
Data Flow Fusion with Series Expressions in Haskell

Ben Lippmeier† Manuel M. T. Chakravarty† Gabriele Keller† Amos Robinson†

†Computer Science and Engineering
University of New South Wales, Australia

{benl,chak,keller,amosr}@cse.unsw.edu.au

Abstract
Existing approaches to array fusion can deal with straight-line pro-
ducer consumer pipelines, but cannot fuse branching data flows
where a generated array is consumed by several different con-
sumers. Branching data flows are common and natural to write,
but a lack of fusion leads to the creation of an intermediate array
at every branch point. We present a new array fusion system that
handles branches, based on Waters’s series expression framework,
but extended to work in a functional setting. Our system also solves
a related problem in stream fusion, namely the introduction of du-
plicate loop counters. We demonstrate speedup over existing fusion
systems for several key examples.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Concurrent program-
ming structures; Control structures; Abstract data types

Keywords Arrays; Fusion; Haskell

1. Introduction
Consider the following filterMax function that increments a vec-
tor of integers and then selects just the positive results, while also
determining the maximum value among the positive results.

filterMax :: Vector Int -> (Vector Int, Int)
filterMax vec1
= let vec2 = map (+ 1) vec1

vec3 = filter (> 0) vec2
n = fold max 0 vec3

in (vec3, n)

A client programmer would rightfully expect this code to be fused
into a single loop, one that keeps track of the maximum value
while it builds the result vector. Unfortunately, existing fusion
methods, such as build / fold fusion [8] and stream fusion [7],
cannot completely fuse this code. Existing methods can eliminate
the construction of vec2, but cannot fuse the production of vec3
into both of its consumers. As a result, the entire intermediate vec3
will be materialized in memory by filter, before being read back
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by fold, requiring a second loop and superfluous memory traffic.
If the input vector vec1 is large, then filterMax is likely to be
memory bound. For this reason, an incompletely fused filterMax
will be about 50% slower than handwritten code that combines the
filter and fold into a single loop.

Functions like filterMax are common. For example, the core
operation of the QuickHull algorithm is a filterMax-like compu-
tation (§6). Branching data flows with multiple consumers are en-
countered whenever a function uses an array combinator that pro-
duces multiple result arrays, like with unzip, as the two results are
typically fed into distinct consumers.

This problem of branching data flows is related to another prob-
lem with stream fusion, the standard in Haskell array fusion sys-
tems. Specifically, stream fusion of zipWith-like functions results
in loops with duplicate loop counters, wasting precious processor
registers and leading to redundant loop-counter arithmetic. This
problem is especially severe in code produced by Data Parallel
Haskell’s vectorization transform [18] — we have seen loops with
eight duplicate loop counters!

Our new fusion system solves these problems. Our main contri-
butions are the following:

• We present a new fusion system, which we name flow fusion.
Our new system is based on Waters’s series expressions [27],
extended to be useful in a functional setting. This system com-
pletely fuses functions like filterMax and avoids the duplicate
loop counters that are common to stream fusion (§4).

• We show how to use rank-2 quantified rate type variables and
rate conversion witnesses to satisfy the online criteria of the
series expressions framework. Rate variables and the online
criteria are related to the clock calculi used in synchronous data-
flow languages (§3).

• We present key benchmarks showing performance improve-
ment over existing array fusion systems. Properly fused Quick-
Hull has a runtime half that of the stream fusion version, as its
filterMax-like core requires only one array traversal instead
of two (§6).

We have implemented flow fusion as a GHC optimization plu-
gin that rewrites intermediate code generated by a user-facing li-
brary of Haskell source code. This Haskell library includes a fall-
back implementation of our array combinators, based on stream fu-
sion, that is used if the plugin is not enabled. The code is available
via http://repa.ouroborus.net.

2. The Problems with Stream Fusion
Fusion, or deforestation, refers to the automatic, compile time elim-
ination of intermediate data structures, by combining successive
traversals over these structures. Fusion has already received plenty
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-- Vector versions
map :: (a -> b) -> Vector a -> Vector b
map f xs = unstream (mapS f (stream xs))

filter :: (a -> Bool) -> Vector a -> Vector a
filter f xs = unstream (filterS f (stream xs))

fold :: (a -> b -> a) -> a -> Vector b -> a
fold f z xs = foldS f z (stream xs)

-- Stream versions
mapS :: (a -> b) -> Stream a -> Stream b
filterS :: (a -> Bool) -> Stream a -> Stream a
foldS :: (a -> b -> a) -> a -> Stream b -> a

-- Stream / Vector conversions
stream :: Vector a -> Stream a
unstream :: Stream a -> Vector a

Figure 1. Stream Fusion Operators

of attention in the context of functional programming [7, 8, 11, 16,
20, 24, 27]. While most prior work aims to remove intermediate
lists, some methods also apply to arrays [4, 6, 9, 13].

The most practically successful systems —build/fold fusion,
stream fusion, and delayed arrays— are short-cut fusion methods
that rely on local program transformations. These methods are
implemented as simple but specific rewrite rules combined with
general purpose program transformations. Systems like [11] and
[9] also perform tupling that fuses restricted classes of branching
data flows. Unfortunately, neither [11] or [9] handle filterMax,
because the overall result includes a materialized intermediate array
(vec3) as well as an additional value based on its elements (n).
Tupling transformations handle the easier case where two results
are computed by directly traversing over the same input structure.

In contrast, loop fusion methods used in imperative languages
merge multiple loop nests, typically using dependency graphs [25]
to determine whether fusion is legal and beneficial. When a pro-
ducer and consumer loop are merged, array contraction [21] can
then remove or reduce the size of the intermediate arrays. These
systems require fusion-specific compiler support and more global
reasoning than short-cut fusion. However, the simplicity of short-
cut fusion comes at a price, as we discuss next.

2.1 Short-cut Fusion is Local and Depends on Inlining
Short cut fusion systems do not rely on custom program transfor-
mations that analyse entire functions or compilation units. Rather,
they use inlining and let-floating to produce code in which array
producers and consumers are adjacent. These producer-consumer
pairs are then eliminated by rewrite rules and other local trans-
formations. This approach permits a simple implementation, but
limits the use of contextual information. To see why, consider the
filterMax function again:

filterMax :: Vector Int -> (Vector Int, Int)
filterMax vec1
= let vec2 = map (+ 1) vec1

vec3 = filter (> 0) vec2
n = fold max 0 vec3

in (vec3, n)

The definitions of map, filter and fold for stream fusion [7] are
shown in Figure 1. These are written in terms of co-recursive func-
tions operating over streams, named mapS, filterS, and foldS,
respectively — see [7] for details. The functions stream and
unstream convert between the vector-view and the stream-view

of the data, where we use “vector” to mean a one dimensional
array. Inlining map, filter, fold into filterMax gives us:

filterMax :: Vector Int -> (Vector Int, Int)
filterMax vec1
= let vec3 = unstream

(filterS (> 0) (stream (unstream
(mapS (+ 1) (stream vec1)))))

n = foldS max 0 (stream vec3)
in (vec3, n)

Now we can use the following rewrite rule:

{-# RULE "stream/unstream"
forall s. stream (unstream s) = s #-}

This rule says that if we convert a Stream to a Vector and back
again, we get the original Stream. Applying this rule to our pro-
gram yields:

filterMax :: Vector Int -> (Vector Int, Int)
filterMax vec1
= let vec3 = unstream (filterS (> 0)

(mapS (+ 1) (stream vec1)))
n = foldS max 0 (stream vec3)

in (vec3, n)

It is this application of the stream/unstream rule that actually
eliminates the intermediate structure. General purpose transforma-
tions will then ensure that filterS and mapS are inlined, and
their co-recursive definitions ensure no further intermediate struc-
ture will be allocated for the result of mapS.

Importantly, note that this mechanism does not apply to the
vec3 binding, because vec3 has two consumers: being used by
foldS and also returned in the final tuple. We cannot duplicate the
vec3 binding for each consumer as this would also duplicate the
work required to produce its elements.

Short-cut fusion is fundamentally limited to data structures
that have a single consumer. To fuse vec3, we must make use
of non-local information to infer that the computation of foldS
and filterS should be combined.

2.2 Short-cut Fusion Duplicates Loop Counters
Consider this simple expression, combining three vectors by adding
two element-wise and then multiplying by the third:

zipWith (*) (zipWith (+) xs ys) zs

After inlining zipWith, using the stream/unstream rule, and
then combining the two resulting instances of zipWithS, stream
fusion produces the following code:

loop = \ i j k l s ->
case >=# i len_xs of
True -> (# s, I# n #)
False ->
case indexIntArray# xs i of
x -> case >=# j len_ys of
True -> (# s, I# n #)
False ->
case indexIntArray# ys j of
y -> case >=# k len_zs of
True -> (# s, I# n #)
False ->
case indexIntArray# zs k of
z ->
loop (+# i 1) (+# j 1) (+# k 1) (+# l 1)
(writeIntArray# rs l (*# (+# x y) z) s)

We have four loop counters i, j, k, and l — three for the three
source arrays and one for the result array. These counters contain
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-- Haskell source after rate inference
filterMax :: Vector Int -> (Vector Int, Int)
filterMax vec
= runSeries vec go1
where go1 s1 = let s2 = map (+ 1) s1

flags = map (> 0) s2
in mkSel flags (go2 s2)

go2 s2 sel = let s4 = pack sel s2
in ( create s4

, fold max 0 s4)

-- With explicit type abstraction and application
filterMax :: Vector Int -> (Vector Int, Int)
filterMax vec
= runSeries @Int @(Vector Int, Int) vec go1
where go1 = Λ(k1 : &). λ(s1 : Series k1 Int).

let s2 : Series k1 Int
= map @k1 @Int @Int (+ 1) s1

flags : Series k1 Bool
= map @k1 @Int @Bool (> 0) s2

in mkSel @k1 @(Vector Int, Int)
flags (go2 @k1 s2)

go2 = Λ(k1 : &). λ(s2 : Series k1 Int).
Λ(k2 : &). λ(sel : Sel k1 k2).
let s4 : Series k2 Int

= pack @k1 @k2 @Int sel s2
in ( create @k2 @Int s4

, fold @k2 @Int @Int max 0 s4)

Figure 2. The filterMax example after rate inference

the same value, are incremented in lock step, and three of them
are tested for loop bounds. In addition to the superfluous tests
and arithmetic, the duplication of counters unnecessarily increases
register pressure. Instead of hoping that subsequent optimizations
will eliminate the duplicates (which is not done in the current
version of GHC), flow fusion avoids their introduction entirely.

3. Rates and Contexts
The first definition in Figure 2 shows the code of filterMax after
performing rate inference as a pre-processing step. Rate inference
identifies regions of code amenable to flow fusion. Moreover, it
decomposes rate changing operations such as filter, into primi-
tives, such as mkSel and pack. As part of this decomposition, we
have also introduced two intermediate go bindings to clarify data
dependencies. We will explain rate inference in §3.6, but first we
discuss the importance of rates for flow fusion.

The second definition in Figure 2 is the same function as be-
fore, but with explicit type abstractions and applications. Here Λ

indicates type abstraction and @ type application. We use & as the
kind of rate types.

3.1 Vectors and Series
Rate inference ensures that subexpressions subjected to flow fusion
contain only the array combinators shown in Figure 3. In those
signatures, Vector a is the type of manifest linear arrays, rep-
resented by contiguous blocks of machine words in memory. In
contrast, Series k a is the type of abstract representations of se-
quences of a-values produced at rate k, such that they may partici-
pate in fusion. In this respect a series is similar to a delayed array
from Repa [13], except that series do not support random access
indexing.

The rate k of a series is a type level representation of its length,
with the following key invariant: two series of the same rate are
guaranteed to have the same length. We use & as the kind of rate

runSeries :: ∀(a b : *). Vector a
-> (∀(k : &). Series k a -> b) -> b

runSeries2 :: ∀(a b c : *). Vector a -> Vector b
-> (∀(k : &). Series k a -> Series k b -> c)
-> Maybe c

generate :: ∀(a : *). Int -> (Int -> a)
-> (∀(k : &). Series k a -> b) -> b

create :: ∀(k : &). ∀(a : *)
. Series k a -> Vector a

map :: ∀(k : &). ∀(a b : *)
. (a -> b)
-> Series k a -> Series k b

map2 :: ∀(k : &). ∀(a b c : *)
. (a -> b -> c)
-> Series k a -> Series k b -> Series k c

fold :: ∀(k : &). ∀(a b : *)
. (a -> b -> a) -> a -> Series k b -> a

mkSel :: ∀(k1 : &). ∀(a : *)
. Series k1 Bool
-> (∀(k2 : &). Sel k1 k2 -> a) -> a

pack :: ∀(k1 k2 : &). ∀(a : *)
. Sel k1 k2 -> Series k1 a -> Series k2 a

Figure 3. Series Operators

types, leaving * as the kind of value types as in standard Haskell.
This distinction is important because rates are purely type-level
information. There are no values that have a type of kind &.

The rate of a series is similar to a clock type, as used by the
clock typing systems of synchronous data flow languages such as
Lustre [1] and Lucid Synchrone [3, 19]. We compare these systems
further in §7

3.2 Running Series Expressions
Rate inference encapsulates regions of fusible code in an ab-
straction fn, that is then passed as an argument to the function
runSeries, runSeries2, or generate. The types for these func-
tions are in Figure 3. The application (runSeries v fn) converts
the vector v to a Series, which is then consumed by fn. In the type
of runSeries, the rate variable k (which is a type-level represen-
tation of the length of v) is universally quantified in the type of fn.
The inner quantification ensures that the rate information cannot
escape, and that multiple series of differing lengths can never have
the same rate variable. This is much like the use of a rank-2 type to
encapsulate state in the runST function of the ST monad [14].

The inner quantification of a rate variable logically creates a
rate context, where array data is processed at the specified rate. For
example, the body of go1 in Figure 2 is a rate context in which
we construct two new Series values, s2 and flags, both with the
same rate k1 derived from the incoming series s1.

Flow fusion can merge all computations producing and consum-
ing series at the same rate into a single loop. For example, fused
code that performs multiple folds over multiple series at the same
rate will proceed as follows: first, the code initializes an accumula-
tor for each fold; then, in a single loop, it reads elements from each
series in lock step and updates the accumulators appropriately.

The runSeries2 function is like runSeries, but accepts two
Vectors of the same length as inputs and converts them both to
Series before passing them to the worker. If the input vectors do
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not have the same length then runSeries2 yields Nothing. This
dynamic check justifies our use of the same rate variable k for both
Series. The generate function is like runSeries, but generating
a series from a function producing array elements, instead of from
a manifest vector.

Finally, creatematerializes a Series into a Vector. The latter
is free of an associated rate variable, and hence can be passed
outside the current rate context.

3.3 Maps and Folds
The types of map and fold in Figure 3 are standard, except for the
inclusion of the rate variable k. The function map2 is much like
Haskell’s standard zipWith, but requires both series to have the
same rate (length). In our full implementation we have an entire
family of functions map3, map4 and so on.

In the explicitly typed code of Figure 2, the rate variables used
as type arguments identify which rate context each operator be-
longs to. We will see in §4.1.2 that these type arguments indicate
the set of series that ought to be evaluated in a single loop.

3.4 Selectors and Packing
In the expression (pack sel s2), the selector sel identifies the
values in series s2 that should be included in the shorter result
series. For example, suppose that during evaluation of go2 from
Figure 2, we have the following values for s2 and flags, where
flags identifies the positive elements of s2:

s2 :: Series k1 Int
s2 = [+4 -1 +5 +3 +8 -4 +2 +1 -5]

flags :: Series k1 Bool
flags = [ T F T T T F T T F]

The application (mkSel flags fn) converts flags into a selec-
tor, which is passed to fn, just as with runSeries before. The
selector is an abstract representation of the vector containing the
indices of all the T (True) values in that series:

sel :: Sel k1 k2
sel = [0 2 3 4 6 7]

The selector is then used by pack to select just those elements of
s2 that had their corresponding flag set:

s4 :: Series k2 Int
s4 = pack sel s2 = [+4 +5 +3 +8 +2 +1]

Importantly, because the selector maps a series of one length
onto a series of another, we tag the selector type with two differ-
ent rate variables. For filterMax, we have sel :: Sel k1 k2
where k1 is the rate of s2 and flags, and k2 is the rate of s4 —
the series resulting from pack. Additionally, because selectors are
always produced from a series of flags, we know that the length
(rate) of the selector is no greater than the length (rate) of the origi-
nal series. To put this another way, the rate context k2 is contained
by the rate context k1, and the selector is evidence and a witness for
this relationship. Figure 5 shows this graphically.

3.5 Data Flow Languages and Clock Calculi
Figure 5 shows that filterMax is a first order, non-recursive data-
flow program, as one might expect. The expressions that flow fu-
sion can fuse all have this form: they consist of a number of mani-
fest data sources, and a hierarchy of well nested rate contexts con-
taining a directed acyclic graph of data flow operators terminated
by manifest data sinks. Any program of this form can be completely
fused by flow fusion.

The programs that we handle constitute a fragment of a more
general data flow language such as Lustre [1] or Lucid Syn-

chrone [19]. These larger languages work over infinite streams
with recursion and delay elements, and prior work on compiling
them has focused on dealing with these extra features [10]. These
languages come with clock typing systems that ensure the program
can be evaluated synchronously, and without unbounded buffering.
In contrast, the fragment that we compile is defined by the API of
Figure 3, which only provides finite series. We do not have delay el-
ements or recursion. We use rate variables to express relationships
between different series, but as we start with a simpler language,
we can get by with a simpler rate analysis as described next.

3.6 Rate Inference
Rate inference identifies non-recursive data flow expressions that
are amenable to flow fusion, and turns them into applications of
runSeries. These expressions may only contain the following op-
erators: (1) the vector operators from Figure 3 and (2) operators
with scalar argument and result types. All higher-level array opera-
tors must be implemented in terms of these primitives to participate
in flow fusion. Before rate inference, we assume the definitions of
these composite operators have been inlined and the resulting code
converted to a-normal form (administrative-normal form).

Rate inference proceeds in two phases: first, we identify, and if
necessary, rearrange vector-valued subexpressions that we can fuse
into single loops. For this we adapt the existing size inference and
scheduling algorithm described by Chatterjee et al [5].

After solving the constraints as in [5], we proceed to the sec-
ond phase. We rewrite the expression using operators on Vectors
to use operators on Series, and wrap it in a runSeries. For
this we replace all free vector-valued variables v1::Vector a1 to
vn::Vector an with fresh variables s::Series k ai. The rate in-
ference algorithm ensures that all such variables have the same rate
k. Rewriting the expression to use series operators is mostly trivial.
Only filter needs special handling, to expand each occurrence
into a use of mkSel and pack. As the input code is already in ANF,
filter can only occur in bindings of the form:

let s1 = filter fn s0
in e2

which we rewrite to

let flags = map fn s0
in mkSel flags (λsel. let s1 = pack sel s0 in e2)

Finally, we wrap the series expression e’ obtained this way with a
runSeries:

runSeriesN v 1 . . . v_n (λ s 1 ... s n. e’)

4. Loop Generation
After rate inference, our compilation method is as follows:

1. Type check and desugar Haskell source code to GHC Core.

2. A-normalize and eta-expand intermediate code.

3. Slurp out a data flow graph for each series process.

4. Schedule the operators in this graph into an abstract loop nest.

5. Concretize rate variables into loop counters.

6. Extract new Core code from the loop nest.

7. Inline library functions into the extracted code.

8. Complete compilation with GHC’s standard pipeline.

A series process is a computation that can be expressed as a
static, first order, non-recursive data flow graph like that of Figure 5.
Data flow graphs are represented by the Process language shown
in Figure 4. Abstract loop nests are represented by the Procedure
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name → (process name)
x, s → (value variable)
a, k → (type variable)

kind ::= * | &

type ::= a | Int | Float | ...

process
::= process name (kin : &) (a : kind)

(x : type) (s : Series kin type)
with operator yields exp

operator
::= mkSel (kinner : &) (xsel : Sel kouter kinner)

from kouter s f lags in operator

| sout <- map n kin type n expwork sin
n

| sout <- pack kout kin typein xsel sin

| xresult <= fold kin typein typeresult sin
with expwork and expzero

| xvec <= create kin typein sin

exp ::= ... Haskell expressions ...

Figure 4. Data Flow Process Description

language of Figure 6. In our current implementation stages 1, 7 and
8 are performed by GHC proper using its internal Core language,
while stages 2-6 are performed by our GHC plugin. Note that the
Schedule phase (described in §4.2) is really the core of our method,
with the other phases performing impedance matching between the
input and output languages.

4.1 Slurping Processes
The Slurp phase takes a normalized Core module and produces a
list of fusible series processes.

slurp :: Module -> [Process]

We supply the Core version of each series process to be fused as
a top-level binding in the Module. During normalization (stage 2)
the application of runSeries that creates the outer-most rate con-
text is also split from the rest of the input code and floated to top-
level. The runSeries function itself is implemented in an external
Haskell library, and is not part of the Core program given to the
loop generator. For our filterMax example, we would then have
a binding of the following type:

filterMax_series
:: [k : Rate]. Series k Int -> (Vector Int, Int)

This filterMax_series function is the same as go1 from
Figure 2, after it has been floated to top-level.

The Process language represents the data flow graph for a se-
ries process directly, without admitting language features that may
be supported by the source language (Haskell) but not representable
as a static, first-order data flow graph. If the Core version of the se-
ries process cannot be converted to our internal Process language,
then the user gets a compile-time warning and the program is com-
piled via the fallback library discussed in §6. An example of this is
in §4.1.2. On the other hand, if we can convert the source program
to a Process, then we guarantee it will be completely fused.

The grammar for Process is shown in Figure 4, and here is the
process description for our filterMax example which encodes the
graph in Figure 5:

process filterMax_s (k1 : &) (s1 : Series k1 Int)
with { s2 <- map k1 Int (+ 1) s1

; s3 <- map k1 Int (> 0) s2
; mkSel (k2 : Rate) (sel : Sel k1 k2)

from k1 s3 in
{ s4 <- pack k1 k2 Int sel s2
; vec’ <= create k2 Int s4
; mx <= fold k2 Int s4 with (+) and 0 } }

yields (vec’, mx)

A name is a process name like filterMax_s (where _s in-
dicates the Process version of this function). We use x and s as
(meta) value variables, and by convention use s for series and x for
non-series variables. We use a and k as (meta) type variables, where
a indicates an element type variable and k indicates a rate.

We use type for element types, with the full set being defined
by the host language (Haskell). Our program transformations treat
element types abstractly.

A process consists of its name, its type and value parameters, a
list of series operators, and an expression that yields the result of
the overall process. We have left exp unspecified as this represents
expressions from the source language — Haskell in our case. The
rates of all input series must be identical to the first type variable
kin. This is the rate of the loop that we will generate for this process.

An operator can introduce a new rate context (mkSel), be a
transformation that converts some series into another one (map and
pack), or a sink that consumes some series and produces a non-
series result (fold and create). Our operators are explicitly typed,
being applied to rate variables that describe the context of each
operator, and type arguments that give the element types of each
series. Each operator defines a node in the data flow graph, where
the binding symbols <- and <= represent the edges. The bindings
in an operator list are non-recursive, and variables must be bound
before they are used.

The mkSel construct binds the new variables kinner and xsel
which are added to the environment of the enclosed list of oper-
ators. The mkSel operator itself defines a new rate context kinner,
inside an outer context kouter. It consumes a series of flags s f lags
and produces a selector xsel . In the enclosed operator list, all new
series bound at that level must have rate kinner. In Figure 5 we have
drawn mkSel over the dotted line separating the rate contexts k1
and k2 to indicate that this operator defines the inner context.

The mapn operator combines several input series sin at rate kin
using the worker function defined by expwork. The n variable sets
the number of input series, though we write just map for map1.

The pack operator takes a series sin of rate kin to a series sout of
rate kout using the selector xsel .

The fold operator binds a new variable xresult of typeresult
which is the result of reducing the elements of series sin at rate
kin using worker function expwork and neutral element defined by
expzero. The typein argument is the type of the elements.

The create operator binds a new variable xvec which is the vec-
tor created from elements of the series sin, at rate kin and element
type typein. In Figure 5 we have drawn the results produced by
fold and create in square boxes to indicate that these are mani-
fest values and not fusible series.

4.1.1 Scoping in Series Process Descriptions
In a process description, the series that are parameters to the pro-
cess, as well as the new series bound by each operator (to the left of
the <- marks) can only be used as series arguments to other oper-
ators. These new series are not in scope in the worker expressions
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vec runSeries mkSel

fold

map map

pack
vec'

mx

create

k1k1 k2

s1

s2

s3

sel
s4(+1) (> 0)

(+)

Figure 5. Nested Rate Contexts for filterMax

(expwork) and cannot be used in the expression given to yields.
The results produced by series sinks (to the left of the <= marks) are
also not in scope of the workers, but can be used in the expression
given to yields. To put this another way, the workers may refer
to environment variables defined outside the process they are con-
tained in, but not variables bound internally in the process. These
rules are needed to reject processes like the following:

process badNorm (k1 : &) (s1 : Series k1 Float)
with { total <= fold k1 Float s1 with (+) and 0

; s2 <- map k1 Int (/ total) s1
; vec <= create k1 Int s2 }

yields vec

Here, because the worker function for map refers to the result
total, to evaluate this code we would need to finish computation
of the fold operator before embarking on the map. However, as
we will see in §4.2, we intend to compile each process description
into a single fused loop, and this is not possible for badNorm. It
would be possible to automatically split such compound processes
into individual parts before passing them to the scheduler defined
in §4.2, but we leave this to future work.

4.1.2 Normalizing the Input Core Program
The Core version of a series process is easy to slurp to the Process
language of Figure 4, provided we make use of the explicit type
annotations in Core, and perform some appropriate normalizations
beforehand.

Before conversion, we a-normalize and eta-expand the defini-
tions in the module so that every intermediate series has an ex-
plicit name. These names are identified with the edges of the ex-
tracted data-flow graph. We also use a preparation transform to
force worker functions to be floated into their use sites — so that
combinators like mkSel, map and fold are directly applied to
workers. For example, as part of the filterMax example we get
the following Core snippet:

mkSel @k1 @(Vector Int, Int) s1
(Λ(k2 : &). λ(sel : Sel k1 k2).
let s4 : Series k2 Int

= pack @k1 @k2 @Int sel s2
in ...)

With the above code we already have all the information we
need to produce the equivalent snippet of the Process language:

mkSel (k2 : &) (sel : Sel k1 k2)
from k1 s1 in

{ s4 <= pack k1 k2 Int sel s2
... }

Although the example above is really just a change of syntax,
as mentioned in §4.1 the real point is that the Process language
is smaller than the input Core language. We use the intermediate

Process language primarily as way to reject features of the input
language that cannot be expressed as static, first order, non recur-
sive data flow graphs. For example, the following function cannot
be converted to a Process because we have no way to represent
the inner if construct.

badSwitchy :: ∀(k : &). Bool
-> Series k Int -> Series k Int -> Int

badSwitchy flag s1 s2
= fold (+) 0 (if flag then (map (* 2) s1)

else (map (* 4) s2)

The above function does not express a static data flow graph,
because we do not statically know which input series to use for
the fold operator. We have no way to compile this function into a
single loop that fuses the contained fold and map operators, even
though they operate on series all at the same rate.

4.1.3 Processes are Hyper-strict
A process description is naturally hyper-strict, meaning every value
that is mentioned will be computed. If we are not careful then this
can lead to unused values being computed. For example, consider
the following function that choses between two fold results:

strictSwitchy :: ∀(k : &). Bool
-> Series k Int -> Series k Int -> Int

strictSwitchy flag s1 s2
= choose flag (fold (+) 0 (map (* 2) s1))

(fold (+) 0 (map (* 4) s2))

The above function is similar to badSwitchy from the previous
section, except that we have used the if-like function choose to se-
lect between the two folded results. When evaluated using Haskell
semantics, the fact that choose is non-strict in both arguments will
mean that only one of the fold results will be computed. How-
ever, a-normalizing and then slurping a Process from this code
produces:

process strictSwitchy (k : &) (flag : Bool)
(s1 : Series k Int) (s2 : Series k Int)

with { s3 <- map k Int (* 2) s1
; s4 <- map k Int (* 4) s2
; x1 <= fold k Int s3 with (+) and 0
; x2 <= fold k Int s4 with (+) and 0 }

yields (choose flag x1 x2)

As mentioned earlier, we intend to compile this whole process
description into a single loop. If we use the code above then both
reductions will be computed at the same time, before choosing the
desired result after the loop completes.

To avoid this problem automatically we could check whether
values produced with fold or create are used strictly in the ex-
pression given to yields, and if not, emit a warning to the user.
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name → (procedure name)
x, s → (value variable)
a, k → (type variable)

vec → (vector variable)
acc → (accumulator)

kind ::= * | &
type ::= a | Int | Float | ...

procedure::= procedure name (kin : &) (a : kind)
(x : type) (s : Series kin type)

with nest yields exp

nest ::= loop k
start stmtstart
body stmtbody
inner nest
end stmtend

| guard (kinner : &) with kouter x f lag
body stmtbody
inner stmtend

stmtstart ::= vec = newVec k
| acc = newAcc expzero

stmtbody ::= xelem = x′elem
| xelem = next k sin

| xelem = expworker xelem
| acc := expworker acc xelem
| writeVec k vec xelem

stmtend ::= xresult = read acc
| sliceVec k vec

Figure 6. Series Procedures as Abstract Loop Nests

It may also be possible to automatically massage the source pro-
gram or Process descriptions to ensure that unused results are not
computed, but we have not investigated this further. As mentioned
in §1, a primary client of our new fusion system is Data Parallel
Haskell (DPH), and the DPH vectorizer eliminates conditional op-
erators like choose as part of its existing vectorization process.

4.2 Scheduling Processes into Procedures
The Schedule phase takes a list of processes and converts it to a list
of procedures.

schedule :: [Process] -> [Procedure]

The definition of Procedure is given in Figure 6. A Procedure
expresses the same computation as a Process, except that it is
defined by an abstract, imperative loop nest instead of an operator
graph. In Figure 6 the fields of the loop construct represent the
anatomy of the loop, similarly to [22]. The idea of representing a
loop in this “broken up” format also appears in work by Waters on
series expressions [26, 27], which was inspired by the loop macro
package of Common LISP [23].

For example, here is a simple Process that sums the elements
of an input series s1:

process sum_s (k : &) (s1 : Series k Int)
with { x1 <= fold k Int s1 with (+) and 0 }
yields x1

The scheduled procedure is then:

procedure sum_d (k : &) (s1 : Series k Int)
with loop k

start { x1_acc = newAcc 0 }
body { s1_elem = next k s1

; x1_acc := (+) x1_acc s1_elem }
inner {}
end { x1 = read x1_acc }

yields x1

The start field of a loop holds setup statements to execute
before entering the loop proper; body contains the statements to
execute for each iteration; inner holds some inner nests to run
for every iteration, and end contains cleanup code that runs after
the loop has completed. In future we elide empty fields, instead of
writing inner {} and so on.

In the sum_d example, x1_acc = newAcc 0 creates a new ac-
cumulator x1_acc. The statement s1_elem = next k s1 takes
the next element from s1. The statement x1 = read x1_acc
reads the accumulator. Note that the next, update (:=) and read
statements are side effecting, imperative operations.

Now, suppose we wanted a procedure like sum_d that also
computed the product of s1 concurrently with its sum, then added
both results together. We would do this by appending an extra
statement to each of the fields of the nest, and changing the yielded
expression.

procedure sumProd (k : &) (s1 : Series k Int)
with loop k

start { acc1 = newAcc 0
; acc2 = newAcc 1 } *NEW

body { s1_elem = next k s1
; acc1 := (+) acc1 s1_elem
; acc2 := (*) acc2 s1_elem } *NEW

end { x1 = read acc1
; x2 = read acc2 } *NEW

yields (x1 + x2) *CHANGED

In general terms, to convert a process into a procedure we con-
sider each operator from the process in turn, and insert statements
into the procedure that implement that operator. The fact that our
procedure is expressed as an anatomy of separate start, body and
end fields means that we can produce code that interleaves the com-
putation of each operator. This interleaving of code is the primary
mechanism which lets us deal with branching data flows, which we
will return to in §7.

The scheduling process is formalized in Figure 7, and we will
give more examples in coming sections. The top level judgment
process ⇒ procedure converts a process into a similarly named
procedure. Note that the resulting procedure has the same param-
eters and yielded expression, but its implementation has changed
from an operator list into an abstract loop nest.

The B operator used in Figure 7 has the following type:

B : nest→ ((rate+>)× f ield)→ nest

where f ield is one of the fields attached to the loop or guard
constructs of Figure 6 (start, body and so on). The application
(nB k× f ) recursively descends into the nest n until it finds the
loop or guard construct that matches rate k, and then appends the
statements in field f to the similar field of that construct. When
searching for matching rates we use the k in (loop k) and the kinner
in (guard (kinner : &) with ... ). The guard construct is an abstract
if expression, and kinner corresponds to the number of times the
body is entered. In some rules we use > in place of a real rate
variable, which matches the rate of the outer-most loop construct
in the nest.
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process⇒ procedure

loop kin body {selem
n = next kin sn

n
} ` operator ⇒ nest

process name (kin : &) (a : kind) (x : type) (sn : Series kin typen)
n
with operator yields exp

⇒ procedure name (kin : &) (a : kind) (x : type) (sn : Series kin typen)
n
with nest yields exp

nest ` operator⇒ nest

nest B (kouter × inner { guard (kinner : &) with kouter selem
f lags }) ` operator ⇒ nest ′

nest ` mkSel (kinner : &) (xsel : Sel kouter kinner) from kouter s f lags in operator ⇒ nest ′

nest ` sout <- map n kin type n expwork sin
n ⇒ nest B (kin × body { selem

out = expwork selem
in

n
})

nest ` sout <- pack kout kin typein xsel sin ⇒ nest B (kout × body { selem
out = selem

in })

nest ` xresult <= fold kin typein typeresult sin ⇒ nest B (> × start { xacc
result = newAcc expzero })

with expwork and expzero B (kin × body { xacc
result := expwork xacc

result selem
in })

B (> × end { xresult = read xacc
result })

nest ` xvec <= create kin typein sin ⇒ nest B (> × start { xvec = newVec kin })
B (kin × body { writeVec kin xvec selem

in })
B (> × end { sliceVec kin xvec })

Figure 7. Scheduling Series Processes into Procedures

4.2.1 Scheduling Maps
As an example of how to schedule the map operator, suppose
we have a process like sumProd from §4.2 that also performs a
map fn on the elements before taking the sum and product, for
some arbitrary fn. Here is the full process description:

process sumProdFn (k : &) (s1 : Series k Int)
with { s2 <- map k Int fn s1

; xs <= fold k Int s2 with (+) and 0
; xp <= fold k Int s2 with (*) and 1 }

yields (xs + xp)

Using just the first rule in Figure 7 and the one for map would
produce the following procedure, where we still need to schedule
the two fold operators:

procedure sumProdFn (k : &) (s1 : Series k Int)
with loop k

body { s1_elem = next k s1
; s2_elem = fn s1_elem }

yields (xs + xp) ** NOT FINISHED

Importantly, note that the intermediate variables s1_elem and
s2_elem are named after the corresponding series s1 and s2. In
Figure 7 this naming convention is indicated by the superscript on
variable names, so selem is a concrete variable name related to the
name s. We use this trick to avoid maintaining an environment that
maps series names (s) to the variable names that bind their individ-
ual elements (selem). We similarly relate the names of non-series
variables (x) to their corresponding accumulators (xacc).

Returning to Figure 7, the rule for fold adds statements to the
nest that first initialize an accumulator, update it in the body of the
loop, and then read back the final value. The accumulator lives for
the entirety of the loop, so we insert the statements to initialize and
read its value in the outer most context, indicated by >.

Scheduling the two fold operations of sumProdFn produces the
following.

procedure sumProdFn (k : &) (s1 : Series k Int)
with loop k

start { xs_acc = newAcc 0 *NEW
; xp_acc = newAcc 1 } *NEW

body { s1_elem = next k s1
; s2_elem = fn s1_elem
; xs_acc := (+) xs_acc s2_elem *NEW
; xp_acc := (*) xp_acc s2_elem } *NEW

end { xs = read xs_acc *NEW
; xp = read xp_acc } *NEW

yields (xs + xp)

When we convert this back to concrete Core code in the next
section, we will generate the outer structure of the loop that causes
the statements in the body to be evaluated the correct number of
times This is governed by the associated rate variable k.

4.2.2 Scheduling Pack and Create
Operators from mkSel contexts in the process description are
scheduled into the body of an abstract if statement represented by
the guard construct of Figure 6. A guard binds the rate variable
kinner for the inner context, and is also tagged with the rate kouter of
the outer context. With guard, the body and inner fields contain
more statements to run when the corresponding flag x f lag is true.
The inner nest is needed when a packed series is packed again us-
ing a different selector, as this creates a more deeply nested parallel
context. The NestedFilter example described in §6 does this.

Figure 8 shows the procedure generated for the explicitly typed
version of filterMax back in Figure 2, whose process description
is in §4.1. On the right of each statement we show the series
operator that statement is associated with.

Scheduling the use of create has added three separate state-
ments to the nest: one to allocate the new vector buffer; one to write
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procedure filterMax_d (k1 : &) (s1 : Series k1 Int)
with loop k1
start { vec’ = newVec k2 *create

; mx_acc = newAcc 0 } *fold max
body { s1_elem = next k1 s1

; s2_elem = (+ 1) s1_elem *map (+ 1)
; s3_elem = (> 0) s2_elem } *map (> 0)

inner guard (k2 : &) with k1 s3_elem
body { s4_elem = s2_elem *pack

; writeVec k2 vec’ s4_elem *create
; mx_acc := max mx_acc s4_elem} *fold max

end { sliceVec k2 vec’ *create
; mx = read mx_acc } *fold max

yields (vec’, mx)

Figure 8. Procedure for filterMax

elements into it, and one to destructively slice it down to the final
size by overwriting its length field. Note that the use of the B oper-
ator in the corresponding rule from Figure 7 ensures that the result
vector is only written to inside the body of the guard. Also, note
that newVec and sliceVec statements are tagged with k2, which
is not in scope in the outer context. This reflects that fact that the
length of the result vector cannot be known until the loop com-
pletes, as only then will we know how many times the body of the
guard was entered. We will fix this in the concretization phase de-
scribed in the next section, by rewriting the code to keep track of
the length of the result vector.

Interestingly, the pack operation becomes a trivial renaming, as
shown in the first statement of the inner body field of Figure 8.
Recall that in the version of filterMax from Figure 2, the pack
operation was written s4 = pack k1 k2 Int sel s2, and here
we have scheduled it as just s4_elem = s2_elem. It is the mkSel
function that actually creates the selector context, and that context
is expressed here as a guard construct. When looking at the source
code of filterMax, we might imagine that pack would perform
some sort of indexing operation, after the discussion in §3.4. How-
ever, when the code is expressed in the form of Figure 8 the current
index into each series is implicit.

From a logical / type-theory perspective we view pack as a
coercion from a series of the outer rate (k1) to a series of the
inner rate (k2). This coercion is justified by evidence that these
rates are related, which is expressed as our selector sel. However,
our compilation process eliminates the selector completely, so the
physical packing operation as described in §3.4 is never performed.

4.3 Concretization
The concretization phase rewrites constructs that use type level rate
variables into ones that use real indices and loop counters.

concretize :: [Procedure] -> [ProcedureI]

The ProcedureI language is very similar to Procedure in Fig-
ure 6 except that every appearance of a rate variable in Procedure

is replaced by loop counter or known length in ProcedureI.1 The
concrete version of filterMax is shown in Figure 9, which is the
transformed version of Figure 8.

Deciding whether to change a rate variable to a loop counter
(like k1 to k1_ix), accumulator (k2 to k2_acc) or a known length
(k1 to length s1) is based on the form of the construct being
rewritten. For example, for sliceVec we always rewrite its rate
variable to a similarly named accumulator.

1 In our real implementation we use the same data type to represent both,
and simply fill-in accumulation variables during concretization.

procedure filterMax_c (k1 : &) (s1 : Series k1 Int)
with loopI (k1_ix : Int) (length s1)
start { vec’ = newVecI (length s1) *CHANGED

; acc = newAcc 0
; k2_acc = newAcc 0 } *NEW

body { s1_elem = nextI k1_ix s1 *CHANGED
; s2_elem = (+ 1) s1_elem
; s3_elem = (> 0) s2_elem }

inner guardI (k2_ix : Int) k2_acc with s3_elem
*CHANGED

body { s4_elem = s2_elem
; writeVecI k2_ix vec’ s4_elem *CHANGED
; acc := max acc s4_elem }

end { sliceVecI k2_acc vec’ *CHANGED
; mx = read acc }

yields (vec’, mx)

Figure 9. Concrete Procedure for filterMax

The operator guard (k2 : &) with k1 s3_elem in Fig-
ure 8 changes to guardI (k2_ix: Int) k2_acc with s3_elem
in Figure 9. For each guardwe also insert an accumulator (k2_acc)
to keep track of how many times the guard is entered. The new
guardI construct executes by first checking the flag s3_elem,
and if it is true, reads k2_acc to get the current entry counter and
binds it to k2_ix before evaluating the body. In the application of
writeVecI this index k2_ix is then used when constructing the
filtered result vector vec’. The final sliceVec statement is also
rewritten to use k2_acc, so it knows the final length.

The last task is to rewrite rate variables on loop constructs and
newVec statements to use the lengths of known series. For this we
simply look in the environment for a series whose type contains the
same rate variable and use its length. If there are multiple series
with the same rate variable then we just choose the first one — as
all series tagged with the same rate are guaranteed to have the same
length.

4.4 Extracting Implementation Code
The Extract phase takes our concretized list of procedures and
converts them back to a module of imperative flavoured Core code.
We end up with a top-level binding for each Procedure, which
mirrors the slurp phase from §4.1.

extract :: [Procedure] -> Module

The extracted code for filterMax is shown in Figure 10. As we
can see, this final phase is again mostly a change of syntax. The real
work of fusion has been performed by the scheduling phase, and the
concretization pass in the previous section has already reduced the
abstraction level of our program to something that looks like real
loop code.

In the extracted code the loopI and guardI constructs have
changed to calls to similarly named functions. As we will see in the
next section, these can be implemented as Haskell library functions
and then inlined, or transformed to into tail recursive loops as
discussed in §5.2.

5. Details of the Conversion
The previous section contains the main details of the fusion trans-
formation, starting with a high level description of the computation
to be performed, and ending in imperative loop code.

As GHC Core is a pure functional language, the imperative code
in Figure 10 is not the end of the story. In our implementation we
express the code in Figure 10 in an imperative version of GHC
Core named Core Flow. This language is essentially the same as
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filterMax_x :: ∀(k1 : &)
. Series k1 Int -> (Vector Int, Int)

= Λ(k1 : &).
λ(s1 : Series k1 Int).
let vec’ : Vector Int = newVec @Int (length s1)
let acc : Ref Int = newRef @Int 0
let k2_acc : Ref Int = newRef @Int 0
let _ : Unit

= loopI (length s1)
(λ(k1_ix : Int).
let s1_elem = next @k1 @Int s1 k1_ix
let s2_elem = add @Int 1 s1_elem
let s3_elem = gt @Int 0 s2_elem
let _ : Unit

= guardI k2_acc s3_elem
(λ(k2_ix : Int).
let s4_elem = s2_elem
let _ = writeVec @Int

vec k2_ix s4_elem
let _ = writeRef @Int acc

(max (readRef @Int acc)
s4_elem)

in ())
in ())

let k2_ix : Int = readRef @Int k2_acc
let vec’’ : Vector Int = sliceVec @Int k2_ix vec’
let mx : Int = readRef @Int acc
in (vec’’, mx)

Figure 10. Extracted Imperative Core Code for filterMax

GHC Core, being a version of System-F, except that it is strict,
has untracked side effects and includes imperative functions like
newVec and readRef as primitive operators.

5.1 State Threading
As GHC uses monadic state threading to sequence effectful state-
ments, we must thread GHC’s primitive world token though the
extracted code before converting it back to real GHC Core. We
have implemented this state threading transform generically, so
it is parameterized by two sets of type signatures: one that as-
sumes a language with untracked side effects, and one that uses
state threading. For example, the two versions of the signature for
writeVec# are as follows, where writeVecE# has untracked ef-
fects and writeVecW# uses a world token of type W.

writeVecE# :: ∀(a:*). Vector a -> Int -> a -> ()
writeVecW# :: ∀(a:*). Vector a -> Int -> a -> W -> W

5.2 Loop Winding
After the extracted code of Figure 10 has had the world token
threaded through it, it can converted back to real GHC Core and
type checked.

In our implementation we originally wrote newVec, newRef,
loopI, guardI, next and so on as standard Haskell library func-
tions. Although this allows the program to run, the fact that GHC
does not track pointer aliasing between heap objects results in inef-
ficient object code when using mutable references.

To avoid this problem, we instead perform a loop winding trans-
formation on the code that converts uses of loopI and guardI into
real tail recursive loops, and mutable references into accumulat-
ing parameters. This transform is ad-hoc because it assumes that
mutable references do not escape the extracted function, and that
there is no additional aliasing between reference variables like acc

and k2_acc. However, because we generated the code ourselves
we know these properties are true.

5.3 Primitive Arithmetic and Unboxed Types
Unlike GHC Core, the Core Flow language does not make a dis-
tinction between boxed and unboxed types [17]. When we slurp
a Process description from the original GHC Core program we
require that program to use boxed numeric values and operators.
However, when we convert extracted code back to GHC Core,
we use the unboxed versions. Unboxed primitive operators typi-
cally compile down to single machine instructions. To handle the
impedance mismatch we then generate a wrapper function that mar-
shals between the signature of the original source function and the
extracted version. For example, the wrapper for filterMax func-
tion would be:

filterMax = Λ(k : &). λ(s : Series k Int).
case filterMax_x s of
(# vec, n #) -> (vec, I# n)

Standard unboxing techniques guided by strictness information
usually work, but as strictness analysis is conservative the unboxing
is not guaranteed. When the rest of the loop body has been fused
well enough to execute in only a handful of cycles, the cost of a
single unboxing operation in an inner loop can easily dominate
program runtime. Brutally converting arithmetic operations from
their boxed to unboxed versions during flow fusion ensures that we
never pay the price of thunk entry in fused code.

6. Benchmarks
Benchmarks were conducted on a MacBook Pro with 2.8GHz Intel
Core i7 with 8GB of RAM. Source code is available from the
repa-plugin darcs repository.

We use micro-benchmarks because our fusion system addresses
these specific programming patterns, rather than being an improve-
ment on the ambient performance of the program — as with opti-
mizations like pointer tagging [15].

For each benchmark we compare four implementations:

• Stream: using stream fusion [7] and unboxed vectors;2

• Flow: using our new Flow fusion framework;
• Unfused Flow: using our Flow API but without the plugin;
• Hand-fused: hand written and fused C code.

The Unfused Flow versions use the exact same code as the Flow
versions, except they are compiled without the plugin that actually
performs the fusion transformation. In this case the benchmarks
are compiled via a fallback implementation of the user-facing API
of Figure 3, implemented in terms of standard stream fusion [7].
The fallback implementation provides a quick compilation path for
people that do not want to install the plugin or care about the last
ounce of performance, as well as a convenient way of testing the
plugin itself.

6.1 Dot Product
A pair of two-dimensional vectors are multiplied element-wise
and the results summed. Each two dimensional vector is stored as
two arrays of integers, giving four arrays in total. As discussed in
§2.2, code compiled with stream fusion produces a loop counter
for each vector. With flow fusion the concretization phase (§4.3)
naturally causes loop counters to be shared. This provides a 25%
speedup over stream fusion and puts us on par with the reference C
implementation.

2 from the vector library on Hackage
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Benchmark Input size Stream (ms) Flow (ms) Unfused Flow (ms) Hand-fused C (ms)
Dot Product 108 655 489 (75%) 1,096 (167%) 474 (72%)
MapMap 108 842 636 (75%) 842 (100%) 615 (73%)
FilterSum 108 505 430 (85%) 1,132 (224%) 344 (68%)
FilterMax 108 567 521 (91%) 1,496 (263%) 360 (63%)
NestedFilter 108 485 420 (86%) 1,202 (247%) 376 (77%)
QuickHull 107 419 208 (49%) 857 (204%) 183 (43%)

Figure 11. Benchmark Results for Flow Fusion

6.2 MapMap
The elements of a vector of integers are doubled, and the resulting
vector has a constant added in one operation and subtracted in an-
other. With stream fusion the first result is materialized in memory,
and then read back by each of the subsequent vector operations.
With flow fusion the first result is not materialized, which also puts
us on par with the reference C implementation.

6.3 FilterSum
A vector of integers is filtered and the elements of the original
and result vectors are separately summed. The result vector and
both sums are returned in a 3-tuple. With stream fusion the code
uses three separate loops, one for each operator. With flow fusion
the code uses a single loop that sums both the original and result
vectors while constructing the result.

Although the Core code produced by flow fusion is optimal, the
low-level object code suffers from pointer aliasing problems. The
back-end code generator does not know that the input vector does
not alias with the result vector, nor that writes to the element data
of the result do not affect its starting offset field. Ultimately, the
length field of the first vector, and starting offsets for both vectors
are repeatedly read in the inner loop. The C compiler can infer
correct aliasing information, and thus saves three memory reads
per loop iteration.

6.4 FilterMax
This is the filterMax example described earlier. With stream fu-
sion the filtered result vector must be read back from memory to
sum its elements. With flow fusion the sum is performed in the
same loop as the filter. Similarly to the FilterSum benchmark, al-
though the Core code is optimal, low level pointer aliasing prob-
lems in the object code prevent us from matching the performance
of the C version.

6.5 NestedFilter
An input vector is filtered, this result filtered again by another
predicate, and both results are returned in a tuple. With stream
fusion the first result is constructed in memory and then read back
to perform the second filter. With flow fusion both results are
constructed in the same loop and the first is not read back. As
mentioned in §4.2.2 this benchmark uses two nested applications
of mkSel, thus the Core code contains two nested guards.

6.6 QuickHull
QuickHull finds the smallest convex hull of a set of points in the
2-d plane. The algorithm operates in two phases. The first is an
initialization phase where we determine the left-most and right-
most points in the input set. If these results are computed in two
separate fold operations then stream fusion cannot fuse this code.
In the second phase, we need to determine the set of points above a
cutting line and also the point furthest from it. This is a filterMax-
like operation that stream fusion can also not fuse.

7. Related Work
Our work sits between the fields of array fusion and compilation
of data flow languages. As mentioned in §3.5 the Flow Fusion API
from Figure 3 defines a domain specific, first order, non-recursive,
synchronous, finite, data flow language for writing array programs.
This language is a fragment of a more general data flow language
such as Lustre [1] or Lucid Synchrone [19], and our rate types are
similar to the clock types of Lucid, and Kahn networks [3].

The full data flow languages are intended primarily for imple-
menting embedded control systems, writing signal processing cir-
cuits as code. In this context, support for infinite streams is essen-
tial, as the input signal must be processed indefinitely. Clock typing
systems for these languages ensure causality and syncronicity in the
presence of recursive data flows and infinite streams. Causality en-
sures the system has a well defined notion of time, and syncronicity
ensures that it can be evaluated without needing unbounded buffers
of intermediate signal data. In contrast, as we deal only with acyclic
graphs our programs are automatically causal, and the finiteness of
arrays eliminates the need for unbounded buffering.

The idea of representing a loop as an anatomy of start, body,
inner and end fields as in our Procedure language of Figure 6
appears in Shivers’s work [22] as well as Waters’s work on series
expressions [27]. Shivers’s work focuses on taming the vagarities of
variable scoping in Common LISP loop generation macros [23]. He
gives an eight-field loop anatomy and scoping rules for the source
language in terms of this anatomy. The source code using these
macro packages is more loopish in nature than our functional code
using map, fold, pack and so on. In the former, one writes loop
to introduce a new one, and then adds modifiers to specify what
results should be computed.

The work most closely related to ours is Waters’s series expres-
sion framework [27]. In its essence, the paper you are reading straps
a cut down clock calculus to a functionally flavoured version of
Waters’s compilation method, and bakes it into a GHC plugin. Wa-
ters’s work does not use explicit clock or rate typing information,
and his compilation method generates Pascal code with goto state-
ments and fresh labels. Full featured clock typing systems like [2]
(1995) and [3] (1996) did not appear until after Waters completed
his line of work on series expressions [27] (1991).

In place of a rate or clock typing system, Waters’s framework
uses the online criteria, which is one of four restrictions he gives
that govern whether an optimizable series expression can be fused.
The others are 1) series expressions are not subjected to any condi-
tional or looping control flow (discussed in §4.1.2); 2) the program
is statically analysable (meaning compound operators are inlined
or otherwise visible to the compiler (§3.6), and 3) series are not
consumed in a random access manner (§3.1).

The online criteria says that every non directed cycle in the data
flow graph must consume and produce its elements in lockstep. Us-
ing rate typing we rephrase this by saying every series in the cycle
must have the same rate. As we have a non-recursive Process lan-
guage, the only way to make a cycle in the graph would be to use
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an operator with multiple inputs, but the only one is map2 whose
type requires its input and output series to have the same rate.

Finally, the fact that short cut fusion cannot deal with branching
data flows stems from a deeper problem: no sequential evaluator
can perform a lazy unzip-like operation in a space efficient way.
Given unzip x = (map fst x, map snd x), while computing
the elements of the first component of the result, we cannot reclaim
the space for the input x elements because we will need those again
to compute the second component of the result. Ideally, we would
alternate between the two components, pulling one element from
each side after the other, but lazy evaluation does not do this.

Hughes gives an informal proof of the above fact in [12] (1983),
where a “sequential evaluator” is defined as one that, once the
evaluator has begun to reduce an expression E, it will only reduce E
and other expressions that E demands until E has been completely
reduced. From this fact we infer that no system based on partial
evaluation of purely functional code can fuse branching data flows
when the underling language has a sequential semantics (as does
GHC Core). Our flow fusion system steps around this problem by
splitting the functional array operators into imperative code, and
then interleaving the various components. We perform the job of a
concurrent scheduler at compile time.

8. Future Work
This paper only discusses a few array combinators: map, fold,
pack and so on, but others such as append and scan can be
implemented in a similar way. For example, append is an instance
of the more general combine combinator, that takes a series of
flags, two series of elements, and then chooses which element to
return based on the flag:

combine [T F T T F] [1 2] [3 4 5] = [3 1 4 5 2]

After §3.4, the vector of flags would be implemented as an ex-
tended selector Sel2 k1 k2 k3 that relates three separate rates:
the rate of the flags, the rates of the two input vectors of elements. In
the Procedure language, this new selector context would be com-
piled as a real if construct with both a then and else branches,
unlike our guard construct that only has the then branch.

In future work we will perform further transformations at the
Procedure level to introduce SIMD instructions and multicore
evaluation. Unlike the loop parallelization systems in imperative
language compilers, we do not need an iteration dependency anal-
ysis. Our our loops lack such dependencies by construction.
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