
Macaroons: Cookies with Contextual Caveats
for Decentralized Authorization in the Cloud

Arnar Birgisson
Chalmers University of Technology

arnarbi@gmail.com

Joe Gibbs Politz
Brown University
joe@cs.brown.edu

Úlfar Erlingsson, Ankur Taly,
Michael Vrable, and Mark Lentczner

Google Inc
{ulfar,ataly,mvrable,mzero}@google.com

Abstract—Controlled sharing is fundamental to distributed
systems; yet, on the Web, and in the Cloud, sharing is still
based on rudimentary mechanisms. More flexible, decentralized
cryptographic authorization credentials have not been adopted,
largely because their mechanisms have not been incrementally
deployable, simple enough, or efficient enough to implement
across the relevant systems and devices.

This paper introduces macaroons: flexible authorization cre-
dentials for Cloud services that support decentralized delegation
between principals. Macaroons are based on a construction that
uses nested, chained MACs (e.g., HMACs [43]) in a manner that
is highly efficient, easy to deploy, and widely applicable.

Although macaroons are bearer credentials, like Web cookies,
macaroons embed caveats that attenuate and contextually confine
when, where, by who, and for what purpose a target service
should authorize requests. This paper describes macaroons and
motivates their design, compares them to other credential systems,
such as cookies and SPKI/SDSI [14], evaluates and measures a
prototype implementation, and discusses practical security and
application considerations. In particular, it is considered how
macaroons can enable more fine-grained authorization in the
Cloud, e.g., by strengthening mechanisms like OAuth2 [17], and
a formalization of macaroons is given in authorization logic.

I. INTRODUCTION

Macaroons are authorization credentials that provide flexible
support for controlled sharing in decentralized, distributed
systems. Macaroons are widely applicable since they are a
form of bearer credentials—much like commonly-used cookies
on the Web—and have an efficient construction based on keyed
cryptographic message digests [43].

Macaroons are designed for the Web, mobile devices, and
the related distributed systems collectively known as the Cloud.
Such modern software is often constructed as a decentralized
graph of collaborative, loosely-coupled services. Those ser-
vices comprise different protection domains, communication
channels, execution environments, and implementations—with
each service reflecting the characteristics and interests of the
different underlying stakeholders. Thus, security and access

control are of critical concern, especially as the Cloud is
commonly used for sharing private, sensitive end-user data,
e.g., through email or social networking applications.

Unfortunately, controlled sharing in the Cloud is founded
on basic, rudimentary authorization mechanisms, such HTTP
cookies that carry pure bearer tokens [21, 54]. Thus, today, it
is practically impossible for the owner of a private, sensitive
image stored at one Cloud service to email a URL link to that
image, safely—given the many opportunities for impersonation
and eavesdropping—such that the image can be seen only
by logged-in members of a group of users that the owner
maintains at another, unrelated Cloud service. Currently, this
use case is possible only if the image, access group, and users
are all at a single service, or if two Cloud services keep special,
pairwise ties using custom, proprietary mechanisms (e.g., as
done by Dropbox and Facebook [55]).

Of course, the ubiquitous use of bearer tokens is due to
advantages—such as simplicity and ease of adoption—that
cannot be overlooked. For example, bearer tokens can easily
authorize access for unregistered users (e.g., to the shopping
cart of a first-time visitor to a Cloud service) or from unnamed,
transient contexts (e.g., from a pop-up window shown during
private, incognito Web browsing). Such dynamic and short-
lived principals arise naturally in distributed systems, like the
Cloud and the “Grid” [47]. In comparison, most authorization
mechanisms based on public-key certificates are not directly
suited to the Cloud, since they are based on more expensive
primitives that can be difficult to deploy, and define long-lived,
linkable identities, which may impact end-user privacy [21].

Even so, the inflexibility of current Cloud authorization is
quite unsatisfactory. Most users will have first-hand experience
of the resulting frustrations—for example, because they have
clicked on a shared URL, only to be redirected to a page
requesting account creation or sharing of their existing online
identity. Similarly, many users will have uncomfortably surren-
dered their passwords to use some Cloud service functionality,
such as to populate an address book (e.g., on LinkedIn.com)
or to aggregate their financial data (e.g., on mint.com).

Macaroons aim to combine the best aspects of using
bearer tokens and using flexible, public-key certificates for
authorization, by providing (i) the wide applicability, ease-
of-use, and privacy benefits of bearer credentials based on
fast cryptographic primitives, (ii) the expressiveness of truly
decentralized credentials based on authorization logic, like
SPKI/SDSI [14], and (iii) general, precise restrictions on how,
where, and when credentials may be used.

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’14, 23-26 February 2014, San Diego, CA, USA
Copyright 2014 Internet Society, ISBN 1-891562-35-5
http://dx.doi.org/doi-info-to-be-provided-later

Macaroons allow authority to be delegated between pro-
tection domains with both attenuation and contextual con-
finement. For this, each macaroon embeds caveats which are
predicates that restrict the macaroon’s authority, as well as the
context in which it may be successfully used. For example,
such caveats may attenuate a macaroon by limiting what
objects and what actions it permits, or contextually confine it
by requiring additional evidence, such as third-party signatures,
or by restricting when, from where, or in what other observ-
able context it may be used. In particular, a macaroon that
authorizes service requests may contain caveats that require
proof that the requests have been audited and approved by an
abuse-detection service, and come from a specific device with
a particular authenticated user.

In short, Macaroons allow Cloud services to authorize
resource access using efficient, restricted bearer tokens that can
be delegated further, and, via embedded caveats, attenuated in
scope, subjected to third-party inspection and approval, and
confined to be used only in certain contexts. Fundamental to
this flexibility of macaroons is a chained construction of nested
HMAC values that simultaneously provides key distribution
and protects integrity, generalizing earlier work dating back to
the Amoeba operating system [3, 25, 51].

II. MOTIVATION AND FOUNDATIONS

Conceptually, macaroons make an assertion about condi-
tional access to a target service1, along these lines: “The bearer
may perform a request as long as predicates C1, . . . , Cn hold
true in the context of that request.”

In distributed systems, the complexity of such assertions
can grow surprisingly quickly, even for simple, practical au-
thorization policies. For example, if, as in Section I, the owner
of a private image at TS wants to safely email its URL link
to the members of a group G kept at an unrelated service A,
macaroons may establish an assertion like the following:

The bearer, client C, may perform the request at TS
as long as the operation is read,
as long as the object is privateImage.jpg,
as long as the user at C is logged into service A,
as long as that logged-in user is in group G at A,
as long as the above proofs are recent/fresh enough,
and, as long as the user at C didn’t just log out of A.

Furthermore, the image may be subject to additional access
controls at TS (e.g., to track changes of ownership), the request
from client C may be performed from an unnamed context
(e.g., a transient Web-page frame), and the logged-in user’s
privacy may need to be protected from TS. (Variants of this
assertion are the basis for paper’s examples and the end-to-end
evaluation in Section VII.)

Due to their flexible, efficient HMAC-based construction,
macaroons can enforce such complex assertions despite tight
freshness constraints and the need to closely guard privacy.

Macaroons are an instance of what has been termed claims-
based, proof-carrying, or simply credentials-based authoriza-
tion, and is defined precisely in [48, Chapter 9]. Over the last

1This section shows key terms and new concepts in italics when introduced
and informally defined; the next two sections and the appendix provide detailed
definitions and describe concrete implementations.

Subjects
(who, where)

Objects, rights
(what)

o1 o2 o3 o4 o5

s1

s2

s3

s4

s5

S

O
Fig. 1. Macaroons in the Access Control Matrix model [36]. By attenuating
a macaroon authorizing O, a derived macaroon may permit access only to o3.
Even when held by all subjects in S, contextual caveats may confine the use
of this derived macaroon to the observable context of principal s4.

two decades, several such credentials-based mechanisms have
been developed using public-key certificates and the formal-
ism of authorization logic [37, 53]. Of these, many support
highly flexible, decentralized authorization for distributed sys-
tems, with notable examples including SPKI/SDSI [14], Trust
Management [11], active certificates [12], and SecPAL [9].
However—whether due to the cost of their primitives, their
need for federation, coordination, or public identities, or the
complexity of their implementation—such flexible public-key-
certificate mechanisms have seen little use in the Cloud [54].

Instead, near exclusively, authorization in the Cloud is
based on a pattern of pure bearer tokens: secrets that grant
unconditional authority, and are sent directly between protec-
tion domains, even on unencrypted channels [21]. Examples of
pure bearer tokens include the HTTP cookies sent to identify
authorized sessions, the secrets for API keys, OAuth tokens,
and SAML or OpenID assertions used at other protocol layers,
as well as the “unlisted URLs” that are commonly created and
shared via email or chat to provide limited access to private
content [28, 50, 54].

Efficiency, wide applicability, and ease-of-adoption are
three main reasons for bearer tokens’ popularity in the Cloud.
Macaroons share all three of these properties, in their HMAC-
based construction. First, macaroons are simple enough to
implement, and fast-enough to use in near any environment—
even a severely-limited, out-of-date Web browser executing
on slow, resource-constrained mobile hardware. Second, mac-
aroons are bearer credentials and, so, principals may gain
authority simply by gathering macaroons. Third, macaroons
still provide new benefits even when unilaterally adopted, e.g.,
by allowing users to restrict when, and from where, credentials
may be used [21].

By supporting attenuation, delegation, and contextual con-
finement, macaroons have much greater expressiveness than
previously existing Cloud bearer tokens. Thus, as shown in
Figure 1, a user that holds access rights to the objects in O
can safely pass, via email, a macaroon for the right to access
a single object o4, limited to the specific recipient s4, even if
all the parties in S can read the email. Moreover, as shown in
Figure 2, the user can do this without the operational difficulty
or latency and bandwidth costs of running an intermediate
proxy service, and even without contacting the target service
to mint new, restricted credentials.

2

TS

IS

C

TS

IS

C

TS

IS

C
Proxy Re-minted Macaroon

restrictions restrictions restrictions

Fig. 2. Three ways for an intermediary service IS to give a client C limited
access to a target service TS: by proxying requests, by having TS mint new,
restricted credentials for C, or by IS deriving new macaroons for C. Arrows
show credential passing and doubled arrows indicate access.

In their expressiveness, and in aspects of their construction,
macaroons are related to cascaded proxy certificates [44], re-
stricted delegation [33], active certificates [12], proof-carrying
authentication [6], and Grid computing [22], as well as systems
for limiting resource consumption [23] and access to net-
worked storage services [3, 25]. Indeed, compared to systems
based on authorization logic like SPKI/SDSI [14], it must be
stated explicitly that macaroons have no real advantage other
than their efficiency and ease of adoption. In particular, in
terms of functionality and security, HMAC-based macaroons
have the clear disadvantage of being verifiable only by the tar-
get service, and by revealing to it certain keys, which prevents
useful types of key reuse. (This is detailed in Sections IV-D
and V-B and Section V-H outlines a public-key variant of mac-
aroons eliminating this disadvantage.) However, considering
the macaroons’ efficiency and flexibility, remarkably few such
trade-offs must be made for their practical deployment.

In particular, revocation of authority is a long-standing
challenge for credentials-based authorization systems, as de-
tailed in [19, Section 6] and [48, Chapter 9.8]. Broadly, this
challenge has been addressed by (i) using very short-lived
credentials, (ii) allowing the addition of freshness constraints,
(iii) relying on external, authoritative state (such as revoca-
tion lists, or epoch counters), and (iv) splitting credentials,
and granting authority only to a freshly-gathered collection.
Macaroons excel at all four of these revocation strategies: due
to their efficiency, and flexibility, macaroons may live only for
seconds, and may be split or constrained in any manner, as
described in the following sections.

A. Concepts and Constructions

Macaroons operate from a service’s point-of-view, in that
they permit a given target service, such as a Cloud resource
server2, to mint a bearer credential that grants authority to
access some aspects of the service. A distinguishing character-
istic of macaroon credentials is that their bearer can delegate
parts of their authority to other principals by deriving new
macaroons that both attenuate the accessible aspects of the
target service and also restrict, via contextual confinement,
from where, by who, and with what extra evidence, the derived
macaroon may be used.

To restrict the authority of a derived macaroon, caveats are
added and embedded within it. Each macaroon caveat states a

2Protocols like OAuth2 [17] use the term relying party, not target service.

predicate that must hold true for the context of any requests
that the derived macaroon is to authorize at the target service—
with that predicate evaluated by the target service in the context
of each particular request. Notably, as shown in Figure 2, by
adding caveats, new, more restricted authorization credentials
can be directly derived from macaroons, without proxying
requests to the target service, or re-minting new credentials
from it. Thus, macaroons can help avoid the latency and
overhead, loss of transparency, and trust requirements imposed
by the proxying and credential re-minting patterns commonly
used in the today’s Cloud.

For example, every macaroon is likely to contain one or
more validity-period caveats whose predicates restrict the time
(at the target service) during which the macaroon will authorize
requests; similarly, each macaroon is likely to have caveats that
restrict the arguments permitted in requests. A macaroon may
have multiple caveats on the same attribute, such as time, in
which case all the caveats’ predicates must hold true in the
context of requests.

It is straightforward to add and enforce such first-party
caveats that confine the context observed at the target service
when a macaroon is used. In the Cloud, such restrictions
on bearer tokens are sometimes used to reduce the ease by
which tokens can be stolen and abused by attackers, while
retaining the flexibility and privacy benefits of token-based
authorization [5, 13, 17, 31]. Because requests are sent directly
from clients (as shown in Figure 2), target services need only
check the predicates in such caveats against the context of
incoming requests, for example to restrict the source IP address
(or, better yet, ChannelID [21]).

However, macaroons’ flexibility stems mostly from third-
party caveats, their main innovation, which allow a macaroon
to specify and require any number of holder-of-key proofs3 to
be presented with authorized requests. For example, instead
of using time-based validity-period caveats, macaroons might
use caveats for a third-party revocation-checking service, and
require authorized requests to present fresh proofs discharging
those caveats. Such third-party caveats can ensure that each
request authorized by a macaroon is subject to any number
of extra steps for authentication, authorization, or audit—e.g.,
to name just a few, checks of network time, authentication
at identity providers, auditing and provenance tracking at
document repositories, scanning by anti-virus engines, and
vetting by a DoS-prevention and risk-analysis service [29].

Even when macaroons are used to enforce complex au-
thorization policies, there is no particular need for end users
to be aware of macaroons. In any construction, client-side
macaroons will be handled and processed not by users, but
by software such as client-side JavaScript in Web browsers.
Thus, users can remain equally unaware of macaroons as they
are of current Cloud authorization tokens.

Revisiting the example at the start of this section, consider
a construction where all macaroons are encoded into “unlisted
URLs.” Thus, instead of a HTTP session cookie, the owner
may hold a macaroon URL granting them full access to their

3In distributed authorization, the term-of-art holder-of-key proof is used
when a party is authenticated by proving possession of a key, e.g., by signing
a protocol message with a private key [30]. Macaroons use holder-of-key
proofs extensively, in particular for third-party-caveat discharges.

3

90..fc

RANDOM_NONCE

HMAC(KTS, RANDOM_NONCE)

Above is an example of the simplest possible macaroon credential. If it grants
bearers access to a key-value storage service for chunks, it can be attenuated
by adding a caveat whose predicate restricts accessible chunks, as below:

f5..30

chunk ∈ {100..500}

RANDOM_NONCE

HMAC(90..fc, "chunk ∈ {100..500}")

To check the macaroons’ integrity, the storage service can compute and verify
the terminal, derived HMAC value, even when the resulting macaroon is further
attenuated with a caveat whose predicate permits only reading, as below:

0a..9f HMAC(f5..30, "operation == read")

operation == read

chunk ∈ {100..500}

RANDOM_NONCE

Fig. 3. Three macaroons, respectively giving full access to all chunks at a
key-value storage service, permitting all requests to chunks in the range 100
to 500, or allowing only reading from that range. Starting at its key KTS,
the service can verify the integrity of each macaroon by deriving its chain of
nested HMAC values. Macaroons are presented with requests, and the service
permits only requests that satisfy the macaroons’ caveats.

private images at TS. From this URL, the owner can create a
new, derived macaroon URL for read-only access to an image,
embed within it a third-party caveat that requires proof of
membership in a group G at service A, and share it via email.
Any recipient of this derived URL would have to get a fresh
discharge for the third-party caveat—which may require the
user to log into A, via a redirection—and pass it along to TS
when using the URL to view the image. All of the above
could be accomplished using software, such that both parties
remained unaware of the use of macaroons.

III. CONCRETE MECHANISMS AND EXAMPLES

Concretely, a macaroon granting authority to a Cloud server
is constructed from a sequence of messages and a chain of
keyed cryptographic digests derived from those messages. This
chain of digest values is computed using HMAC functions with
appropriate truncation (e.g., to 128 bits) [43]. Each macaroon
contains, however, only the terminal, final HMAC value in the
chain, with this value serving as the macaroon’s signature: a
generalized message authentication code that (i) allows target
services to verify the integrity of macaroons, and (ii) also
allows shared keys to be established with the bearers of any
derived macaroons.

Fundamental to macaroons is how this chain of keyed
HMAC values is constructed, in a nested fashion, along the
sequence of messages in a macaroon—of which, all but the
first are caveats. The first message in a macaroon is required
to be a public, opaque key identifier that maps to a secret root
key known only to the target service. (Such key identifiers
can be implemented, e.g., using random nonces, indices into a
database at the target service, keyed HMACs, or using public-
key or secret-key encryption; see [37, Sections 4.2 and 4.3]

TS

FS

C

KUSER

client_ip == 192.0.32.7

chunk ∈ {235}

time ≤ 5/1/13, 1am GMT

operation ∈ {read, write}

chunk ∈ {100..500}

time ≤ 5/8/13, 3pm GMT

RANDOM_NONCE

Caveats
added
by TS

Caveats
added
by FS

Fig. 4. A macaroon held by the user at client C, authorizing limited-time
access to chunk 235 at a key-value storage service TS from one network
IP address. This macaroon is derived from another (shown shaded in gray)
that a social-networking “forum service” FS holds for a range of chunks at
TS—delegating and attenuating the authority of that macaroon.

for a discussion.) Starting with this root key, a macaroon’s
chain of HMAC values is derived by computing, for each
message, a keyed HMAC value, nested so that each such value
itself is used as the HMAC key for the next message. Thus, a
macaroon with two messages MsgId and MsgCav and root key
KR could have the signature HMAC(Ktmp ,MsgCav), where
Ktmp is HMAC(KR,MsgId).

An example of this concrete macaroon construction is
shown in Figure 3. (This example, like others in this paper,
draws from the distributed systems literature where related
chained-message-digest constructions have long been used for
authorizing access to networked storage [3, 25, 51].)

In Figure 3, starting from a macaroon with a random
nonce key identifier, and a secret key KTS held at the target
service, two macaroons are successively derived by adding
caveat predicates and chaining the HMAC signatures. Each
macaroon authorizes requests to a target service that offers key-
value storage for chunks, with caveats in the derived macaroons
restricting the authorized chunks and operations. To verify the
integrity of these macaroons, the target service need only check
their signature against the HMAC values 90..fc, f5..30, or
0a..9f, derived using its key KTS.

This construction makes it particularly simple to delegate
and attenuate authorization credentials, since the chain of
HMAC signatures establishes shared keys between the target
service and the bearers of successive, derived macaroons.

For example, Figure 4 shows a macaroon authorizing a
user at client C to access chunk 235 at a key-value stor-
age service TS. This macaroon has been derived as a strict
attenuation of another, more permissive macaroon—held by
the social-networking “forum service” FS—by both eliding
that macaroon’s signature (called, say KFS), and by adding
caveats whose predicates require a specific chunk and client
IP address to be present in the request context. Even so, this
macaroon’s signature, KUSER, both allows the target storage
service to verify its integrity, and also allows its bearer to

4

f5..30

chunk ∈ {100..500}

RANDOM_NONCE

HMAC(90..fc, "chunk ∈ {100..500}")

The above macaroon from the example in Figure 3 permits access to a range of
chunks. By deriving a macaroon with an added third-party caveat, that authority
can be delegated to a user “bob” at an authentication service, as below:

3c..f0

 cIdcav@AS.com: vId

chunk ∈ {100..500}

RANDOM_NONCE

HMAC(f5..30, vId :: cId)

Enc(f5..30, RN)

Enc(KA, RN::user == “bob”)

A third-party caveat message contains an root key and assertion encrypted for the
discharging service (above, cId), a hint to its location (above, AS.com), and the
same key encrypted for the target service to allow verification (above, vId). The
signature of a discharge macaroon (below) is chained from this root key.

53..d3

time ≤ 5/1/13 9am GMT

H(HMAC(HMAC(RN, cId), "time ≤ 5/1/13 9am GMT"))

Enc(KA, RN::user == “bob”)

cId

Fig. 5. A macaroon with a third-party caveat (in the middle), derived from
another macaroon (at the top). At the bottom is a discharge macaroon for the
caveat (whose signature is hashed to prevent further chaining), created by a
third-party holder of the shared key KA after checking the assertion in the
key identifier cId. By deriving the chain of nested HMAC values, the target
service can verify the integrity of such discharge macaroons by decrypting the
encrypted root key identifier vId.

derive new, further attenuated macaroons. In this manner,
macaroon signatures both protect integrity and act as keys.

The third-party caveats in macaroons are requirements for
holder-of-key proofs: assertions of one or more predicates
signed by the holder of a key. The manner in which these
requirements are embedded into a macaroon, and its chain
of HMAC values, allows (i) the appropriate parties to create
proofs asserting those predicates, (ii) those proofs, themselves,
to embed additional caveats (even for new, additional third
parties), and, (iii) the target service to verify that all required
proofs have been discharged, recursively.

A proof that discharges a macaroon’s third-party caveat
is itself a macaroon, as shown in Figure 5 (at the bottom).
Such caveat discharge macaroons have a key identifier that
encodes both the root key for deriving holder-of-key proofs and
the predicates to be asserted by the third party (in Figure 5,
it is denoted cId, and contains the key RN paired with the
caveat predicate user == “bob” encrypted under the key KA).
Conceptually, this key identifier can be thought of as a message
encrypted with a public key for the third-party.

This same caveat key identifier is also contained in the
message that a macaroon embeds for a third-party caveat,
along with a hint to the location of caveat-discharging service
(in Figure 5, that hint is @AS.com). This message also
contains another, encrypted copy of the root key for holder-
of-key proofs, encrypted with a key from the signature of

TS

FS

AS

KA

C

KUSER

operation == read

H(KHERE)

client_ip == 192.0.32.7

chunk ∈ {235} time ≤ 5/1/13 9am GMT

Enc(KA, RN::user == “bob”)cav@AS.com, Enc(RN)

operation ∈ {read, write}

chunk ∈ {100..500}

time ≤ 5/8/13, 3pm GMT

RANDOM_NONCE
Macaroon discharging
the third-party caveat,
with new first-party
caveats added by AS

Fig. 6. Two macaroons that together give client C limited-time read access to
chunk 235 at the key-value storage service TS. Using its macaroon from TS,
the “forum service” FS derives for C a macaroon (on the left) that embeds a
third-party caveat for an authentication service AS, confining access to clients
C where a user “bob” is logged into AS. That caveat contains an encrypted
root key and a key identifier. Using that key identifier, AS derives for C a
macaroon (on the right) that asserts, for only a limited time, and for only one
IP address, that AS has verified client C’s user.

the macaroon onto which the third-party caveat is added (in
Figure 5, it is denoted vId, and is the root key RN, encrypted
using the HMAC value f5..30). The target server can decrypt
this second copy of the root key, and use it to verify the
signatures of caveat discharge macaroons.

In general, to authorize a request, a target service may
need to verify an entire set of macaroons presented with that
request, and establish (i) that caveat discharge macaroons can
be found for all third-party caveats, and (ii) that all first-party
caveat predicates hold true in the context of the request. Target
services can perform this verification by inducing a tree from
the set of presented macaroons, and checking their macaroon
signatures against the chain of HMAC values derived along
each branch from the root to the leaves. To build this tree, the
messages in the third-party caveats allow the target service to
match the key identifiers of caveat discharge macaroons and
decrypt their root keys—in Figure 5, respectively, the identifier
Enc(KA, RN::user == “bob”) and root key Enc(f5..30, RN).

The main advantages and innovative aspects of macaroons
are illustrated by the example of Figure 6, in combination.
From its existing macaroon for the service TS, the forum
service FS can derive a macaroon for user “bob” that attenuates
what aspects of TS are accessible; simultaneously, FS can
delegate the authentication of users to a third-party service
AS, using the key KA it holds for AS. (Of course, for this,
FS must know AS, and trust it to perform authentication.) The
AS service can evaluate the request from client C however it
chooses, before returning a macaroon that discharges the user
== “bob” caveat. Notably, this caveat discharge macaroon may
be very short lived (e.g., be valid for minutes, or seconds), due
to the efficiency and low overhead macaroons’ HMAC-based

5

construction. Also, AS can also add arbitrary further caveats
to that returned macaroon—even third-party caveats, although
this is not shown in Figure 6—that restrict the context where,
and when borne by who, the macaroon credential should grant
any authority. In particular, those further caveats can ensure
that the user is still logged in, by requiring a fresh holder-of-
key proof based on a key held by the login agent at C. Finally,
using macaroons, all of the above can be accomplished without
the target service TS having any direct relationship with AS,
and without TS knowing that the request from C is on behalf
of a user “bob” (thus protecting the user’s privacy).

This section has left many technical details of macaroons
to be further considered. The following sections cover these
aspects, with the next two sections and the appendix providing
a precise definition of macaroons.

IV. DESIGN, OPERATIONS, AND SECURITY

This section formally defines the notation, structure, and
operations of macaroons, precisely defines macaroon-based
authorization like that in the example of Figure 6, and also
considers the security and expressiveness of decentralized
authorization mechanisms based on macaroons.

Macaroons use primitives whose domain of values are
Keys for all cryptographic keys, Locs for the locations of
all services, and BitStrs for all bit-string values. Keys and
locations are all bit-strings; thus Keys ∪ Locs ⊆ BitStrs .
Macaroons are based on a secure, keyed cryptographic hash
function MAC, and its output message authentication codes,
as well as secure encryption and decryption functions Enc and
Dec, with the following type signatures:

MAC : Keys × BitStrs → Keys
Enc : Keys × BitStrs → BitStrs
Dec : Keys × BitStrs → BitStrs

It is assumed that each key output by a MAC opera-
tion can be used as a valid key for another MAC op-
eration, or for symmetric-key-based Enc and Dec opera-
tions. Using this, the nested chained-MAC for a list of
bit-strings [b1, . . . , bn], under a key k, is defined as as
MAC(. . .MAC(MAC(k, b1), b2) . . . , bn), where MAC(k, b1) is
used as the key for computing the MAC of b2, which in turn
is used as the key for computing the MAC of b3, and so on.

Principals are each associated with a location, a set of
keys and macaroons, and the ability to manage secrets; the
universe of all principals is denoted Prncs . For each secret
they hold, principals are assumed to be able to construct
a public key identifier that confidentially, and appropriately
conveys this secret. Such key identifiers have long been used
in security protocols, with each acting as a certificate that
reminds a principal P of a certain secret it holds; their specifics
may vary across principals, with possible implementations
including secret-key certificates based on symmetric, shared-
key encryption as well as simple, ordinal identifiers that index
into a principal’s persistent, confidential database (see [18] and
[37, Section 4.3] for a discussion).

Importantly for macaroons, key identifiers provide a means
of authentication via holder-of-key proofs: a principal P may
be presented with a key identifier and asked to prove knowl-
edge of the secret, or some derivative of the secret.

Definition: A macaroon M is a tuple of the form

macaroon@L〈id , C, sig〉
where,

* L ∈ Locs (optional) is a hint to the target’s location.
* id ∈ BitStrs is the macaroon identifier.
* C is a list of caveats of the form cav@cL〈cId, vId〉, where
◦ cL ∈ Locs (optional) is a hint to a discharge location.
◦ cId ∈ BitStrs is the caveat identifier.
◦ vId ∈ BitStrs is the verification-key identifier.

* sig ∈ Keys is a chained-MAC signature over the maca-
roon identifier id , as well as each of the caveats in C, in
linear sequence.

Fig. 7. Definitions of the components of macaroons and their caveats.

A. Structure of Macaroons and Caveats

Every macaroon is associated with a root key, and is minted
by a target service principal, henceforth called the target.
Macaroons begin with a key identifier for the target, followed
by a list of caveats and a macaroon signature, computed using
the root key. The key identifier, or macaroon identifier, conveys
the secret root key and (optionally) a list of predicates to the
target service. The macaroon signature is the chained-MAC of
the identifier and caveats, in sequence, under the root key.

Both first-party and third-party caveats are defined using
the same structure that consists of two identifiers: a caveat
identifier meant for the caveat’s discharging principal, and a
verification-key identifier meant for the embedding macaroon’s
target service, with the embedding macaroon’s signature en-
suring the integrity of both identifiers.

For third-party caveats, the caveat identifier encodes within
it one or more predicates and a root key, henceforth called
the caveat root key; its construction is held abstract and may
vary across caveat-discharging principals. The verification-key
identifier encodes within it only the caveat root key, encrypted
using the current signature from the embedding macaroon;
the target can decrypt this identifier to obtain the root key,
since it can always recover all intermediate signatures in a
macaroon. On the other hand, for first-party caveats the caveat
identifier is simply the authorization predicate in the clear, and
the constant 0 is used as the verification-key identifier. Caveats
also have an optional location, not covered by the signature
of the embedding macaroon, which provides a hint for where
the principal that can discharge a caveat may be contacted.

The target considers a macaroon’s third-party caveat to be
discharged if it finds a caveat discharge macaroon that begins
with the caveat identifier and has a chained-MAC signature
that is correctly constructed using the caveat root key that
the target decodes from the verification-key identifier. Such a
caveat discharge macaroon may have other third-party caveats,
for which the target must recursively seek discharges. On the
other hand, a first-party caveat is discharged by checking that
its authorization predicate holds true, when evaluated in the
context of the request.

Figure 7 provides a definition of macaroons and their
caveats. Macaroon and caveat locations are left optional, and
without integrity, both out of practical concerns (address and

6

CreateMacaroon(k, id , L)
sig := MAC(k, id)
return macaroon@L〈id , [], sig〉

M.addCaveatHelper(cId, vId, cL)
macaroon@L〈id , C, sig〉 ←M // ← is pattern matching
C := cav@cL〈cId, vId〉
sig ′ := MAC(sig , vId :: cId) // :: is pair concatenation
return macaroon@L〈id , C . C, sig ′〉 // . is list append

M.AddThirdPartyCaveat(cK, cId, cL)
vId := Enc(M.sig , cK)
return M.addCaveatHelper(cId, vId, cL)

M.AddFirstPartyCaveat(a)
return M.addCaveatHelper(a, 0,>)

M.PrepareForRequest(M)
Msealed := ∅
for M ′ ∈M

macaroon@L′〈id ′, C′, sig ′〉 ←M ′

sig ′′ :=M.bindForRequest(sig ′)
Msealed :=Msealed ∪ {macaroon@L′〈id ′, C′, sig ′′〉}

return Msealed

M.Verify(TM , k,A,M)
cSig := MAC(k,M.id)
for i := 0 to |M.C| − 1
cav@L〈cId, vId〉 ←M.C[i]
cK := Dec(cSig, vId)
if (vId = 0)

assert (∃a ∈ A : a = cId)
else

assert
(
∃M ′∈M :

M ′.id = cId
∧ M ′.Verify(TM , cK,A,M)

)
cSig := MAC(cSig, vId :: cId)

assert (M.sig = TM .bindForRequest(cSig))
return true

Fig. 8. The operations essential to authorization using macaroon credentials.

name redirection is common, in the Cloud) and also to honor
the maxim that, in distributed systems, only keys speak [53].

B. Macaroon Operations

Figure 8 shows the operations to create and extend maca-
roons, prepare them for use in a request, and verify them at a
target service. The operations are written as pseudocode, with
semantic clarity in mind. For a macaroon M , the notations
M.id , M.cavs and M.sig are used to refer to its identifier,
list of caveats, and signature, respectively.

Creating macaroons: Given a high-entropy root key k and
an identifier id , the function CreateMacaroon(k, id) returns a
macaroon that has the identifier id , an empty caveat list, and
a valid signature sig = MAC(k, id).

Adding caveats: Third-party and first-party caveats
can be added to a macaroon M using the methods

M.AddThirdPartyCaveat and M.AddFirstPartyCaveat re-
spectively. M.AddThirdPartyCaveat takes as input a caveat
root key cK, a caveat identifier cId, and a location cL of the
caveat’s discharging principal. It first computes a verification-
key identifier vId by encrypting the key cK with the macaroon
signature of M as the encryption key. Next, using the method
M.addCaveatHelper, it adds the caveat cav@cL〈cId, vId〉 to
the caveat of M , and updates the signature to the MAC of the
pair vId :: cId, using the existing signature as the MAC key.

The M.AddFirstPartyCaveat operation takes as in-
put an authorization predicate a, and adds it using the
M.addCaveatHelper method, as the caveat cav@>〈a, 0〉 to the
caveat list of M . Here, > is a well-known location constant
that refers to the target service.

Preparing requests: While making an access request, a
client is required to provide an authorizing macaroon along
with discharge macaroons for the various embedded third-party
caveats. These discharge macaroons are powerful holder-of-
key proofs that may be used to satisfy obligations in any and
all macaroons that embed the corresponding third-party caveat
identifier that uses the same root key.

In particular, an attack is possible if the client accidentally
makes a request to a principal other than the original target
(perhaps by falling prey to phishing). In this case, this other
principal can maliciously re-use any discharge macaroons it
receives to discharge third-party caveats embedded in mac-
aroons for itself, thereby authorizing itself using contextual
caveat discharges from the client. To prevent such malicious
re-use, all discharge macaroons are required to be bound
to the authorizing macaroon before being sent along with
a request to the target. This binding is carried out by the
method M.PrepareForRequest(M), which binds the authoriz-
ing macaroon M to each discharge macaroon M ′ in the list
M by modifying their signature to M.bindForRequest(M ′).
Here, M.bindForRequest(M ′) is kept abstract, but one pos-
sible implementation would be to hash together the signa-
tures of the authorizing and discharging macaroons, so that
M.bindForRequest(M ′) = H(M ′.sig ::M.sig).

Verifying macaroons: In order to verify an incoming access
request consisting of an authorizing macaroon TM and a
set of discharge macaroons M, a target service must ensure
that all first-party and third-party caveats embedded in either
TM or any macaroon in M are satisfied. For the purpose
of formalization, this task is simplified by assuming that the
target service first generates a set A of all embedded first-party
caveat predicates that hold true in the context of the request
whose macaroon is to be verified.

To authorize the request, the target service invokes the
method TM .Verify(TM , k,A,M) where k is the root key
of macaroon TM . The method iterates over the list of caveats
in TM and checks each of them. For each embedded first-
party caveat cav@>〈a, 0〉, it checks if the predicate a appears
in A. For each embedded third-party caveat cav@Lc〈cId, vId〉
in TM , it extracts the root key cK from vId, and then checks
if there exists a macaroon M ′ ∈M such that (i) M ′ has cId as
its macaroon identifier and (ii) M ′ can be recursively verified
by invoking M ′.Verify(TM , cK,A,M). Finally it checks that
the signature of the current macaroon is a proper chained-MAC
signature bound to the authorization macaroon TM .

7

C. Example Authorization Using Macaroons

This section outlines in detail the macaroon-based au-
thorization flow for the paper’s running example, previously
described in Sections II and III and illustrated in Figure 6.

Minting the macaroon at the target service: The flow
begins with the target service (the storage service) constructing
a macaroon MTS which grants time-limited read/write access
to a subset of the storage chunks. To do so it generates a fresh
root key k and a public identifier {k}TS (which, recall, allows
TS to retrieve k).
M0 := CreateMacaroon(k, {k}TS)
M1 :=M0.AddFirstPartyCaveat(“chunk ∈ {100 . . . 500}”)
M2 :=M1.AddFirstPartyCaveat(“op ∈ {read,write}”)
MTS :=M2.AddFirstPartyCaveat(“time < 5/1/13 3pm”)

The macaroon MTS is handed to the forum service.

Attenuating the macaroon at the forum service: The forum
service adds caveats to the macaroon before passing it on,
in particular, it adds a third-party caveat requiring the user
authenticate as “bob” at AS.com. For this, the forum service
must trust and have a relationship with AS.com, and there are
many options for how they interact. For example, the forum
service can mint a fresh caveat root key cK and communicate
with AS.com to obtain a caveat key identifier for it:

FS −→ AS : cK, “user = bob”
AS −→ FS : {(cK, “user = bob”)}AS = cId
M3 :=MTS .AddThirdPartyCaveat

(cK, {(cK, “user = bob”)}AS ,AS.com)

Alternately, if AS publishes a public key, or if AS and the
forum service have previously shared a symmetric key, the
forum service can construct the caveat key identifier itself by
encrypting cK and the predicate. All parties in the message
exchanges above are are assumed to always perform proper
authentication, and establish confidentiality and integrity, using
an out-of-band mechanism like TLS [20].

The forum service further attenuates the macaroon so that
it only grants read-only access to a single chunk:

M4 :=M3.AddFirstPartyCaveat(“chunk = 235”)
MFS :=M4.AddFirstPartyCaveat(“operation = read”)

Subsequently, the macaroon MFS is passed on to the user.

Acquiring discharges from the authentication service: The
user scans the macaroon MFS for third-party caveats to to
discharge. Finding one, the user sends cId to AS.com, where
AS extracts cK and the predicate from cId and, if the
predicate is true, creates a discharge macaroon:

M ′0 := CreateMacaroon(cK, cId)
M ′1 :=M ′0.AddFirstPartyCaveat(“time < 5/1/13, 9am”)
M ′AS :=M ′1.AddFirstPartyCaveat(“ip = 192.0.32.7”)
AS −→ U :M ′AS

To check predicates, AS may perform extra work, e.g., to
redirect the user to authenticate as “bob” using a password.
After receiving M ′AS , the user adds it to their set of discharges
MU , and if it contains any new third-party caveats, the user
also collects discharges for those, recursively.

Making an access request using macaroons: The user

first binds all discharge macaroons in MU to the authorizing
macaroon MFS :
Msealed

U :=MFS .PrepareForRequest(MU)

It then makes an access request to the target service by sending
it the request parameters, the authorizing macaroon MFS and
the set of discharge macaroons Msealed

U :

U −→ TS : chunk = 235, operation = read; MFS ; MU

Handling the request at the target service: The target
service handles access requests using a three stage process:

(1) First-party caveat discharge. Scan all the provided mac-
aroons for first-party caveats and check the associated
predicates in the context of the request. Let A be the
set of validated predicates.

(2) Macaroon verification. Extract the root key k from
the identifier of the macaroon MFS and invoke
MFS .Verify(MFS , k,A,Muser) . If Verify fails (i.e., an
assertion fails), the request is forbidden.

(3) Dispatch. Provide services according to the now-
authorized request parameters.

D. Security and Expressiveness

Macaroons use cryptographic means to provide the sym-
bolic security properties of verifiable integrity, secrecy of
intermediate keys, and the inability for adversaries to remove
caveats. Even when Enc and Dec can be assumed to be secure,
the cryptographic security of the chained MAC construction
must still be considered (e.g., as previously done in [3, 25]).
Fortunately, its security is straightforward when MAC is an
HMAC function [43]. The signature of a macaroon whose
starting identifier id conveys the root key K0 can be written
as HMAC(KDF(K0, [id,m1, . . . ,mn−1]),mn), where KDF
is a key derivation function, defined by HMAC(K0, id) for
the base case, or by using the successive HMAC outputs as
the HMAC keys for a list of messages. Then, the required
properties follow from HMAC unforgeability and the confi-
dentiality of the HMAC key parameter due to HMACs being
pseudo-random functions [43].

On top of the above sketch, Adriana López-Alt has created
complete proofs of security for three different macaroon con-
structions [41]. Usefully, these proofs have explicitly identified
the need to use an authenticated encryption function Enc for
caveat identifiers in HMAC-based macaroons.

It is relatively straightforward to establish the flexibil-
ity of macaroon authorization, by comparing them to well-
known, highly-expressive decentralized authorization creden-
tials. It can be proven formally that macaroons are at least
as expressive as SPKI/SDSI [16], and we have constructed
such proofs (in particular, based on Li and Mitchell’s formal
semantics [39]), where SPKI/SDSI delegation is reduced to
third-party caveats for conjunctive holder-of-key assertions.
Intuitively, such proofs of macaroons’ expressiveness are pos-
sible because, public-key certificates can be emulated using
opaque key identifiers and additional network requests in
online systems (see [18] and [37, Section 4.3]).

However, unfortunately, our proofs have offered few in-
sights, except to show that symmetric cryptography and

8

enough extra messages can emulate public-key-based mech-
anisms; therefore, these proofs are omitted here. Meanwhile,
the formalization of macaroons in authorization logic has been
more clarifying, and is presented in the appendix.

HMAC-based macaroons do suffer in one important way
compared to public-key-based credentials: only the target ser-
vice that originally mints a macaroon can check its validity.
Specifically, the verification of an HMAC-based macaroon
requires knowledge of its root key—and since this key confers
the ability to arbitrarily modify the macaroon and its caveats,
it cannot be widely shared. On the other hand, third-party
verification is possible when using asymmetric signing keys
and public verification keys, as in SPKI/SDSI, or the public-
key-based macaroons described later in Section V-H. However,
the HMAC-based macaroons are orders-of-magnitude more
efficient (as shown in Section VII), which, in many cases, is
a worthwhile trade-off.

Macaroons’ flexibility does not obviate the need to analyze
the security of any concrete authorization protocols using
them—just as with any other type of authorization credential.
In particular, such protocols must account for how target
services learn, during verification, the intermediate signatures
of macaroons, as well as the root keys of all caveat discharge
macaroons, and consider how—in an adversarial model—
other parties may also learn those keys, e.g., due to flaws in
target services. Similarly, the concrete means for establishing
macaroon key identifiers must be analyzed, especially if shared
symmetric keys are used to add third-party caveats. Fortu-
nately, many frameworks exist for the analysis of authorization
protocols that use public-key, shared-key, and MAC-based
constructions [45, 10, 4]. Also, such analysis can be greatly
simplified if fresh, pairwise symmetric keys establish trust
between principals and if macaroons use caveats with fresh,
high-entropy root keys that are unique and distinct from root
keys in other macaroons. For this purpose, protocols may
choose to derive root keys using the entropy of intermediate
macaroon signatures.

V. IMPLEMENTATION CONCERNS

This section considers how distributed systems may im-
plement macaroon-based authorization. The choice of topics
is based on experiences building prototype macaroon mecha-
nisms for Cloud clients, servers, and mobile devices, and using
these to implement both new authorization protocols and to
improve existing ones, like those based on OAuth2 [17].

Empirically, in distributed systems, macaroons are simple
to implement, easy to integrate with existing code, and incur
little overhead. In particular, it simplifies the task that much
of macaroons’ flexibility stems from the semantics of caveats
being left up to application services. However, macaroon-based
systems still need to support a common library of well-known
caveats—such as for specifying expiration time, as well as
predicates about client context such as IP addresses, Chan-
nelID, etc.—leaving service- or application-specific caveat
predicates to be used in specific protocols.

A. Encoding Key Identifiers

The key identifiers for both macaroons and caveats may
be constructed using service-specific means, as discussed in

b3..4f HMAC(KTS, "chunk … read")

chunk ∈ {100..500} ;
operation == read

RANDOM_NONCE

Fig. 9. Multiple caveats under one signature, as an optimization.

Section IV. For example, root keys, lists of predicates, or other
secrets may be stored in a database at the service and identified
by an index key (such as a random nonce, like in Section III).
Such identifiers have the nice property of being completely
opaque and allowing revocation to be simply done by deleting
a database row; however, the downside is that the target must
maintain a database, either centralized or replicated across the
servers operating the service.

Alternatively, one may minimize state kept at the princi-
pal’s server nodes by encrypting the keys and other secrets
to be identified. For this, shared, symmetric encryption keys
may be used, known to and trusted by each principal pair;
alternatively, public-key encryption may be used, which can
allow the same key to be used by several principals to create
caveats for a single service that holds the private key.

B. Minting Caveat Root Keys

The root keys for caveats and caveat discharge macaroons
are shared across principals; in particular, the root keys of all
verified macaroons become known to the target service for a
request. Thus, such root keys should not be reused—e.g., by
embedding the same caveat identifier in multiple macaroons—
unless this is strictly necessary (e.g., for performance reasons),
and it is done in a known-to-be secure fashion (e.g., verified
by a separate protocol analysis). In particular, while such reuse
may be safe as long as all macaroons are for the same target
service, it’s most likely not safe when multiple target services
are involved.

Therefore, to add a third-party caveat to a macaroon, an
unpredictable caveat root key must be chosen—otherwise ma-
licious parties might guess the root key and forge a discharge
macaroon—even though some principals (e.g., Web browser
frames, or embedded devices), may not have a good source of
entropy for creating truly random keys.

To address this concern, caveat root keys may be derived
from the signature of the embedding macaroon. Concretely, for
adding a caveat to a macaroon with signature sig , its bearer
may to generate a strong root key using HMAC(sig , n)—where
n is an arbitrary nonce—because HMAC is a pseudo-random
function [43]. Such a key will be unique, due to the second
pre-image resistance of HMAC, and will therefore never be
repeated across different caveats.

C. Optimizations and Privacy

Macaroons permit many optimizations, in both their prim-
itives and applications. For example, a reduced number of
operations can be used for chained-MACs, if caveats are
combined as in Figure 9.

Both as an optimization, and also to protect privacy, appli-
cations and services may choose to omit certain information
from caveat discharge macaroons. In particular, for nested

9

third-party caveats, an inner, nested discharge macaroon need
not be included in the discharge for the outer caveat. Thus,
for example, if a third party caveat may restrict access to
users within a certain age range, the caveat discharging service
may add a caveat that requires a third-party authority to assert
the bearer’s date of birth; subsequently, the same discharging
service may remove this birthdate-assertion caveat when it
issues a discharge macaroon, to not reveal the bearer’s age,
thereby protecting their privacy.

With regards to privacy, it should be noted that attack-
ers may try to add third-party caveats to probe for private
information—e.g., by tricking users to reveal membership in
some group. However, for this, attackers must be able to both
trigger users to make requests with certain parameters, and
observe the results. Under these conditions, similar attacks are
equally possible in many existing authorization frameworks
(e.g., SPKI/SDSI), and not specific to macaroons.

D. Local Discharging of Third-party Caveats

Third-party caveats can be used to implement decentralized
authorization using holder-of-key proofs from authentication
servers, as explained in earlier examples. However, third-party
caveats may be discharged not just by networked servers, but
by any isolated protection domain capable of holding secrets—
such as, for example, a Web browser frame or extension, a
mobile application, or a hardware token that is available locally
to a user at a client.

The delegation of third-party caveat discharging to such
local principals can improve both performance (by reducing
network messages), as well as the precision of authorization
policy enforcement. For example, a collection of unrelated
Web services may use the same federated login system; if
each service maintains separate sessions, logging out of one
service may leave the user, unknowingly, still logged in and
authorized in other services, and thereby put them at risk.
Instead, using macaroons, each request, on all sessions, may
derive a fresh, or very short-lived, caveat discharge from the
third-party federated login service (e.g., via a hidden iframe
that holds the caveat root key to derive discharge macaroons
and is accessible from each service’s Web page). Thus, a
federated login service may hold the authoritative credentials,
and services may be decoupled, yet the user need log out only
once to immediately de-authorize all services.

E. Revocation and Versioning

As previously mentioned in Section II, macaroons excel
at the common revocation strategies for credential-based au-
thorization: using short-lived, fresh credentials, that can be
subject to state-based checking and can be split between
principals [48, Chapter 9.8]. Indeed, the local discharging
of caveats of the previous subsection is just one example
of split credentials, subject to state-based checks. For other
workloads or desired policies, revocation may be done via
a database “whitelist” (resp. “blacklist”) of valid macaroons
(resp. invalid), via embedding expiry times or epoch counters
in macaroons, or via some combination of the above.

Commonly, state-based revocation may be via a third-party
caveat to a service like a network time authority. To avoid
the need for redundant discharging, such caveats might—when

they encode a monotonic property—use the same caveat iden-
tifier (and, hence, the same root key), for multiple macaroons,
without risk. Thus, for example, a Web browser might hold
hundreds of macaroons for images at the same Cloud service,
such that all macaroons share the same third-party revocation-
check caveat, and a single macaroon can discharge that caveat
for any image. Of course, this discharge macaroon can, and
should, be very short lived.

Revocation may also be required when target services are
updated. For example, the operation delete may be added
to a target service that offers previously-immutable, read-
only storage, and the existing macaroons for this target may
not constrain the operations in requests. In this case, the
service may implement a default-deny policy for the delete
operation, and authorizing its use only in future macaroons.
As a more principled approach, targets may version aspects
of their service, and embed first-party predicates in macaroons
that constrain the authorized versions.

F. Disjunctive and Negated Caveats

When adding third-party caveats to a macaroon, it may be
desirable to add a set of them where only one needs to be
discharged. An example use case would be to allow a client
to choose which authentication provider to use. One way of
achieving this would be to augment macaroons to also include
a conjunction or disjunction operator at the beginning of every
caveat list. The Verify method would then accordingly conjunct
or disjunct the proof obligations specified by the caveats. This
leads to a notion of caveats on a macaroon as a logical formula
with both disjunction and conjunction.

One may ask if it makes sense to add negation as well,
where a macaroon can only be invoked if a certain caveat is
not discharged. However, the semantics of negation become
tricky when the negated caveat discharge macaroon contains
further nested third-party caveats. Thus, negation should only
be supported at the level of predicate checking, e.g., along the
lines of op 6∈ {write, delete}, if needed.

G. Caveats on the Structure of Macaroons

In some applications, there may be a need for caveat
predicates to make assertions about the structure and values in
the set of authorizing macaroons. In this case, one macaroon’s
caveats could restrict the shape of the tree of macaroons that is
induced during verification at the target service, or the values
permitted in another macaroon in that tree.

Such a structural caveat may, for example, be used to
enforce notions of well-formed transactions, by ensuring that
a certain order of nested third-party caveat discharges are
present [15]. Structural caveats may also name values in other
caveats or discharge macaroons. For example, the BrowserID
protocol behind Mozilla Persona [42] states that identity as-
sertions (minted by a Web browser and verified by a trusted
service) must successfully verify only if they state the domain
name of the relying party they are meant for. Recasting
BrowserID in terms of macaroons, this check can be enforced
in the form of a structural caveat.

Structural caveats can also be used to make assertions
about public-key signatures. For example, a service may mint

10

a macaroon that requires bearers to prove possession of a
certain private key. For this, the service can add a first-party
structural caveat whose predicate states “the set of macaroons
must contain a digitally signed message m, verifiable by the
public key P .” The bearer would then be required to present
such a signed message along with each request to the target
service, if it is to be authorized by a macaroon with this caveat.

H. Public-key-based Macaroon Constructions

Many existing authorization systems are based on public-
key certificates, including SPKI/SDSI [16], KeyNote trust
management [11], etc. Several of these systems are not truly
decentralized, but instead require a globally-accessible infras-
tructure, such as a revocation list, or a repository of certificates.
Further, upon an authorization request, some of these systems
carry out a certificate-chain discovery process that can be
costly; e.g., the worst-case complexity for SPKI/SDSI being
cubic in the size of the repository, as shown in [16].

Instead, authorization based on public-key certificates can
benefit from following the patterns of macaroon constructions,
as an instance of proof-carrying authorization [6]. Already,
some public-key-based applications use a delegation pattern
where authority is sent between principals by chaining an
existing certificate to a newly-minted public/private key pair—
handed off to a new principal—such that the recipient holds
a private key whose public key is certified to wield a part of
the sender’s authority.

By having each principal, recursively, apply the above
pattern to all authorizations, public-key certificates can effect
the same type of delegation, attenuation, and key distribution as
macaroons. While increasing the number of online messages,
following such a macaroon-based pattern eliminates the need
to maintain a global certificate repository, since each principal
will individually manage the set of certificates relevant to it,
and each certificate is unique.

Furthermore, by appropriately choosing the certificate va-
lidity times, and the predicates in their assertions, other ben-
efits of macaroons may be replicated. In particular, such a
certificate-based construction can provide the same privacy
benefits as macaroons, in preventing linkability. Unfortunately,
unlike the MAC in macaroons, the cryptographic primitives
of public-key certificates can incur significant overhead—as
shown in the measurements of Section VII—especially for the
minting of the new public/private key pairs essential to the
above construction. Therefore, to be more widely applicable,
public-key-based macaroon constructions might also make use
of HMAC-based signatures, e.g., as in [41].

VI. APPLICATIONS AND USE PATTERNS

Macaroons may be used not only to reimplement existing
authorization mechanisms—to state them using a single, uni-
fied model, rather than using specific, bespoke protocols—but
also to enable new types of authorization for Cloud applica-
tions. For example, as in Section V-D, macaroon credentials
may be split, so that a separate party holds a necessary caveat
discharge, thereby enabling a form of privilege amplification
similar to that in [52]. In addition to building such new
protocols, macaroons can also be used to enhance several
existing authorization mechanisms.

A. Macaroons and End Users

Macaroons are useful for many existing end-user Cloud
application scenarios. For example, a macaroon can be minted
for sharing an image on Google Docs or Dropbox, with third-
party caveats limiting its use to a particular set of users. In
such scenarios, when making use of a macaroon, end users
need not experience any significant change from the workflow
they use today. The client interface of the Cloud service could
allow the user to request an “unlisted URL”, with options for
selecting the allowed recipients, and provide means for that
URL to be shared with those parties, e.g., over email.

Sometimes, a user’s management of macaroon credentials
may involve more than one application. For example, when
sharing a Dropbox image with a limited group, a user might
copy its URL from Dropbox to a service such as Google+
or Facebook, and use that service’s client interface to pick
the recipient group and attenuate the authority of the URL’s
macaroon credentials. Similarly, when visiting the link for
this shared URL, its recipients might be redirected to a login
screen, to discharge third-party caveats, before being able to
access the image at the URL.

In general, since macaroons are easily serialized, the cur-
rent mechanisms for sharing and storing access tokens over
email, social postings, and chat may continue to work as
before. However, instead of copying and pasting URLs, the
user interfaces for macaroons may be more user-friendly, e.g.,
taking the form of explicit, custom “Share” buttons, similar to
those used for minting OAuth2 tokens today.

B. Existing Use of Contextual Caveats

Current bearer token authorization relies heavily on imple-
mentation guidelines, which puts the security of the mecha-
nisms in the hands of implementors. For example, Mozilla’s
BrowserID recommends constraining messages by checking
the domain of the relying party [42], and many similar checks
apply to OAuth2 [40]. By using macaroons, such guidelines
can be made into explicit, mandatory contextual caveats.

As another example, ChannelID binds bearer tokens to a
channel-specific public key [7]. ChannelID is well suited for
use in first-party caveat predicates that aim to contextually
confine the use of macaroons to specific (recipient) principals.

Such caveats are likely to use application-specific predicate
languages, similar to how Bucket Policies in the Amazon S3
service define a rich policy language for contextual autho-
rization of clients accessing S3 storage [5]. Of course, using
macaroons, such policies could be set per issued token, instead
of per storage bucket, efficiently and with very little effort.

C. Cookies as Macaroons

Cookies are widely used for authorization bearer tokens,
such as HTTP session identifiers. With macaroon-based cook-
ies, immediate benefits may be gained: macaroons would
ensure integrity despite not maintaining state at the server, and,
through the use of caveats, allow the cookies to be bound to
specific, observable client context, such as IP address, user
agent strings, referrers etc. An interesting benefit is also that
clients could add caveats, for example to limit the usefulness
of stolen cookies. Even simple attenuation might offer clients

11

significant protection, e.g., by limiting any outbound cookies
to a single client IP address, and a validity period of only a few
seconds. Cookies may also benefit from macaroon delegation,
for example to implement light-weight, precise revocation via
session liveness checking—like described in Section V-D, and
used by the second end-to-end application in Section VII-B.

D. OAuth2 and Macaroons

The OAuth 2.0 Authorization Framework (or, simply,
OAuth2) defines a popular protocol for allowing Web services
to grant their users certain access to other services, referred
to as relying parties. OAuth2 authorization relies on several
kinds of tokens. Most important of these are access tokens,
which are short-lived tokens that act as capabilities, e.g., to
login sessions, and refresh tokens, which are long-lived tokens
meant to be exchanged for access tokens at relying parties.
Tokens are transferred between protocol participants through
one of several flows defined by the OAuth2 RFC [17].

In the context of OAuth2, one use of macaroons might be
to structure each concrete OAuth token as a macaroon, thereby
allowing caveats to be embedded into the token. Such caveats
may be used to either attenuate the authority granted by the
token (similar to the examples in Section II), or to explicitly
encode security guidelines prescribed for agents participating
in OAuth flows (see [8, 17, 40, 50]). As suggested earlier in
this section, the latter is particularly useful, since implemen-
tations frequently ignore these security guidelines [50].

As an example, consider the OAuth Implicit-Grant flow
where an access token is handed to a client-side application
by placing it in the fragment identifier of the application’s URI.
Since an attacker can easily replace a token in the fragment
identifier with a token meant for another application, a “caveat”
associated with this flow is that all received access tokens
must be validated at the resource server by an application to
ensure that they are indeed meant for it (see Section 10.16
in [17]). This validation step can be mandated by simply
having a third-party caveat for the token-validation endpoint
on all issued access tokens. More generally, most security
recommendations on tightly confining tokens to particular
clients and limiting their validity, to prevent token theft, session
swapping and impersonation attacks—e.g., as listed in [50]—
can be mandated by specifying them as caveats embedded into
OAuth tokens that are re-cast as macaroon credentials.

OAuth2 also suffers from problems due to the nature in
which relationships are formed. Relying parties must have a
pre-existing relation to the Web service that they (or their user)
want to use. For example, a website wishing to allow its users
to login with an OAuth2 identity provider must first register
itself as a client application with that provider. In practice, this
limits the user’s choice of identity providers, requires the Web
service to maintain centralized state, and forces relying parties
to keep and protect a number of client tokens. There are several
means by which macaroons can address these issues, such as
by safely storing client identities and redirection URLs directly
in the macaroons issued by relying parties, thus avoiding the
need for a central registry.

VII. MEASUREMENTS AND EVALUATION

This section considers the performance of macaroon prim-
itives, both through microbenchmark measurements of proto-

SHA-1 0.36 µs RSA sign 458 µs
SHA-256 0.63 µs RSA verify 27 µs
HMAC-SHA-1 1.7 µs RSA encrypt 30 µs
HMAC-SHA-256 2.8 µs RSA decrypt 461 µs
AES-128 0.35 µs RSA keygen 54000 µs

TABLE I. OVERHEAD OF CRYPTOGRAPHIC PRIMITIVES, IN OPENSSL.

Python JS/Chrome JS/Node.js
HMAC-SHA-256 13.7 µs 26.9 µs 11.4 µs
AES-128 5.4 µs 41.3 µs 18.7 µs
Mint macaroon 16.0 µs 27.2 µs 19.4 µs
Add caveat 54.9 µs 294.8 µs 56.3 µs
Verify 96.3 µs 358.5 µs 68.9 µs
Marshal as JSON 15.2 µs 3.6 µs 3.0 µs
Parse from JSON 35.0 µs 3.3 µs 5.0 µs
TABLE II. OVERHEAD OF MACAROON PRIMITIVES, IN PRACTICE.

types implemented in Python and JavaScript, and also through
measurement of an end-to-end Web application that imple-
ments an image-sharing scenario using macaroons credentials
for authorization, as in this paper’s running example.

A. Cost of Authorization Primitives

To compare the performance overhead of different prim-
itives for authorization credentials, Table I lists the cost of
some cryptographic operations, in microseconds, using mi-
crobenchmarks of the implementations in OpenSSL 1.0.1c.
The measurements were run on a 2.33 GHz Intel Core2 server.

In Table I, hash algorithms are benchmarked using short
messages, such as would be common in the use of macaroons,
and, in this case, HMAC setup overhead dominates. Even so,
computing an HMAC for short messages (up to a few hundred
bytes) imposes a less than 2× slowdown compared to the
processing of messages without integrity codes. To reduce
MAC overhead further, an implementation might choose to
define MAC(k,msg) = SHA-256(k ‖msg) truncated to 128
bits. Since the key to MAC is always a fixed length, there is
no confusion over where the key ends and the message begins,
and truncating the hash prevents extension attacks.

Public key operations are more expensive. Using 1024-bit
RSA, operations with the public key (encrypt/verify) take 27–
30 µs, and private-key operations (decrypt/sign) take 460 µs.
Minting fresh keys is particularly expensive: a single CPU
core can mint at most 18 key pairs per second, in our
measurements. Thus the public-key alternative to macaroons
discussed in Section V-H may have prohibitive overhead,
since it is fundamentally based on the minting of new keys.
Relying on symmetric cryptography, or a combination of the
two, greatly improves the performance—by as much as two
to four orders of magnitude over a public-key construction.
This makes macaroons fast enough to be applicable nearly
anywhere, even when implemented in JavaScript [49].

Table II shows the performance overhead of the primitive
operations for macaroon authorization, based on measurements
of two prototype implementations of macaroon credentials in
Python 2.7.2 and JavaScript. For the JavaScript implemen-
tation, the measurements are from a Web browser (Google
Chrome v27.0) using the Stanford JS Crypto library [49,

12

TS

Ed C

FS

browser windows

servers

1 year

15 min.

2 sec.

TS

AS C

FS

browser windows

servers

with
3rd-party
caveat
for AS

Fig. 10. Left: To access a service TS, a third-party caveat is discharged by
AS to authenticate a user of the FS service at client C, just as in Figure 6.
Right: Using macaroons, authority is delegated for different lengths of time
between principals, finally passing to an image editor Web browser frame Ed.

Aug. 2013], as well as from Node.js (v0.10.3) and its standard
crypto module wrapper of OpenSSL (v1.0.1c). As can be seen
in the table, the minting of macaroons requires little more than
an HMAC signature, which is fast (although slower than when
performed natively, as in Table I). In general, the measurements
show data structure manipulation to be the slowest aspect of
the operations in Table II, with serialization from JSON being
especially costly in Python.

B. End-to-end Application Performance

To model real-world performance of macaroons, we con-
structed an end-to-end Web application based on this paper’s
running example. In this application, a file-sharing website FS
handles user accounts and the data for images to be shared,
while the actual image files are in a Cloud storage service
TS. As in Section II, the storage service TS issues a long-
lived macaroon to FS, which grants FS full access to certain
files. When a user connects to FS from its Web browser client
C, their browser receives URLs to the user’s images on TS
along with macaroon credentials. Each of these macaroons is
an attenuated, derived version of TS’s macaroon, of shorter
duration, tied to a specific filename, and confined to the user’s
client C. Then, authorized by these macaroons, the user’s Web
browser can fetch the image files directly from TS.

Measuring this Web application on a local network, an
average of 470 µs was added to the end-to-end request
processing latency—compared to file serving without access
checks—with authorization in Node.js verifying a macaroon
with four caveats on the expiration time and request arguments

As another end-to-end scenario, we enhanced our Web
application to perform user authentication across Web browser
frames, as shown on the left in Figure 10. For this, FS
adds a third-party caveat to the macaroon it provides to the
client C, where those caveats need discharging by a separate
authentication service AS. The AS service has delegated the
discharging of its caveats to an isolated Web browser frame
for the user’s login session, so that authentication caveats can
be discharged without network access. The TS service verifies
that all caveats are discharged, but does not get to know the
identity of AS, or the user. In our experiments, the measured
total overhead of discharging these third-party caveats was on
average only 3 milliseconds for each image access.

As a final end-to-end scenario, we had our Web application
share images with a third-party, Web-based image editor Ed, as

shown on the right in Figure 10. For an image dragged-and-
dropped by the user on client C, the Web browser window
for Ed gets a URL and derived macaroon for direct access
to an image on TS. This macaroon is valid only for a few
seconds and could be further confined (e.g., to C’s IP address).
Measured from Ed’s Web browser window, it takes only an
average of 5.0 milliseconds to request and obtain such a URL
and an authorizing macaroon. Bringing the total access time
to 12.5 milliseconds, it took on average 7.5 milliseconds to
download a 40 kB image from a locally-hosted Web server,
with Node.js verifying the macaroon and checking its caveats.

In comparison, it is enlightening to consider OAuth2-based
constructions for the above scenarios. To be as fine grained as
a macaroon-based approach, while strictly following the flows
specified by OAuth2, separate access tokens would have to be
issued for each image access. This might well be impractical,
e.g., since the latency of a sequence of HTTP redirects would
then be imposed upon each access to TS. Instead, in practice,
it is common to sacrifice fidelity to the OAuth2 flows, e.g.,
by granting longer-lived, more broadly-scoped access tokens.
In this case, this might mean that the Ed image editor would
receive a hard-to-revoke credential for read access to all of the
user’s photos FS, which might last for an hour, or more.

The light-weight nature of macaroons allows them to be
used liberally. On the client, fast delegation between protection
domains, such as Web browser frames, means that separate
macaroons, with precise contextual confinement, can be is-
sued for each access—thus adhering tightly to the principle
of least privilege. Notably, in the above scenario, no pre-
existing relationship is required between Ed and FS, except
an agreement on the use of macaroons, and on a common
protocol for accessing image files.

VIII. DISCUSSION

As flexible authorization credentials for distributed sys-
tems, macaroons build upon a wealth of prior results, de-
veloped over nearly half a century. Thus, for macaroons, the
closely related work covers entire fields of study—including
access control [32], authorization logic [37], trust manage-
ment [11], proof-carrying authorization [6], extensibility of
mechanisms [38] and more—which cannot be fully represented
here, although the most closely related lines of work warrant
a discussion, as below.

Traditional capability systems do not directly support con-
finement or revocation of access. Over the years, using all
of the three patterns illustrated in Figure 3, capability systems
have been modified to support controlled delegation [24]. As in
the first pattern, in [46] a proxy-based mechanism is described
for revoking and delegating the access provided by a capability.
As in the second pattern, in [26] an identity-based capability
system is described where delegation involves services re-
minting new capabilities after checking applicable security
policies. As in the third pattern, in [44], a macaroon-like
mechanism is proposed for chaining restrictions upon an au-
thorization credential using symmetric-key operations, thereby
confining its context of use—although this work provided no
provision for third-party caveats, like those in macaroons.

Macaroons are credentials, not capabilities, because the
possession of a macaroon is a necessary, but not a sufficient

13

condition for granting authority. As bearer credentials, the
contextual caveats in macaroons help them avoid the confine-
ment problem, which arises for unmodified capabilities where
“the right to exercise access carries with it the right to grant
access” [26]. Furthermore, upon use of a macaroon, target
services need not only check that all caveats are discharged,
but may also perform additional access control, for example,
to check continued ownership of the accessed resource.

Over the last two decades, several public-key certificate
mechanisms [9, 11, 12, 14, 35, 37, 53] have been developed
to provide highly flexible, decentralized authorization for dis-
tributed systems, while avoiding the problems of pure bearer
tokens. The general idea is that principals possess unique
public/private key pairs, and delegate access to other principals
by issuing certificates signed using their private key. SPKI
certificates [14] specify the delegate’s public key, a validity
period, and an S-expression describing a set of rights; whereas
Active certificates [12] specify mobile code that is executed
by the target service at the time of a request and mediates all
access between the requestor and the service.

While such public-key delegation certificates are highly
expressive and truly decentralized (since they can be minted
locally and verified by anyone), they have been harder to
adopt in the Cloud than schemes founded on bearer tokens.
In particular, adoption has been hampered by the need for
certificate-revocation infrastructure, the use of cryptographic
primitives with significant per-request overhead, and the use
of long-lived, linkable public identities for principals.

Macaroons are only verifiable by their target service,
but for that service they offer flexible, efficient credentials-
based authorization [48]. Notably, macaroons permit bearers
of credentials to delegate authority, in a decentralized, general
manner, using an efficient chained-HMAC construction. The
authority of these derived credentials can be subject to atten-
uation and contextual confinement, based on first-party and
third-party caveats that restrict both the permitted functionality
(by limiting the set of allowed operations and objects) as well
as the authorized principals (by confining the environment and
context in which a macaroon may be successfully wielded).

Macaroons are an improvement upon cookies. They are
especially well-suited to the Cloud, where the notion of
a central authority is often lacking, and where the notion
of principals is highly dynamic and may involve unnamed,
local entities such as iframes in Web browsers. As bearer
credentials that use HMAC signatures for both integrity and
for key distribution, macaroons are highly efficient, widely
applicable, and compatible with existing Cloud software. Even
so, compared to previous mechanisms, macaroons can support
equally expressive authorization policies, even more precisely,
with fresh, short-lived credentials for each access request.

ACKNOWLEDGMENT

Macaroons originated in the Belay research project at
Google [27], and, thus, benefitted from the work of Arjun
Guha, Iain McGinniss, Ben Laurie, and Mark Miller. Our
NDSS reviewers and shepherd, as well as Martı́n Abadi,
Adriana López-Alt, Domagoj Babic, Mike Burrows, Michael
R. Clarkson, Sergio Maffeis, Robbert van Renesse, and Ben
Sittler, all gave feedback that improved this paper’s content.

REFERENCES

[1] M. Abadi, “Variations in access control logic,” in Intl. Conf. on Deontic
Logic in Computer Science, 2008.

[2] M. Abadi, M. Burrows, B. W. Lampson, and G. D. Plotkin, “A calculus
for access control in distributed systems,” ACM Trans. Programming
Languages and Systems, vol. 15, no. 4, 1993.

[3] M. Aguilera, M. Ji, M. Lillibridge, J. MacCormick, E. Oertli, D. An-
dersen, M. Burrows, T. Mann, and C. Thekkath, “Block-level security
for network-attached disks,” in USENIX Conf. on File and Storage
Technologies, (FAST), 2003.

[4] D. Akhawe, A. Barth, P. E. Lam, J. Mitchell, and D. Song, “Towards
a formal foundation of Web security,” in IEEE Computer Security
Foundations (CSF), 2010.

[5] Amazon Inc., “Example cases for Amazon S3 Bucket
Policies,” 2013, http://docs.aws.amazon.com/AmazonS3/latest/dev/
AccessPolicyLanguage UseCases s3 a.html.

[6] A. W. Appel and E. W. Felten, “Proof-carrying authentication,” in ACM
Computer and Communications Security (CCS)). ACM, 1999.

[7] D. Balfanz and R. Hamilton, “Transport layer security (TLS) Chan-
nel IDs,” IETF Draft, 2013, http://tools.ietf.org/html/draft-balfanz-tls-
channelid.

[8] C. Bansal, K. Bhargavan, and S. Maffeis, “Discovering concrete attacks
on website authorization by formal analysis,” in IEEE Computer Security
Foundations (CSF), 2012.

[9] M. Y. Becker, C. Fournet, and A. D. Gordon, “SecPAL: Design and se-
mantics of a decentralized authorization language,” Journal of Computer
Security, vol. 18, no. 4, 2010.

[10] B. Blanchet, “Automatic verification of correspondences for security
protocols,” Journal of Computer Security, vol. 17, no. 4, 2009.

[11] M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized trust management,”
in IEEE Symp. on Security & Privacy, 1996.

[12] N. Borisov and E. A. Brewer, “Active certificates: A framework for
delegation,” in Network and Distributed Systems Security Symp. (NDSS),
2002.

[13] J. Bradley, P. Hunt, T. Nadalin, and H. Tschofenig, “The OAuth 2.0
authorization framework: Holder-of-the-key token usage,” IETF Draft,
http://tools.ietf.org/html/draft-tschofenig-oauth-hotk.

[14] E. Carl Ellison, “SPKI certificate theory,” IETF RFC 2693 (Experimen-
tal), 1999, http://www.ietf.org/rfc/rfc2693.txt.

[15] D. D. Clark and D. R. Wilson, “A comparison of commercial and military
computer security policies.” in IEEE Symp. on Security & Privacy, 1987.

[16] D. Clarke, J.-E. Elien, C. Ellison, M. Fredette, A. Morcos, and R. L.
Rivest, “Certificate chain discovery in SPKI/SDSI,” Journal of Computer
Security, vol. 9, no. 4, 2002.

[17] E. D. Hardt, “The OAuth 2.0 Authorization Framework,” IETF RFC
6749 (Informational), 2012, http://tools.ietf.org/html/rfc6749.

[18] D. Davis and R. R. Swick, “Network security via private-key certifi-
cates,” Operating Systems Review, vol. 24, no. 4, 1990.

[19] J. DeTreville, “Binder, a logic-based security language,” in IEEE Symp.
on Security & Privacy, 2002.

[20] T. Dierks and E. Rescola, “The Transport Layer Security (TLS) Proto-
col,” IETF RFC 5246 (Standards track), 2008, http://www.ietf.org/rfc/
rfc5246.txt.

[21] M. Dietz, A. Czeskis, D. Balfanz, and D. S. Wallach, “Origin-bound
certificates: A fresh approach to strong client authentication for the web,”
in Proc. USENIX Security, 2012.

[22] I. T. Foster, C. Kesselman, G. Tsudik, and S. Tuecke, “A security archi-
tecture for computational grids,” in ACM Computer and Communications
Security (CCS)), 1998.

[23] Y. Fu, J. Chase, B. Chun, S. Schwab, and A. Vahdat, “Sharp: An
architecture for secure resource peering,” in Symp. on Operating Systems
Principles (SOSP), 2003.

[24] M. Gasser and E. McDermott, “An architecture for practical delegation
in a distributed system,” in IEEE Symp. on Security & Privacy, 1990.

[25] H. Gobioff, “Security for a high performance commodity storage sub-
system,” Ph.D. dissertation, Carnegie Mellon University, 1999.

[26] L. Gong, “A secure identity-based capability system,” in IEEE Symp. on
Security & Privacy, 1989.

[27] Google Inc., “Belay research project,” 2012, https://code.google.com/p/
google-belay/.

14

[28] ——, “YouTube video privacy settings,” 2013, http://support.google.
com/youtube/bin/answer.py?hl=en&answer=157177.

[29] E. Grosse and M. Upadhyay, “Authentication at scale,” IEEE Security
& Privacy Magazine, vol. 11, no. 1, 2013.

[30] P. Hallam-Baker, C. Kaler, R. Monzillo, and A. Nadalin, “Web Services
Security: SAML Token Profile,” OASIS, 2004, http://docs.oasis-open.
org/wss/oasis-wss-saml-token-profile-1.0.pdf.

[31] E. Hammer-Lahav, A. Barth, and B. Adida, “HTTP authentication:
MAC access authentication,” IETF Draft, http://tools.ietf.org/html/draft-
hammer-oauth-v2-mac-token.

[32] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman, “Protection in operating
systems,” Comm. of the ACM (CACM), vol. 19, no. 8, 1976.

[33] J. Howell and D. Kotz, “An access-control calculus for spanning admin-
istrative domains,” Dartmouth College, Tech. Rep., 1999.

[34] ——, “A formal semantics for SPKI,” in European Symp. on Research
in Computer Security, 2000.

[35] T. Jim, “SD3: A trust management system with certified evaluation,” in
IEEE Symp. on Security & Privacy, 2001.

[36] B. W. Lampson, “Protection,” Operating Systems Review, vol. 8, no. 1,
1974.

[37] B. W. Lampson, M. Abadi, M. Burrows, and E. Wobber, “Authentication
in distributed systems: Theory and practice,” ACM Trans. on Computer
Systems, vol. 10, no. 4, 1992.

[38] C. Lesniewski-Laas, B. Ford, J. Strauss, R. Morris, and M. F. Kaashoek,
“Alpaca: Extensible authorization for distributed services,” in ACM
Computer and Communications Security (CCS)), 2007.

[39] N. Li and C. Mitchell, “Understanding SPKI/SDSI using first-order
logic,” Intl. Journal of Inf. Security, vol. 5, no. 1, 2006.

[40] T. Lodderstedt, M. McGloin, and P. Hunt, “OAuth 2.0 Threat Model
and Security Considerations,” IETF RFC 6819 (Informational), 2013,
http://www.ietf.org/rfc/rfc6819.txt.

[41] A. López-Alt, “Cryptographic security of macaroon authorization cre-
dentials,” New York University, Tech. Rep. TR2013-962, 2013, http:
//cs.nyu.edu/web/Research/TechReports/TR2013-962/TR2013-962.pdf.

[42] Mozilla, “BrowserID specification,” https://github.com/mozilla/id-specs/
blob/prod/browserid/index.md.

[43] National Institute of Standards and Technology, “FIPS PUB 198-
1: The keyed-hash message authentication code (HMAC),” 2008.
[Online]. Available: http://csrc.nist.gov/publications/fips/fips198-1/FIPS-
198-1 final.pdf

[44] B. C. Neuman, “Proxy-based authorization and accounting for distributed
systems,” in Conf. on Distributed Computing Systems, 1993.

[45] A. Project, “Automated validation of Internet security protocols and
applications,” http://avispa-project.org/.

[46] D. D. Redell, “Naming and protection in extendable operating systems,”
Ph.D. dissertation, Massachusetts Institute of Technology, 1974.

[47] E. S. Tuecke, “Internet X.509 public key infrastructure (PKI) proxy
certificate profile,” IETF RFC 3820 (Standards track), 2004. [Online].
Available: http://www.ietf.org/rfc/rfc3820.txt

[48] F. B. Schneider, “Untitled Textbook on Cybersecurity. Chapter 9:
Credentials-based authorization,” 2013, http://www.cs.cornell.edu/fbs/
publications/chptr.CredsBased.pdf.

[49] E. Stark, M. Hamburg, and D. Boneh, “Stanford JavaScript crypto
library,” 2013, http://crypto.stanford.edu/sjcl/.

[50] S.-T. Sun and K. Beznosov, “The Devil is in the (Implementation)
Details: An Empirical Analysis of OAuth SSO Systems,” in ACM
Computer and Communications Security (CCS)), 2012.

[51] A. Tanenbaum, M. Kaashoek, R. van Renesse, and H. Bal, “The amoeba
distributed operating system–a status report,” Computer communications,
vol. 14, no. 6, 1991.

[52] R. van Renesse, H. D. Johansen, N. Naigaonkar, and D. Johansen,
“Secure abstraction with code capabilities,” in Intl. Conf. on Parallel,
Distributed, and Network-Based Processing, 2013.

[53] E. Wobber, M. Abadi, M. Burrows, and B. Lampson, “Authentication in
the Taos operating system,” ACM Trans. on Computer Systems, vol. 12,
no. 1, 1994.

[54] M. Zalewski, The tangled Web: A guide to securing modern web
applications. No Starch Press, 2011.

[55] ZDNet: Between the Lines, “Dropbox adds Facebook sharing,” 2012,
http://www.zdnet.com/facebook-gets-involved-with-cloud-storage-via-
dropbox-integration-7000004861/.

APPENDIX

This appendix presents a formalization of macaroons using
a variant of Abadi’s authorization logic from [1], originally
in [2, 37]. A macaroon is seen as an assertion made by a
target service, saying that the holder of certain keys can speak
for the target service regarding all access requests, as long as
all relevant predicates for the macaroon’s embedded caveats
can be seen to be valid.

The effects of caveat predicates cannot be directly captured
in standard authorization logic and, therefore, the logic used in
this appendix is extended with two new types of principals—
predicate principals and request principals—and a special
axiom that characterizes their behavior. Using these new prin-
cipals and regular principal compounding, this extended logic
can, in a simple manner, express the speaks-for restrictions
imposed by macaroons’ caveats and their predicates. (In par-
ticular, this logic is considerably simpler than the authorization
logic extended with new speaks-for primitives, previously used
to express similarly-predicated authority in [34].)

An Extended Authorization Logic for Macaroons: Here,
an extended authorization logic is defined for the purpose of
formalizing the semantics of macaroons and the assertions
made by the principals relevant to a target-service request that
is authorized using macaroons.

First, the set PropCavs is assumed to contain all atomic
propositions relevant to target service requests, including re-
quest parameters, such as chunk and operation, and contex-
tual attributes, such as time. Examples of such propositions
might be “chunk is in [100, 500]”, “action is read”, etc. These
propositions serve as the building blocks for the first-party
caveat predicates that restrict macaroons’ authority.

The syntax, axioms and deduction rules for the autho-
rization logic are defined in Figure 11. Principals A,B, . . .
can be atomic principals from P ∈ Prncs , keys k ∈ Keys ,
compound principals of the form A ∧ B, or special predicate
or request principals (discussed later). Here, p ranges over the
set of propositions in PropCavs , and X ranges over the set
of propositional variables. The says modality for principals is
standard from [37], with A says φ meaning that principal A
asserts φ. While⊃ is used for logical implication, the statement
A ⇒ B expands to A speaks-for B, for principals A and B,
meaning that B also makes all assertions that A makes. A
compound principal A∧B makes an assertion if, and only if,
it is also made by both A and B. To establish that a request is
authorized, a proposition valid is included, with A says valid
meaning that principal A considers the request to be valid.

This logic is a normal modal logic that includes the
[DISTRIBUTION] axiom, the [NECESSISTION] rule, the [MODUS-PONENS]

rule, and all standard axioms of propositional constructive
logic, as used in [1]. Also included, as in [37], are the standard
[SPEAKS-FOR] axiom, the [HANDOFF] axiom, and the expected ax-
ioms for characteristics of principal conjunction. From these,
the monotonicity of ∧ over⇒ and the transitivity of⇒, follow:

` (A⇒ B) ⊃ (A ∧ C)⇒ (B ∧ C),
` (A⇒ B) ∧ (B ⇒ C) ⊃ (A⇒ C).

The logic also includes a special axiom [PPRIN] relating request
and predicate principals, which is discussed next.

15

Syntax:
Compound principals A,B ::= P | k | A ∧B | φ̂

Formulas ψ, φ ::= valid | true
| p | X | ∀X.φ
| ψ ∧ φ | ψ ∨ φ | ψ ⊃ φ
| A says φ | A⇒ B

Axioms:
All the axioms of propositional constructive logic [PROP]

` (A says (ψ ⊃ φ)) ⊃ (A says ψ ⊃ A says φ) [DISTRIBUTION]

` (A says B ⇒ A) ⊃ B ⇒ A [HANDOFF]

` A ∧A ≡ A [CONJ1]

` A ∧B ≡ B ∧A [CONJ2]

` (A ∧B) ∧ C ≡ A ∧ (B ∧ C) [CONJ3]

` (A ∧B says φ) ≡ (A says φ) ∧ (B says φ) [CONJ4]

` A⇒ B ≡ (A ∧B = A) [SPEAKS-FOR]

` (TR says φ) ⊃ (φ̂ says valid) [PPRIN]

Rules: ` ψ ` ψ ⊃ φ
` φ [MODUS-PONENS]

` φ
` A says φ

[NECESSITATION]

Fig. 11. The syntax, axioms and rules for an authorization logic suitable for
macaroons. Here, TR and φ̂ are request and predicate principals, respectively,
P ∈ Prncs , k ∈ Keys , and X is a variable in a proposition p ∈ PropCavs .

Request principals and predicate principals: A request
principal TR is a special principal that makes the strongest
possible assertion—using propositions from PropCavs—that
a target service can see to be true for the context of a request.
Such principals are completely controlled by the target service.
For example,

TR says
“chunk is 250” ∧ “operation is read”
∧ “IP is 172.12.34.4”

indicates that the target service is seeing a request to read
chunk 250 being made from the IP address 172.12.3.44.

A predicate principal φ̂ is a special principal introduced
to model the effect of a first-party caveat with predicate φ.
Informally, the principal φ̂ says that a request is valid, and the
caveat is satisfied, if the request principal TR asserts φ. This
characteristic is formalized by the axiom [PPRIN].

By combining the axiom [PPRIN], the [DISTRIBUTION] axiom
and the [NECESSITATION] rule, the following rule can be derived:

` ψ ⊃ φ ` TR says ψ

` φ̂ says valid
[FCAVDISCHARGE].

This rule means that if TR asserts a predicate for a request,
and this predicate logically implies a weaker predicate in a
first-party caveat, then that caveat is satisfied for this request.

Macaroon formulas: In this logic, macaroons are defined by
formulas that describe restricted speaks-for delegations from
the target service to certain caveat principals (corresponding
to embedded first-party caveats), and certain keys (correspond-
ing to the root keys of embedded third-party caveats). A
request made using macaroon credentials is authorized if it
can be proven—from the macaroon’s formulas, and the request
principal TR’s assertion about the request context—that the
root key of the macaroon says valid, which implies that

the macaroon signatures verify using this root key, and that
all embedded caveat predicates are satisfied. Before formally
defining macaroon formulas, it’s worth giving some examples.

Consider a macaroon M1 := macaroon@L〈kId , [], k1〉 that
is minted from root key k0 without any caveats. This macaroon
M1 represents a complete delegation from the key k0 to the
empty caveat principal t̂rue, which considers all requests valid.
Thus, M1 is modeled by the formula k0 says t̂rue⇒ k0.

A macaroon M2 := macaroon@L〈kId , [cav@>〈φ, 0〉], k2〉
can be obtained by extending M1 with a first-party caveat
whose predicate is φ, to represent a delegation from the root
key k0 to the caveat principal φ̂. This macaroon M2 is modeled
by the formula k0 says φ̂⇒ k0.

Finally, the macaroon M2 can be extended with a third-
party caveat whose root key is cK, to obtain the macaroon

M3 := macaroon@L〈kId , [cav@>〈φ, 0〉, cav@l〈cId, vId〉], k3〉.

This macaroon M3 represents a delegation from the root key
k0 to the conjunction of the cK and φ̂ principals—i.e., that
k0 says that a request is valid only if both cK and φ̂ say so.
Thus, M3 is modeled by the formula k0 says cK ∧ φ̂ ⇒ k0.
The formula for an arbitrary macaroon M can now be defined.

Definition 1 (Macaroon formulas): A macaroon M whose
root key is k0, embedding first-party caveats whose predicates
are φ1, . . . , φm, and embedding third-party caveats whose root
keys are cK1, . . . , cKn, is modeled using the formula

α(M) := k0 says (φ̂1 ∧ . . .∧ φ̂m ∧ cK1 ∧ . . .∧ cKn)⇒ k0.

For a set M, the formulas are α(M) := {α(M) | M ∈M}.

Macaroon verification: To verify that a request is authorized
by a macaroon M , the target service must verify—using a
root key k0 for M , known only to the target service—the
set M of macaroons presented with the request, including
M and all third-party discharges, and establish that all their
embedded first-party caveats are satisfied. The verification of a
first-party caveat with a predicate φ is modeled by having the
request principal TR assert the strongest possible formula ψreq

about the request context, and, if ψreq ⊃ φ, apply the derived
rule [FCAVDISCHARGE] to show that the principal φ̂ considers the
request to be valid. In general, a request accompanied by such
a macaroon setM is authorized if the formulas α(M) together
with the formula TR says ψreq imply that k0 says valid for
the root key k0. Recursively, this requires that M contain
discharge macaroons for any third-party caveats involved, and
that TR says ψreq allows cK says valid to be established for
the root key cK of each of those discharge macaroons.

Definition 2 (Macaroon verification): A set of macaroons
M, whose distinguished authorizing macaroon M has the root
key k0, authorizes a request whose target-service context is
described by the propositional assertion ψreq , if, and only if

` (TR says ψreq ∧
∧

M∈M
α(M)) ⊃ (k0 says valid).

In addition to being a basis for the formal analysis of
macaroon-based protocols, the above definition makes it clear
how macaroons only grant authority for a target-service re-
quest, as long as all caveats have been discharged in its context.

16

