Generalising Monads to Arrows

John Hughes
November 10, 1998

1 Introduction

One of the distinguishing features of functional programming is the widespread
use of combinators to construct programs. A combinator is a function which
builds program fragments from program fragments; in a sense the program-
mer using combinators constructs much of the desired program automatically,
rather than writing every detail by hand. The freedom that functional languages
provide to manipulate functions — program fragments — as first-class citizens
supports combinator programming directly.

Some combinators, such as the well-known list-processing operators map
and filter, encapsulate generally useful program constructions and may appear
in almost any functional program. Others are tailored to particular application
areas, and are often collected into libraries that enable applications in that
area to be built quickly and easily. For example, parsing is an application
area that has been extensively studied. Given an appropriate library of parsing
combinators, a parser for the grammar

G:=aGb|c

might be programmed in Haskell [Hud92, PH96] as

gram = symbol “a” ‘cat® gram ‘cat‘ symbol “b" H symbol “c”

A note on syntax: in Haskell, function application is written without brackets,
so symbol “a" denotes a call of the function symbol with argument “a”, and any
function of two arguments may be used as an infix operator by enclosing it in
back-quotes. In this example, symbol is a function which constructs a parser
that accepts just the given token, ‘cat‘ is a binary operator which combines
two parsers into a parser that runs both in sequence, # is a binary operator
which combines two parsers into one which tries both as alternatives!, and the
entire declaration is a recursive definition of a parser gram which recognises the
non-terminal G.

1We follow the fairly widespread convention that long operator names are typeset with
their characters overlapping, so that they look like a single name. In reality, H is just +++.

Although the idea of programming with combinators is quite old, the de-
sign of combinator libraries has been profoundly influenced in recent years by
Wadler’s introduction of the concept of a monad into functional programming
[Wad90, Wad92, Wad95]. We shall discuss monads much more fully in the next
section, but for now, suffice it to say that a monad is a kind of standardised
interface to an abstract data type of ‘program fragments’. The monad inter-
face has been found to be suitable for many combinator libraries, and is now
extensively used. Numerous benefits flow from using a common interface: to
take just one example, Haskell has been extended with special constructions to
make the use of monads particularly convenient.

It is therefore a matter for some concern when libraries emerge which cannot,
for fundamental reasons, use the monad interface. In particular, Swierstra and
Duponcheel have developed a very interesting library for parsing LL-1 grammars
[SD96], that avoids a well-known inefficiency in monadic parsing libraries by
combining the construction of a parser with a ‘static analysis’ of the program
so constructed. Yet Swierstra and Duponcheel’s optimisation is incompatible
with the monad interface. We believe that their library is not just an isolated
example, but demonstrates a generally useful paradigm for combinator design
that falls outside the world of monads. We shall look more closely at their idea
in section 3.

Inspired by Swierstra and Duponcheel’s library, I sought a generalisation of
the monad concept that could also offer a standardised interface to libraries of
this new type. My proposal, which I call arrows, is the subject of this paper.
Pleasingly, the arrow interface turned out to be applicable to other kinds of
non-monadic library also, for example the fudgets library for graphical user
interfaces [CH93], and a new library for programming active web pages. These
applications will be described in sections 6 and 9.

While arrows are a little less convenient to use than monads, they have
significantly wider applicability. They can therefore be used to bring the benefits
of monad-like programming to a much wider class of applications.

2 Background: Library Design Using Monads

What, then, is a monad? In Haskell, the monad interface can be defined as a
class:

class Monad m where
return::a — m a
(>=):ma—>(a—=>mb ->mb

Read this as follows: a parameterised type m is a monad if it supports the two
operations return and >= (pronounced ‘bind’) with the types given. Intuitively,
we think of a value of type m a as representing a computation with result of type
a — a program fragment. The return operation constructs a trivial computation

that just delivers its argument as its result. The = operation combines two
computations in sequence, passing the result of the first as an argument to the
second — hence the type of the second argument of >=: it is a function that
constructs the second computation, rather than just a computation.

2.1 An Example: A Monad to Manage Failures
For example, consider the type Maybe defined by
data Maybe a = Just a| Nothing

(This declaration introduces a new parameterised type Maybe with two construc-
tors, Just and Nothing. A value of type Maybe a is either of the form Just x,
where x is a component of type a, or of the form Nothing.) This type can be
used to represent possible failure: a function which intuitively returns a result
of type t, but may fail, can be defined to return a result of type Maybe t instead,
where Nothing represents failure. This idea can be used more conveniently if we
define a combinator library to take care of failure handling.

To do so, we declare the type Maybe to be a monad; that is, we give imple-
mentations of return and >= for this type. In Haskell, we write

instance Monad Maybe where
return a = Just a
z>= f = case z of
Justa — fa
Nothing — Nothing

where x >= f fails immediately, without calling f, if its first argument x fails.

Using these combinators we can write functions which handle failure prop-
erly without any explicit tests for Just and Nothing. For example, the following
function adds together two possibly-failing integers, failing itself if either argu-
ment does:

add :: Maybe Int — Maybe Int — Maybe Int
addxy= = >=AIa—

y>=Ab—

return (a + b)

(The layout here is well suited to monadic programs, but may be confusing at
first: the body of the A-expression Aa — ... extends to the end of the entire
right hand side!)

To complete a useful library for failure handling we must add at least a
combinator to cause a failure, for example

fail :: Maybe a
fail = Nothing

Now we can treat the Maybe type as abstract, and write programs that cause
and propagate failures just using the operators fail, return and >=, without any
explicit dependence on the way that failures are represented.

2.2 Another Example: A Monad to Manage State

As another example, an updateable state can be modelled in a purely functional
language by passing each function the current contents of the state as an ad-
ditional parameter, and returning the possibly modified state as a part of each
function’s result. To do so by hand is tedious and error-prone, but fortunately
we can encapsulate the state passing mechanism in a combinator library by
using a monad.

In this case we represent a computation with result type a and a state of
type s by a value of the type

newtype StateMonad s a = SM (s — (a, s))

(The Haskell newtype declaration introduces a new type isomorphic to an
existing one, where the constructor names the isomorphism). For any state
type s, the partially applied type StateMonad s (which denotes a parameterised
type with one remaining parameter) is a monad:

instance Monad (StateMonad s) where
return a = SM (As — (a, s))
r>=f=SM(\s— let SMx' =z
(a,s')=1's
SMf'=Ffa
(b,s") = f's'
in (b, 5")

With these definitions, we can write programs which pass around a state just
in terms of return and >=; there is no need to manipulate the state explicitly.
Notice that >= must pass the modified state s’ returned by its first argument
to its second, rather than the original state, and must return the modified state
returned by its second argument as part of its own result. If one attempts to
pass a state around by hand, rather than by using combinators, then it is very
easy to forget a ' somewhere, with strange bugs as a result.

To complete a library for state passing we must provide combinators for
reading and modifying the state. For example,

fetch :: StateMonad s s
fetch = SM (s — (s, 3))

store :: s — StateMonad s ()
store x = SM (As — ((), z))

Now the StateMonad type can be made abstract, and stateful programs can be
written just in terms of the combinators. For example, a function to increment
a counter:

tick :: StateMonad Int Int

tick = fetch >= \n —
store (n+ 1) >= A() —
return n

2.3 Monadic Parsing Combinators

In practice, combinator libraries are usually based on monads providing a combi-
nation of features. For example, a parser for values of type a can be represented
by the type

newtype Parser s a = P ([s] = Maybe (a,[s]))

where s is the type used to represent symbols in the parser’s input, and [s] is
Haskell’s notation for the type list-of-s. Such a parser is invoked by applying its
representation to a list of symbols to parse; its result indicates whether or not
parsing was successful, and in the event of success contains both the value parsed
and the remaining, unparsed input. For example, a parser which recognises a
particular symbol can be defined by

symbol :: s — Parser s s
symbol s = P (Azs — case 1s of
[| = Nothing
(z:z8') = if x = s then Just (s,zs') else Nothing)

This parser fails if the input is empty or begins with the wrong symbol, and
succeeds with one symbol consumed from the input otherwise.

This representation of parsers supports a combination of failure handling and
state passing, where the state is the unparsed input. It can be declared to be a
monad just like the Maybe and StateMonad types above — see Wadler’s articles
for details. Further combinators can then be added to build up a complete
library for parsing based on this monad.

2.4 Why Use Monads?

We have now seen that monads can be used as a basis for combinator libraries,
but why should they be used? Why have monads become so ubiquitous in
Haskell programs today?

One reason, of course, is that using monads simplifies code dramatically. It
should be clear that writing a parser with explicit tests for failure and explicit
passing of the input here and there, would be much more labour intensive than

writing one in terms of symbol, return and >=. However, this is an advantage of
using any combinator library to encapsulate coding details, and does not argue
for using monads in particular.

Another reason for using monads is that they offer a design guideline for
combinator libraries: it is often a good start to begin by defining a suitable
monad. For example, it is fairly clear that a library for parsing should include a
combinator to invoke two parsers in sequence, but there are many possible ways
in which such a combinator might handle the two parsers’ results. In some early
parsing libraries the two results were paired together, in others the sequencing
combinator took an extra parameter, a function to combine the results. The
monadic operator >= is more general than either of these: both may be easily
defined in terms of =, but the converse is not true. By basing a parsing
library on a monad, the designer gives the user more flexibility than these ad
hoc alternatives. Indeed, we know from experience that the monadic interface
gives the library user great power.

On the other hand, the monad interface also gives the implementor of a com-
binator library flexibility, because there are so many possible implementations.
We have already seen three examples of monads; in fact, using monad trans-
formers [KW92, LHJ95], we can systematically construct an infinite variety of
monads. A systematic approach to monad design helps the implementor to find
an appropriate type to base a combinator library on, but also helps to make
the library ‘future proof’. Namely, should a future extension of the library re-
quire a change in the representation of, say, parsers, then the implementor can
rest assured that there are a myriad alternatives. To put it another way, the
monad interface itself does not constrain the choice of monad type very much
at all; it exposes very little of the internal workings of the library to the rest of
the program. Consequently monads help the library maintainer to upgrade a
combinator library without forcing changes in the code that uses it.

Finally, the fact that the monad operations return and >= are overloaded in
Haskell permits us to write generic monadic code, which can be used together
with any library based on a monad. A growing collection of such functions are
provided in the standard Haskell library. For example, we can generalise the add
function above (for adding two possibly-failing integers) into a generic function
which applies any binary operator to the results of two computations.

LiftM2 :: Monad m = (a -b—c¢c)—>ma—-mb—omc
LftM2 opxzy = x>= Aa —

y>=Ab—

return(z ‘op‘ y)

(The Monad m = in the type of liftM2is a context, and means that this function
may be used for any monad type m). Now the ‘cat® operator on parsers that
we saw in the introduction can be defined simply as

cat = LftM2 (+)

(where 4 is Haskell’s concatenation operator for lists).

Generic code of this sort represents functionality that the designer of an
individual combinator library no longer needs to provide: simply by basing the
library on a monad, one gains access to a host of useful functions for free. This
in turn may significantly reduce the work required to produce each new library.

Taken together, these arguments provide rather compelling reasons for us-
ing monads in combinator design; it is no wonder that they have become so
ubiquitous.

2.5 Further Parsing Combinators

Let us pursue our example of combinators for parsing a little further. One of
the things a parser can do is to fail; to enable us to express this we define a
combinator which always fails. In fact, very many monads support a notion of
failure, and so it is useful to overload the failure operator, just as we overloaded
monadic return and >=. In Haskell this is done via a predefined class

class Monad m = MonadZero m where
zero:m a

to be read as follows: a parameterised type m is a MonadZero if it is a Monad,
and additionally supports the operation zero. The implementation of zero for
parsers is then defined by

instance MonadZero Parser where
zero = P (\s — Nothing)

Moreover, many monads which support failure also support a choice com-
binator, which tries two alternative ways to perform a computation, using the
second if the first one fails. Haskell defines a predefined class

class MonadZero m = MonadPlus m where
(H):ma—->ma—>ma

and the implementation for parsers is

instance MonadPlus Parser where
PatHPb=P (As— casea s of
Just (x,s") — Just (z,s")
Nothing — b s)

This is one of the fundamental building blocks of a parsing library: every
interesting grammar defines some non-terminals via alternatives. But unfor-
tunately, this definition contains a serious space leak. That is, it causes the
retention of data by the garbage collector much longer than one would naively
anticipate, with the result that parsers built with this operator use much more
space than one would reasonably expect.

The problem is actually inherent to backtracking parsers. By inspection,
the input to be parsed, s, cannot be garbage collected while the first parser a
is running, because if a eventually fails, then s must be passed to b. In a lazy
language such as Haskell, it is the very act of running parser a which forces the
list of tokens s to be constructed, perhaps by reading from a file. Provided a
fails quickly, without forcing the evaluation of many elements of s, then little
space is used. But if @ actually succeeds in parsing a large part of the input s,
then a great deal of space may be used to hold these already-parsed tokens, just
in case a eventually fails and b needs to be invoked. Ironically, in practice a and
b usually recognise quite different syntactic constructs, so that if a succeeds in
parsing many symbols then b will almost certainly fail as soon as it is invoked.
Saving the input for b is costly only when it is unnecessary!

This problem has been known since combinator libraries for parsing were
first proposed, and Wadler for example gives a partial solution in his 1985
paper [Wad85]. But the solutions known for monadic parser libraries are only
partial, and depend on the programmer using an additional combinator similar
to Prolog’s ‘cut’ operator, to declare that a parser need never backtrack beyond a
certain point. Although monadic parser libraries work quite well in practice, the
fundamental problem remains unsolved, which is really rather unsatisfactory.

3 Swierstra and Duponcheel’s Parsing Library

In 1996, Swierstra and Duponcheel found a different way to solve this prob-
lem. They restrict their attention to LL(1) parsers, in which choices between
alternative parses can always be resolved by looking at the next token of the
input. Their implementation of a+b can therefore choose between a and b im-
mediately, and there is no need to save the input s in case the other alternative
needs to be tried later. The space leak that other parsing libraries suffer from
is completely cured.

To implement this idea, Swierstra and Duponcheel need to be able to tell,
given a parser, which tokens it might accept as the first in the input (and also
whether or not it can accept the empty sequence of tokens). This means that
parsers can no longer be represented as functions, as they were in the previous
section. Instead, they are represented as a combination of static information,
which can be computed before parsing begins, and a parsing function, which
can be optimised on the basis of the static information. Paraphrasing Swierstra
and Duponcheel, we might define

data StaticParser s = SP Bool [s]
newtype DynamicParser s a = DP ([s] — (a,]s]))
data Parser s a = P (StaticParser s) (DynamicParser s a)

The first component of a parser tells us whether it matches the empty string,
and which tokens it can accept first, while the second component is a function

which does the actual parsing. For example, the combinator which accepts a
particular symbol can be defined as

symbol :: s — Parser s s
symbol s = P (SP False [s]) (DP (M« : zs) — (s, zs)))

The dynamic parsing function need not test for an empty input, or check that
the first symbol is s, because it will be invoked only when the preconditions
expressed by the static part are satisfied.

Now we can make use of the static information to define the choice combi-
nator efficiently:

instance MonadPlus Parser where
P (SP empty, startersy) (DP p1)+P (SP empty, starterss) (DP p2) =
P (SP (empty, V empty,) (starters;+starterss))
(DP (\zs —
case zs of
I — if empty, then p, [] else p, [|
z:zs8 — if z € starters; then p; (z : z5) else
if x € starterss then ps (z : zs') else
if empty, then p; (x : zs') else py (z : z9)))

It is clear from this definition that the choice of whether to invoke p; or ps is
made directly, and once made cannot be revised, so there is no need to retain a
pointer to the input, and consequently no space leak?.

Just as the H+ operator computes the starter symbols and potential empti-
ness of the parser it constructs, so must all of the other combinators. In most
cases this is straightforward to do, but unfortunately in the case of >= it turns
out to be impossible! To see why, recall the type which > must have in this
case:

(>=) :: Parser s a = (a = Parser s b) — Parser s b

Now, the static properties of the result of >= depend on the static properties
of both the first and the second argument — for example, the combination can
match the empty sequence only if both arguments can. Yet in the definition
of >=, while we have access to the static properties of the first argument, we
cannot obtain the static properties of the second one without applying it to a
value of type a. Such values will be constructed only during parsing, but for
Swierstra and Duponcheel’s idea to be useful we must compute the static parts

2However, this definition is not completely realistic. It assumes that the user of the library
really does write an LL(1) parser, so that starters; and startersy are disjoint. In a real
implementation this would of course be checked. Moreover, the expensive tests of the form
T € starters; can be avoided by choosing a cleverer representation of parsers — see Swierstra
and Duponcheel’s article for details.

of parsers once and for all, before parsing begins. It is simply impossible to find
a definition of >= which does this.

Swierstra and Duponcheel’s solution to this problem was to abandon the use
of a monad: instead of >>= they defined a different sequencing operator with the

type
(<) :: Parser s (a — b) = Parser s a — Parser s b

This operator is perfectly adequate for expressing parsers, and poses no problem
as far as computing static properties in advance of parsing is concerned. Nev-
ertheless, the need to abandon the monad signature is worrying, for the reasons
we discussed above. Useful as it is, Swierstra and Duponcheel’s parsing library
stands alone; it cannot, for example, be used with generic monadic functions.

If this were an isolated case we might simply ignore it. But Swierstra and
Duponcheel’s idea is clearly much more widely applicable: to optimise a com-
binator library, redefine the combinators to collect static properties of the com-
putations they construct, and then use those static properties to optimise the
dynamic computations. If we think of a library as defining a domain specific
‘language’, whose constructions are represented as combinators, then Swierstra
and Duponcheel’s idea is to implement the language via a combination of a
static analysis and an optimised dynamic semantics. We may clearly wish to
do this very often indeed. But every time we do, the type of >= will make it
impossible to use a monadic interface!

It is this observation that motivated us to search for a generalisation of mon-
ads, a generic interface for combinator libraries that fits a much wider class of
applications. We will introduce the generalisation we found in the next section.

3.1 On Category Theory

Before we do so, we make a short digression on the subject of category the-
ory. The concept of a monad was developed by category theorists long before it
eventually found an application in functional programming. Some might find it
surprising that something so abstract as category theory should turn out to be
useful for something so concrete as programming. After all, category theory is,
in a sense, so abstract as to be rather unsatisfying: it is ‘all definitions and no
theorems’, almost everything turns out to be a category if you look at it long
enough, to say something is a category is actually to say very little about it.
The same is true of most categorical concepts: they have very many possible
instantiations, and so to say that something is, for example, a monad, is to say
very little. This extreme generality is one reason why it is hard for the beginner
to develop good intuitions about category theory, but it is hardly surprising:
category theory was, after all, developed to be a ‘theory of everything’, a frame-
work into which very many different mathematical structures would fit. But
why should a theory so abstract be of any use for programming?

10

The answer is simple: as computer scientists, we value abstraction! When
we design the interface to a software component, we want it to reveal as little
as possible about the implementation. We want to be able to replace the imple-
mentation with many alternatives, many other ‘instances’ of the same ‘concept’.
When we design a generic interface to many program libraries, it is even more
important that the interface we choose have a wide variety of implementations.
It is the very generality of the monad concept which we value so highly, it is
because category theory is so abstract that its concepts are so useful for pro-
gramming.

It is hardly surprising, then, that the generalisation of monads that we
present below also has a close connection to category theory. But we stress
that our purpose is very practical: it is not to ‘implement category theory’, it
is to find a more general way to structure combinator libraries. It is simply our
good fortune that mathematicians have already done much of the work for us!

4 Arrows

Returning to our problem, recall that Swierstra and Duponcheel were unable to
implement

(>=) :: Parser s a — (a — Parser s b) — Parser s b

because its second argument is a function, and the only thing one can do with a
function is apply it. Lacking a suitable value of type a to apply it to, they could
not extract any static information from it, and therefore could not construct
the static part of >=’s result.

Our solution is simply to change the representation of this argument. Rather
than a function of type a — Parser s b we will use an abstract type, which we
will call an arrow from a to b. We solve Swierstra and Duponcheel’s problem by
choosing a representation for arrows which makes static properties immediately
accessible.

In fact there is no need to work with two abstract types, a monad type and
an arrow type. Instead we will work purely with arrows. In general, an arrow
type will be a parameterised type with two parameters, supporting operations
analogous to return and >=. Just as we think of a monadic type m a as repre-
senting a ‘computation delivering an a’, so we think of an arrow type a b ¢ (that
is, the application of the parameterised type a to the two parameters b and c)
as representing a ‘computation with input of type b delivering a ¢’; arrows make
the dependence on input explicit.

Just as Haskell defines a Monad class, so we shall define an Arrow class with
analogous operators. But we must make dependence on an input explicit. Thus
while the return operator, with type a — m a, merely converts a value into a
computation, its analogue for arrows, with type (b — ¢) — a b ¢, converts a

11

function from input to output into a computation. The analogue of >= is just
composition of arrows. We define

class Arrow a where
arr:(b—¢)—abc
(>):abc—sacd—abd

For any monad m, functions of type a — m b are potential arrows. If we
give this type a name,

newtype Kleislim a b= K (a — m b)
then we can implement the arrow operations as follows:

instance Monad m = Arrow (Kleisli m) where
arr f = K (Ab — return (f b))
Kfs>Kg=KM—fb>g)

This shows that arrows do indeed generalise monads; for every monad type,
there is a corresponding arrow type. (Categorically speaking, we just con-
structed the Kleisli category of the monad m). Of course, we will see later
that there are also many other, non-monadic implementations of the arrow sig-
nature.

4.1 Arrows and Pairs

However, even though in the case of monads the operators return and >= are
all we need to begin writing useful code, for arrows the analogous operators arr
and >> are not sufficient. Even the simple monadic addition function that we
saw earlier

add :: Monad m = m Int - m Int - m Int
add x y =z >= I — y >= v — return (u + v)

cannot yet be expressed in an arrow form. Making dependence on an input
explicit, we see that an analogous definition should take the form

add :: Arrow a = (a b Int) — (a b Int) — (a b Int)
add f g=...

where we must combine f and g in sequence. The only sequencing operator
available is >>, but f and g do not have the right types to be composed. Indeed,
the add function needs to save the input of type b across the computation of f,
so as to be able to supply the same input to g. Likewise the result of f must
be saved across the computation of g, so that the two results can eventually be
added together and returned. The arrow combinators so far introduced give us
no way to save a value across another computation, and so we have no alternative
but to introduce another combinator.
We extend the definition of the Arrow class as follows:

12

class Arrow a where
arr:(a—b) >abc
(>):abc—sacd—abd
first::abec—a (b,d) (c,d)

The new operator first converts an arrow from b to ¢ into an arrow on pairs, that
applies its argument to the first component and leaves the second component
untouched, thus saving its value across a computation. Once again, we can
implement first for any Kleisli arrow:

instance Monad m = Arrow (Kleisli m) where

first (K f) = K (Ab,d) — f b 5= Ac — return(c, d))

Given first, we can define a combinator that applies its argument to the
second component instead,

second :: Arrow a = a bc— a (d,b) (d,c)
second f = arr swap >> first f >> arr swap
where swap (z,y) = (y,z)

a combinator which processes both components of a pair,

(#) :: Arrowa=>abc—ade—a (bd) (ce)
g = first f > second g

and a combinator which builds a pair from the results of two arrows,

(8&) :: Arrowa=abc—abd—abcd)
f &g = arr (Ab— (b,b)) >>(f = g)

With these definitions the add function is easily completed:

add :: Arrow a = (a b Int) — (a b Int) — (a b Int)
add f g = (f & g) > arr (A\(u,v) = u+v)

Just as we abstracted the idea of applying a binary operator to the results of
two monadic computations, by going on to define lift M2, so we can generalise
the arrow version likewise:

liftA2 :: Arrowa = (b—>c—d) saeb—saec—aed
liftA2 op f g = (f 8 g) >> arr (\(b,c) = b ‘op* ¢)

By this point the reader with a categorical background may have formed the
impression that arrows with the extended interface implement a category with
products. After all, we can construct arrows into a pair type using &&, and we
can construct projection arrows as arr fst and arr snd. Beware! In fact, there
is no reason to expect Haskell’s pair type to be a categorical product in the

13

category of arrows, or indeed to expect any categorical product to exist. This
would require properties such as

(f&& g)> arr fst=f

to hold, and in general, since our arrows usually represent computations with
some sort of effect, laws of this sort are simply false. In this case, the side-effects
of g are lost on the right hand side.

The reader may also wonder why we chose to take first as primitive, rather
than (say) & which resembles a well-known categorical operator. There are
two main reasons for our choice.

e Firstly, since in general our arrows represent computations with effects,
evaluation order makes a difference. The definition of f & g above is ex-
plicit about this: the effects of f are composed with the effects of g in
that order, that is evaluation is left-to-right. The definitions of & and
above can be used as algebraic laws by the programmer, laws which cap-
ture evaluation order. In contrast, had we taken & as primitive, then the
designer of each arrow-based library would have had to choose either left-
to-right or right-to-left evaluation, with the result that evaluation order
would probably differ from case to case. This would make the behaviour
of arrow-based libraries less predictable, and reduce the number of useful
laws that arrow combinators satisfy.

e Secondly, first is a simpler operator than 8&, and in general its implemen-
tation is around half the size of that of the latter. In practice the imple-
mentations of arrow combinators can be quite complex, and by making
the choice we did we reduce the work required to build a new arrow-based
library appreciably.

4.2 Arrows and Interpreters

How awkward is it to program with arrow combinators instead of monadic ones?
And how expressive are the combinators in each case — are there some kinds
of program which can be expressed using return and >>=, but cannot be written
at all in terms of arr, >> and first? We can begin to answer both questions
by looking at (fragments of) an interpreter based on arrows ws. one based on
monads. If we can write an interpreter in which program fragments in a certain
language are interpreted as arrows, then we know that any kind of program
expressible in the interpreted language can also be expressed in terms of the
arrow combinators.

To begin with, we shall consider a tiny language with only variables and
addition. We represent expressions by the datatype

data Ezp = Var String| Add Ezp Exp

14

The value of such an expression is always an integer, but in anticipation of
making extensions we introduce a separate type of values anyway:

data Val= Num Int
We will also require a type for environments:
type Env = [(String, Val)

Now, a monadic interpreter maps expressions to computations, represented
using a monad M. To do so, we introduce an evaluation function

eval :: Exp — Env— M Val
which we can define by

eval (Var s) env = return (lookup s env)
eval (Add ey e3) env = liftM2 add (eval e; env) (eval ex env)
where add (Num u) (Num v) = Num (u + v)

An arrow interpreter, on the other hand, maps expressions to computations
represented as arrows. But what should the input of an arrow denoting an
expression be? By analogy with the monadic case, it is natural to take the
input of an expression to be the environment. In an arrow interpreter based on
arrow type A, we therefore give eval the type

eval :: Exp — A Env Val

We can define eval as follows:

eval (Var s) = arr (lookup s)
eval (Add ey e3) = liftA2 add (eval e1) (eval e3)
where add (Num u) (Num v) = Num (u + v)

As we can see, at least in this small example, the arrow code is by no means
more awkward than the monadic code. Indeed, often the user of a monadic
combinator library works more with derived operators such as liftM2 than with
the operators in the monad signature themselves. Where analogous operators
can be defined on arrows, arrow programs are essentially the same as monadic
ones.

4.2.1 Interpreting Conditionals

Let us pursue the interpreter example a little further, and add a conditional
expression to the interpreted language. We extend the expression and value
types as follows:

data Ezp = ... |If Exp Ezp Fxp
data Val= ... | Bl Bool

15

The monadic interpreter is easy to extend; we add a new case

eval (If e1 e2 e3) env = eval €1 env >= A(BLb) —
if b then eval es env else eval e3 env

But the arrow interpreter is more difficult. Certainly we could define

eval (If e; es e3) = (eval e1 8& eval e; 8 eval e3) >
arr (\(BL b, (v1,v3)) — if b then v; else vs)

but this doesn’t properly capture the meaning of a conditional expression: both
branches are evaluated, and we just choose between the results. Of course the
intention is to evaluate just one branch, depending on the value of the boolean.

And this is the crux of the problem: the arrow combinators provide no
way to choose between two arrows on the basis of an input. To do so, we are
obliged to add a new combinator. But this time, we choose to define a new class
ArrowChoice rather than enlarge the existing Arrow class further. By doing so
we retain the freedom to define arrow types which do not support a dynamic
choice combinator; they will simply fail to be instances of our new class.

The new combinator we want will choose between two arrows on the basis
of the input, and it makes sense therefore for the input to be of Haskell’s sum

type
data FEither a b= Left a| Right b

We will define (f ||| g) to pass Left inputs to f and Right inputs to g, so the type
of ||| will be

(|]) == ArrowChoice a = a bd — a ¢ d — a (Either b c) d

However, just as we chose to define first as an arrow primitive rather than
&%, so we choose a simpler operator than ||| as the primitive method in the
ArrowChoice class. We define

class Arrow a = ArrowChoice a where
left :: a b ¢ — a (Either b d) (Either ¢ d)

where left f invokes f only on Left inputs, and leaves Right inputs unchanged.
As usual, we check that we can implement left for Kleisli arrows:

instance Monad m = ArrowChoice (Kleisli m) where
left (K f) =K (Ax > case z of
Left b — f b= Ac — return (Left ¢)
Right d — return (Right d))

Once we have introduced left, we can define

16

right f = arr mirror>> left f >> arr mirror
where mirror (Left ©) = Right =
mirror (Right x) = Left ©

f<t>g=left f>right g

flllg = (f <t g) > arr untag
where untag (Left z) =z
untag (Righty) =y

Now returning to our interpreter, we can at last define the interpretation of
conditionals:

eval (If e1 es e3) = (eval ey 8 arr id) >
arr(A(BL b, env) — if b then Left env else Right env) >
(eval ez ||| eval e3)

This is a little more awkward than the monadic code, but would be much
simplified by introducing a combinator especially for testing predicates:

test:: Arrow a = a b Bool — a b (Fither b b)
test f = (f & arr id) >> arr (\(b,z) — if b then Left x else Right x)

Such a combinator is sufficiently useful that it is reasonable to include it in the
arrow library, whereupon this case of our interpreter becomes no more compli-
cated than the monadic version:

eval (If e1 e2 e3) = test (eval e; >> arr(A(Bl b) — b)) (eval ez ||| eval e3)

4.2.2 Interpreting M-Calculus

Using the combinators we have now introduced, we could go on to write an arrow
interpreter for a complete first-order functional language. But can we interpret
higher-order functions? Let us consider adding A-expressions and (call-by-value)
application to the interpreted language. We extend the type of expressions as
follows:

data Ezp = ... | Lam String Exp | App Ezp Exp

Before we can extend the type Val, we must decide how to represent function
values. Since calling a function may have an effect, we cannot interpret functions
as values of type Val — Val. In the monadic interpreter, we can use functions
whose result is a computation,

data Val= ... | Fun (Val > M Val)

while in the arrow interpreter, we naturally represent functions by arrows:

17

data Val= ... | Fun (A Val Val)
The monadic eval function is easily extended to handle the new cases:

eval (Lam x €) env = return (Fun (Av — eval e ((x,v) : env)))
eval (App e1 e2) env = eval ey env>= Af — eval ez env>= v — f v

But the arrow version proves more difficult. Interpreting A-expressions is un-
problematic,

eval (Lam x €) = arr (Aenv — Fun (arr (v — (z,v) : env) >> eval €))
but application is much harder. If we try to define
eval (App e1 e2) = ((eval e1 >> arr (\(Fun f) — f)) && eval e2) >> app

for some suitable definition of app, then we find that app must invoke an arrow
which it receives as an input, and there is no way to do so using the combinators
so far introduced. There is nothing for it but to introduce another new class:

class Arrow a = ArrowApply a where
app :a (abeb)c

whereupon the definition of eval above works. So, given an implementation of
app, we can write an interpreter for the A-calculus, and so we can also express
other arrow programs in a higher-order style. Once more, it is easy to implement
app for Kleisli arrows:

instance Monad m = ArrowApply (Kleisli m) where
app =K (MK f,z) = [z)

We have now seen that, given a monad m, we can define a corresponding
arrow type Kleisli m which moreover supports all the other combinators we have
introduced so far. Conversely, it turns out that, given an arrow type a which
also supports app, we can define a corresponding monad type ArrowMonad a.
The definition is simply

newtype ArrowApply a = ArrowMonad a b= M (a Void b)

where Void is Haskell’s one-point type, whose only element is undefined. That
is, a ‘monadic’ computation based on a is simply an arrow which ignores its
input. We can now define the monad operations on ArrowMonad a:

instance ArrowApply a = Monad (ArrowMonad a) where
return x = M (arr (Az — x))
Mm>=f=M(m>
arr Az = let M h = f z in (h, undefined)) >
app)

18

We need app in order to invoke the arrow that the second argument of >=
produces.

One conclusion we can draw from this is that arrow types which support app
are just as expressive as monads. In principle one might eliminate the concept
of a monad from Haskell altogether, and replace it with arrows supporting app.
But another conclusion to draw is that arrows supporting app are really of little
interest to us here. Our motivation, after all, is to find a generic interface for
combinator libraries which cannot be based on a monad. But clearly, any library
which supports an arrow type with app could equally well be given a monadic
interface. In the rest of the paper, therefore, we will be most interested in arrow
types which cannot be made instances of ArrowApply.

5 Swierstra and Duponcheel’s Parsers as Arrows

Now that we have introduced a number of arrow classes, let us return to Swier-
stra and Duponcheel’s parsers. Recall that we defined their parser type as

data StaticParser s = SP Bool [s]
newtype DynamicParser s a = DP ([s] — (a,][s]))
data Parser s a = P (StaticParser s) (DynamicParser s a)

We were unable to make Parser into a monad, but can we make it into an arrow
type?

To do so, we will need to add an extra type parameter, since arrow types
take two parameters, whereas monad types take only one. Our intention is that
the static properties of a parser should not depend on parse-time inputs, so let
us change only the type of the dynamic parsing function:

newtype DynamicParser s a b= DP ((a,[s]) = (b,[s]))
data Parser s a b= P (StaticParser s) (DynamicParser s a b)

Implementing the arrow combinators for this type is now straightforward:

instance Arrow (Parser s) where
arr f = P (SP True []) (DP (A(b,s) = (f b,s)))
P (SP empty, starters,) (DP p1)>> P (SP empty, startersy) (DP ps) =
P (SP (empty, A emptys,)

(starters; ‘union® if empty, then starters, else []))
(DP (p2 © p1))

first (P sp (DP p)) =
P sp (}‘((ba d),S) — let (C, Sl) =p (ba S) in ((Ca d)asl))

19

It is easy to modify the definitions from section 3 of symbol, the failure
operator zero, and the choice combinator +-, to handle the arrows’ input appro-
priately. Of course, since zero and -+ are overloaded names for monad operators,
then we cannot use the same names for the corresponding operators on arrows.
We therefore introduce two further arrow classes,

class Arrow a = ArrowZero a where
zeroArrow ::a b c

class ArrowZero a = ArrowPlus a where
(#):abc—abc—abe

and declare Parser s to be an instance of these classes instead. Having done
so, we can go on to define all the operators in the interface that Swierstra
and Duponcheel use, in terms of the arrow operations already introduced. For
example, their sequencing operator is definable by

(&) :: Parser s a (b— ¢) — Parser s a b — Parser s a c
(@) = liftA2 (\fz — fzx)

So the user of an arrow-based parsing library can use it in exactly the same way
as Swierstra and Duponcheel’s original library, but in addition can combine
parsers with generic arrow code.

What, then, of the other arrow classes, ArrowChoice and ArrowApply? A
moment’s thought shows that parsers cannot support these signatures. The
choice operator f ||| g is supposed to make a dynamic choice between two arrows
on the basis of the input, which implies that the possible starting symbols of
f ||| g would depend on the arrow’s input. But we have deliberately designed the
Parser type so that the value of the input cannot affect the static component. It
follows that ||| is unimplementable. A similar argument shows that app is also
unimplementable (indeed, any arrow type which supports app can also support
choice; to see this, give a definition of left in terms of app). Luckily this does not
matter: it is rare that we want to write a parser which decides on the grammar
to accept on the basis of previously parsed values.

What we see here is that the arrow interface lets the programmer make finer
distinctions than the monad interface does; we can distinguish between types of
computations that permit dynamic choices and calls of dynamic functions, and
types of computations that do not. Swierstra and Duponcheel parsers do not. In
contrast, once we declare a type to be a monad, we open the possibility of doing
everything with it. And this is why the monadic interface is too restrictive.

6 Stream Processors: Processes as Arrows

We have already seen that any monad gives rise to a corresponding arrow type in
a natural way, and that Swierstra and Duponcheel’s parsers (or more generally,

20

combinators which collect static information about computations) can also be
represented as arrows. In this section we will show that yet another ‘non-
monadic’ notion of computation, namely that of a process, fits naturally into
the arrow framework.

We concern ourselves for the time being with processes that have one input
channel and one output channel. Such processes can be modelled in a purely
functional language by stream processors. A stream processor maps a stream
of input messages into a stream of output messages, but is represented by an
abstract data type. Let SP a b be the type of stream processors with inputs of
type a and outputs of type b. Stream processors are then constructed using the
operators

put::b—> SPab— SPab

which constructs a stream processor which outputs the b and then behaves like
the second argument, and

get:: (a— SPab)— SPab

which constructs a stream processor which waits for an input, passes it to its
function argument, and then behaves like the result. For simplicity we shall only
consider non-terminating (recursively defined) stream processors; otherwise we
would add another operator to construct a stream processor which halts.

Stream processors can be represented in several different ways, but quite a
good choice is as a datatype with put and get as constructors:

data SPab= Putb (SPab)|Get(a— SPab)
put = Put
get = Get

Now we can write single processes using put and get, but to put processes to-
gether we need further combinators.

The arrow combinators turn out to represent very natural operations on
processes! For readability we present them separately rather than as one large
instance definition. The arr operator builds a stateless process that just applies
a given function to its inputs to produce its outputs.

arr f = Get (\x — Put (f z) (arr f))
The >> operator connects two processes in series:

sp; >> Put ¢ sp, = Put ¢ (sp; >> sp,)
Putb sp; > Get f=sp;>fb
Get f1 > Get fo = Get (Aa — f1 a>> Get f3)

Notice that we define process composition lazily: the composition blocks waiting
for an input only if both its constituent processes do.

21

Finally the first operator builds a process that feeds the first components of
its inputs through its argument process, while the second components bypass
the argument process and are recombined with its outputs. But what if the
argument process does not produce one output per input? Our solution is to
buffer the unconsumed inputs until corresponding outputs are produced. The
function bypass takes as an additional argument the queue of second components
waiting to bypass f:

first f = bypass [| f

bypass ds (Get f) = Get (A(b,d) — bypass (ds+-[d]) (f b))
bypass (d : ds) (Put ¢ sp) = Put (c,d) (bypass ds sp)
bypass [] (Put ¢ sp) = Get (A(b,d) = Put (c,d) (bypass [] sp))

With this definition, f & g combines f and g in parallel, synchronising their
output streams to produce a stream of pairs (and also synchronising their joint
output with the input stream).

We can now use generic arrow combinators to write down stream processors.
For example, the following stream processor outputs Fibonacci numbers:

fibs = put 0 fibs'
fibs' = put 1 (liftA2 (+) fibs fibs')

Stream processors also support a natural notion of failure: a failing process
simply never produces more output. We can therefore define a zeroArrow as

instance ArrowZero SP where
zeroArrow = Get (Ax — zeroArrow)

We define p ¢ to run p and ¢ in parallel, merging their outputs.

instance ArrowPlus SP where
Put b sp, H spy = Put b (sp; H sps)
spy; H# Put b sp, = Put b (sp; H+ spy)
Get f1 # Get fo = Get (Aa — f1 aH f2 a)

We take care to define parallel composition lazily also, so that p ¢ blocks
waiting for input only if both p and ¢ do.
These definitions satisfy the laws

zeroArrowH#q = ¢
p - zeroArrow = p
(pHa)H#r = pH(gtr)

which is a strong indication that they are reasonable.

Stream processors can also support dynamic choice. The stream processor
left sp simply passes messages tagged Left through sp, while others are passed
on directly.

22

instance ArrowChoice SP where
left (Put ¢ sp) = Put (Left c) (left sp)
left (Get f) = Get (A\z — case z of

Lefta — left (f a)
Right b — Put (Right b) (left (Get f)))

With this definition, then f ||| g can be regarded as yet another kind of parallel
composition, which routes inputs tagged Left to f and inputs tagged Right to
g.

In fact, although stream processors have only one input and one output
channel, we can model processes with many of each by multiplering several
channels onto one. For example, we can regard a channel carrying messages
of type Fither a b as a representation for two channels, one carrying as and
the other carrying bs. With this viewpoint, f ||| g combines f and g in parallel
to yield a stream processor with two input channels (multiplexed onto one),
and merges the output channels onto one. Should we wish to combine f and
g without merging their outputs, we can instead use f <+>g. We can copy an
input channel to two output channels using arr Left # arr Right, and so we can
define a parallel combination of f and g with two output channels, but which
copies one input channel to both processes by

f|&| g = (arr Left# arr Right) >>(f <+>g)

We can write a stream processor with two input channels and one output,
that just copies the first input channel and discards the second, or vice versa,
as

justLeft = arr id ||| zeroArrow
JustRight = zeroArrow||| arr id

Not surprisingly, combining two processes and then discarding the output chan-
nel from one of them is equivalent to the other:

(f |&| g) >> justLeft = f
(f|&|g) >> justRight = g

But these properties have a categorical interpretation: they tell us that the
Either type is a weak categorical product in the category of stream processors!
(Only weak, because there is more than one way to define |&| so that these
equations hold; our definition favours g over f in case both produce outputs
simultaneously). In a deep sense, then, the Either type behaves more like a
product than the pair type does, when we work with stream processors. And
indeed, a channel carrying a sum type corresponds much more closely to a pair
of channels than does a channel carrying pairs.

23

The only arrow class we have not yet shown how to implement is ArrowApply.
But it turns out that there is no sensible definition of

app :: SP (SP a b,a) b

Since app would receive a new stream processor to invoke with every input, there
is no real sense in which the stream processors it is passed would receive a stream
of inputs; we could supply them with only one input each. This would really
be very unnatural. Since stream processors do not support a natural definition
of app, they cannot either be fitted into the monadic framework. They thus
give us our second example of a useful kind of computation which cannot be
represented as a monad.

However, recalling that Either may play the role of a product type for stream
processors, we might instead of app consider looking for a function of type

dyn :: SP (Either (SP a b) a) b

There is actually a very natural definition with this type: the ‘dynamic stream
processor’ dyn receives stream processors on its first input channel, and then
passes inputs from its second input channel through the stream processor re-
ceived, until it receives another stream processor to replace the first. We imple-
ment it as

dyn = dynloop zeroArrow
where dynloop (Put b sp) = Put b (dynloop sp)
dynloop (Get f) = Get (A\z —
case z of
Righta — dynloop (f a)
Left sp — dynloop sp)

Stream processors are not just amusing toys: they are at the heart of the
fudgets combinator library for programming graphical user interfaces [CH93].
A fudget from a to b is like a stream processor with two extra hidden commu-
nication channels, to and from the window manager. A fudget can therefore
exchange high-level messages with other fudgets, but can also manage a part
of the screen. Thus a fudget has both an appearance and a behaviour, which
makes them useful for structuring complex user interfaces.

The fudget type F' a b is actually implemented as a stream processor in
which the high and low level communication channels are multiplexed onto one,
in just the way we described. Since fudgets are just stream processors, they can
also be declared to be arrows, supporting the same operations. Interestingly,
almost all the operations we discussed in this section do indeed appear in the
fudgets library — even dyn — although of course, they appear with different
names, and not as instances of a general framework.

24

7 Functors: New Arrows from Old

One of the attractive features of monads is that they can be designed system-
atically, using so-called monad transformers [LHJ95]. A monad transformer is
a monad parameterised on another monad, such that computations over the
parameter monad can be ‘lifted’ to computations over the new one.

For example, the state monad of section 2.2 can be generalised to a monad
transformer:

newtype StateMonadT s m a = SM (s - m (a, s))

In general the monad operators on the new type must be defined in terms of
the monad operators on the parameter monad, as in this case:

instance Monad m = Monad (StateMonadT s m) where
return a = SM (\s — return (a, s))
r>=f=SM(As— let SMz' =z in
z' s >= AMa,s') =
let SM f'=fain
79

Lifting of computations is defined by passing the state through unchanged:

liftState :: Monad m = m a — StateMonadT s m a
liftState © = SM (As = x >>= Aa — return (a, s))

Finally, the new monad supports fetch and store operations, just like the original
state monad:

fetch :: Monad m = StateMonad s m s
fetch = SM (s — return (s, s))

store :: Monad m = s — StateMonad s m ()
store x = SM (As — return (), x))

The new monad thus supports all the computations of the parameter monad
(by lifting), and in addition manages a state. By composing monad transform-
ers together, one can build up a monad providing any desired combination of
features. For example, if we want a monad which manages a state and handles
failures, we can use the type StateMonadT s Maybe.

In this section we show that arrows have the same property: we can define
‘arrow transformers’ which map simpler arrow types to more complex ones.
The most important monad transformers have arrow transformer counterparts,
and we will describe those for handling failures, state, and continuations. An
arrow transformer is, by analogy with a monad transformer, just an arrow type
parameterised on another arrow type, such that arrows of the second type can
be mapped into arrows of the first. But in fact, this corresponds closely to the

25

standard categorical notion of a functor, and so from now on we shall use the
word functor instead of arrow transformer.

We note briefly that the concepts of monad transformers and functors can
be formalised as classes, thus overloading the lifting operations, but that this
requires a much more powerful class system than Haskell currently supports.
We therefore refrain from doing so.

7.1 The Maybe Functor

Any arrow type can be lifted to an arrow type supporting failures by the functor
newtype MaybeFunctor a b ¢ = MF (a b (Maybe c))

That is, we use arrows whose result can indicate failure. We can lift arrows to
this type using

liftMaybe :: Arrow a = a b ¢ = MaybeFunctor a b ¢
LiftMaybe f = MF (f > arr Just)

The arrow operations need to handle failures, which means they need to make
dynamic decisions. We therefore must require that the parameter arrow type
supports choice:

instance ArrowChoice a = Arrow (MaybeFunctor a) where
arr f = liftMaybe (arr f)

MF f>> MF g= MF (f>>
arr (A\z — case z of
Just ¢ — Leftc
Nothing — Right Nothing) >

(9|l arr id))

first (MF f) = MF (first f >
arr (A(c',d) — case ¢’ of
Juste — Just (c,d)
Nothing — Nothing))

Arrows formed by MaybeFunctor support failure and failure handling, of
course:

26

instance ArrowChoice a = ArrowZero (MaybeFunctor a) where
zeroArrow = MF (arr (Az — Nothing))

instance ArrowChoice a = ArrowPlus (MaybeFunctor a) where
MF f 4 MF g = MF ((f & arr id) >
arr (\(c',b) = case ¢’ of
Justc — Leftc
Nothing — Right b) >

(arrid||| 9))
and they also, not surprisingly, support choice:

instance ArrowChoice a = ArrowChoice (MaybeFunctor a) where
MF f||| MF g = MF (f |l)

Finally, if the underlying arrows support application, then so do the arrows
produced by MaybeFunctor:

instance (ArrowChoice a, ArrowApply a) = ArrowApply (MaybeFunctor a) where
app = MF (arr (\(MF f,b) — (f,b)) >> app)
7.2 The State Functor

Any arrow type can be lifted to an arrow type supporting state passing by the
functor

newtype StateFunctor s a b ¢ = SF (a (b, s) (c,s))
We can lift arrows to this type using

liftState :: Arrow a = a b ¢ — StateFunctor s a b c
liftState f = SF (first f)

The arrow operations just pass the state along as one would expect:

instance Arrow a = Arrow (StateFunctor s a) where
arr f = liftState (arr f)
SF f>S8Fg=SF(f>g)
first (SF f) = SF (arr (A((b,d), s) = ((b, 5),d)) >
first f>
arr (M((¢, 8),d) = ((¢,d), 5)))

Of course, the arrows produced by the StateFunctor support fetch and store
operations:

27

fetch :: Arrow a = StateFunctor s a b s
fetch = SF (arr (A(b,s) = (s,5)))

store :: Arrow a = StateFunctor s a s ()
store = SF (arr (A(z,s) = ((),x)))

Stateful arrows inherit the ability to support dynamic choice, failure, and
failure handling from the parameter arrow:

instance ArrowChoice a = ArrowChoice (StateFunctor s a) where
left (SF f) = SF (arr (A\(z,8) » case z of
Left b — Left (b, s)
Right ¢ — Right (c,s)) >
((f > first (arr Left)) ||| first (arr Right)))

instance ArrowZero a = ArrowZero (StateFunctor s a) where
zeroArrow = SF zeroArrow

instance ArrowPlus a = ArrowPlus (StateFunctor s a) where
SF f4# SFg=SF (f#g9)

Finally, if the underlying arrow type supports application, then so do stateful
arrows based on it:

instance ArrowApply a = ArrowApply (StateFunctor s a) where
app = SF (arr (\((SF f,b),s) = (£, (b,s))) >> app)

The state functor we have defined is of course closely related to the state
monad transformer, but the advantage of defining functors on arrows, rather
than transformers on monads, is that we can apply them to arrow types that
do not correspond to any monad. As an example, the reader is invited to work
out the behaviour of arrows of type StateFunctor s SP, derived by adding state
passing to stream processors.

7.3 The CPS Functor

A third well-known monad transformer adds continuation passing to any monad.
In the monadic world, we can define

newtype CPS ans m a = CPS ((a = m ans) — m ans)

so that a computation is represented by a function from a continuation for
its result (a monadic function into an answer type) to the computation of the
answer. In the world of arrows, we can represent a continuation by an arrow,
rather than a function, and a continuation-passing arrow from b to ¢ as a function
from the continuation of the result to the continuation of the argument:

newtype CPSFunctor ans a b ¢ = CPS ((a ¢ ans) — (a b ans))

28

Lifting an arrow to the CPS type is straightforward:

LiftCPS :: Arrow a = a b ¢ — CPSFunctor ansa b ¢
liftCPS f = CPS (Ak — > k)

But now, in order to define the basic arrow operations on CPS arrows, we find
we already need to use application at the underlying arrow type!

instance ArrowApply a = Arrow (CPSFunctor ans a) where
arr f = liftCPS (arr f)
CPS f> CPSg=CPS(\k — f (g k))
first (CPS f) =
CPS (Ak = arr (A(b,d) = (f (arr (Ac = (¢,d)) > k),b)) > app)

To define first (CPS f) we must invoke f with a continuation which recombines
its result with the second component of the argument. This we can do, but only
in the scope of an arr (A(b,d) — ...) which binds a name to that second com-
ponent. We can only construct the arrow representing f’s continuation within
another arrow, and so we can only contruct the continuation of f’s argument
within an arrow, which forces us to use app to invoke it. In a way, since con-
tinuation passing is the epitomy of higher-order programming, this is not really
surprising.

CPS arrows inherit the ability to support failures and failure handling from
the underlying arrow type, and can of course support dynamic choice and ap-
plication. We will not give the definition here, however. What we will do is
show how to define a jump operator, which invokes a continuation supplied as
its input

Jump :: ArrowApply a = CPSFunctor ans a (a ¢ ans,c) z
jump = CPS (Ak — app)

and a combinator callcc, which passes the current continuation to its argument
arrow:

callee :: ArrowApply a =
(a ¢ ans — CPSFunctor ans a b ¢) - CPSFunctor ansa b ¢
callecc f = CPS (\k —let CPSg= f kin g k)

As we have seen, continuation passing arrows always support application,
and must be based on an underlying arrow type which also supports application.
Thus both the argument and the resulting arrow types correspond to monads.
Our CPS functor is therefore no more general than the CPS monad transformer,
but nonetheless, what we have shown is that we can work entirely with arrows
even if we want to use continuation passing style.

29

8 Arrow Laws

Up to this point we have ignored the matter of laws. In fact the presentation
of monads in section 2 was a little oversimplified: an implementation of return
and >= constitutes a monad only if the so-called monad laws are satisfied:

returnt>=f = fz
m>=return = m
m>=fil>=g = m>Mr—> fz>=g)

These laws state in essense that sequential composition is associative, and return
is its unit, although they are complicated slightly by the need to pass values
from one computation to the next. The programmer relies implicitly on the
monad laws every time he or she uses a monad based library without worrying
about how to bracket sequential compositions.

We will place similar requirements on the implementations of the arrow
combinators. But since there are many more arrow combinators than monadic
ones, we will require a larger collection of laws. All of the laws that we state in
this section are satisfied by Kleisli arrows.

We can simplify the statements of the laws a little by noting that the ordinary
function type can be declared to be an arrow:

instance Arrow (—) where
arr f = f
f>g=g0of
first f =)‘(b7 C) - (f b,C)

instance ArrowChoice (—) where

left f (Left b) = Left (f b)
left f (Right d) = Right d

instance ArrowApply (—) where
app = A(f,2) = f =

Of course, we will require composition to be associative, and moreover to be
preserved by arr:

(f>g9)>h = [>(@>h)
arr (f>g) = arf>arrg

We will require an extensionality principle for arrows, that arrows which ‘behave
the same’ for all inputs really are equal. We can formulate this as a law as

follows:
arr h>>f =arr h>g

h is onto

}==>f=g

30

Dually
[>arh=g>arrh _
h is one-to-one = f=y
It follows that
arrid>>f=f=f>arrid

(by composing on each side with arr id, since id is both one-to-one and onto).
Categorically speaking, we now know that arrows form a category, and that arr
is a functor from the category of Haskell functions to the category of arrows.

These laws correspond in some sense to the monad laws, but now we must
go on to state the laws that the other arrow combinators are required to satisfy.
Let us call an arrow pure if it is equal to arr f for some f; a pure arrow ‘has
no side-effects’. We shall require that all combinators behave for pure arrows
as they do for functions; that is:

first (arr f) = arr (first f)
left (arr f) = arr (left f)

Furthermore we require that our combinators preserve composition:

first (f>>g) = first f> firstg
left (f>>g) = leftf>>leftg

Similar properties for second and right follow as easy consequences.
Notice, though, that it does not follow that

(f e g) >>(hm k) = (f > h) #(g > k)

since the order of g and h differs on the two sides. This is another reason to
favour first and left as primitives over their more usual binary counterparts: the
laws they must satisfy become much simpler to state.

We formalise the property that first f depends only on first components of
pairs as follows:

first f>arr fst = arrfst>f
but it is not in general true that
first f>> arr snd = arr snd

since, on the right hand side, the side-effects of f are lost. Instead we formalise
the intuition that the second component of a pair is unaffected by first f as a
law that allows a function of that second component to be moved across the
use of first. We have to require that the function be pure, to avoid potentially
changing the order in which side-effects occur. Thus the law becomes

first f>> second (arr g) = second (arr g) >> first f

31

Once again, the dual statement, in which first and second are interchanged,
follows as an easy corollary.

We note in passing that many categorical properties of products fail in the
presence of side effects. For example, the reader might expect that

[>(g&h) = (f>h) &(f>h)

but this is not true (unless f is pure) because the side-effects of f are duplicated
on the right.
The laws for first serve as models for the laws for left; we require that

arr Left>>left f = f>> arr Left
right (arr g) >> left left f >> right (arr g)

Note here also that we cannot change the order of left f and right g unless
we know that one of f or g is pure, because we might change the order of
side-effects.

For arrows supporting application, we require firstly that ‘currying’ and then
applying the identity arrow is equivalent to the identity (on pairs):

first (arr (Az — arr (Ay — (2,¥)))) >> app = arr id

Secondly, we require a kind of parametricity property for app, which permits
operations to be moved in or out of the applied arrow:

first (arr (g>>))>>app = second g>> app
first (arr (>>h))>>app = app>h

From these laws we can prove an analogue of n-conversion, that applying a
constant arrow using app is equivalent to the arrow itself:

arr (Az = (f,x))>app=f
Moreover, currying and then applying any arrow is equivalent to the arrow:
first (arr (Az — arr Ay = (z,9))> f))>app=f

Finally, we can prove that the monad laws hold for the ArrowMonad defined in
section 4.2.2.

For the remaining arrow classes, ArrowZero and ArrowPlus, we just require
that # is associative, and zeroArrow is its unit. Stronger conditions, such as
for example

zeroArrow>> f = zeroArrow

would be overly restrictive: this property fails for stream processors, for exam-
ple, since f may very well produce outputs independently of its input.

32

In general, there is something of a conflict between the desire on the one
hand to state many laws, thus making it possible to prove strong properties
generically, for every kind of arrow, and the wish on the other hand to leave open
the possibility of very many different implementations of the arrow signature.
We believe that the laws we have stated in this section are a rather minimal set,
which every reasonable arrow type should satisfy.

9 Active Web Pages: CGI Programs as Arrows

So for in this paper we have shown how the arrow interface can generalise a
variety of existing combinator libraries. In this section we shall discuss a library
we are currently developing, which was inspired by the concept of arrows.

The application that this library addresses is that of constructing active
web pages, that is, pages that may appear differently each time they are visited.
Active web pages are represented by programs, which may run either in the
client browser (applets) or on the web server. Quite different technologies are
used in each case; we concern ourselves here with programs which run on a web
server. Such programs can query a database held on the server, allow clients to
upload new data, and so on. Even rather simple programs can be very useful:
for example, those which enable students to book meetings with a teacher, or
researchers to submit articles to conferences.

Active web pages of this sort are implemented by so-called CGI programs
stored on the server. When a client accesses the URL of the program, then
it is run on the server, and the output from the program (usually HTML) is
sent back to the client browser. There are a couple of different mechanisms for
sending data from the client to the CGI program; the one we will consider sends
an encoding of the fields of an HTML form to the web server, along with the
request to run the program. CGI stands for Common Gateway Interface, the
protocol governing the form in which data is sent to and fro between the client
and the server.

Unfortunately, this mechanism is awkward to use in practice. Normally, the
implementor of a CGI program wishes to lead the remote client through a series
of interactions, for example first asking a student to identify him or herself,
then offering a choice of meeting times, then confirming that a time has been
booked. But interactions with the client can only take place in between runs
of CGI programs. To ask the client a question, a CGI program must output
the question as an HTML form, and terminate. When the client answers the
question by filling in and submitting the form, then in general a different CGI
program is run to accept and process the answer. This leads to poor modularity,
because the format of the form (field names, etc) must be known both to the
program which creates it, and to the program which interprets its contents. But
a more severe problem is that the state of the CGI program is lost across the
interaction.

33

It is therefore necessary to save the state of the CGI program explicitly across
each interaction. This cannot be done on the server! It is by no means certain
that the client ever will submit a reply, so that if the state were saved on the
server then it might remain there for ever, waiting for a reply that never came.
On the other hand, the client might submit a reply, then use the ‘Back’ button
in the browser, and reply to the same question again! If second and subsequent
replies are to be handled properly, then the state cannot be discarded even once
a reply has been received.

The solution is to store the state of the CGI program on the client, along
with the question. When the client submits an answer, then the state is returned
along with it, permitting the CGI program to pick up from the same point that
it left off. One can think of this state as a kind of continuation: when a CGI
program wishes to ask the client something, it captures its current continuation
and sends it along with the question to the client, and when the client replies
then the continuation is returned to the server, and can be invoked to handle
the reply. HTML provides a mechanism for handling such data: an HTML form
can contain ‘hidden fields’ whose contents are returned unchanged to the server
when the form is filled in and submitted. Unfortunately, though, HTML fields
cannot contain function values, and so we must find a different way to represent
continuations if we are to use this idea.

The combinator library I am developing takes care of suspension of com-
putations, saving of state, and restart from the same point. It lets the CGI
programmer view interaction with the client as a procedure call; there is an
arrow

ask :: CGI String String

which maps a question to the client’s answer. Thus programs which conduct a
series of interactions can be implemented very simply. For example, consider a
program which asks the client

What is your question?
expecting to recieve a reply such as
How old are you?

and then asks the client the same question, taking the client’s answer, and then
finally sending the client a result such as

The answer to “How old are you?" is 40.
Such a program can be implemented by the arrow

arr (Az = “What is your question?") >> ask >>
(arr id 8 ask) >
arr (A(g,a) — “The answer to \ " +Hq+"\" is " +a)

34

Why choose the arrow interface rather than the monad interface for this
problem? The key observation guiding the choice was that the combinators need
to save the entire state of the program at an ask operation, which is difficult
because a part of the program state may be held in free variables. We need only
be concerned here with variables bound to the results of computations, since it
is only these that may have a different value the next time the program is run.
The monadic interface permits such variables to scope over computations, and
in particular over ask operations, which means that their values must be part of
the saved state. But the arrow interface does not permit this: the only way to
bind a variable to the result of a computation is with the arr combinator, but
then the scope of the variable cannot extend over an ask operation.

How, then, can CGI arrows be represented? When such an arrow is invoked,
it may either terminate normally, producing a result, or it may suspend at an
ask operation. On suspension, an arrow must produce a state to save, and a
question to ask. A CGI arrow can also be entered in two different ways: it may
either be entered normally, with an argument, or it may be resumed from an
ask. In the latter case we must supply a state to resume from, and the answer
to the question. A natural representation for CGI arrows might therefore be

newtype CGI b c = CGI (Either b (State, String) — Either ¢ (State, String))

However, in general a CGI program may have side-effects on the server, which
this type does not allow for. So we shall instead represent CGI arrows as arrows
between these two types, which in practice will be arrows which can perform
I/O. We shall parameterise our definitions on the underlying arrow type, and
so define a CGI functor:

newtype CGIFunctora b c=
CGI (a (Either b (State, String)) (Fither ¢ (State, String)))

Now we can define
type CGIb ¢ = CGIFunctor (Kleisli I0) b ¢

With this definition, the ask operation is easily defined: it suspends when
entered normally, and delivers the answer as its result when it is resumed. No
state is needed to resume the ask operator itself, so we assume that the State
type includes a constructor Empty:

data State= Empty| ...

We define ask as follows:

ask :: ArrowChoice a = CGIFunctor a String String
ask = CGI (arr (Aq — Right (Empty, q)) ||| arr (A(Empty,a) — Left a))

35

The first alternative here handles a normal entry, and suspends to ask the
question g, while the second alternative handles a resumption, and delivers the
answer a as the arrow’s result.

The arr operator is also easily defined: a pure arrow can never suspend,
and therefore can never be resumed either, so we need consider only the Left
summands here.

arr:: Arrow a = (b — ¢) = CGIFunctor a b ¢
arr f = CGI (arr (A(Left b) — Left (f b)))

It is when we define arrow composition that we first need to make use of the
state. A composition of arrows may suspend either in the first arrow, or in the
second, and the state that we save must record which case applied. Similarly,
when we resume a composition of arrows, then we need to know which arrow to
resume. We shall therefore extend the State type to record this information:

data State = Empty | InLeft State | InRight State| . ..

The definition of composition then becomes

(>>) :: ArrowChoice a =
CGIFunctor a b ¢ = CGIFunctor a ¢ d - CGIFunctor a b d
CGI f > CGI g = CGI ((arr Left > enterf) |||
((arr (A(s,a) —
case s of
InLefts' — Left (Right (s, a))
InRight s' — Right (Right (s',qa)))) >
(enterf||| enterg)))
where enterf= f>>((arr Left >> entery) |||
(arr (A(s,q) — Right (InLeft s,q))))
enterg = g >>(arr Left||| arr (A(s,q) — Right (InRight s,q)))

The first case in >> handles initial entry to the composition, and just makes an
initial entry to f. The second case handles resumption: it tests to see which of
f and g should be resumed, and sends a resumption state to the appropriate
one. Arrow enterf invokes f, and if f terminates normally, makes an initial
entry to g. If f suspends, on the other hand, then enterf records that the
suspension occurred in the left operand of >>. Arrow enterg similarly records
that a suspension in g occurred in the right operand of >>. Thus we always
record in which arrow a suspension occurred, and on resumption we return to
the same point.

When we define the first combinator, we need to use the state in a different
way. There is no need to record where a suspension occurred: when first f
suspends, it must be in the arrow f. However, since first f must preserve
the second component of its input unchanged, then when we resume after a
suspension, we need to know what the value of this second component was. We

36

therefore have to save it in the state. One difficulty is that the values to be saved
can have many different types, at different occurrences of first. We shall convert
them all to the same type before saving them; since states must eventually be
embedded in HTML fields, it is convenient to convert them to strings, using
Haskell’s standard function show. When we resume from such a state, we can
convert the saved value back to its original type using the standard function
read, which satisfies read o show = id.
We shall therefore extend the State type again:

data State = Empty | InLeft State| InRight State | Save String State

and define first as

first :: (Arrow a, Show d, Read d) =
CGIFunctor a b ¢ — CGIFunctor a (b,d) (c,d)
first (CGI f) =
CGI (arr (A\x = case z of
Left (b,d) — (Left b,d))
Right (Save v s,a) — (Right (s,a), read v))) >
first f>
arr (A\(z,d) - case z of
Left c — Left (c,d)
Right (s,q) — Right (Save (show d) s,q)))

On an initial entry to first f, we just pass the first component of the input to
f; on a resumption we reconstruct the saved second component from the state.
On final termination of f, we just pair its output with the second component d,
but on suspension we save d in the state. Notice that the type d must support
read and show operations, which not all types do. This is recorded in the type
signature of first, which requires d to be an instance of the classes Read and
Show.

CGI arrows also permit dynamic choices. Implementing left turns out to be
particularly simple, because left f can suspend only if the input was of the form
Left b; we therefore don’t need to record any additional information in the state
to allow us to decide whether or not to invoke f on a resumption.

37

left :: ArrowChoice a =
CGIFunctor a b ¢ - CGIFunctor a (Fither b d) (Either ¢ d)
left (CGI f) =
CGI (arr (\x — case x of
Left (Left b) — Left (Left b)
Left (Right d) — Rightd
Right (s,a) — Left (Right (s,a))) >
left f>
arr (Ax — case z of
Left (Left c) — Left (Left c)
Left (Right (s,q)) — Right (s,q)
Right d — Left (Right d)))

On an initial entry to left f, we pass inputs tagged Left to f, and those tagged
Right are passed through unchanged. On a resumption of left f, we just resume
f- When f terminates normally, or the input was tagged Right, then left f
terminates. When f suspends then so does left f, in the same state.

It is also possible to give an appealing interpretation of zeroArrow and H
for CGI arrows: f 4 g creates two threads which run in parallel, and zeroArrow
terminates a thread. We use this mechanism to enable a CGI arrow to ask
several questions in one interaction (if both f and g suspend). We omit the
details here.

It is not possible, however, to implement app. The difficulty here is that
the types that CGI arrows operate over must support read and show, so that
intermediate values can be saved on the client. CGI arrows themselves are
implemented in terms of functions, and so cannot be read and written. Therefore
a CGI arrow cannot take another CGI arrow in its input, and aepp cannot be
defined.

The library I am developing is based on the ideas in this section, but is
necessarily a little more complicated. It is an oversimplification to consider the
communication with the client to consist of a single question and answer, or
even multiple questions and answers. In reality the client is sent an HTML
page containing one or more HTML forms, each of which may contain many
fields. The full-scale library includes combinators for generating various HTML
elements, and for putting parts of forms together into larger forms. There is
also a ‘top-level’ function

serveCGI :: CGIa b— IO ()

which takes an arrow and ‘runs it’, taking care of encoding states in hidden
fields, decoding the data returning from the client, and so on.

One major irritation which we have so far glossed over is that CGI arrows
cannot actually be made an instance of the Arrow class defined in this paper!
The problem lies in the types of the arrow methods given in this section. Look
back at the type of first: it requires that the type of the value to be saved be an

38

instance of the Read and Show classes. The type given for first in the definition
of the Arrow class makes no such restriction. Therefore this implementation of
first cannot be declared to be an instance of the generic one — it is less general.

We might attempt to solve this problem by moving the restriction to a
different place. Let us define the CGI arrow type so that it is only applicable
to types in these classes:

newtype (Read b, Show b, Read ¢, Show ¢) =
CGIFunctor a b c=
CGI (a (Either b (State, String)) (FEither ¢ (State, String)))

In categorical terms, we define a new category whose arrows are CGI arrows,
and whose objects are a subset of the Haskell types, namely those supporting
read and show. Now, since the implementation of first given in this section
constructs a CGI arrow from (b,d) to (¢, d), then it is evident that the type d
must support read and show, and there is no need to explicitly require that in
the type of first. As a result, it should now be possible to declare CGI arrows
an instance of the generic arrow class.

Unfortunately, this does not work. The Haskell type system requires the
restrictions on d in the type of first, even if we declare that they are satisfied for
all CGI arrows. Haskell does not infer from the occurrence of a type CGI b c,
that b and ¢ must be instances of Read and Show — and indeed, this is not
even true, because of the way that type restrictions on datatype definitions are
interpreted. I consider this to be a defect of the Haskell type system, which
hopefully can be corrected in a future version of the language.

In the absence of such a correction, we are obliged to make a copy of the
arrow library, and all the generic code that uses it, with the only difference that
the type assigned to first in the Arrow class is the one required for the CGI
instance. By doing so we can still benefit from using a standard arrow interface
to the CGI library — we can still combine CGI arrows with other arrow code
— but any program which uses the CGI library must import a special definition
of the arrow class, which restricts all arrows in the entire program to work over
types supporting read and show. This is frustrating indeed.

Finally, we note with hindsight that a monadic interface could be used in-
stead here. We could define a monad whose computations can be suspended
and resumed, in an analogous way to CGI arrows. However, the definition of
m >= f would need to record not only which of m or f suspended, but also the
value that m delivered, if suspension occurred in f. Concretely, the ‘InRight’
form of State would need to carry an extra component, namely the value of m.
Thus the problem of recording free variables is solved: every free variable of
an ask operation which is bound to the result of a computation, is bound by an
occurrence of >=, and we can make that occurrence of >= responsible for saving
the value.

However, even if a monadic interface would be possible, we believe it would
make for less efficient CGI programs. The monadic library we suggest would

39

need to save every previously delivered value, whereas the arrow library saves
only those which are still needed. Thus the monadic library would tend to send
more information to and from the client. Of course, such a monadic library
would also fall foul of the typing problem just discussed, so that a CGI monad
could not be declared to be an instance of Haskell’s Monad class. Consequently
it could not be used together with standard monadic functions, or Haskell’s
monadic do syntax.

10 Conclusions

This paper proposes the replacement of monads as a structuring tool for com-
binator libraries, by arrows. We have seen that any monadic library can be
given an arrow interface instead (via Kleisli arrows), and so the arrow inter-
face is strictly more general. We have seen that many monadic programming
techniques have analogues in the world of arrows: monad transformers become
functors, standard monad constructions for exceptions, state passing and con-
tinuations carry over to arrows, even generic monadic functions often have an
arrow analogue. But basing an interface on arrows instead of monads permits
finer distinctions to be made: we can distinguish between kinds of computa-
tion which permit dynamic choices to be made, or dynamic computations to be
invoked, and those which do not.

The advantage of the arrow interface is that it has a wider class of implemen-
tations than the monad interface does; it is more general. Thus some libraries
based on abstract data types which simply are not monads, can nonetheless be
given an arrow interface. Such libraries include those for processes modelled
by stream processors or fudgets, libraries for efficient parsing, or in general any
library which computes static properties of computations in advance of running
them. So this category includes a number of libraries which are highly useful in
practice. By giving them an arrow interface, we make it possible to use them
together with generic arrow code.

Moreover, some existing monadic libraries might benefit by replacing the
monads with arrows. One motivation might be in order to introduce the same
kind of optimisation which Swierstra and Duponcheel used. We believe this
may be the case for Conal Elliot’s animation library [EH97], and for Bjesse et
als library for hardware design [BCSS98].

In short, we believe that arrows offer a useful extension to the generality of
generic library interfaces.

References

[BCSS98] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava:
Hardware Design in Haskell. In International Conference on Functional

40

[CH93]

[EH97]

[Hud92]

[KW92]

[LHJ95]

[PHO6]

[SD96]

[Wad85]

[Wad90]

[Wad92]

[Wad95]

Programming, Baltimore, 1998. ACM.

M. Carlsson and T. Hallgren. FUDGETS - A Graphical User Interface in
a Lazy Functional Language. In FPCA 93 - Conference on Functional
Programming Languages and Computer Architecture, pages 321-330.
ACM Press, June 1993.

Conal Elliott and Paul Hudak. Functional Reactive Animation. In In-
ternational Conference on Functional Programming. ACM SIGPLAN,
1997.

Paul Hudak et al. Report on the Programming Language Haskell: A
Non-Strict, Purely Functional Language, March 1992. Version 1.2. Also
in Sigplan Notices, May 1992.

David King and Phil Wadler. Combining Monads. In Glasgow Work-
shop on Functional Programming, Ayr, July 1992. Springer-Verlag.

Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and
modular interpreters. In Conference Record of POPL’95: 22nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 333-343, San Francisco, California, January 1995.

J. Peterson and K. Hammond. The Haskell 1.3 Report. Technical
Report YALEU/DCS/RR-1106, Yale University, 1996.

S.D. Swierstra and Luc Duponcheel. Deterministic, error-correcting
combinator parsers. In John Launchbury, Erik Meijer, and Tim Sheard,
editors, Advanced Functional Programming, volume 1129 of LNCS-
Tutorial, pages 184-207. Springer-Verlag, 1996.

P. Wadler. How to Replace Failure by a List of Successes. In Pro-
ceedings 1985 Conference on Functional Programming Languages and
Computer Architecture, pages 113-128, Nancy, France, 1985.

P. Wadler. Comprehending Monads. In Proceedings of the 1990 ACM
Conference on Lisp and Functional Programming, pages 61-77, Nice,
France, 1990.

Phil Wadler. The essence of functional programming. In Proceedings
1992 Symposium on Principles of Programming Languages, pages 1-14,
Albuquerque, New Mexico, 1992.

Philip Wadler. Monads for functional programming. In J. Jeuring and
E. Meijer, editors, Advanced Functional Programming, number 925 in
LNCS, pages 24-52. Springer Verlag, May 1995.

41

