation steps.

To further minimize the amount of interference among CHR deriva-
tion steps, we refine our small step search strategy. We assume that
each thread has its own distinct entry point to the shared linked list
which represents the constraint store. For example, consider two
threads

T1 Active: Gcd(4)#2 T2 Active: Gcd(6)#3

operating on the constraint store (assuming the below textual order-
ing among constraints)

{Gcd(2)#1, Gcd(4)#2, Gcd(6)#3, Gcd(2)#4}
We employ the CHR rules we have seen earlier

rule Gcd(0) <==> True
rule Gcd(m),Gcd(n) <==> m>=n && n>0 | Gcd(m-n),Gcd(n)

The constraint Gcd(2)#1 is a common partner for both active con-
straints. Hence if both threads start their search from the same entry
point to the store, the derivations will be interleaved. Therefore, we
assume that each thread is given a distinct entry point (effectively,
we use a circular linked list). Thus, thread T1 finds the partner
constraint Gcd(2)#1 and T2 finds the (distinct) partner constraint
Gcd(2)#4. Then, each thread can concurrently execute the second
CHR rule.

6. Experimental Results
Figure 5 summarizes some preliminary experimental results of our
implementation of the concurrent semantics. For measurement we
used a Mac PC, 1.83 GHz Intel-Pentium Duo-Core system with
512 MB RAM running Mac OS X. For compilation we used GHC
6.6 with support for symmetric multi-processors (smp). The results
are given in seconds and averaged over multiple tests.

Our experiments aim at measuring three quantities: effects of con-
currency (1,2 or 8 threads), effects of parallelism (1 or 2 processors)
and the effects of the various matching constraint search strategies
represented by three solver settings. Solver A implements the big
step search strategy where each execution thread uses the same en-
try point to the constraint store. Solver B uses the small step search
strategy and but still assumes the same entry point for each thread
to the constraint store. Solver C use the small step search strategy
and distinct entry points for each execution thread. Our experiments
clearly show that solver C benefits the most from concurrency and
parallelism.

We run each solver on three test programs: Gcd (Greatest Common
Divisor) finds the Gcd of the first 4000 multiples of n , Prime finds
the first 4000 prime numbers and Blockworld is a simulation of two
autonomous agents each moving 100 distinct blocks between non-
overlapping locations.

The Gcd example benefits the most from concurrency and paral-
lelism. Interestingly, the Blockworld example slows down in case of
eight threads. A possible explanation is that the eight threads need
to be distributed among two processors. Therefore, there might be

some interference between the threads. It will be interesting to mea-
sure the performance when the number of threads corresponds to
the number of processors.

An unexpected result uncovered by our experiments is the im-
proved performance of the multi-threaded solver over the single
threaded solver, even on a uniprocessor setting. This apparently
counter-intuitive result is due to the nature of the match searching
operation. Note that the cost of a match failure (complete search
required) is greater than a match success (if one exist). In the sin-
gle threaded solver, active constraints are processed strictly in a
sequential order. In an n-threaded solver, we process n active con-
straints concurrently. Hence, even on a uniprocessor, progress made
by a match success need not be delayed by failed matches of active
constraints processed earlier (in a sequential ordering). Note that
this result is highly program dependent, and does not apply in gen-
eral as indicated by the experiment results.

7. Conclusion
We discussed two concurrent implementations of CHR. First, we
gave a concurrent implementation of the declarative semantics.
Then, we devised a concurrent variant of the refined semantics.
A prototype of the concurrent refined semantics implemented in
Haskell STM can be downloaded via

http://taichi.ddns.comp.nus.edu.sg/taichiwiki/CCHR

Our experimental results show that the run-time performance of
CHR gains significantly from concurrency and we can exploit par-
allelism when executing CHR under a multi-core architecture.

References
[1] S. Abdennadher. Operational semantics and confluence of constraint

propagation rules. In Proc. of CP’97, LNCS, pages 252–266.
Springer-Verlag, 1997.

[2] Common CHR implementations. http://www.cs.kuleuven.ac.be/
˜ dtai/projects/CHR.

[3] G. J. Duck, P. J. Stuckey, M. J. Garcı́a de la Banda, and C. Holzbaur.
The Refined Operational Semantics of Constraint Handling Rules. In
Proc of ICLP’04, pages 90–104, 2004.

[4] G. J. Duck, P. J. Stuckey, and M. Sulzmann. Observable confluence
for constraint handling rules. Technical Report CW 452, Katholieke
Universteit Leuven, 2006. Proc. of CHR 2006, Third Workshop on
Constraint Handling Rules.

[5] T. Frühwirth. Constraint handling rules. In Constraint Programming:
Basics and Trends, LNCS. Springer-Verlag, 1995.

[6] T. Frühwirth. Parallelizing union-find in Constraint Handling Rules
using confluence analysis. In Proc. of CLP, volume 3668 of LNCS,
pages 113–127. Springer-Verlag, 2005.

[7] T. Frühwirth. Constraint handling rules: the story so far. In Proc. of
PPDP ’06, pages 13–14. ACM Press, 2006.

[8] Glasgow haskell compiler home page. http://www.haskell.org/ghc/.

[9] T. Harris, S. Marlow, S. Peyton Jones, and M. Herlihy. Composable
memory transactions. In Proc. of PPoPP’05, pages 48–60. ACM
Press, 2005.

[10] S. Peyton Jones, editor. Haskell 98 Language and Libraries: The
Revised Report. Cambridge University Press, 2003.

5 2007/1/9

