
Why C++ is not just an Object-Oriented Programming Language

Bjarne Stroustrup

AT&T Bell Laboratories

Murray Hill, New Jersey 07974

ABSTRACT

C++ directly supports a variety of programming styles. In this, C++ deliber-
ately differs from languages designed to support a single way of writing pro-
grams. This paper briefly presents key programming styles directly supported by
C++ and argues that the support for multiple styles is one of its major strengths.
The styles presented include: traditional C-style, concrete classes, abstract
classes, traditional class hierarchies, abstract classes and class hierarchies, and
generic programming. To provide a context for this overview, I discuss criteria
for a reasonable and useful definition of ‘‘object-oriented programming.’’

1 Introduction

There are many tools and techniques that can help in
our effort to build useful, economical, and maintain-
able systems. To complete ambitious and complex
projects, we rely on a wide variety of techniques and
tools that must work together.

The title of this paper singles out a programming
language†. However, the real topic is programming,
or if you prefer a longer formulation, the design and
implementation of systems. A programming lan-
guage is just one of the means by which we try to
achieve our goals.

The definition of ‘‘object-oriented program-
ming’’ is no longer a popular topic of discussion at
major conferences. A practical definition of

† This paper is primarily based on an invited talk with the same title given at OOPSLA’95 in Austin Texas. The style of this paper is
clearly affected by its origins as a relatively short talk. I would have preferred this paper to be either much longer or much shorter,
but I did not have the time to do either.

‘‘object-oriented programming,’’ ‘‘object-oriented
analysis,’’ ‘‘object-oriented design,’’ ‘‘object-
oriented technology,’’ etc., is, however, a burning
issue for people who want to turn the oft-repeated
promises made for techniques and languages called
‘‘object-oriented’’ into reality in everyday projects.
It has become a practical rather than academic topic
of discussion. What is ‘‘object-oriented technol-
ogy?,’’ what benefits can be expected from it? at
what risks?, how do those techniques, benefits, and
risks compare with those associated with alterna-
tives?

A systems builder trying to explain to an accoun-
tant why money should be spent for tools supporting
object-oriented techniques needs more than a state-
ment to the effect that ‘‘object-oriented is great’’ or
that ‘‘really great techniques are really object-
oriented.’’ You simply cannot ask someone to bet
their company’s future on vague promises phased in
ill-defined terms. Nor is a well-polished and logi-
cally coherent semi-mathematical treatment of the

subject of direct practical use.
We need to define ‘‘object-oriented’’ to be some-

thing specific so that we can point out specific bene-
fits and risks associated with its use. We must also
be specific about what isnot object-oriented, and
what benefits and lack of benefits we can expect
from various non-object-oriented techniques.

Consequently, this paper starts out discussing
what makes a good definition of ‘‘object-oriented.’’
Next, I present a range of useful techniques which
may or may not be object oriented and discuss their
advantages and disadvantages.

2 Defining ‘‘Object-oriented’’

To be useful and intellectually honest, a definition of
‘‘object-oriented’’ must

[1] not be a mere synonym for ‘‘good,’’
[2] not exclude most accepted meanings,
[3] have a firm historical basis,
[4] exclude something.

Not everything good is object- oriented, and not
everything object-oriented is good. I think I can
support both claims from experience. I have seen
examples of the latter often enough: it is not uncom-
mon to find programs that apply techniques usually
deemed object-oriented extensively or even exclu-
sively, yet are hard to comprehend, hard to maintain,
and perform abysmally. Such examples occur in
every programming language. But then, of course,
some people respond ‘‘that just proves that the pro-
gram wasn’ttruly object-oriented.’’ To which the
answer must be that either the term has become
meaningless or there must be something good
beyond what is called ‘‘object-oriented.’’

On the other hand, when we define ‘‘object-
oriented,’’ we must not be too exclusive. Object-
oriented programming is a broad intellectual disci-
pline, not the mere use of specific language features.
Attempts to define ‘‘object-oriented’’ to mean
‘‘what I’m selling’’ are not uncommon, but are fun-
damentally sleazy.

Any definition of ‘‘object-oriented’’ should be
historically reasonable. Words are only useful for
communication, really only mean something, if we
agree on a meaning for them. There are several
plausible, logically coherent, and mutually

contradictory definitions of ‘‘object oriented’’ in
use. However, the mainstream usage stems directly
from the ideas pioneered by programming language
Simula and the design techniques it was developed
to support. The communities of programmers and
designers centered around languages such as C++,
CLOS, Eiffel, Object Pascal, and Smalltalk have
contributed much to this tradition.

A meaningful definition of any concept must
exclude something.

3 A Broad Definition of ‘‘Object-oriented’’

Given these general criteria for a definition of
’’object-oriented’’ you can find several plausible
candidates, and several communities have their own
definitions. However, I suggest we stick to the tradi-
tional definition of object-oriented used within broad
communities of programmers. A language or tech-
nique is object-oriented if and only if it directly sup-
ports:

[1] Abstraction– providing some form of classes
and objects.

[2] Inheritance– providing the ability to build
new abstractions out of existing ones.

[3] Run-time polymorphism– providing some
form of run-time binding.

This definition includes all major languages com-
monly referred to as object-oriented: Ada95, Beta,
C++, CLOS, Eiffel, Simula, Smalltalk, and many
other languages fit this definition. Classical pro-
gramming languages without classes, such as C, For-
tran4, and Pascal, are excluded. Languages that lack
direct support for inheritance or run-time binding,
such as Ada88 and ML are also excluded.

ML is a good example of something that is good
but not object-oriented. I like ML; it is an interest-
ing, innovative, and powerful language, but it is
functional rather than object-oriented and its poly-
morphism is resolved at compile time rather than at
run-time. Thus, saying that ML isn’t object-oriented
is not a criticism, it’s an observation about defini-
tions and the nature of ML.

Techniques and tools are object-oriented if and
only if they support the use of object-oriented pro-
gramming. For example, a design method is object-
oriented if its regular and proper use leads to

programs that exploit abstraction, inheritance, and
polymorphism where appropriate. I strongly prefer
design methods that directly and naturally support
the use of at least one of the major object-oriented
languages supporting in ways that exploit its features
in an idiomatic way.

For example, it is often possible to simplify
application code by hiding objects with different rep-
resentations and different implementation details
behind a common ‘‘abstract’’ interface (see §6.4 and
§6.6). Conversely, the implementation of related
concepts can often be greatly simplified by exploit-
ing commonality through inheritance (see §6.5 and
§6.6). A major purpose of design methods and the
CASE tools that commonly support them is to make
design simpler, more regular, and more predictable.
Thus, to earn the label ‘‘object-oriented,’’ a design
method must regularly and predictably help the dis-
covery of commonality that can be exploited in these
ways. Ideally, an object-oriented design method
must strongly encourage the expression of this com-
monality using the most appropriate facilities in one
or more of the languages supporting object-oriented
programming. Minimally, the method and its sup-
porting tools must not be a hindrance to the use of
object-oriented facilities in the programming lan-
guage used to implement the design. Much confu-
sion arise because not every design method that
claims to be object-oriented does that.

Please remember that I’m looking for a practical
understanding of the notion of ‘‘object-oriented’’
rather than a formal definition. A formal definition
is useful, indeed it may be essential. However, to be
relevant, a formal definition must match a coherent
view of what the formal definition is meant to spec-
ify precisely.

4 Purity

There has been much debate about ‘‘purity,’’ in the
context of languages supporting object-oriented pro-
gramming. In my opinion, much of that discussion
is confused by the– often unstated– assumption
that not only does ‘‘object-oriented’’ imply ’’good,’’
but also by the further assumption that only
‘‘object-oriented’’ features are good. Consequently,
it is – wrongly – assumed that a language that

provides features deemed non-object-oriented must
be worse than a language that does not. People who
like a language to support classes as part of a hierar-
chy only and functions/methods attached to one spe-
cific class only often call such a language ‘‘a pure
object-oriented language.’’ If we don’t like the idea
of restricting the definition of classes and functions
that way we can call such a language ‘‘just an
object-oriented programming language.’’

I prefer to have more facilities available than can
be provided by methods defined on classes within a
single hierarchy. A lot of good design goes beyond
that relatively narrow domain. Incidentally, I have
come to dislike the adjective ‘‘hybrid’’ as used to
distinguish ‘‘pure’’ object-oriented systems from
others. Too often, ‘‘hybrid’’ is used in a prejudicial
manner. If I must apply a descriptive label, I use the
phrase ‘‘multi-paradigm language’’ to describe C++.

4.1 Use of Language Features
Even when all the features required to support
object-oriented programming are available, you
don’t need to use them all the time. Some classes
just don’t belong in a hierarchy and some functions
don’t belong to any particular object.

The key to maintainable, efficient, and evolvable
programs isn’t particular language features. It is the
ability to develop concepts needed for a solution and
to express them clearly in a program. Language fea-
tures exist to make such expression simple and
direct.

Object-oriented programming can be done in a
language lacking one or more of the features
required to directly support object-oriented program-
ming. However, doing so is unnecessarily difficult,
very difficult to support with tools, and often pro-
hibitively expensive.

Furthermore, there are things that can’t be
expressed directly using only the ‘‘pure’’ object-
oriented constructs mentioned above. For example,
some entities belong together, but their relationships
are not hierarchal. Some entities simply do not obey
the rules of a particular object-oriented language.
Some things that you build in an object-oriented
world are manipulated from the outside so that it is
difficult to make guarantees about the way they are
used.

5 C++ Design Ideals

I felt the need for facilities outside what is conven-
tionally called ‘‘object-oriented,’’ so I supplied some
in C++. However, C++ isn’t meant to be everything
to everybody. No one programming language and
no one view of how to write programs is sufficient
for everything. Constraints-based programming,
logic programming, functional programming, and
various forms of concurrent programming are exam-
ples of good and useful styles of programming not
supported by C++.

No single language can support every style.
However, a variety of styles can be supported within
the framework of a single language. Where this can
be done, signifcant benefits arise from sharing a
common type system, a common toolset, etc. These
technical advantages translate into important practi-
cal benefits such as enabling groups with moderately
differing needs to share a language rather than hav-
ing to apply a number of specialized languages.

C++ was designed to support a range of styles
that I considered fundamentally good and useful.
Whether they were object-oriented, and in which
sense of the word, was either irrelevant or a minor
concern:

[1] Abstraction– the ability to represent concepts
directly in a program and hide incidental
details behind well-defined interfaces– is the
key to every flexible and comprehensible sys-
tem of any significant size.

[2] Encapsulation– the ability to provide guaran-
tees that an abstraction is used only according
to its specification– is crucial to defend
abstractions against corruption.

[3] Polymorphism– the ability to provide the
same interface to objects with differing imple-
mentations– is crucial to simplify code using
abstractions.

[4] Inheritance – the ability to compose new
abstractions from existing one– is one of the
most powerful ways of constructing useful
abstractions.

[5] Genericity– the ability to parameterize types
and functions by types and values– is essen-
tial for expressing type-safe containers and a
powerful tool for expressing general

algorithms.
[6] Coexistence with other languages and systems

– essential for functioning in real-world exe-
cution environments.

[7] Run-time compactness and speed– essential
for classical systems programming.

[8] Static type safety– an integral property of
languages of the family to which C++ belongs
and valuable both for guaranteeing properties
of a design and for providing run-time and
space efficiency.

These facilities and general properties can be sup-
ported in several alternative ways. For example, one
programming language may support a facility in its
core language where another supports it in a library.
Similarly, a facility provided by a run-time mecha-
nism in one language may be provided by a
compile-time mechanism in another.

The requirement for coexistence is essential for
any language claiming to be general-purpose. Look-
ing at the world from the perspective of a given pro-
gramming language, we find that almost every real-
life system contain parts that are written in others
languages and designed according to principles for-
eign to that language. To be general-purpose, a lan-
guage must somehow take the unpredictable, ugly,
and constantly changing demands of program frag-
ments written in ‘‘other languages’’ into account.

To be genuinely general purpose, a language
must possess facilities that allow it to share data with
program fragments written in other languages, to
invoke code fragments written in other languages,
and have code invoked by code written in other lan-
guages. For example, systems relying on callbacks
can be rather ugly to program, but not being able to
use such systems in a direct and idiomatic way
would be crippling for a language as a tool for real-
world programming. In many languages, a common
use of ‘‘foreign’’ code is exactly to violate the lan-
guages rules: to do things that can’t be done– or
can’t be done efficiently– in the language itself.

Alternatively, access to facilities in ’’the outside
world’’ could be carefully fitted into the framework
of the object-oriented programming language
through special facilities in the run-time environ-
ment or in libraries. However, accessing facilities in
the manner they were meant to be used is often

easier and less awkward than to fit them into our lan-
guage framework. A general mechanism for access-
ing ‘‘foreign’’ code also leads to more extensible
systems than a requirement to fit each individual
‘‘foreign’’ facility into the language framework.

Over the years, we have seen spectacular
improvements both in hardware performance and in
compilation techniques. However, run-time effi-
ciency and compact representation is still absolutely
essential to many people.

Static type safety is an essential part in my view
of both design and implementation (see, for example
[Stroustrup,1991]). The guarantees provided and the
discipline of design imposed have been found
extremely valuable by many people working in a
wide range of application areas. Static type check-
ing is of course not a panacea, but it is something I
would not attempt major projects without.

The fundamental ideal of C++ is actually the fun-
damental ideal for a lot of languages:

center box; c. Represent concepts and relationships
between concepts directly and affordably.

Naturally, there are many ways of approaching this
ideal. It is worth remembering that all of the lan-
guages usually mentioned in a discussion of practi-
cal use of object-oriented techniques are suitable
vehicles for good design. A rational discussion of
languages is one of relative merits, applicability to
specific problem areas, and personal preferences,
rather than one of absolutes.

Representing concepts directly is a restatement
and possibly a generalization of ideas relating to data
abstraction and information hiding. Representing
hierachical relationships is the traditional key to
object-oriented programming. There are, however,
clean and useful relationships that are not hierarchi-
cal yet can still be represented directly in a program
(for example, see §6.3 and §6.7).

Being more concerned with producing good soft-
ware than with finding the most elegant expression
of ideas in the abstract, I insist on affordability.
Affordability is a multi-facetted issue that involves
not only run-time efficiency, but also availability of
suitable hardware, availability of designers and pro-
grammers comfortable with new techniques, etc.

6 Programming Style and Language Features

I will now give examples of programming styles and
language features supporting them. Some are com-
monly referred to as ‘‘object-oriented,’’ some are
not, but that doesn’t prevent me from recommending
them in some contexts.

6.1 Conventional Notation
There are aspects of conventional code and conven-
tional notation that I would like to see maintained
even in a strictly object-oriented overall design.
Being able to say plain square root of two,
sqrt(2) is nice, and so is the ability to write
x+y*z and know that it means addx to the product
of y andz . We have about 400 years of experience
with such notation and it is deeply ingrained in our
technical culture.

6.2 Concrete Types
Very simple concepts, such as integers, floating

point numbers, complex numbers, points, lines,
pairs, dates, disk locations, bcd characters, error
messages, currency, are usually not considered suit-
able topics for discussion in academic articles or at
conferences. These are usually considered too sim-
ple to merit discussion. However, the mundane is
often statistically more significant than the sophisti-
cated.

Provided they can be implemented in a way that
is simple, elegant, efficient and flexible enough, I
consider such simple concepts excellent candidates
for independent proper types– as opposed to pre-
senting them to users as plain data structures or as
parts of a larger class hierarchy. Consequently, part
of a design effort should focus on these little abstrac-
tions. These very concrete types should be designed
carefully and supported well.

To illustrate why, I’ll contrast this approach to
the use of a plain data structure and to the use of
class hierarchies. To make this discussion concrete,
I’ll use the example of a date.

6.2.1 Structures and Functions
The simplest way of presenting a date in a program
is simply to specify its data layout. For example:

struct date {
// representation

};

Given that, programmers can do anything at all with
date s. That ‘‘anything at all’’ is the strength and
weakness of this idea. Naturally, a ‘‘standard’’ set
of functions is usually provided to manipulate a
structure such asdate . However, such a set of
functions is rarely complete, and even when it is,
programmers find reasons to manipulatedate s
directly. Consequently, it is usually not possible to
change the definition ofdate after the initial
release of the software; it is simply too difficult to
track down every use of adate and modify it use to
the new definition.

The reason that the set of functions is rarely com-
plete is that there is no incentive to make it so. A
programmer can always write new functions access-
ing the date structure, and the dominant culture
encourages the programmer to do so. Writing a new
function that is ‘‘just right’’ for the job, carries no
overhead, and relies on no potentially untrustworthy
code is often considered better than improving a
standard and general-purpose set of access functions
and using it. Often, it is also far easier. This trend is
typically reinforced by poor documentation.

6.2.2 A Concrete Class
A simple Date type can remedy most of the prob-
lems related to using a data structure directly. Con-
sider:

class Date {
public:

// public interface, consisting
// of non-virtual functions

private:
// representation and other
// implementation details

};

Such aDate type will provide
[1] constructors specifying how objects of the

type are to be initialized;
[2] functions for examining aDate ; these

functions will be explicitly declared not to
modify the value of the object;

[3] functions for manipulatingDate s without
actually having to know the details of the rep-
resentation or fiddle with the intricacies of the
implementation.

In addition,Date s can be freely copied.
This set of member functions supplied as mem-

bers ofDate should be those that provide a basic
semantics for aDate and also requires direct access
to the representation ofDate to be implemented.

The set of member functions should be almost
minimal; many operations that users would find con-
venient can be supplied separately (see §6.3). I dis-
like classes with dozens or even hundreds of mem-
ber functions. Such a class does not represent a
well-thought-out concept; it’s a glorified data struc-
ture produced by somebody who couldn’t decide on
what was really wanted.

The member functions are declared non-virtual to
ensure that there is no time or space overheads
involved in using thisDate , and to ensure that the
semantics ofDate cannot be modified later. Simi-
larly, the representation ofDate is declared
private to prevent access by any function not
explicitly mentioned in the class itself.

The representation of a concrete type should be
compact. Sometimes millions of objects of such
classes exist, and even with modern memory sizes
space overheads can be a burden. If nothing else,
reading and writing objects with bloated representa-
tions can be a nuisance.

The use of concrete types must be fast. In my
world at least, programmers are prone to represent
something as plain data structure out of fear of over-
heads supposedly associated with abstractions.

There are no time or space overheads associated
with the Date class as defined above. The size is
identical to that of the plaindate structure, and
inlining is done for simple member functions to
make these as fast as the code a programmer would
write accessing a plain structure directly.

Often, it is important that simple concrete types,
such asDate , be layout-compatible with simple
data structures, such asdate , as used in traditional
languages. This allows simple exchange or sharing
of information with code written in traditional

languages. This can be a major convenience if your
operating system, your database, or your high-
performance numeric library is written in a tradi-
tional language and requires manipulation of data of
a specific layout.

TheDate class is very simple and very basic. It
requires no elaborate framework, no class hierar-
chies, no clever dispatcher to mediate access, etc. It
doesn’t affect the overall structure of a program
much; it just provides a lot of help at the detailed
programming level– below the level of detail of
interest to most managers and to many designers.

If such types are that simple, why bother spend-
ing time on them?

[1] The concepts best represented by such simple
types are common; most applications can use
a few dozen or a few hundred such types.
Thus, any benefits we get from a single con-
crete type, we get many times over.

[2] The problems relating to lack of encapsulation
of plain structures (§6.2.1) are eliminated.

[3] The replication of effort writing simple access
functions is eliminated.

[4] Making a concrete type the subject of a con-
scious design effort typically results in a bet-
ter thought out, more comprehensive, and bet-
ter documented concept. In principle, this
could equally well be done for the plain struc-
ture approach, but in practice that typically
doesn’t happen.

[5] Writing the basic functions of a concrete type
is not difficult, but it is not trivial either. For
example, adding a year to a date requires us to
handle leap years. By relying on common
access functions, we eventually achieve an
implementation that has been better thought
out and has fewer errors.

[6] Since more of the implementation is docu-
mented and shared, user code becomes more
uniform. Thus, code written by others
become easier to comprehend.

These are classical reuse benefits and I don’t think
we should decline them just because they are easy to
obtain.

6.2.3 Re-using Concrete Types
For many concrete types, derivation doesn’t make
sense. Consider, deriving a new class fromDate :

class MyDate : public Date {
// ...

};

Is it ever valid forMyDate to be used as a plain
Date ? Well, that depends on whatMyDate is, but
in my experience it is rare to find a concrete type
that makes a good base class without modification.

Derivation from a concrete type is almost always
a mistake. A concrete type is a self-contained entity
that can’t easily added to in a way that makes sense.
A concrete type is ‘‘re-used’’ unmodified in the
same way as built-in types such asint are. For
example:

class Date_and_time {
public:

// ...
private:

Date d;
Time t;

};

This form of use (reuse?) is usually simple, effec-
tive, and efficient.

Maybe it was a mistake not to designDate to be
easy to modify through derivation? It is sometimes
asserted thateveryclass should be open to modifica-
tion by overriding and by access from derived class
member functions. This view leads to a variant of
Date along these lines:

class Date2 {
public:

// public interface, consisting
// primarily of virtual functions

protected:
// representation and other
// implementation details

};

Here, the functions are declaredvirtual , meaning
that a class derived fromDate2 (in the style of
MyDate above) can provide its own versions. To
make it possible to write such overriding functions
easily and efficiently, the representation is declared
protected . A protected member of a class is
accessible not just to the classes’ own members, but

also to the member functions of derived classes.
This achieves the objective of makingDate2

arbitrarily mallable by derivation, yet keeping its
user interface unchanged. However, there are costs:

[1] Efficiency of basic operations– a C++ virtual
function call is a fraction slower than an ordi-
nary function call, virtual functions cannot be
inlined as often as non-virtual functions, and a
class with virtual functions typically incurs a
one word space overhead.

[2] Need to use free store– the aim ofDate2 is
to allow objects of different classes derived
from Date2 to be used interchangeably.
Because the sizes of these derived classes dif-
fer, the obvious thing to do is to allocate them
on the free store and access them through
pointers or references. Thus, the use of gen-
uine local variables dramatically decreases.

[3] Inconvenience to users– to benefit from the
polymorphism provided by the virtual func-
tions, accesses toDate2 s must be through
pointers or references.

Naturally, these costs are not always significant, and
as we will see in §6.4 the behavior of a class defined
in this way is often exactly what we want. However,
for a simple concrete type, such asDate2 , the costs
are unnecessary and can be significant.

Please note that the costs are fundamental; differ-
ent languages present the facilities differently, but
every language that provides run-time polymor-
phism incur these costs in some way or other.

Finally, a well-designed concrete type is often the
ideal representation for a more mallable type. For
example:

class Date3 {
public:

// public interface, consisting
// primarily of virtual functions

protected:
Date d;

};

6.3 Namespaces
Class hierarchies express (hierarchical) relationships,
but not every relationship in a program can or should
be expressed as a hierarchical relationship between
classes. For example, if a class is intented for use

only in the context of another class it can be declared
a member of that class exactly the way a function
can be:

class Date {
public:

enum Month {
jan, feb, mar,
apr, may, jun,
jul, aug, sep,
oct, nov, dec

};

// ...
};

Date::Month m = Date::nov;

More generally, C++ provides namespaces for
grouping declarations [Stroustrup,1994]. For exam-
ple, many operations onDate s shouldn’t be mem-
bers of classDate because they don’t need direct
access to the representation of aDate . Providing
such functions as non-member functions leads to a
cleanerDate class, but we would still like to make
the association between the functions and the class
explicit:

namespace Chrono {

// facilities for dealing with time:

enum Month {
// ...

};

class Date {
// ...

};

int diff(Date a, Date b);
bool leapyear(int y);
Date next_weekday(Date d);
Date next_saturday(Date d);

// ...
}

A namespace is not a module; it is not an object. A
namespace is a general scope mechanism to support
a variety of techniques related to modularity. Not
incidentally, namespaces provides a way of avoiding

name clashes in software composed out of libraries
from different suppliers. For example:

namespace LibA {
class String {

// A-style string
};
// ...

}

namespace LibB {
class String {

// B-style string
};
// ...

}

LibA::String s1 = "Nicholas";
LibB::String s2 = "Annemarie";

6.4 Abstract Classes
It is possible to completely disassociate implementa-
tion and interface. For example, we might imple-
ment a set using either an array or a list in such a
way that the two kinds of sets can be used inter-
changeably:

class set {
// ...

};

class v_set : public set,
private vector {
// ...

};

class l_set : public set,
private list {
// ...

};

or graphically:

vector set list

v_set l_set
..

..
..

..

..
..

..
..

I use the dotted lines to show thatprivate inheri-
tance is an implementation issue that does not affect
the interface of the derived class.

Importantly, a common interface (here,set) can
be provided long after the design and

implementation of implementation classes (here,
vector andlist). I find that when people design
things, they typically first invent something fairly
concrete. They design an array, they invent a list,
and only later do they discover an abstraction that
covers both in a given context. Using abstract
classes as shown above, we use (re-use?)vector
and list without the foresight (and cost) necessary
to design them as part of a common hierarchy.

As a matter of fact, you can do this ‘‘late abstrac-
tion’’ several times. Say, I want to represent the
notion of ‘‘something you could read from.’’ This is
a very different abstraction fromset , yet I can pro-
vide such an interface to arbitrary sets as well as for
lists, vectors, files, and input streams much in the
way I providedset as an interface tovector and
list .

Late abstraction using abstract classes allows us
to provide different implementations of a concept
even when there is no significant similarity between
the implementations.

6.5 Classical Hierarchies
Sometimes we do have sufficient foresight to design
a classical hierarchy. More importantly, sometimes
the various implementations of a concept have a
high degree of commonality so that there is signifi-
cant benefit in organizing these implementations into
a hierarchy. For example, consider a class hierarchy
that one might find in an application relying on a
windows system:

window

dial slider

ival_dial ival_slider

Presumably, the implementations of the application
classes ival_dial and ival_slider are
greatly facilitated by code and data provided by the
‘‘system classes’’window , dial , and slider .
That is, you build your code incremently and your
interfaces incrementally.

6.6 Hierarchies and Abstract Classes
A classical hierarchy is a nice way of providing a
variety of related concepts and a nice way of mini-
mizing the effort of building their implementations.
However, you do get the classes in the hierarchy
tightly coupled. If anything significant in a base
class changes, all of the derived classes must change
(or at least be recompiled) to match. In particular,
any significant change to ‘‘system classes’’ at the
base of a hierarchy, such aswindow , will affect
application classes, such asival_dial . Worse,
the choice of a foundation library representing sys-
tem resources determines the structure of the appli-
cation class hierarchy and permeates the application
code.

There are quite a few ways of dealing with this.
For example, some languages have a solution (at its
associated costs) mandated, and some implementa-
tions of C++ allow major changes to base classes
without requiring re-compilation of derived classes.
However, here I’ll show a solution using abstract
classes to make dependencies explicit. Logically, it
closely parallels the way the abstract classset was
used to insulate users from the details ofvector s
andlist s.

Here, an application hierarchy

ival_box

ival_dial ival_slider

is written independently of implementation details
and then later tied into an implementation hierarchy
without affecting the users of the application hierar-
chy:

ival_box

ival_dial ival_slider

BB_window BB_window

BB_knob BB_slider

BB_ival_dial BB_ival_slider

This expresses the design in such a way that the
application code becomes independent of any change
in the implementation hierarchy.

I have used theBBprefix for realism; suppliers of
major libraries invariably prepend some identifying

initials. In the future, I expect namespaces (§6.3) to
be used instead.

The declaration of a class that ties an application
class to the implementation hierarchy will look
something like this:

class BB_ival_slider
: public ival_slider,
protected BB_slider {

public:
// functions overridingival_slider
// functions as needed to implement
// the application concepts

protected:
// functions overridingBB_slider
// andBB_window functions as
// required to conform to user
// interface standards

private:
// representation and other
// implementation details

};

This structure assumes that details of what is to be
displayed by a windows system is expressed by
overriding virtual functions in theBB_window s
hierarchy. This may not be the ideal organization of
a user interface system, but it is not uncommon.

I use protected members and protected inheri-
tance to allow classes derived from
BB_ival_slider to use information about its
implementation.

6.7 Generic Programming
A major theme in the C++ community over the last
few years has been the development of techniques
exploiting the template mechanism.

6.7.1 Parameterization
Independent concepts should be independently rep-
resented and should be combined only when needed.

Where this principle is violated, you either bun-
dle unrelated concepts together or create unnecessary
dependencies in the implementation of classes and
functions. In particular, fitting weakly related class
into a single hierarchy can be a source of unneces-
sary and problem-causing dependencies.

Consider the concepts of sorting, character,
string, and collating sequence. A sort algorithm is
independent from the concept of a character. The

concept of a string is independent of any particular
kind of a character. Finally, the collating sequence
which you use when you sort strings of characters is
independent of these other three concepts.

This independence can be expressed directly.
Here is a string parameterized by the kind of charac-
ters contained so that we can make strings of both
built-in and user-defined character types:

template<class C>
class string {

// ...
};

class Jchar {
// Japanese characters

};

string<char> s1, s2;

string<unsigned char> us1, us2;

string<Jchar> js1, js2;

Independently, we can define the notion of a collat-
ing sequence and a string comparison function:

template<class C>
class std_coll {
public:

bool eq(C a, C b)
{ return a==b; }

bool lt(C a, C b)
{ return a<b; }

};

template<
class C,
class Coll = std_coll<C>

>
int cmp(

string<C>& s1,
string<C>& s2

)
{

// compares1 with s2
// using Coll::eq andColl::lt
// to do character comparisons

}

Thecmp template function takes two template argu-
ments:

– the type of characters in the strings, and

– the collator supplying the character compari-
son operations.

The ability to pass operations as template parameters
is a very powerful expressive mechanism. It is also
important for efficiency. For example, it is trivial
for a compiler to inline all uses ofeq() and lt() .
This can be a significant advantage compared to C
where operations can only be passed as pointers to
functions so that function call overheads are
incurred.

The second template paramenter has a default so
we need only specify it if we want a non-standard
collating sequence. The first template parameter can
usually be deduced from the arguments tocmp() .
For example:

cmp(s1,s2);
cmp(js1,js2);
cmp(us1,us2)
cmp<char,no_case>(s1,s2);

Here, no_case is a collator definingeq() and
lt() not to be case sensitive.

Typically, the string class, thecmp() func-
tion, the collator classes, and the character classes
will be written by different people. Only the final
user puts all of the independently developed pieces
together.

This style of design relying on templates and
additional template arguments (in this example,
Coll) to express policies, is the basis of much of
the C++ standard library. The result is exceptional
flexibility and unsurpassed run-time efficiency.

6.7.2 Containers and Algorithms
I want to have algorithms written once and used for
objects of many different types. I want these algo-
rithms to run as fast as functions written for a single
argument type. I want this to be compile-time
checked so that I can be more confident of my code.
I don’t want to be forced to fit my types into a hier-
archy simply to be able to use them for the generic
algorithms.

The containers and algorithms in the C++ stan-
dard library use a variant of the philosophy of keep-
ing independent concepts separate. Much of the
library is based on the notion of a of sequence.
Examples of sequences are arrays, sets, lists, maps,

files.
A sequence has a beginning and an end. The end

is one beyond the last element of the sequence.
Positions in a sequence are represented by iterators.

begin end
| |
v v

XXX -> -> XXX -> 0

Given an iterator for an element of a sequence, we
can get to the next element using the++ (increment)
operator. Given an iterator for an element, we can
access the element itself using the* (dereference)
operator.

Given this simple notion, a surprising number of
useful algorithms can be expressed. For example,
this template function writes all elements of a con-
tainer to output:

template<class C>
void print(C& s)
{

C::iterator p=s.begin();

while (p!=s.end()) {
cout << *p; // output
p++; // next

}
}

The C++ standard library containers and algorithms
are primarily the work of Alex Stepanov. A surpris-
ing number of containers and algorithms can be
expressed using just a few kinds of iterators. Impor-
tantly, the resulting generic algorithms are efficient
even compared to hand-crafted assembly code. For
example, the C++ standard library algorithm,
sort() is for many simple and realistic examples
several times faster than the C standard library
qsort() function. For more information about the
C++ standard library and the principles underlying
its design see [Koenig,1995] [Stepanov,1994].

7 Closing Remarks

Are the various facilities presented above object-
oriented or not? Which ones? Using what definition
of object-oriented?

In most contexts, I think these are the wrong
questions. What matters is what ideas you can

express clearly, how easily you can combine soft-
ware from different sources, and how efficient and
maintainable the resulting programs are. In other
words, how you support good programming tech-
niques and good design techniques matters more
than labels and buzz words.

The fundamental idea is simply to improve
design and programming through abstraction. You
want to hide details, you want to exploit any com-
monality in a system, and you want to make this
affordable.

I would like to encourage you not to make
object-oriented a meaningless term. The notion of
‘‘object-oriented’’ is too frequently debased

– by equating it with good,
– by equating it with a single language, or
– by accepting everything as object-oriented.

I have argued that there are– and must be– useful
techniques beyond object-oriented programming and
design. However, to avoid being totally misunder-
stood, I would like to emphasize that I wouldn’t
attempt a serious project using a programming lan-
guage that didn’t at least support the classical notion
of object-oriented programming. In addition to
facilities that support object-oriented programming, I
want – and C++ provides– features that go beyond
those in their support for direct expression of con-
cepts and relationships.

Several of the themes related to C++ program-
ming style in this paper have been developed further
in [Koenig,1995b]. The design and evolution of
C++, including its most recent features, is discussed
in [Stroustrup,1994].

8 Acknowledgements

Thanks to the OOPSLA’95 program committee for
inviting me to give the talk upon which this paper is
based, and especially to May Loomis for encourag-
ing me to get this paper written. Carolyn Heaps
transcribed the audio tape of my talk to produce the
first draft of this paper. Tim Griffin and Christos
Polyzois made many constructive comments.

9 References

[Koenig,1995] Andrew Koenig (editor):Draft
Proposed International Standard for Informa-
tion Systems– Programming Language C++ .
ANSI Standards Secretariat. CBEMA, 1250
Eye Street NW, Suite 200, Washington
DC20005, USA. 1995.

[Koenig,1995b] Andrew Koenig and Bjarne
Stroustrup: A Foundation for Native C++
Styles. Software – Practice & Experience.
To appear 1995.

[Stepanov,1994] Alexander Stepanov and Meng
Lee: The Standard Template Library. ISO
Programming language C++ project. Doc No:
X3J16/94-0095, WG21/N0482. May 1994.

[Stroustrup,1991] Bjarne Stroustrup:The C++
Programming Language. Addison-Wesley.
1991.

[Stroustrup,1994] Bjarne Stroustrup:The Design
and Evolution of C++ . Addison-Wesley.
1994.

