arXiv:1512.02900v1 [quant-ph] 9 Dec 2015

Advances in quantum machine learning

J. C. Adcock, E. Allen, M. Day*, S. Frick, J. Hinchliff, M. Johnson,
S. Morley-Short, S. Pallister, A. B. Price, S. Stanisic

December 10, 2015
Quantum Engineering Centre for Doctoral Training, University of Bristol, UK

*Corresponding author: matt.day@bristol.ac.uk

“We can only see a short distance ahead,
but we can see plenty there that needs to be
done.”

Alan Turing “Computing machinery and
intelligence.” Mind (1950): 433-460.

“The question of whether machines can
think... is about as relevant as the question
of whether submarines can swim.”

Edsger W. Digkstra “The threats to
computing science.” (1984).

Preface

Created by the students of the Quantum Engineering Centre for Doctoral Training, this document
summarises the output of the ‘Cohort Project’ postgraduate unit. The unit’s aim is to get all first year
students to investigate an area of quantum technologies, with a scope broader than typical research
projects. The area of choice for the 2014/15 academic year was quantum machine learning.

The following document offers a hybrid discussion, both reviewing the current field and suggest-
ing directions for further research. It is structured such that Sections 1.1 and 1.2 briefly introduce
classical machine learning and highlight useful concepts also relevant to quantum machine learning.
Sections 2 and 3 then examine previous research in quantum machine learning algorithms and im-
plementations, addressing algorithms’ underlying principles and problems. Section 4 subsequently
outlines challenges specifically facing quantum machine learning (as opposed to quantum computa-
tion in general). Section 5 concludes by identifying areas for future research and particular problems
to be overcome.

The conclusions of the document are as follows. The field’s outlook is generally positive, show-
ing significant promise (see, for example, Sections 2.1.2, 2.3 and 2.6). There is, however, a body of
published work which lacks formal derivation, making it difficult to assess the advantage of some algo-
rithms. Significant real-world applications demonstrate an obvious market for implementing learning
algorithms on a quantum machine. We have found no reason as to why this cannot occur, however
there are appreciable hurdles to overcome before one can claim that it is a primary application of
quantum computation. We believe current focus should be on the development of quantum machine
learning algorithms that show an appreciation of the practical difficulties of implementation.

A table summarising the advantages of the algorithms discussed in this document can be found in
Appendix C.

List of Acronyms

ANN: Artificial neural network

BM: Boltzmann machine

BN: Bayesian network

CDL: Classical deep learning

CML: Classical machine learning

HMM: Hidden Markov model

HQMM: Hidden quantum Markov model
k-ININ: k-nearest neighbours

NMR: Nuclear magnetic resonance

PCA: Principal component analysis
QBN: Quantum Bayesian network

QDL: Quantum deep learning

QML: Quantum machine learning
QPCA: Quantum principal component analysis
QRAM: Quantum random access memory
RAM: Random access memory

SQW: Stochastic quantum walk

SVM: Support vector machine

WNN: Weightless neural network

Contents

Preface 2

List of Acronyms 3

1 Introduction 5

1.1 Classical Machine Learning 5

1.2 Quantum Machine Learning L oL 5

1.3 Comparison of Machine Learning Algorithms 7

2 Quantum Machine Learning Algorithms 7

2.1 Neural Networks 8

2.1.1 Quantum Walks oo 10

2.1.2 Deep Learning e 10

2.2 Bayesian Networks e 12

2.3 HHL: Solving Linear Systems of Equations 13

2.4 Principal Component Analysis 13

2.5 A Quantum Nearest-Centroid Algorithm for k-Means Clustering 14

2.6 A Quantum k-Nearest Neighbour Algorithm 15

2.7 Other Notable Algorithms 16

3 Experimental implementations 17

3.1 Adiabatic Quantum Machine Learning, 17
3.2 Implementating a Quantum Support Vector Machine Algorithm on a Photonic Quan-

tum Computer e e e e e e 18

3.3 Implementing a Quantum Support Vector Machine on a Four-Qubit Quantum Simulator 19

4 Challenges 20

4.1 Practical Problems in Quantum Computing 21

4.2 Some Common Early Pitfalls in Quantum Algorithm Design 21

4.3 Quantum Random Access Memory o 21

5 Conclusion 22

6 Acknowledgments 23

Appendices 29

A Quantum Perceptron Model 29

A1 Perceptrons L e 29

A.2 Quantum Perceptrons 30

A3 Discussion e e 33

B Probabilistic Distance in the Quantum SVM 35

C Table of Quantum Algorithms 37

Quantum Machine Learning 1 INTRODUCTION

1 Introduction

Machine learning algorithms are tasked with extracting meaningful information and making predic-
tions about data. In contrast to other techniques, these algorithms construct and/or update their
predictive model based on input data. The applications of the field are broad, ranging from spam
filtering to image recognition, demonstrating a large market and wide societal impact [1].

In recent years, there have been a number of advances in the field of quantum information showing
that particular quantum algorithms can offer a speedup over their classical counterparts [2]. It has been
speculated that application of these techniques to the field of machine learning may produce similar
results. Such an outcome would be a great boost to the developing field of quantum computation,
and may eventually offer new practical solutions for current machine learning problems. For a general
introduction to the field of quantum computation and information, see reference [3].

1.1 Classical Machine Learning

Machine learning algorithms are almost exclusively used to categorise instances of data into classes
that can either be user defined, or found from the intrinsic structure of the data. Consider the dataset
X = {x1,x2,...,x,} where each x; is a data point that is itself defined by a number of parameters
x; = (z},22,...,2™). An example dataset would be a collection of images, where each image is defined
by parameters such as the number of pixels it contains or the colour content across a certain region.
The classification of this data could be to sort between images that contain cars and those that do
not. It is the role of the machine learning algorithm to acquire the classification rule.

Broadly speaking, machine learning algorithms can be broken into three types: supervised, unsu-
pervised and reinforced learning. Supervised learning is based on having a predefined set of training
data X7 (known as a ‘labelled’ dataset) which contains data points that have already been correctly
classified to produce a set of classifications Y = {y1,ya, ..., yn}, where y; is the classification of the
data point ;. The machine learning algorithm takes in Y and X7 and optimises internal param-
eters until the closest classification of the training set to Y has been reached. Once the machine
has learned, it is then fed new, unlabelled data X which it classifies but does no learning from. In
contrast, reinforced learning has no training set. Instead, the user dynamically inputs the result of the
machine classification on an unmarked dataset as either correct or incorrect. This is used to feed back
through the algorithm/machine and results in a learning process. Cases where the classification sets
are not predefined (i.e. where {Y '} does not exist) come under the bracket of unsupervised learning;
this happens typically because the datasets are too large or complex. Here, the machine looks for any
natural structure within the data. For example, consider a very large and complex dataset (n,m > 1).
Each data point of this set is a vector in a high-dimensional data space. The complexity of the data
may make it impossible for the user to predefine a desired output or method of learning, which makes
supervised or reinforced learning difficult. However, an unsupervised clustering algorithm such as
k-means (Section 2.5) can be used, which may split the data into distinct clusters. These clusters can
give information on the relationships between different features of the data and can be used to later
classify new instances of data. An application of this analysis is market research, where data can be
the results of a market survey. The goal of the user is to segment the market into consumers that
have similar attributes, which can therefore be exposed to similar marketing strategies [4].

1.2 Quantum Machine Learning

The first problem encountered with quantum machine learning (QML) is its definition. By consider-
ing a number of scenarios, we aim to clarify how machine learning and quantum mechanics can be
combined, and whether we will consider these to be QML. This is subjective and any deep theoreti-
cal meaning requires further clarification. The considered scenarios have become a useful tool when
considering what form a QML protocol could take and how it could be implemented practically. We
will group the scenarios into categories of learning, which are loosely based on definitions made by

Quantum Machine Learning 1 INTRODUCTION

Afmeur, Brassard, and Gambs [5, 6]. Figure 1 is a pictorial representation of the categories, which
the reader should consult as they are defined.

Machine learning process

8

> LO
5l Q

(O]

=~

ey

2| C

©

© L
c 1
o Q

)

©

5

g_ C

o L
o Qr 1 2
9 | |
= 1 1

=)

> c! 1
(]

o

Time———>

Figure 1: Pictorial representation of the learning categories. Here, “Q” and “C” denote quantum and
classical computation respectively. The solid line represents the minimal computational requirements
of the protocol during the learning process. The dashed lines in Lo represent the possibility of having
data that does not need to be represented classically.

First, we consider the classical case, which defines the category L. Traditional classical machine
learning (CML) is included here, where a classical machine learns on classical data. Also included
is machine learning performed on a classical machine but with data that has come from a quantum
system; this is beginning to be applied within a number of schemes [7]. The second category, L1, we
will denote as QML. Here, the learning process can predominantly be run with classical computation,
with only part of the protocol (e.g. a particular sub-routine) requiring access to a quantum computer.
That is, the speedup gained by quantum computation comes directly from a part of the process (for
example by using Grover’s [8] or Shor’s [9] algorithm). As with Lo, we will include in L;, cases where
classical data fed to the algorithm originates from both classical and quantum systems. We note here
that although only a small part of the algorithm requires a quantum computer, the overall process
suffers no drawback from being computed entirely on a quantum machine, as classical computation
can be performed efficiently on a quantum computer [3, 10]. However, it may be more practical to
use a quantum-classical hybrid computational system. In either case, protocols within this category
will have to carefully consider any limitations from read-in and read-out of the data on either side of
the quantum computational process.

We will denote the final learning category as Lo; this is also considered to be QML. Here, the
algorithm contains no sub-routine that can be performed equally well on a classical computer. Like
before, the input and output data can be classical. However, one can imagine cases where the data
naturally takes quantum form®.

1 An example could be learning the noise model of a quantum channel. One could send quantum states through the
channel and pass these directly to a learning machine. The QML algorithm then learns on the noise and classifies any
new states passed through the channel. Once classified, the states could be corrected by another method. This process
may not require any classical interface at all.

Quantum Machine Learning 2 QUANTUM MACHINE LEARNING ALGORITHMS

1.3 Comparison of Machine Learning Algorithms

U1 U2 Uz

V
T

Figure 2: The roles of space S and time T in the circuit model for quantum computation.

In order to understand the potential benefits of QML, it must be possible to make comparisons
between classical and quantum machine learning algorithms, in terms of speed and classifier perfor-
mance. To compare algorithms, computer scientists consider two characteristic resources:

e Space, S: The amount of computational space needed to run the algorithm. Formally, ‘space’
refers to the number of qubits required. For S qubits, the dimension of the relevant Hilbert space
is 25. Tt is important to distinguish between these two quantities, as there is an exponential
factor between them.

e Time, T: The time taken to train and then classify within a specified error. Formally, ‘time’
refers to the number of operations required and, in the quantum circuit model, can be expressed
as the number of consecutive gates applied to the qubits.

Figure 2 shows how time and space are represented in quantum circuit diagrams. These are
typically functions of the following variables:

e Size of training dataset, n: The number of data points in the training set supplied to an
algorithm.

e Size of input dataset, N: The number of data points to be classified by an algorithm.

e Dimension of data points, m: The number of parameters for each data point. In machine
learning, each data point is often treated as a vector, where the numeric value associated with
each feature is represented as a component of the vector.

e Error, e: The fraction of incorrect non-training classifications made by the algorithm.

Note that not all algorithms necessarily have resource scalings dependent on all the above variables.
For example, unsupervised learning does not depend on n, as no training data exists. Figure 3 depicts
the scaling of two hypothetical algorithms with error, both exhibiting differing convergence properties.
This aims to highlight the situational nature of algorithm comparison. Here, the assertion of which
algorithm is “better” depends entirely on what level of error one is willing to accept. It is also
important to note that not all algorithms will converge to ¢ = 0 given infinite resources.

2 Quantum Machine Learning Algorithms

In this section, we outline several attempts at quantum machine learning algorithms. We begin by
exploring neural networks, before moving onto clustering based algorithms, and ending with several

Quantum Machine Learning 2 QUANTUM MACHINE LEARNING ALGORITHMS

Size of Training Data, n
\

Inverse Classifier Error, €

Figure 3: Example plot illustrating the inverse classifier error scalings with increasing size of the
training dataset, for two different algorithms.

other notable attempts. In order to give a complete overview of the field, we have not outlined any
algorithms in detail, and the interested reader should follow the relevant references. For other reviews
in quantum machine learning, see references [11] and [12].

2.1 Neural Networks

Classical artificial neural networks (ANN) are based on graphs which usually are layered. The nodes
of the graph correspond to neurons, and the links to synapses (see Figure 4). They can be used for
supervised or reinforcement learning. Just like neurons, the nodes have an activation threshold, which
is commonly described by a sigmoid function. Each edge in the graph is associated with a weight,
making some neurons more relevant in the activation of their neighbours.

Figure 4: A feed-forward neural network. Input nodes are on the left, the number of which depends on
how many parameters a single training data point has. If the dimension of the input vector is m = 2,
there will be 2 input nodes - we are currently ignoring an extra node that is usually added to the
input for bias purposes. The last layer on the right is the output layer, which tells us how the input
has been classified. Here we see only one output node, making this a binary classifier. The layers in
between the input and the output are called hidden layers, and there can be as many of them as the
user finds suitable for the dataset being classified. Similarly, the number of nodes per hidden layer
can be varied as much as necessary. Each of the nodes represents a neuron and the weight associated
with an inter-node edge marks the “strength” of the link between the neurons. The higher the weight
between two nodes, the greater the influence on the linked node.

Quantum Machine Learning 2 QUANTUM MACHINE LEARNING ALGORITHMS

A perceptron is a feed-forward single-layer ANN containing only an input and binary output layer.

In a feed-forward layered ANN (Figure 4), the output of each layer generates the input to the next
(k)) For

one. For this purpose, we denote input to the nodes in layer k as «; ', and the output as y,

(0)

1 ,.2 m
i A

=x; = (a7, 27, ..., 2) = ygo), the input to the second node in the
first layer is then calculated as x?’(l) =Y wélt)mf, and the output is yf’(l) = f(xgl)’Q) where f is
an “activation function”, commonly a sigmoid. If f is a linear function, the multi-layer network is
equivalent to a single layer network, which can only solve linearly separable problems. We can see that
input into layer k is :cgk) =w® ~y§k_1), where w® is a matrix of weights for layer k, quantifying to
what degree different nodes in layer k — 1 affect the nodes in layer k). Training in this type of ANN
is usually done through weight adjustment, using gradient descent and backpropagation. The idea
is that the output layer weights are changed to minimize the error, which is the difference between
the calculated and the known output. This error is then also backpropagated all the way to the first
layer, adjusting the weights by gradient descent.

Hopfield networks are another ANN design, which are bi-directional fully-connected graphs, not
arranged in layers [13]. Their connectivity means they can be used as associative memory, allowing
retrieval of a complete pattern, given an incomplete input. Hopfield networks retrieve this foreknown
pattern as a minimum of its energy function (see Equation (1)) with high probability. Other models
also exist although, with the exception of weightless ANNs [14], many have been studied to a far lesser
extent in the context of QML (for more information on classical ANN models, see reference [15]).

The linear algebraic structure of ANN computation means that, by choosing appropriate operators
and states, quantum mechanics could be useful [16]. Specifically, some of the ANN steps require vector
and matrix multiplication which can be intrinsic to quantum mechanics (although result retrieval may
be problematic [17]).

The earliest proposals of quantum ANNs date back to 1996 by Behrman et al. [18] and Toth et
al. [19]. Upon further inspection, much of the work done in this area seems to be quantum inspired -
the algorithms can be described, understood and run efficiently on classical devices, but the inception
of their idea stems from quantum concepts. For a comprehensive review, see Manju and Nigam [20].
As an example, the work of Toth et al. was based on quantum-dot cellular ANNs, but inter-cell
communications were classical [19]. Ventura et al. contributed to the area in 1997, with papers
on both quantum ANNs and associative memories. Unfortunately, this work seemed to be mostly
quantum-inspired [21], incomplete [22] or contained misleading quantum notation [23].

Behrman et al. have a large body of work which aims to show, by numerical simulations, that a
quantum dot molecule can be used as a neural network [18, 24, 25, 26, 27, 28]. These attempts are
interesting as they try to use intrinsic properties of the system to construct an ANN. However in their
attempts (such as that detailed in reference [24]), several problems exist. Firstly, the parameters are
unphysical, i.e. a 65.8ps evolution time is shorter than the spontaneous emission rate of a quantum
dot. Also, the measurement modelling accepts error rates of up to 50%, and the learning update rules
are classical.

More recent efforts by De Oliveria, Da Silva et al. [29, 30, 31, 32] explore the idea of a quantum
weightless neural network (WNN). A WNN consists of a network of random access memory (RAM)
nodes, and can take a number of different forms [14]. This was one of the first machine learning
implementations due to the ready availability of RAM in the 1970s, and the relative ease with which
training could take place. They develop a few approaches to a quantum version of the nodes used in
WNN (quantum probabilistic logic node [29], superposition based learning algorithm [32], probabilistic
quantum memory [30], |¢))-node [31]), but they do not give a thorough analysis to compare these with
the classical version, and no simulation is offered to strengthen the claims. If quantum random access
memory (QRAM) becomes available before other machine learning algorithms can be implemented,
this area will be worth re-visiting. Similarly, recent work of Schuld et al. [33, 34, 35] seems to show
promise. However, we believe there are still limitations with elements of these schemes, and the
existence of a speedup over classical algorithms (for a detailed analysis, see Appendix A).

A common approach to ANNs describes input vectors as quantum states, and weights as operators

example, given input vector x

Quantum Machine Learning 2 QUANTUM MACHINE LEARNING ALGORITHMS

[16, 36, 35]. This approach, sometimes combined with measurement on each iteration of the algorithm
to feed back the output classically, usually results in the algorithm being incomplete (missing an
appropriate training step, for example [16, 35]) or even disputed as incorrect [37]. If the algorithm
assumes that the measured quantum data can be reused as the original state, problems may arise.

In relation to Hopfield networks and QRAM, more serious work has been done on quantum asso-
ciative memory [38].

We will now proceed to mention a few promising approaches for ANNs in more detail. For an
in-depth review, see Schuld et al. [39].

2.1.1 Quantum Walks

Schuld et al. [33] propose using quantum walks to construct a quantum ANN algorithm, specifi-
cally with an eye to demonstrate associative memory capabilities. This is a sensible idea, as both
discrete-time and continuous-time quantum walks are universal for quantum computation [40, 41]. In
associative memories, a previously-seen complete input is retrieved upon presentation of an incomplete
or noisy input.

The quantum walker position represents the pattern of the “active” neurons (the firing pattern).
That is, on an n-dimensional hypercube, if the walker is in a specific corner labelled with an n-bit
string, then this string will have n corresponding neurons, each of which is “active” if the corresponding
bit is 1. In a Hopfield network for a given input state @, the outputs are the minima of the energy

function
E(zt, ..., z") = —522111“1‘1303 —&—ZQixZ, (1)
i=1

i=1j=1

where 2’ is the state of the i-th neuron, w;; is the strength of the inter-neuron link and 6; is the
activation threshold. Their idea is to construct a quantum walker such that one of these minima
(dynamic attractor state) is the desired final state with high probability.

The paper examines two different approaches. First is the naive case, where activation of a Hopfield
network neuron is done using a biased coin. However they prove that this cannot work as the required
neuron updating process is not unitary. Instead, a non-linearity is introduced through stochastic
quantum walks (SQW) on a hypercube. To inject attractors in the walker’s hypercube graph, they
remove all edges leading to/from the corners which represent them. This means that the coherent part
of the walk can’t reach/leave these states, thus they become sink states of the graph. The decoherent
part, represented by jump operators, adds paths leading to the sinks. A few successful simulations
were run, illustrating the possibility of building an associative memory using SQW, and showing that
the walker ends up in the sink in a time dependent on the decoherent dynamics. This might be a
result in the right direction, but it is not a definitive answer to the ANN problem since Schuld et al.
only demonstrate some associative memory properties of the walk. Their suggestion for further work
is to explore open quantum walks for training feed-forward ANNs.

2.1.2 Deep Learning

The field of classical deep learning (CDL) has revolutionised CML [42]. Utilising multi-layer, com-
plex neural networks, a deep learning algorithm can construct many layers of abstraction from large
datasets. For example, given a large selection of car photos, a deep learning algorithm could first learn
to classify the shape of a car, then the concept of ‘left’ and ‘right’ facing cars, and even progress to
further details. These layers of abstraction have become a powerful resource in the machine learning
community.

One class of deep learning networks is the Boltzmann machine (BM), for which the configuration
of graph nodes and connections is given by a Gibbs distribution [43]

e~ E(v.h)

PR = s

(2)

10

Quantum Machine Learning 2 QUANTUM MACHINE LEARNING ALGORITHMS

Visible Hidden layers Visible
input (2) (3) output
layer w%) i)P (o [fever

\

Figure 5: An example of a deep learning neural network with 3 hidden layers. For a Boltzmann
machine, each layer is specified as a vector of binary components, with the edges between the vectors
defined as a matrix of weight values. The configuration space of the graph is given by a Gibbs
distribution with an Ising-spin Hamiltonian.

where v and h are vectors of binary components, specifying the values of the visible and hidden nodes
(see Section 2.1 and Figure 5 for more details). The energy of a given configuration resembles an Ising
model at thermal equilibrium with weight values determining the interaction strength between nodes

E(V, h) = — Zaivi - ijhj - Zwijvihj . (3)
i J .7

The objective is then to minimise the maximum-likelihood of the distribution (the agreement of the
model with the training data) using gradient descent. Classically, computing the required gradient
takes time exponential in the number of nodes of the network and so approximations are made such
that the BM configuration can be efficiently calculated [43].

Recently, Wiebe et al. have developed two quantum algorithms that can efficiently calculate the
BM configuration without approximations, by efficiently preparing the Gibbs state [44]. The Gibbs
state is first approximated using a classical and efficient mean-field approximation, before being fed
into the quantum computer and refined towards the true Gibbs state. The prepared state can then
be sampled to calculate the required gradient. The second algorithm performs a similar process, but
instead assumes access to the training data in superposition (i.e. through a QRAM - see Section 4.3),
which reduces the complexity dependence quadratically on the number of training vectors. For a
comparison of deep learning algorithm complexities, see the table in Appendix C.

Wiebe et al. acknowledge that their algorithm is not efficient for all BM configurations, however it
is conjectured that these problem BMs will be rare. The improvement of quantum deep learning (QDL)
over CDL is the quality of the output as, in the asymptotic limit, it converges to the exact solution.
The classical algorithms can only converge to within a certain error, depending on the approximation
used. QDL does not provide a speedup over CDL, and so the advantage only comes from the accuracy
of the solution. Recent discussions with the authors of the QDL model has highlighted other possible
approaches such as using a Heisenberg model instead of an Ising model or, alternatively, using a
Bose-Einstein or a Fermi-Dirac distribution instead of a Gibbs distribution. These alternative models
may allow for novel machine learning algorithms that don’t exist classically.

Recently, an efficient classical equivalent of the QDL algorithm has been found [45]. This suggests

11

Quantum Machine Learning 2 QUANTUM MACHINE LEARNING ALGORITHMS

QML algorithms may lead to new classical algorithms, stressing the importance of this research even
without a working quantum computer.

2.2 Bayesian Networks

A Bayesian network (BN) is a probabilistic directed acyclic graph representing a set of random vari-
ables and their dependence on one another (see Figure 6). BNs play an important role in machine
learning as they can be used to calculate the probability of a new piece of data being sorted into an
existing class by comparison with training data.

'e

Figure 6: An example of a Bayesian network. Each variable is a node with dependences represented
by edges.

Each variable requires a finite set of mutually exclusive (independent) states. A node with a
dependent is called a parent node and each connected pair has a set of conditional probabilities
defined by their mutual dependence. Each node depends only on its parents and has conditional
independence from any node it is not descended from [46]. Using this definition, and taking n to
be the number of nodes in the set of training data, the joint probability of the set of all nodes,
{X1, X5, Xy}, is defined for any graph as

n
P(X,) = [[P(Xilm), (4)
i=1
where 7; refers to the set of parents of X;. Any conditional probability between two nodes can then
be calculated [47].

An argument for the use of BNs over other methods is that they are able to “smooth” data models,
making all pieces of data usable for training [48]. However, for a BN with m nodes, the number of
possible graphs is exponential in n; a problem which has been addressed with varying levels of success
[49, 50]. The bulk of the literature on learning with BNs utilises model selection. This is concerned
with using a criterion to measure the fit of the network structure to the original data, before applying
a heuristic search algorithm to find an equivalence class that does well under these conditions. This
is repeated over the space of BN structures. A special case of BNs is the dynamic (time-dependent)
hidden Markov model (HMM), in which only outputs are visible and states are hidden. Such models are
often used for speech and handwriting recognition, as they can successfully evaluate which sequences
of words are the most common [51].

Quantum Bayesian networks (QBNs) and hidden quantum Markov models (HQMMs) have been
demonstrated theoretically in several papers, but there is currently no experimental research [52, 53,
54]. The format of a HMM lends itself to a smooth transition into the language of open quantum
systems. Clark et al. claim that open quantum systems with instantaneous feedback are examples
of HQMMs, with the open quantum system providing the internal states and the surrounding bath
acting as the ancilla, or external state [53]. This allows feedback to guide the internal dynamics of
the system, thus conforming to the description of an HQMM.

12

Quantum Machine Learning 2 QUANTUM MACHINE LEARNING ALGORITHMS

2.3 HHL: Solving Linear Systems of Equations

HHL (named after its discoverers: Harrow, Hassidim and Lloyd) is an algorithm for solving a system
of linear equations: given a matrix A and a vector b, find a vector x such that Ax = b [55, 56]. While
this may seem like an esoteric problem unrelated to machine learning, they are in fact intimately
related. For example, it is demonstrated in Appendix A that the HHL algorithm can be employed
to give a speedup in perceptron training, that is exponential in the size of the training vectors. It is
also the underlying mechanism behind data-fitting procedures such as linear regression and, as such,
becomes a workhorse for generic classification problems.
As a more specific example, consider a generic quadratic functional on a vector, x:

flx] =xTAx+bTx +c. (5)

The vector at which this takes the minimum value is found in the usual way, by differentiating with
respect to x and finding where the derivative vanishes. Doing so yields the equation

Ax —b =0, (6)

which is the linear equation that is solved by HHL. Therefore, any optimisation problem where the
input is a data vector and the function to be optimised over looks (at least locally) quadratic, is really
just solving a linear system of equations. HHL, then, may be considered a tool for solving generic
optimisation problems in the same sense as classical methods like gradient descent or the conjugate
gradient method. In contrast to other machine learning algorithms, the HHL algorithm is completely
prescribed in the literature, strict lower bounds are known about its runtime and its caveats can be
explicitly stated (for a discussion on these, see Appendix A and [17]).

2.4 Principal Component Analysis

Machine learning data is usually (very) high dimensional, containing redundant or irrelevant informa-
tion. Thus, machine learning benefits from pre-processing data through statistical procedures such as
principal component analysis (PCA). PCA reduces the dimensionality by transforming the data to a
new set of uncorrelated variables (the principal components) of which the first few retain most of the
variation present in the original dataset (see Figure 7). The standard way to calculate the principal
components boils down to finding the eigenvalues of the data covariance matrix (for more information
see reference [57]).

original data space

component space

PCA

PC1

PC 2
-
4:+
P

i
R

L
]
&

Gene 3

PC1

Gene 2 Gene 1

Figure 7: The transformation performed during principal component analysis, on an example dataset.
Note that the component space is of lower dimension than the data space but retains most of the
distinguishing features of the four groups pictured. Image originally presented in [58]. Reprinted with
permission from the author.

13

Quantum Machine Learning 2 QUANTUM MACHINE LEARNING ALGORITHMS

Lloyd, Mohseni and Rebentrost recently suggested a quantum version of PCA (QPCA) [59]. The
bulk of the algorithm consists of the ability to generate the exponent of an arbitrary density matrix
p efficiently. More specifically, given n copies of p, Lloyd et al. propose a way to apply the unitary
operator e~*! to any state o with accuracy € = O(t?/n). This is done using repeated infinitesimal
applications of the swap operator on p ® o. Using phase estimation, the result is used to generate a
state which can be sampled from to attain information on the eigenvectors and eigenvalues of the state
p. The algorithm is most effective when p contains a few large eigenvalues and can be represented
well by its principal components. In this case, the subspace spanned by the principal components p’
closely approximates p, such that ||p — PpP|| < ¢, where P is the projector onto p’. This method of
QPCA allows construction of the eigenvectors and eigenvalues of the matrix p in time O(Rlog(d)),
where d and R are the dimensions of the space spanned by the p and p’ respectively. For low-rank
matrices, this is an improvement over the classical algorithm that requires O(d) time. In a machine
learning context, if p is the covariance matrix of the data, this procedure performs PCA in the desired
fashion.

The QPCA algorithm has a number of caveats that need to be covered before one can apply it to
machine learning scenarios. For example, to gain a speedup, some of the eigenvalues of p need to be
large (i.e. p needs to be well approximated by p’). For the case where all eigenvalues are equal and of
size O(1/d), the algorithm reduces to scaling in time O(d) which offers no improvement over classical
algorithms. Other aspects that need to be considered include the necessity of QRAM and the scaling
of the algorithm with the allowed error e. As of yet, it is unclear how these requirements affect the
applicability of the algorithm to real scenarios. A useful endeavour would be to perform an analysis
for the QPCA algorithm similar to Aaronson’s for HHL [17]. It is not hard to imagine that there is
such a dataset that satisfies these caveats, rendering the QPCA algorithm very useful.

2.5 A Quantum Nearest-Centroid Algorithm for k-Means Clustering

k-means clustering is a popular machine learning algorithm that structures an unlabelled dataset into
k classes. k-means clustering is an NP-hard problem [60], but examining methods that reduce the
average-case complexity is an open area of research. A popular way of classifying the input vectors
is to compare the distance of a new vector with the centroid vector of each class (the latter being
calculated from the mean of the vectors already in that class). The class with the shortest distance to
the vector is the one to which the vector is classified. We refer to this form of classification sub-routine
for k-means clustering, as the nearest-centroid algorithm.

Lloyd et al. have constructed a quantum nearest-centroid algorithm [61], only classifying vectors
after the optimal clustering has been found. They show that the distance between an input vector,
lu), and the set of n reference vectors {|v{’)} of length m in class C, can be efficiently calculated to
within error € in O(e~!lognm) steps on a quantum computer. The algorithm works by constructing
the state

1 I = o\
M:ﬁ IU>|0>+ﬁ;|vj>lj> : (7)

and performing a swap test with the state

1 1 & _
\¢>:ﬁ IUI|0>—%]§IVEIIJ>) (8)

where Z = |u|? + (1/n) > |v;|?. The distance between the input vector and the weighted average of
the vectors in class C' is then proportional to the probability of a successful swap test (see Appendix
B for proof). The algorithm is repeated for each class until a desired confidence is reached, with the
vector being classified into the class from which it has the shortest distance.

The complexity arguments on the dependence of m were rigorously confirmed by Lloyd et al. [62]
using the QPCA construction for a support vector machine (SVM) algorithm. This can roughly be

14

Quantum Machine Learning 2 QUANTUM MACHINE LEARNING ALGORITHMS

Figure 8: A visualisation of the nearest-centroid classification algorithm. Here, a training dataset
(with vectors of dimension 2) has already been clustered into two classes. Input data can be classified
by comparing the distance in the feature space from the mean position of each cluster. The pluses
and crosses represent vector positions of different classes on the feature space, filled circles represent
cluster mean positions and the square is a vector that is yet to be classified.

thought of as a k-means clustering problem with k=2. A speedup is obtained due to the classical
computation of the required inner products being O(nm)?.

The algorithm has some caveats, in particular it only classifies data without performing the harder
task of clustering, and assumes access to a QRAM (see Section 4.3).

In the same paper [61], Lloyd et al. develop a k-means algorithm, including clustering, for imple-
mentation on an adiabatic quantum computer. The potential of this algorithm is hard to judge, and
is perhaps less promising due to the current focus of the quantum computing field on circuit-based
architectures.

2.6 A Quantum ki-Nearest Neighbour Algorithm

k-nearest neighbours (k-NN) is a supervised algorithm where test vectors are compared against labelled
training vectors. Classification of a test vector is performed by taking a majority vote of the class
for the k nearest training vectors. In the case of k=1, this algorithm reduces to an equivalent of
nearest-centroid. k-NN algorithms lend themselves to applications such as handwriting recognition
and useful approximations to the traveling salesman problem [63].

k-NN has two subtleties. Firstly, for datasets where a particular class has the majority of the
training data points, there is a bias towards classifying into this class. One solution is to weight
each classification calculation by the distance of the test vector from the training vector, however this
may still yield poor classifications for particularly under-represented classes. Secondly, the distance
between each test vector and all training data must be calculated for each classification, which is
resource intensive. The goal is to seek an algorithm with a favourable scaling in the number of
training data vectors.

An extension of the nearest-centroid algorithm in Section 2.5 has been developed by Wiebe et al.
[64]. First, the algorithm prepares a superposition of qubit states with the distance between each
training vector and the input vector, using a suitable quantum sub-routine that encodes the distances

2 Aaronson has pointed out that a classical random sampling algorithm can perform the same task in an average
run time of log(nm)/e2 [17], compared to the quantum complexity of O(e~'lognm). Even in this case, the quantum
nearest-centroid algorithm has a quadratic advantage in error scaling.

15

Quantum Machine Learning 2 QUANTUM MACHINE LEARNING ALGORITHMS

in the qubit amplitudes. Rather than measuring the state, the amplitudes are transferred onto an
ancilla register using coherent amplitude estimation. Grover’s search is then used to find the smallest
valued register, corresponding to the training vector closest to the test vector. Therefore, the entire
classification occurs within the quantum computer, and we can categorise the quantum k-NN as an
Lo algorithm.

The advantage over Lloyd et al.’s algorithm is that the power of Grover’s search has been used to
provide a speedup and it provides a full and clear recipe for implementation. Using the same notation
as in Section 2.5, the time scaling of the quantum k-NN algorithm is complex, however it scales as
O(y/nlog(n)) to first order. The dependence on m no longer appears except at higher orders.

The quantum k-NN algorithm is not a panacea. There are clearly laid out conditions on the
application of quantum k-NN, though, such as the dependence on the sparsity of the data. The
classification is decided by majority rule with no weighting and, as such, it is unsuitable for biased
datasets. Further analysis would involve finding realistic datasets and the number of qubits required
for a proof-of-principle demonstration.

2.7 Other Notable Algorithms

Other algorithms, such as minimum spanning tree [65], divisive clustering, and k-medians [66], have
notable applications in the field of unsupervised machine learning. k-medians differs from the k-means
algorithm only by the fact that a median has to be part of the dataset.

In a quantum regime, the aim is to improve these algorithms using quantum sub-routines for faster
classification, or by a wholesale quantum implementation. Unsupervised CML is a mature field, but
unsupervised QML still has a lot of potential for further investigation [11, 67].

The goal of the minimum spanning tree algorithm is to find the shortest path (the minimum
spanning tree) connecting all data points in a feature space (see Figure 9).

R

R —_—

Figure 9: a) Representation of samples in the dataset. The minimum spanning tree algorithm tries to
find a path visiting every sample once, with minimum distance. b) The minimum spanning tree for
the given dataset. Quantum sub-routines can be used to speed up the process of finding such a path.
¢) Clustering into k-subsets can easily be achieved by removing the k — 1 longest legs in the minimum
spanning tree (here k=3, and Figure 9b marks the longest legs dashed, in red).

Once the spanning tree has been found, clustering into k classes can be achieved by removing the
k — 1 longest connections. Finding such a path takes 1(N?) time on a classical computer, where N is
the number of elements in the dataset. Diirr et al. show that if the connection matrix of the minimum
spanning tree can be given by a quantum oracle, the computational time on a quantum computer can
be reduced using Grover’s algorithm to ©(N3/2) [68]. This algorithm can than be used to find nearest
neighbours in a dataset, which is of great importance in graph problems such as the one described
above.

Similarly, divisive clustering and k-medians algorithms can be improved using quantum sub-
routines. In divisive clustering, a sub-routine for finding maxima [69] helps with locating the data
points furthest apart within a dataset of similar features. k-medians algorithms can be improved by
finding the medians in the dataset via a quantum routine [67].

16

Quantum Machine Learning 3 EXPERIMENTAL IMPLEMENTATIONS

Great potential for quantum algorithms also lies in the field of dimensionality reduction algorithms
(see Section 2.4 also). These algorithms attempt to find lower dimensional manifolds, which contain
all data points, in a high dimensional feature space. To “unfold” these manifolds, for example in the
Isomap algorithm [70], it is again important to calculate a graph of nearest neighbours (Figure 10).
Due to the immense complexity of these algorithms, especially for large datasets, using algorithms as
described by Diirr et al. for dimensionality reduction appears promising.

A B

Figure 10: The “swiss roll” dataset. a) The euclidean distance (blue dashed line) of two points is
shorter than on the manifold, hence they may seem to be more similar then they actually are. b)
Geodesic distance on the manifold, calculated via the nearest neighbour graph. ¢) Unfolded manifold
forming the lower dimensional “true” feature space. The nearest neighbour graph is depicted with
gray lines. The geodesic distance calculated via the nearest neighbour graph is shown in red. Image
originally presented in [70]. Reprinted with permission from AAAS.

3 Experimental implementations

As we are still only in the early stages of developing quantum computers, algorithmic implementations
are limited. In this section we outline known experimental results related to QML.

3.1 Adiabatic Quantum Machine Learning

QML is an obvious avenue of exploration for D-Wave Systems, who are cited by the press as having
developed the world’s first commercially available quantum computer. The very nature of industry
means publically available technical data from D-Wave is limited. However, a number of releases
have been made in conjunction with organisations such as Google, discussing QML on an adiabatic
quantum computer [71, 72, 73, 74, 75, 76]. While some papers focus on mapping specific problems to
an appropriate D-Wave input format [71], others are more concerned with training binary classifiers
[72, 73, 74, 75]. The former is equivalent to state-preparation without QRAM (see Section 4.3), but one
should pay careful attention as to why a large number of different quantum states need not be prepared
when handling big data. By deleting entries that fail to demonstrate a certain level of uniqueness and
robustness under small image transformations, the dataset experiences a vast reduction in size before
any machine learning begins.

In order to select a series of weak classifiers from which a strong classifier can be constructed,
D-Wave machines use an algorithm known as QBoost [75]. When compared to the classical AdaBoost,
an advantage was claimed [73], however the scaling of D-Wave-compatible algorithms compared to
optimised classical ones has since been shown to be less than clear-cut [77]. Regardless of any quan-
tum effects which may exist within D-Wave’s architecture [78, 79], a quantum speedup is yet to be
demonstrated [80]. Without this, there still exists a possibility that quantum annealing may one day
offer a demonstrable advantage in certain situations over conventional computational models, but as
of now, QBoost’s potential is difficult to quantify.

17

Quantum Machine Learning 3 EXPERIMENTAL IMPLEMENTATIONS

3.2 Implementating a Quantum Support Vector Machine Algorithm on a
Photonic Quantum Computer

Cai et al. [81] have implemented a highly simplified version of Lloyd’s supervised nearest-centroid
algorithm detailed in Section 2.5. Instead of using k-means to cluster training data, a reference vector
is chosen for each of their two classes, v4 and vg. The task is then to compare whether a new input
vector u is closer to the reference vector of A or B, that is to find the distances

Dy=|u—-vyu|, and Dg=|u—vg|. 9)

If D4 < Dp then the vector is classified as being in class A, and vice versa. As the classifier is deciding
between two classes, the quantum computer is performing the classification sub-process in a classical
SVM algorithm.

The implemented algorithm computes and stores all vectors classically before inputting them into
the quantum computer. Once the swap test has been performed, the distances Dy and Dpg are
calculated and compared, again classically (see Appendix B for more details).

Figure 11: The experimental setup used by [81] to perform the quantum nearest-centroid algorithm.
BBO: bismuth-borate crystal; PBS: polarisation beam splitter; HWP: half-wave plate; NBS: normal
beam splitter; D;: detector i. Figure originally presented in [81]. Reprinted with permission from
APS.

The actual experimental implementation of the quantum sub-process is performed on a small
photonic quantum computer, the configuration of which is presented in Figure 11. Two bismuth borate
crystals act as pair sources for entangled photons, using spontaneous parametric down-conversion to
create a four-qubit entangled state encoded in the photon polarisations. Three of the qubits are
sent to Sagnac-like interferometers, where waveplates are used to modify the qubit polarisations such
that arbitrary 8-dimensional input and reference vectors can be encoded®. The fourth qubit acts as
an ancilla, and is sent to a polarising beamsplitter (PBS) such that it has a equal chance of being

3To encode smaller dimensional vectors, a qubit (or two) can be left unmodified such that it is in an equal superpo-
sition of horizontal and vertical polarisations, meaning that no information can be gained from the photon’s detection
and the measurement result can be ignored.

18

Quantum Machine Learning 3 EXPERIMENTAL IMPLEMENTATIONS

detected in either the reflected or transmitted output mode. All four photons are measured at the same
time with four detectors. The probability of the four-fold coincidence D3Dy;D1Dg and D3Dy Dy Dy
determines the distance between the two vectors. The process can be repeated an arbitrary number
of times with the same state preparation settings, to a desired accuracy of €. In the paper, data is
(selectively) provided, and the classifier is demonstrated to be prone to errors when the difference
between D4 and Dpg is small. Whilst the vectors are classified correctly the majority of the time, the
experimentally found distances typically differ from the true distances, even after 500 measurements
per vector (taking approximately 2 minutes). It is unclear whether this is an inherent problem with
the algorithm or an artifact of the system it has been implemented on.

3.3 Implementing a Quantum Support Vector Machine on a Four-Qubit
Quantum Simulator

A recent attempt at implementing quantum machine learning using a liquid-state nuclear magnetic
resonance (NMR) processor was carried out by Li et al. [82]. Their approach focused on solving a
simple pattern recognition problem of whether a hand-written number was a 6 or a 9. This kind
of task can usually be split into preprocessing, image division, feature extraction and classification.
First, an image containing a number of characters will be fed into the computer and transformed to an
appropriate input format for the classification algorithm. If necessary, a number of other adjustments
can be made at this stage, such as resizing the pixels. Next, the image must be split by character,
so each can be categorised separately. The NMR-machine built by Li et al. is only configured to
accept inputs which represent single digits, so this step was omitted. Key features of the character
are then calculated and stored in a vector. In the case of Li et al., each number was split along
the horizontal and vertical axes (Figure 12), such that the pixel number ratio across each division
could be ascertained. These ratios (one for the horizontal split and one for the vertical) work well as
features, since they are heavily dependent on whether the digit is a 6 or a 9. Finally, the features of
the input characters are compared with those from a training set. In this case, the training set was
constructed from numbers which had been type-written in standard fonts, allowing the machine to
determine which class each input belonged to.

96

Figure 12: Splitting a character in half, either horizontally or vertically, enables it to be classified
in a binary fashion. To identify whether a hand-written input is a 6 or a 9, the proportion of the
character’s constituent pixels which lie on one side of the division are compared with correspondent
features from a type-written training set. Based on an image originally presented in [83].

In order to classify hand-written numbers, Li et al. used a quantum support vector machine. As
mentioned in Section 2.5, this is simply a more rigorous version of Lloyd’s quantum nearest centroid
algorithm [62].

19

Quantum Machine Learning 4 CHALLENGES

We define a normal vector, n, as
m
n= Z w;X;, (10)
i=1

where w; is the weight of the training vector x;. The machine then identifies an optimal hyperplane
(a subspace of one dimension less than the space in which it resides), satisfying the linear equation

n-x+c=0, (11)

The optimisation procedure consists of maximising the distance 2/ |n|* between the two classes, by
solving a linear equation made up of the hyperplane parameters w; and ¢. HHL [55] solves linear sys-
tems of equations exponentially faster than classical algorithms designed to tackle the same problem.
Therefore, it is hoped that reformulating the support vector machine in a quantum environment will
also result in a speedup.

After perfect classification we find that, if x; corresponds to the number 6,

n-x;,+c>1, (12)
whereas if it corresponds to the number 9,
n-x; +c<-1. (13)

As a result, it is possible to determine whether a hand-written digit is a 6 or a 9 simply by evaluating
where its feature vector resides with respect to the hyperplane.

The experimental results published by Li et al. are presented in Figure 13. We can see that their
machine was able to recognise the hand-written characters across all instances. Unfortunately, it has
long been established that quantum entanglement is not present in any physical implementation of
liquid-state NMR, [84, 85]. As such, it is highly likely that the work presented here is only a classical
simulation of quantum machine learning.

s | € | P | © |G| 7|6 | T |9

S dlcators L T L T L T

Amplitude 0.2234 |-0.2247) 0.2205 | 0.2456 (-0.1775| 0.2092 |-0.1421|-0.2278

s | 06191661916 [9|9

Figure 13: The experimental results obtained by Li et al. illustrate that all the hand-written characters
have been correctly classified, without ambiguity [82]. Reprinted with permission from APS.

4 Challenges

Here we outline some challenges for quantum machine learning that we believe should be taken into
account when designing new algorithms and/or architectures.

20

Quantum Machine Learning 4 CHALLENGES

4.1 Practical Problems in Quantum Computing

Whilst great progress has been made in the field of quantum technologies, a general purpose error-
corrected quantum computer with a meaningful number of qubits is far from realisation. It is not
yet clear how many logical qubits quantum computers require to outperform classical computers,
which are very powerful, but it is thought that QML or quantum simulation may provide the first
demonstration of a quantum speedup [11, 86]. The challenges of producing a ‘large-scale’ quantum
computer are well understood.

The obstacles in engineering a quantum computer include ensuring that the qubits remain coherent
for the time taken to implement an algorithm, being able to implement gates with ~0.1% error rates,
such that quantum error correction may be performed [87], and having the qubit implementation
be scalabe, such that it admits efficient multiplicative expansions in system size. No current qubit
implementation solves all of these problems, though significant progress continues to be made.

4.2 Some Common Early Pitfalls in Quantum Algorithm Design

Aside from the problems in constructing a quantum computer, there are a number of nuances to
algorithm design. For example, an often overlooked aspect of quantum algorithms is state preparation.
Arbitrary state preparation is exponentially hard in the number of qubits for discrete gate sets [3],
providing a bound on the performance of all algorithms, and placing a restriction on the types of states
used in initialising an algorithm. Moreover, there exist cases where this addition to the algorithm’s
complexity is ignored. For instance, a scheme that claims to encode data using the amplitudes available
in the exponentially large Hilbert space, is questionable due to this exponential cost (and because of
readout issues, which we will discuss in the next paragraph). While realistic schemes must make use
of states which are easy to access (assuming discrete gates), this is not necessarily a handicap. For a
more detailed examination of state preparation, see Section 4.3.

A similar issue to the above is the problem of ‘readout’, which can be the downfall of some attempts
to create quantum algorithms. Measurement of a quantum mechanical system results in the collapse
of the system’s wave function to a single eigenstate of the measurement operator. Although it is
possible to learn the pre-measurement state using a number of trials exponential in system size, this
will kill any potential speedup. Therefore, any algorithm which outputs all of the amplitudes of the
final state |x), suffers exponential costs. The only information that can be easily extracted from |z)
is a global statistical property, such as the inner product, (z|z), with some fixed reference state |z),
or the location of the dominant amplitudes of |z) [17]. This argues against the existence of a useful
quantum algorithm that stores output data in the exponentially large Hilbert space of a quantum
state - the data would be impossible to retrieve.

Another potential issue for experiments claiming to have performed QML is the case where a CML
algorithm has been implemented using a quantum device. This is simply using a quantum computer to
do what a classical computer can achieve equally well, and yields no quantum advantage. Moreover,
naive attempts to create a QML algorithm by replacing all the vectors in a CML algorithm with
quantum states, are usually unsuccessful at attaining a speed-up. Indeed, these attempts often don’t
translate feasibly to quantum due to the restrictions of unitary evolution and projective measurement.

4.3 Quantum Random Access Memory

As stated previously, considering how to encode classical data into quantum states is an important
part of any quantum algorithm. In terms of state preparation, information is typically encoded in
state amplitudes [88]:

1
Given a vector x € RY stored in memory, create copies of the state |z) = il E x;|1).
x| =
7

21

Quantum Machine Learning 5 CONCLUSION

QRAM is a theoretical oracle that stores quantum states and allows queries to be made in superposi-
tion. The efficiency of the oracle removes any overheads for arbitrary state preparation, which could
suppress the claimed quantum speedup of an algorithm. There are number of examples of algorithms
that require, or are improved upon, by the application of QRAM (see, for example, references [44], [59]
and [62]).

Before Giovanetti, Lloyd and Maccone (GLM)’s two publications in 2008 [89, 90], little progress
had been made in the development of QRAM architectures. In these papers, GLM generalise classical
RAM to the ‘fanout’ scheme, a QRAM architecture based on a bifurcation graph. Each node of the
graph is an active quantum gate, and the input qubits must be entangled with O(N) of these when
querying superpositions of N = 2™ memory cells. Here, n is the number of bits in the address register
and the memory cells are placed at the end of the bifurcation graph. Fanout schemes are unrealistic
to implement in practice because of decoherence. The fidelity between the desired and actual states
addressed with a single faulty gate can drop by a factor of two. GLM proposed the ‘bucket-brigade’
scheme, which replaces the gates with three-level memory elements. Most of these are not required
to be active in a single memory call, therefore the number of active elements reduces to O(log2 N).
Assuming such an architecture, it is possible to use QRAM to generate a quantum state from the n-
dimensional vector z, in time O(y/n). However, by pre-processing the vector, this can be improved to
O(polylog (n)) [88]. Suggestions of platforms on which QRAM can be realised include, among others,
optical lattices and quantum dots [90]. To the best of the authors’ knowledge, there have yet to be
any experimental demonstrations of QRAM to date.

Recently, there has been focus on the efficiency of the above implementations in the presence of
errors. Arunachalam et al. [91] analysed a faulty bucket-brigade QRAM, considering the possibilities
of wrong paths caused by bit flip errors. Under this model, the authors argue that the error scaling
per gate should perform no worse than O(272) , whereas GLM suggested that a scaling of O(1/n?)
would retain coherence, based on a less rigorous analysis. Further analysis found that oracle errors
remove the QRAM preparation speedup so the protocol requires active quantum error correction on
every gate to compensate for faulty components. Unfortunately, the active error correction itself
removes the speedup, and so it is unlikely that states can be efficiently prepared without noiseless
gates. This result also applies to a study that improved the number of time steps per memory call of
the bucket-brigade [92].

The inclusion of QRAM in QML proposals is troubling, both from a theoretical and an experi-
mental perspective. However ruling out QRAM does not necessarily mean no datasets can be loaded
into a quantum state efficiently. If the coefficients to be loaded into a state are given by an explicit
formula, it may be possible for a quantum computer to prepare said state independently, without
consulting a QRAM. A preprint by Grover and Rudolph [93] (which was independently discovered
by both Zalka [94], and Kaye and Mosca [95]) addresses this, by discretising a given function f(z)
and sampling at 2" points. This sample can be loaded into a superposition over n qubits efficiently,
provided there is an efficient classical algorithm to integrate the function over an arbitrary interval.
Whether meaningful datasets fall into this category, or whether there are other categories of functions
that can be prepared efficiently, is unclear. However, it is a strong indication that a total dependence
on QRAM is not necessary.

5 Conclusion

Machine learning and quantum information processing are two large, technical fields that must both
be well understood before their intersection is explored. To date, the majority of QML research has
come from experts in either one of these two fields and, as such, oversights can be made. The most
successful advances in QML have come from collaborations between CML and quantum information
experts, and this approach is highly encouraging. These early results highlight the promise of QML,
where not only are time and space scalings possible but also more accurate classifiers. We would also
like to stress that QML research can help guide and advance CML, and therefore it is important to

22

Quantum Machine Learning 6 ACKNOWLEDGMENTS

pursue even though we do not yet have the hardware to implement useful instances of QML.

There are several important issues to overcome before the practicality of QML becomes clear.
The main problem is efficiently loading large sets of arbitrary vectors into a quantum computer.
The solution may come from a physical realisation of QRAM, however as discussed previously, it is
currently unclear whether this will be possible.

Despite the potential limitations, research into the way quantum systems can learn is an interesting
and stimulating pursuit. Considering what it means for a quantum system to learn could lead to novel
quantum algorithms with no classical analogue. The field of CML has already begun to revolutionise
society. Any possible addition to this endeavour, and its sometimes unpredictable consequences,
should be explored.

6 Acknowledgments

We would like to thank Nathan Wiebe for his insightful discussions whilst writing the document. We
would also like to acknowledge Seth Lloyd and Patrick Rebentrost for their correspondence regarding
QPCA. We are indebted to the doctoral training centre management for their support, and special
thanks go to Ashley Montanaro, Peter Turner and Christopher Erven for their feedback and discussion
over the course of the unit. The authors acknowledge funding from the EPSRC Centre for Doctoral
Training in Quantum Engineering as well as the Defence Science and Technology Laboratory.

23

References

[9]

[10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

Witten, I. H. & Frank, E. Data Mining: Practical Machine Learning Tools and Techniques.
Morgan Kaufmann (2005)

Jordan, S. “Quantum Algorithm Zoo”. http://math.nist.gov/quantum/zoo/

Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information: 10th An-
niversary Edition. Cambridge University Press, New York, NY, USA, 10th ed. (2011)

Wedel, M. & Kamakura, W. A. Market Segmentation: Conceptual and Methodological Founda-
tions. Springer Science & Business Media, New York, NY, USA, 2nd ed. (2000)

Aimeur, E.; Brassard, G. & Gambs, S. “Machine Learning in a Quantum World”. In “Advances
in Artificial Intelligence”, 431-442. Springer (2006)

Gambs, S. “Quantum Classification”. arXiv quant-ph/0809.0444 (2008)

Hentschel, A. & Sanders, B. C. “Machine Learning for Precise Quantum Measurement”. Physical
Review Letters, 104(6), 063603 (2010)

Grover, L. “Quantum Mechanics Helps in Searching for a Needle in a Haystack”. Physical Review
Letters, 79(2), 325 (1997)

Shor, P. W. “Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on
a Quantum Computer”. STAM Journal on Computing, 26(5), 1484 (1997)

Toffoli, T. Reversible Computing. Springer (1980)
Wittek, P. Quantum Machine Learning. Elsevier (2014)

Schuld, M.; Sinayskiy, I. & Petruccione, F. “An Introduction to Quantum Machine Learning”.
Contemporary Physics, 56(2), 172 (2014)

Hopfield, J. J. “Neural Networks and Physical Systems with Emergent Collective Computational
Abilities.” Proceedings of the National Academy of Sciences, 79(8), 2554 (1982)

Aleksander, 1.; De Gregorio, M.; Franca, F. M. G.; Lima, P. M. V. & Morton, H. “A Brief
Introduction to Weightless Neural Systems”. In “ESANN”, 299-305 (2009)

Cheng, B. & Titterington, D. M. “Neural Networks: A Review from a Statistical Perspective”.
Statistical Science, 9(1), 2 (1994)

Altaisky, M. V.; Kaputkina, N. E. & Krylov, V. A. “Quantum Neural Networks: Current Status
and Prospects for Development”. Physics of Particles and Nuclei, 45(6), 1013 (2014)

Aaronson, S. “Read the Fine Print”. Nature Physics, 11(4), 291 (2015)

Behrman, E.; Niemel, J.; Steck, J. & Skinner, S. “A Quantum Dot Neural Network”. In “Fourth
Workshop on Physics and Computation”, Boston, MA (1996)

Toth, G. et al. “Quantum Cellular Neural Networks”. Superlattices and Microstructures, 20(4),
473 (1996)

Manju, A. & Nigam, M. J. “Applications of Quantum Inspired Computational Intelligence: a
Survey”. Artificial Intelligence Review, 42(1), 79 (2012)

Ventura, D. “Learning Quantum Operators”. Proceedings of the Joint Conference on Information
Sciences, 750-752 (2000)

http://math.nist.gov/quantum/zoo/

[22]

[23]

[24]

[25]

[26]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Howell, J. C.; Yeazell, J. A. & Ventura, D. “Optically Simulating a Quantum Associative Mem-
ory”. Physical Review A, 62(4), 42303 (2000)

Ricks, B. & Ventura, D. “Training a Quantum Neural Network”. In “Advances in Neural
Information Processing Systems”, 1019-1026 (2004)

Behrman, E.; Nash, L.; Steck, J.; Chandrashekar, V. & Skinner, S. “Simulations of Quantum
Neural Networks”. Information Sciences, 128(3-4), 257 (2000)

Behrman, E. C. et al. “A Quantum Neural Network Computes Entanglement”. arXiv quant-
ph/0202131 (2002)

Behrman, E. C.; Steck, J. E. & Skinner, S. R. “A Spatial Quantum Neural Computer”. In
“IJCNN’99. International Joint Conference on Neural Networks. Proceedings”, vol. 2, 874-877.
IEEE (1999)

Behrman, E. C. & Steck, J. E. “A Quantum Neural Network Computes its own Relative Phase”.
In “2013 IEEE Symposium on Swarm Intelligence (SIS)”, 119-124. IEEE (2013)

Behrman, E. C.; Steck, J. E.; Kumar, P. & Walsh, K. A. “Quantum Algorithm Design Using
Dynamic Learning”. arXiv quant-ph/0808.1558 (2008)

de Oliveira, W. R. et al. “Quantum Logical Neural Networks”. In “10th Brazilian Symposium
on Neural Networks”, 147-152 (2008)

da Silva, A. J.; de Oliveira, W. R. & Ludermir, T. B. “A Weightless Neural Node Based on a
Probabilistic Quantum Memory”. In “11th Brazilian Symposium on Neural Networks”, 259-264.
IEEE (2010)

da Silva, A. J.; Ludermir, T. B. & de Oliveira, W. R. “On the Universality of Quantum Logical
Neural Networks”. In “13th Brazilian Symposium on Neural Networks”, 102-106. IEEE (2012)

da Silva, A. J.; de Oliveira, W. R. & Ludermir, T. B. “Classical and Superposed Learning for
Quantum Weightless Neural Networks”. Neurocomputing, 75(1), 52 (2012)

Schuld, M.; Sinayskiy, I. & Petruccione, F. “Quantum Walks on Graphs Representing the Firing
Patterns of a Quantum Neural Network”. Physical Review A, 89(3), 32333 (2014)

Schuld, M.; Sinayskiy, I. & Petruccione, F. Quantum Computing for Pattern Classification, vol.
8862 of Lecture Notes in Computer Science. Springer International Publishing (2014)

Schuld, M.; Sinayskiy, I. & Petruccione, F. “Simulating a Perceptron on a Quantum Computer”.
Physics Letters A, 379(7), 660 (2015)

Zhou, R. & Ding, Q. “Quantum M-P Neural Network”. International Journal of Theoretical
Physics, 46(12), 3209 (2007)

da Silva, A. J.; de Oliveira, W. R. & Ludermir, T. B. “Comments on “Quantum M-P Neural
Network””. International Journal of Theoretical Physics, 54(6), 1878 (2014)

Trugenberger, C. A. “Probabilistic Quantum Memories”. Physical Review Letters, 87(6), 67901
(2001)

Schuld, M.; Sinayskiy, I. & Petruccione, F. “The Quest for a Quantum Neural Network”. Quan-
tum Information Processing, 13(11), 2567 (2014)

Childs, A. M. & Kothari, R. “Limitations on the Simulation of Non-sparse Hamiltonians”.
Quantum Information & Computation, 10(7), 669 (2010)

[41]

[42]
[43]

[44]

[45]

[46]
[47]

[48]
[49]

Lovett, N. B.; Cooper, S.; Everitt, M.; Trevers, M. & Kendon, V. “Universal Quantum Compu-
tation Using the Discrete-time Quantum Walk”. Physical Review A, 81(4), 042330 (2010)

LeCun, Y.; Bengio, Y. & Hinton, G. “Deep Learning”. Nature, 521(7553), 436 (2015)

Ackley, D. H.; Hinton, G. E. & Sejnowski, T. J. “A Learning Algorithm for Boltzmann Ma-
chines*”. Cognitive Science, 9(1), 147 (1985)

Wiebe, N.; Kapoor, A. & Svore, K. M. “Quantum Deep Learning”. arXiv quant-ph/1412.3489
(2014)

Wiebe, N.; Kapoor, A.; Granade, C. & Svore, K. M. “Quantum Inspired Training for Boltzmann
Machines”. arXiv quant-ph/1507.02642 (2015)

Nilsson, N. Artificial Intelligence: A New Synthesis. Morgan Kaufmann (1998)

Ben-Gal, I.; Ruggeri, F.; Faltin, F. & Kenett, R. “Bayesian Networks”. Encyclopedia of Statistics
in Quality and Reliability (2007)

Heckerman, D. “A Tutorial on Learning with Bayesian Networks” (1996)

Balasubramanian, J. B.; Visweswaran, S.; Cooper, G. F. & Gopalakrishnan, V. “Selective Model
Averaging with Bayesian Rule Learning for Predictive Biomedicine.” AMIA Summit on Trans-
lational Science, 2014, 17 (2014)

Sclove, S. L. “A Review of Statistical Model Selection Criteria: Application to Prediction in
Regression, Histograms, and Finite Mixture Models”. SSRN Electronic Journal (2011)

Gales, M. & Young, S. “The Application of Hidden Markov Models in Speech Recognition”.
Foundations and Trends in Signal Processing, 1(3), 195 (2007)

Monras, A.; Beige, A. & Wiesner, K. “Hidden Quantum Markov Models and Non-adaptive
Read-out of Many-body States” (2010)

Clark, L. “Hidden Quantum Markov Models and Open Quantum Systems with Instantaneous
Feedback”. In “ISCS 2014: Interdisciplinary Symposium on Complex Systems”, vol. 14 of Emer-
gence, Complexity and Computation. Springer International Publishing (2015)

Tucci, R. R. “Quantum Bayesian Nets”. International Journal of Modern Physics B, 9(03), 295
(1995)

Harrow, A. W.; Hassidim, A. & Lloyd, S. “Quantum Algorithm for Linear Systems of Equations”.
Physical Review Letters, 103(15), 150502 (2009)

Childs, A.; Kothari, R. & Somma, R. “Quantum linear systems algorithm with exponentially
improved dependence on precision”. arXiv quant-ph/1511.02306 (2015)

Jolliffe, I. Principal Component Analysis. Wiley Online Library (2002)

Scholz, M. Approaches to Analyse and Interpret Biological Profile Data. Ph.D. thesis, Max
Planck Institute for Molecular Plant Physiology (2006)

Lloyd, S.; Mohseni, M. & Rebentrost, P. “Quantum Principal Component Analysis”. Nature
Physics, 10(9), 631 (2014)

Mahajan, M.; Nimbhorkar, P. & Varadarajan, K. “The Planar k-means Problem is NP-hard”.
In “WALCOM: Algorithms and Computation”, 274-285. Springer (2009)

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[76]

[77]

[78]

Lloyd, S.; Mohseni, M. & Rebentrost, P. “Quantum Algorithms for Supervised and Unsupervised
Machine Learning”. arXiv quant-ph/1307.0411 (2013)

Rebentrost, P.; Mohseni, M. & Lloyd, S. “Quantum Support Vector Machine for Big Data
Classification”. Physical Review Letters, 113(13), 130503 (2014)

Johnson, D. S. & McGeoch, L. A. “The Traveling Salesman Problem: A Case Study in Local
Optimization”. In “Local search in Combinatorial Optimization”, Wiley (1997)

Wiebe, N.; Kapoor, A. & Svore, K. “Quantum Algorithms for Nearest-Neighbor Methods for
Supervised and Unsupervised Learning”. arXiv quant-ph/1401.2142 (2014)

Zahn, C. T. “Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters”. IEEE
Transactions on Computers, 20(1), 68 (1971)

Kaufmann, L. & Rousseuw, P. “Clustering by Means of Medoids”. In “Statistical Data Analysis
Based on the L1 Norm and Related Methods”, 405-416 (1987)

Aimeur, E.; Brassard, G. & Gambs, S. “Quantum Speed-up for Unsupervised Learning”. Machine
Learning, 90, 261 (2012)

Durr, C.; Heiligman, M. & Hoyer, P. “Quantum Query Complexity of Some Graph Problems”.
In “Proceedings of the 31st international conference on automata, languages and programming”,
481-493 (2004)

Durr, C. & Hoyer, P. “A Quantum Algorithm for Finding the Minimum”. arXiv quant-
ph/9607014, 2 (1996)

Tenenbaum, J. B.; de Silva, V. & Langford, J. C. “A Global Geometric Framework for Nonlinear
Dimensionality Reduction”. Science, 290, 2319 (2000). URL http://www.sciencemag.org/
content/290/5500/2319

Neven, H.; Rose, G. & Macready, W. G. “Image Recognition with an Adiabatic Quantum Com-
puter: I. Mapping to Quadratic Unconstrained Binary Optimization”. arXiv quant-ph/0804.4457,
7 (2008)

Neven, H.; Denchev, V. S.; Rose, G. & Macready, W. G. “Training a Binary Classifier with
the Quantum Adiabatic Algorithm”. OPT 2008: NIPS Workshop on Optimization for Machine
Learning (2008)

Neven, H.; Denchev, V. S.; Rose, G. & Macready, W. G. “Training a Large Scale Classifier with
the Quantum Adiabatic Algorithm”. arXiv quant-ph/0911.0779 (2009)

Neven, H. et al. “Binary Classification using Hardware Implementation of Quantum Annealing”.
Proc. NIPS, Demo. (Quantum), 1-17 (2009)

Neven, H.; Denchev, V. S.; Rose, G. & Macready, W. G. “QBoost: Large Scale Classifier Training
with Adiabatic Quantum Optimisation”. JMLR: Workshop and Conference Proceedings (Asian
Conference on Machine Learning), 25, 333 (2012)

Pudenz, K. L. & Lidar, D. A. “Quantum Adiabatic Machine Learning”. Quantum Inf. Process.,
12(5), 2027 (2012)

Boixo, S. et al. “Evidence for Quantum Annealing with more than One Hundred Qubits”. Nature
Physics, 10, 218 (2014)

Lanting, T. et al. “Entanglement in a Quantum Annealing Processor”. Phys. Rev. X, 4(021041)
(2014)

http://www.sciencemag.org/content/290/5500/2319
http://www.sciencemag.org/content/290/5500/2319

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]
[87]

[83]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

Albash, T.; Hen, I.; Spedalieri, F. M. & Lidar, D. A. “Reexamination of the Evidence for
Entanglement in the D-Wave Processor”. arXiv quant-ph/1506.03539 (2015)

Ronnow, T. F. et al. “Defining and Detecting Quantum Speedup”. Science, 345(6195), 420
(2014)

Cai, X.-D. et al. “Entanglement-Based Machine Learning on a Quantum Computer”. Physical Re-
view Letters, 114(11), 110504 (2015). URL http://link.aps.org/doi/10.1103/PhysRevLett.
114.110504

Li, Z.; Liu, X.; Xu, N. & Du, J. “Experimental Realization of a Quantum Support Vector
Machine”. Physical Review Letters, 114(14), 140504 (2015). URL http://link.aps.org/doi/
10.1103/PhysRevLett.114.140504

Zhaokai, L.; Xiaomei, L.; Nanyang, X. & Jiangfeng, D. “Experimental Realization of Quantum
Artificial Intelligence”. arXiv quant-ph/1410.1054 (2014)

Braunstein, S. L. et al. “Separability of Very Noisy Mixed States and Implications for NMR
Quantum Computing”. Physical Review Letters, 83(5), 1054 (1999)

Menicucci, N. C. & Caves, C. M. “Local Realistic Model for the Dynamics of Bulk-Ensemble
NMR Information Processing”. Physical Review Letters, 88(16), 167901 (2002)

Muller, R. P. & Blume-Kohout, R. “The Promise of Quantum Simulation”. ACS Nano (2015)

Fowler, A. G.; Mariantoni, M.; Martinis, J. M. & Cleland, A. N. “Surface Codes: Towards
Practical Large-scale Quantum Computation”. Physical Review A, 86(3), 32324 (2012)

Prakash, A. Quantum Algorithms for Linear Algebra and Machine Learning. Ph.D. thesis,
University of California Berkeley (2014)

Giovannetti, V.; Lloyd, S. & Maccone, L. “Quantum Random Access Memory”. Physical Review
Letters, 100(16), 160501 (2008)

Giovannetti, V.; Lloyd, S. & Maccone, L. “Architectures for a Quantum Random Access Mem-
ory”. Physical Review A, 78(5), 52310 (2008)

Arunachalam, S.; Gheorghiu, V.; Jochym-O’Connor, T.; Mosca, M. & Srinivasan, P. V. “On the
Robustness of Bucket Brigade Quantum RAM”. arXiv quant-ph/1502.03450 (2015)

Hong, F.-Y.; Xiang, Y.; Zhu, Z.-Y.; Jiang, L.-z. & Wu, L.-n. “Robust Quantum Random Access
Memory”. Physical Review A, 86(1), 10306 (2012)

Grover, L. & Rudolph, T. “Creating Superpositions that Correspond to Efficiently Integrable
Probability Distributions”. arXiv quant-ph/0208112 (2002)

Zalka, C. “Simulating quantum systems on a quantum computer”. Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences, 454(1969), 313 (1998)

Kaye, P. & Mosca, M. “Quantum Networks for Generating Arbitrary Quantum States”. arXiv
quant-ph /0407102 (2004)

Sagheer, A. & Zidan, M. “Autonomous Quantum Perceptron Neural Network”. arXiv quant-
ph/1312.4149 (2013)

Bishop, C. Neural Networks for Pattern Recognition. Oxford University Press (1995)

http://link.aps.org/doi/10.1103/PhysRevLett.114.110504
http://link.aps.org/doi/10.1103/PhysRevLett.114.110504
http://link.aps.org/doi/10.1103/PhysRevLett.114.140504
http://link.aps.org/doi/10.1103/PhysRevLett.114.140504

Quantum Machine Learning A QUANTUM PERCEPTRON MODEL

Appendices

A Quantum Perceptron Model

The purpose of these notes is to discuss a quantum algorithm that implements a perceptron, with a
worst-case run-time asymptotically better than that which can be expected classically. This algorithm
has been independently produced by the quantum engineering cohort.

A.1 Perceptrons

A perceptron is a supervised machine learning primitive where the goal is to produce a binary classifier.
More specifically, it is a structure that learns given access to some finite set of training data and then
uses that knowledge to infer classifications for unlabelled data. Geometrically, a perceptron can be
thought of as a very simple neural network: W input nodes, labelled x; for 0 < ¢ < W, are each
connected to a single output node, y, by an edge (see Figure 14).

wq

OO

W

Figure 14: A graphical representation of a perceptron.

These edges themselves have weights, w;. The collection of all input nodes and weights may also
be considered vectors, x and w respectively. The goal of the perceptron is to classify according to the
following expression:

(x, W) = 1 ifw-x+06>0
YW= 0 otherwise,

where the bias value,b, is a regularisation tool that is constant and does not depend on the input.

Classically, the weights are initialised to take some random values. Then, the training process
begins. The training data consists of multiple pairs of input vectors and correct output labels, i.e.
the training set 7 consists of elements T = {(x!,y'), (x%,4?) - (x,yN)}. A training instance is
“fed” into the perceptron (i.e. the expression in (14) is calculated) and an output given based on the
current set of weights. The learning step is then to update the weights based on the correctness of the
classification. The goal is that, with sufficiently large and diverse training instances, the perceptron
gains the ability to correctly classify input vectors, X, where the output label is not known beforehand.

The choice of “activation” function in Equation (14), and the structure of the graph itself, may be
far more complicated in general than the example provided here. However, this generalisation opens
up the field of neural networks which is beyond our scope. Instead, we focus on the simple perceptron
example given above.

(14)

29

Quantum Machine Learning A QUANTUM PERCEPTRON MODEL

A.2 Quantum Perceptrons
Previous Attempts - Data in States

As discussed in the main body of this document (Section 2.1), there have been a number of efforts
at making a viable quantum perceptron [16, 39, 96]. Each attempt has generally followed the same
problem methodology, namely that of loading up the input vectors x; as quantum states, and applying
a ‘weight operator’ to achieve a classification |y.s:). More precisely, the equation describing the
perceptron is taken from the classical version of Equation (14) to

w
[Yest) = Zw§|$]> (15)

|z;) is a quantum state vector that stores features of a single instance of training data, @} is the
weight operator for each of the training features after the ¢! training instance, and j sums over all
features of a single training instance. The time dependence of w; manifests when there are multiple
training data examples, and so each w; will be updated with the classification of each data sample.

This approach is seemingly the most natural progression from Equation (14), but encounters
particular problems when considering implementation of such an algorithm. Figure 15 displays how
the method of Equation (15) would work in practice, which is summarised as follows:

1. Load the features of the first training data instance into the quantum state |x;).

2. Pass |z;) through a machine that applies the operator ’lZ);, returning the estimate |yest).

3. Make an appropriate measurement of |y.s:) (which may be non-trivial, in general) and classify
(C) the input training instance;

4. Compare the estimated classification with |y).

5. Feed back the result into the system and alter how the weight operators w; act on each feature
(the learning step).

6. Repeat steps 1-4 for all instances of training data.
7. After all training data has been used, the operators 1% are now optimally set to classify unlabelled

J
data.

feedback

’ N

Figure 15: A flow diagram representing previous approaches to a quantum perceptron. The node C
stands for classification step.

In a laboratory setting, operations on quantum states are performed using components such as
beamsplitters and phase shifters, or by applying some external stimulus like a microwave field. In the
case described above, updating how the operator u?j acts will require the physical turning of knobs
or alterations to the experimental setup. An issue with the method proposed is that the learning is
still done classically. Step 3 requires measurement of the quantum state and a decision as to how
it is classified, before passing that information back into the apparatus that applies 11);, to update
how it acts on the system. This is all based on a classical update rule. It is difficult to see how a
method requiring this level of classical read-out and updating could produce a speedup over a classical
technique.

30

Quantum Machine Learning A QUANTUM PERCEPTRON MODEL

Alternative Approach - Weights in States

As an alternative to the ‘data in states’ method, we instead propose that the weights w; be encoded
into the state (hence ‘weights in states’). The method is as follows:

1. Initialise a state vector that describes the initial weights for each feature, |w,) = |O>®W e Cc*W
(where W is the number of features).

2. Act on this state with an operator O which encodes information on the training data you have
available.

3. Application of O produces a vector of final weights |w) that can be used as a control on the
classification of new data. Note that for clarity of discussion, the weights here can only take the
value of 0 or 1, and so |w) is a state vector in the computational basis.

The choice of each weight as a computational basis state |0) or |1), is chosen without loss of
generality, as the extension involves encoding the binary expansion of the weight in a string of
qubits and applying the same operators in an analogous fashion.

This method can be represented by the quantum circuit displayed in Figure 16. Here we forgo the
issues with the previous method by not having to update the operator O once it has been initialised.
The first problem with such a method however is the definition of suitable operators for O and C. A
discussion of possible solutions for these operators is given in the sections below.

jwo) = 104 — 0

|Z)

Figure 16: A quantum circuit representation of the ‘weights in states’ strategy for a quantum percep-
tron. The operator O performs the training process of the algorithm and the dashed region represents
classification of unlabelled data.

HHL Algorithm

The HHL algorithm [55, 56] is a quantum algorithm for solving a linear system of equations. That is,
it is designed to find a solution vector x given a matrix A, a vector b, and the equation

Ax=b. (16)

Now, consider the approach to perceptrons discussed above. A correctly trained perceptron will
have weights such that the correct output is given for all training inputs. That is, it satisfies Equa-
tion (14) for all training vectors. If the sequence of training vectors is labelled by ¢, then the weights
must satisfy

xt-w4+b =y, t=1,--- N. (17)

This set of IV equations can be seen as the notation for individual rows of a single matrix equation.
Specifically, build a matrix A with N rows; the elements of the ¢ row of A is then given by the

31

Quantum Machine Learning A QUANTUM PERCEPTRON MODEL

elements of x*. Likewise, define vectors y and b such that the t*" element is given by y, and by,

respectively. Then, finding solutions to the set of IV equations above, is equivalent to solving the
matrix equation

Aw=y-b:=7. (18)

The equation Aw =y is exactly the kind of linear system that is solved by the HHL algorithm.
Therefore, the operator O in Figure 16 is given by the matrix A that must be inverted in order to
solve the linear system.

Caveats to HHL

HHL’s ubiquity in quantum computing is hampered by the fact that it has some technical caveats
that are often difficult to overcome (see Aaronson [17]). We will address the three that loom largest:
firstly, that HHL requires the matrix A be sparse; secondly, that it takes a quantum state as input,
rather than a classical vector; and lastly, that it outputs a quantum state, rather than a classical
vector.

The condition on the sparsity of A is due to the fact that HHL carries out phase estimation as a
subroutine. Generally, there are stricter limitations on the simulation of non-sparse Hamiltonians [40)].
However, the matrix A is constructed from training data that may or may not be sparse, depending
on the problem and context. The only immediate remark is that the field of neural networks with
sparse training data still covers a wide range of problems, and is very much an active area of research
[97].

It is also necessary for HHL to take a quantum state, here with coefficients drawn from y, as
input. Typically, input of this state in a general context is a non-trivial problem (see the discussion
on QRAM in Section 4.3). However, for this application, the quantities y* are just drawn from {0,1}
(and similarly for the regularisers b%), as the perceptron is a binary classifier. Therefore, preparation
of the state |§) just requires preparing a computational basis state. As such, the circuit for this
operation is of depth 1 and does not contribute to the complexity of the algorithm.

The final caveat that we will address, concerning HHL, is that it outputs a quantum state, rather
than a classical vector (i.e. instead of it being a weight vector w, the output is a state |w)). In
some applications, this is particularly troublesome, as a full reconstruction of the state using quan-
tum tomography would require iterating the algorithm exponentially many times, enough to kill the
speedup given by the HHL algorithm. However, this is not a valid concern here. Once the perceptron
is trained, and the weights fixed, there is no interest in learning the values of the weights. The goal of
the perceptron once it is trained is merely to classify new instances correctly; the weights can remain
hidden in a state indefinitely without impacting on its ability to classify new data. A schematic of
a circuit suitable for classification is shown in Figure 17 and is denoted C in Figure 16. Here, the
trained weights are encoded in a register |w). The new vector to classify is encoded in a state |Z),
and there is also a scratchpad of ancillas initialised in the computational basis. The classification
process then consists of Toffoli gates, controlled on a weight and an element of the data vector. From
Equation (14), the perceptron classifies as 1 if the dot product between w and x is non-zero (ignoring
the regularisation term). Therefore as soon as a single element product z;w,; contributes a positive
number, the output should always be 1. Otherwise, the output should be 0. In the circuit, these single
element contributions are calculated by measuring the ancillas in the computational basis. If any one
of the outputs corresponds to the eigenvalue of |1), the state should be classified as 1. If all of the
outputs correspond to the eigenvalue of |0), then the state should be classified as 0. This classification
process is non-destructive on the weights and so they can be used repeatedly. As new data and weights
are encoded in states in the computational basis, there is no reason why this classification scheme
could not be performed equally well classically. However, less naive classification schemes may differ
markedly in the quantum and classical cases.

32

Quantum Machine Learning A QUANTUM PERCEPTRON MODEL

By

By

BN

Figure 17: A quantum circuit diagram representing the classification process for the ‘weights in states’
method. The circuit above corresponds to the dashed region in Figure 16.

Quantum Speedup

The quantum speedup for this perceptron training algorithm is inherited from the quantum speedup
of HHL. Specifically, HHL runs in time

0 <log (N) - log (i)) , (19)

where ¢ is a measure of error in the weight vector [56]. Conversely, the best possible classical iterative
algorithm for this problem is the conjugate gradient method, which has a runtime of

o(vm())

HHL offers an exponential improvement in N. In addition, it scales similarly in € as the best
possible classical algorithm because the output of the training stage is a quantum state, rather than
some classical data. Both the quantum and classical classification stages run linearly in W, giving
total runtimes of

0 (W +log (N) - log (i)) (21)

o (w s 10 (1)) -

classically. Therefore, provided that the number of training instances N is much larger than the
number of weights, W, we can expect a much better performance from the quantum algorithm.
Practically, this is almost always the case. In fact, exponentially more training instances than weights
already gives an exponential speedup for the quantum algorithm, even for the naive classification
scheme presented here.

quantumly and

A.3 Discussion

The construction above assumes that the weights of each feature can only take the value of 0 or 1.
The method can be generalised to non-binary weights by encoding a single weight in multiple qubits.

33

Quantum Machine Learning A QUANTUM PERCEPTRON MODEL

This will produce an extra qubit overhead depending on the precision of your weights but should only
contribute a logarithmic factor in precision to the total run time of the algorithm. There are a number
of other simplifications we have used here which may limit the usefulness of the quantum perceptron.
Specifically, we have assumed that there is a solution to the set of linear equations presented in
Equation 18, i.e. there is a combination of weights that classifies all the training data correctly. This
is often not the case and it is unclear how the applicability of the algorithm will be affected.

As mentioned previously, perceptrons are a single example of a much larger class of models that
are used to classify datasets. Neural networks are to some extent multilayered perceptrons, and are
ubiquitous in machine learning [97]. Extending the above discussion to neural networks or more
complicated perceptron models may produce results that can be widely applied to many classical
problems.

34

Quantum Machine Learning B PROBABILISTIC DISTANCE IN THE QUANTUM SVM

B Probabilistic Distance in the Quantum SVM

In this section, we provide a short proof that the distance between two vectors on a quantum computer
can be calculated using a probabilistic technique, as utilised in the k-nearest centroid algorithm of
Section 2.5.

Instead of considering the general nearest centroid algorithm, we restrict ourselves to the quantum
SVM algorithm. The task is then to compare whether a new input vector u is closer to the reference
vector of A or B, i.e. to find the distances

Dys=|u—vyu|, and D =|u—vg|. (23)

If D4 < Dp then the vector is classified as being in set A, and vice versa. To find these distances on
a quantum computer, we first represent the vectors in ket notation:
u V;
u) = — —
= Ty v
where i € {A, B}. These vectors are stored classically, along with their norms which must be calcu-
lated. The quantum algorithm is as follows:

and |v;) = (24)

1. Choose i = A. Create a superposition of the states |u) and |v;), entangled with an ancilla qubit

such that 1

V2
2. Project the ancilla in the prepared state onto
1
= ——(|ul|0) — |v;]]1)), 26
) ﬁ(l 110) — [vil[1)) (26)

where Z = |u|? + |v;|2. The probability of success, p, of this projection is given by |{¢[)|?
where p can be determined to accuracy e with O(p(1 — p)/€?) iterations of steps 1 and 2 [62].

[¥) (10} |w) + [1)]vi)- (25)

3. Lemma 1: The distance can now be calculated classically from

4. The process is then repeated from step 1, for i = B. The two calculated distances are compared
classically such that if Dy — Dp < 0 then |u) is classified as A and if Dy — Dp > 0, |u) is
classified as B.

The following proof serves to convince the reader the algorithm is indeed measuring the distance

between the vectors u and v;:

Proof of Lemma 1: The probability of the ancilla qubit being in state |¢) is given by
p=IPl), (28)

where we have chosen the projector P to be |¢){(¢| @ I. If we drop the identity term and keep in mind
we are acting only on the ancilla, we find

p=[PIY)]* = llo){elv)* = [(glu)]*. (29)

By substituting in explicit forms of our states, this becomes

p= = (lulfu) — [vile) ?

27
1 2 2
= 5z (lul* + [vil* = lul[vi| ({ulvi) + (vilu)))
1
- ﬁ(|u|2 + [vil> —2u - vy). (30)

35

Quantum Machine Learning B PROBABILISTIC DISTANCE IN THE QUANTUM SVM

Making the identification of the Euclidean distance for any two vectors x and y

D=x—yl=VxP2+yP?-2xy, (31)
the result follows 1
=-__-D? = D;=+/2pZ. 32
p= 5D P (32)
O

36

Quantum Machine Learning C TABLE OF QUANTUM ALGORITHMS

C Table of Quantum Algorithms

The table below summarises the majority of algorithms discussed in the main body of the text. Where
possible, we include the advantage the quantum algorithm gains over its classical counterpart and any
conditions required for the speedup to be maintained. The algorithms are listed in the order that they
appear in the main document.

37

*N Ul reryuauodxyy

"IO1ID POMOI[Y :2
‘joseyep Sururer) Jo ozIg N

((;_2)801N + M)O

((;—2)8o1 (N)8o1 + M)O

v xddy] (seyess
ur s3ySeM)

uo013doeots,
'spy8tem Jo 'ON M Ezunmzm
uo9(SeY puUNOq [BIISSR[D oYY :E%&:MMMW VIOLI9 POMOITY 2 ‘91] (seyesg EMMMMMM
‘y xipuaddy 29s) mﬁs‘uiowﬁ EEE ‘wEmz 3[no PlqEreAt 10N “eserEp .MEMMMMN UHM .@MMm ."Z Qﬁ\wvmﬁ: N+ M)o - “Spunoq snotoSit oy zoﬁmwogom
-igip aq o3 sieadde dnpeeds e Sunpoig Horem ¥ N M wnjuend)

991y Suruueds wrnurt

*[89] @a1], Sutuuedg

‘[opow XLIJeIAl -ultl ' puy 0} pPasn aurjnot ‘josegep ut sjutod ‘ON N (;N)© - Am\m2v® N
-qns 8y} Ul [eIWOUA[0q tut
“soouds ‘[79] smoquSie
‘I=% 10} PIOIJUD }SOIRAU O} SEONPOY 103004 [euoIsuoWIP-YS1y 'S10900A JururRel) ON U (wu)o - (19pa0 3s81y) (uSoruN)O [vo] w%gmw.:.z
10] o8ejurApR WNJURN(Y) - : 4
. . ¢ -
SI9)SNO OMY) [JIM PIOIJUD) 1SOIRDIN (,5)/(ww)So] oq weo oury [29 ‘19] (sueowr-y ur
wnjuend) s1 ouIYdR]N 103097 j1oddng wngy 4 g 'S10300A JO)3Uer] 1wt auIInNOI-qNs)
. . -UNJI [BOISSB[D OSRIOAR IOAD . R . (wu)o - (wu 801 . _2)0
-ueng) ‘soysiuea dnpoods oSIMILY0 ‘INVHO) " S10900A SuruIel} "ON U 1 proxjua))
-moy ‘dnpeads [erjusuodxy
ur palojys sopnjidwe pur SI0J09A [[€ SOWNSSY 1sereaN wnjuent)
NVHD sormb -ooeds eyep ‘[6¢] stshreuy
-o1 w03y sjueuodwod [edoutid moj ‘p url [erpueuodxyy (P)o - (p38o1)O jyueuodwo))

Aq pejeurwiop saoeds 10] pijea Auo dnpesdg

Jo suolsuewi(] :p

redoutig wnjuendy)

AAHIWVQNQQ ‘N Sor £10d) O

*1x03u09 uo juepuadep A[iaeal] ST o8e) ‘osimaIayjo pajestiduio) ‘10115 3 andino [eo1ssel0) ‘[9g “gg]
-ueApe wnjuenb oYy ‘Surajos wosAs reaur| 09 93e)s wnjuenb e st gndyino ‘wey | ((;_2)8o1 (N)A10d)O (N So1) O ((._>)80] Afod AZE.Q £0d)0 (THH) Sutajog
- : - .
poonpai aq ued swa[qoid Jo S9sse[d JO S10] Sy | Ppalrsep oyl jI [erpueuodxyy sAs oy} JO UOISUOWI(] :N :ndyno eyess wnywend) suwe)sAg Ieaul|
R . .a
sopou oppI oNf tu | 19 odwEs o iy [17] (v ud pue
*(uoryewr P PP "ON < ‘s10ke] "ON T uoIyRWIISH
1800 JIun Je s3IqNnb JUSISPYIP U0 SUOT) s opnyndury) m::ﬂﬁqu ‘109094 Sururel], T (;—2301 (A ANANO wv:.a:m:b/xv
-erodo snoaur)NUIIS SMO[[e NV Sownssy Q.wm.m_ Ezu.:m:@ <o .wﬁdm QOQMMWMM:.MNAM M (8 N)O +*u+4u+ N)O 4 /& mpapmwd
's10100A SururRel1) "ON N (A TN)O dooq wnjuenty
. . .a
Sopot S[qIsia "ON L “ ‘sqos ofdures ‘ON :¥
. ‘sopou uappIy ‘oN :Yu AN . [7¥] (woryewrysyy
sosed awos ul A[[esryerpenb . . X s1ofe] "ON 7T 3
. SI10909A SuruTRI) JO I9qUUINU 1010994 Sururel], T (;_23801 opnyridury)
peonpai aq ued i uo sdouspuadep 9y J, ‘9[ovI0 . . N (N ZANMO
ur e8ejueAape Oljeipeng) I090%] 3uleog + " + Yu)o Surureary
wnjuenb ur vjep SUTUIRI) 0] SSOI0R SOUWNSSY : : : (M N)O :
'so8pe 'ON A () des(wmjuenty)
'S10309A Sururel) "oN N AHTIN)O
. . .a
. .mwwo: orqsta .oZ ; “ ‘sqos ofduures "ON ¥
uory sopou ueppiy ‘oN :Yu
s1ohe] 'ON T [7¥] (Sundureg
-njos areuwixordde ur 09 s9819AU0D WYILIOI[€ . ‘10300A 3uUrUrel], T (;_2801 :

R ‘a8ejueape o1303dwAsy . : 1 (MNMAN)O sqqro) Surureary
reotsse[d> oy, 2 o} dn joexo, Sulaq uwoIIN] I090%] 3uI[eog (v) + " + Yu)o = doa(] umjuenty
-0s punoj ayj ul sar 9Sejuweape wnjuenb ay T, ‘sa8po 'ON A4 4N)O a ’

's10900A Sururery ‘ON (N (aIN)O
* syndur Astou Jo [eastijal yjim Kproeded [8¢] sorzowopy
o8e109s [erjuouodxd oY) ST 19330r] Juasaxd oy . ~ ~ B X 3

1qe[reae 10N spunoq snoioSir oN wmnjuweng)

Jjo qurod urew ayy [*], se dnpeads wnjuenb SISTIIABAO
a1qissod,, Jo UOISSNOSIP ou s9jou A[[eoyroedg nstiqeqotd
‘[e€] sremy wnjuendy
‘paIajo sisA[eue po[Iejop ou Yjm AL pue -o[qeITeAR JON *SIYSTOM JULILYOId(J A _ R -spunoq sno1osL oy O198RYD09S
uo ewjuna jo souepusdop AJIIULPI SIOYINY : *SIUSTOM JuULIaYO)) M . Bursn A1owaN
QAT)RIDOSS Y
[ee] (NN)
‘opou NVHO £1049 09 syndur omy . =) . d ~ B d wyLIoS
pue ‘jqiomjou NYHUY [eplwrerdd Jurwnssy MOTIULY sutogyed Supuresy “ON N ((“N)Ared)o Sururesry
peseq-uoryisodiedng

. oo fom ¢
‘stoded ul punoj sisA[eur snoloJl ou Ing . _wmh%m %m Mw?wvm
‘sjromgau Teinau [erodua) ajeard of Ayriqed ‘a[qe[rear JON - - - ‘spunoq snoIoSir oN 81l A PN T N
-e0 Jo esnEoaq sygeusq [eryeds opraoid S ’ ’ [PIOBRAY poseq
30 JO 9SNBO9(q s1goueq [eljeds opl HSTN -jo(] wmjueny)

Surreog Surreog soedg

sjpuswIuwo))

;dnpeadg winjuend)

suLI9], Jo uonruysq

swIL], [edIsse[)

wnjueng)

Suireog auwil], wnjuend)

w3081y

	Preface
	List of Acronyms
	1 Introduction
	1.1 Classical Machine Learning
	1.2 Quantum Machine Learning
	1.3 Comparison of Machine Learning Algorithms

	2 Quantum Machine Learning Algorithms
	2.1 Neural Networks
	2.1.1 Quantum Walks
	2.1.2 Deep Learning

	2.2 Bayesian Networks
	2.3 HHL: Solving Linear Systems of Equations
	2.4 Principal Component Analysis
	2.5 A Quantum Nearest-Centroid Algorithm for k-Means Clustering
	2.6 A Quantum k-Nearest Neighbour Algorithm
	2.7 Other Notable Algorithms

	3 Experimental implementations
	3.1 Adiabatic Quantum Machine Learning
	3.2 Implementating a Quantum Support Vector Machine Algorithm on a Photonic Quantum Computer
	3.3 Implementing a Quantum Support Vector Machine on a Four-Qubit Quantum Simulator

	4 Challenges
	4.1 Practical Problems in Quantum Computing
	4.2 Some Common Early Pitfalls in Quantum Algorithm Design
	4.3 Quantum Random Access Memory

	5 Conclusion
	6 Acknowledgments
	Appendices
	A Quantum Perceptron Model
	A.1 Perceptrons
	A.2 Quantum Perceptrons
	A.3 Discussion

	B Probabilistic Distance in the Quantum SVM
	C Table of Quantum Algorithms

