Wormbholes: Introducing Effects to FRP

Daniel Winograd-Cort Paul Hudak
Yale University Yale University
dwc@cs.yale.edu paul.hudak®@yale.edu
Abstract in an infinitesimal period of timé.In practice, because computers

cannot process instantaneously, this is typically impleted as a
loop that proceeds at a given or variable clock rate, whoszhare
¢ ics are an abstraction of the language. In this way, FRP progr
are similar to circuit, or signal processing, diagramsstfacillitat-

ing reasoning about program behavior.

However, standard FRP systems (such as Fran [Elliott and Hu-
dak 1997]) lend themselves far too easily to space and tialesle
[Liu and Hudak 2007]. One can address these leaks by using an
arrow-basedHughes 2000] design such as usedampaHudak
et al. 2003; Courtney et al. 2003] (which has been used for ani
mation, robotics, GUI design, and mor&ettle[Voellmy and Hu-
dak 2011] (for networking), anButerpegHudak 2011] (for audio
processing and sound synthesis). Instead of treatinglsigsdirst
class values, thsignal functionbecomes the core component. By
using arrows, one can compose and manipulate signal funsctio
fairly easily.

An arrow-based FRP program is still a pure functional progra

Functional reactive programming (FRP) is a useful modepfor
gramming real-time and reactive systems in which one defines
signal functionto process a stream of input values into a stream o
output values. However, performing side effects (e.g. ngmuu-
tation or input/output) in this model is tricky and typicalinsafe.

In previous work, Winograd-Cort et al. [2012] introducegource
typesandwormholego address this problem.

This paper better motivates, expands upon, and formalimes t
notion of a wormhole to fully unlock its potential. We showy £x-
ample, that wormholes can be used to define the concept dadleaus
ity. This in turn allows us to provide behaviors such as lagpia
core component of most languages, without building it diygnto
the language. We also improve upon our previous design byngak
wormholes less verbose and easier to use.

To formalize the notion of a wormhole, we define an extension
to the simply typed lambda calculus, complete with typintesu

and operational semantics. In addition, we present a nemwv &jr . : ; .
P ' P That is, the signal-based computations are performed ysing

semantic transition that we call tamporal transition to specify functi d the inout and outout of th hich
how an FRP program behaves over time and to allow us to better 'YNctIONS, and the input and output of the program—whnich may

reason about causality. As our model is designed for a Haskel include /O commands—are handled separately, i.e. outditiee
implementation, the semantics are lazy. Finally, with theglage program. In this sense, there is B® bottleneckon either end of

defined, we prove that our wormholes indeed allow side effect (€ Signal function that represents a complete programofdhe
be perférmed safely in an FRP framework. input data must be separated from its source so that it carde f

purely into the appropriate signal function, and all of theput

Categories and Subject Descriptors D.3.1 [Programming Lan- da_lta must'be separately piped to the proper output dewogsew
guage¥ Formal Definitions and Theory—Semantics; D.3P2d- this as an imperfect system,_ as ideally the sources and sioitsl
gramming Languagés Language Classifications—Applicative P€ directly connected to their data.
(functional) languages s
1.1 Background and Motivation
General Terms Design, Languages A purely functional language does not admit side effectded,
))) the original Haskell Report (Version 1.0) released in 1980well
Keywords Functional Reactive Programming, Arrows, Resource as the more widely publicized Version 1.2 [Hudak et al. 1992]
Types, Stream Processing, Side Effects, Causality specified a pure language, and the /O system was definedhis ter
of both streams and continuations, which are equivalerd ¢an be
- defined straightforwardly in terms of the other). In 1989 tise of
1. Introduction monads to capture abstract computations was suggested ¢yi Mo
Functional reactive programming (FRP) is based on the naifo [1989], subsequently introduced into Haskell by Wadlerop]9
asignal i.e. a time-varying value. Although signals are invajabl and further popularized by Peyton Jones and Wadler [1993].
represented as streams of data, FRP allows one to think rof dise Originally conceived as a pure algebraic structure, antuceg
having instantaneous values for any given moment in time tan elegantly using Haskell's type classes, it was soon redlthat
think of programs as running to completion on each of thotgega monads could be used for 1/0 and other kinds of side effents. |
deed, Version 1.3 of Haskell, released in 1996, specifiesradio
1/0 system. The inherent data dependencies induced by e op
ators in the monad type class provide a way to sequence I/O ac-
tions in a predictable, deterministic manner (often callgdgle
Permission to make digital or hard copies of all or part of thiork for personal or threaded”). The Haskell I/O monad is simply nanméxl and prim-

classropm use is gralnted without fee provided Fhat copies"nairmade or dist(ibqted itive 1/0 operations are defined with this monadic type towll
for profit or commercial advantage and that copies bear titisenand the full citation

on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee. 1This is consistent with the family afynchronousanguages such as Lus-

Haskell’12, September 13, 2012, Copenhagen, Denmark. tre [Caspi et al. 1987], Esterel [Berry and Cosserat 1984],%ignal [Gau-
Copyright(€) 2012 ACM 978-1-4503-1574-6/12/09. .. $10.00 tier et al. 1987]

essentially any kind of I/O. A monadic action that returnsabue
of typea has typdO a.

tion has been explored (as in FrTime [Cooper and Krishndmurt
2006)), but results in an imperative, impure design (equti rea-

To make this approach sound, a program engaged in I1/O mustsoning is lost).

have typdO (), and there can be no function, saplO:: 10 a— a,
that allows one to “escape” from the I/O monad. It's easy engby
this would be unsound. Consider the expression:

runlO my +runlO mp

If both my andm, produce I/O actions, then it is not clear in which
order the 1/O actions will occur, since a pure language dags n
normally express an order of evaluation far), and in general we
would like (+) to be commutative.

1/0is, of course, just one form of effect. For example, onghrhi
want to have mutable arrays (meaning that updates can beiidene
place” in constant time). A purely functional approach aarpro-
vide constant-time performance for both reads and writeskell
has two solutions to this problem: First, Haskell definefrray
that can be allocated and manipulated in an imperative. Styézle-
fined operations on the array are defined in terms of the I/Cathon
and thus manipulating a mutable array becomes part of tigéesin
threaded flow of control induced by th® monad, as discussed
earlier.

A problem with this approach is that it is common to want to
define some local computation using an array and hide thdsleta
of how the array is implemented. Requiring that each suchlloc
computation inject the array allocation and subsequentatioms
into the global 1/0 stream is thus not modular, and seemsturada
and restrictive.

What we would like is a monad within which we can allocate
and manipulate mutable arrays (and not perform any 1/O)tlaexl
“escape” from that monad with some desired result. Hask8Il"
monad [Launchbury and Peyton Jones 1994] does just thateHas
further defines a type construct®TArraythat can be used to define
arrays that can be allocated and manipulated just likeo#aray.
Once the programmer is done with the local computation She
monad can be escaped using the function:

runST:: (foralls.STsa —a

The “trick” that makes this sound is the use of the existé(piaan-
tom) type variableswithin the STmonad and the operations defined
on the arrays. For example, returning the value of an arfayeece
would be unsound—it would mean that the mutable array coeilld b
further mutated in other contexts, with potentially unpcéable re-
sults. However, this is not possible in HaskeB$monad, because
the type of the array reference contains the hidden exiataype,
thus resulting in a type error.

1.2 Effectsin FRP

Monads can be used for many pure computations as well as othe
kinds of effects, but the above has focused on two kinds eteff
1/0 and mutable data structures. It is important to distisigthese
two, since there are inherent differences: /0 devices anerglly
fixed—each printer, monitor, mouse, database, MIDI devérel
S0 on, is a unique physical device—and they cannot be created
the fly. With a mutable data structure, the situation is d#fe: such
data structures can be created on the fly and allocated dgabyni
as required by the program. It is also worth noting that fathbo
1/0 devices and mutable data structures, the sequence iohact
performed on each of them must generally be ordered, as idwou
be in an imperative language, but conceptually, at leagracon
a printer, a MIDI device, or some number of separately atieda
mutable data structures, could be performed concurrently.

So the question now is, how do we introduce these kinds of ef-
fects into FRP? Indeed, do these kinds of effects even maise e
an FRP language? Allowing side effects directly in a sigoalcf

A normal Haskell variable is time-invariant, meaning thist i
value in a particular lexical context and in a particularooation
of a function that contains it, is fixed. In a language base&RR,

a variable is conceptually time-varying—its value in a jzaer
lexical context and in a particular invocation of a functitiat
contains it, is not fixed, but rather depends on the time.

A key insight for our work is that the sequencing provided by a
monad can be achieved in FRP by using the ordering of events in
an event stream. In the case of I/O, another key insight tsetheh
of the I/O devices can be viewed as a signal function that igra “
tualized” version of that device. To guarantee soundmessurce
typescan be defined that guarantee uniqueness, as Winograd-Cort
et al. [2012] described. Resource types assure that an FigRapn
remains deterministic despite I/O effects by restrictimgaccess of
any given real-world device to only one point in the progrdior
example, the keyboard could be represented as a signaldonct
that produced keystroke events. Any given keystroke shonigd
produce a single event, but if this signal function were usedul-
tiple places in the program, each instance might producstandi
event. Therefore, the signal function itself would be tabgéth a
Keyboardresource type, and if a programmer attempted to use it
more than once in the same program, the program would praduce
type error.

In the case of mutable data structures, a similar approathea
taken. For example, we could define a function:

sfArray:: Size— SF (Event Reque${ Event Response

such thatsfArray nis a signal function encapsulating a mutable
array of sizen. (SF a bis the type of signal function whose input
is a signal carrying values of tyge and whose output is a signal
carrying values of type.) That signal function would take as input
a stream ofRequestevents (such as read or write) and return a
stream ofRespons&vents (such as the value returned by a read,
acknowledgement of a successful write, or an index-ouienfrds
error). Note the similarity of this approach to the origistleam

1/0 design in early Haskell [Hudak et al. 1992].

This design is also analogous to tB&Arraydesign, in that in-
place updates of the array are possible in a sound way, amg eve
invocation ofsfArray creates a new mutable array. However, no
changes to the type system are required to ensure soundness (
particular, no hidden existential types are needed, norem@urce
types). Using this idea, many kinds of mutable data strestare
possible, as well as, for example, a random number generator
(Winograd-Cort et al. [2012] described a random number igeoe
that was resource typed, but in fact, as with the mutableyarra
rabove, no resource types are needed to ensure soundnesg. Eve
invocation of a suitably defined random number generatol wil
create a fresh stream of random numbers.)

1.3 Wormholes

Can we do more? What other kinds of effects might be desined fo
FRP? The remainder of this paper focuses on the notiomairen-
hole, which can be viewed in two ways: (1) as a non-local one-way
communication channel through which one can transfer bigiia
ues from one part of a program to another, in a completely safe
manner, or (2) a mutable variable that can be written to aad re
from independently. By analogy, wormholes are a bit MM&ARS

in Haskell, but in the FRP framework, the details are consioly
different. The main insight is that to have such a featureRiPFwe
need to separate the reads from the writes. Thus a wormhole co
sists oftwo signal functions, one for reading, and one for writing.
We refer to these as thehiteholeandblackhole respectively. To

make this approach sound, resource types are used to ehatire t
each whitehole and blackhole is used just once.

Wormholes will be discussed in much more detail later, but
here is a simple example of their use. Suppateandbh are the
signal functions for the whitehole and blackhole, respety of

nent. Thus, we define program execution as an infinite tracegh
a “temporal” transition. The input and output of the progiiarhan-
dled through the resources, which are represented as stiaain
into the environment that resource types allow us to trable Rey
to this model's success is the subtle interconnection ottmepo-

a wormhole. Assuming they are executing in the same arrow and nents: the temporal transition is meaningless without éiseurces

lexical scope, the following two signal functions commuaie to
each other non-locally through the wormhole:

sf, = proc () — do
. -- create some local data
_+<+ bh—<localData
returnA—<7
sf, = proc () — do

aétaFromSE +—wh—=()

returnA— 42
Note that the data does not affect the signal function typbse—

to represent side effects, and the resources’ inherentwedd
guality makes reasoning temporally a necessity. With timease
tics well specified, we are able to substantiate our prewioork’s
claims of side effect safety.

Finally, in addition to formalizing the semantics, we impeo
upon the original design. In previous work, not only did each
wormhole need to be defined at the top level of a program, but
for every wormhole that a program used, the program’s typéavo
bloat with more terms. By slightly modifying the way wormhsl
are introduced, we are able to remove both of these restigti
without any significant loss in usability.

In the next section we introduce our core language features,
which we follow up with a formal definition of the language in
Section 3. Section 4 illustrates some examples of the varays
wormholes can be used, and Section 5 describes our work in im-

data passes through the wormhole as if by magic. If one did not plementing wormholes in Haskell. In Section 6 we descrileeoih-

have wormholes, one would have to add the typéooélDatato
the output ofsf; and input ofsf,, and in a larger context ensure that
the two were composed properly. This example is a bit cosdriv
and it is not advisable to program in this style all the timgpets
are useful, and one of the hallmarks of functional prograngra+

but one can imagine using this technique when debugging, for 2

example.

erational semantics and in Section 7 we prove that our laggua
properly implements the desired features. Finally, Sest®band 9
discuss our conclusions and related work.

Language Features

The astute reader will note that this approach is seemingly In the introduction we described the basis for our language:

unsound—what ibh is used by some other part of the program,
thus creating write conflicts? The answer is that resoungestyare
used to ensure that this does not happen.

1.4 Contributions

In previous work, Winograd-Cort et al. [2012] sketched tthesi of
a wormhole as an alternative method for general kinds oteffe
In this paper we expand on these ideas significantly, asibesidn
this section.

Ouir first contribution is recognizing that the order of exému
of a wormhole affects program behavior. One could allow the
read and write from a wormhole to happen in either order, but
this allows two nearly identical programs to potentiallwédaery
different behaviors. We show that restricting wormholeshsthat
the read always happens before the write allows soundevnizas
as well as introduces a new possibility for control flow. ititely,
regardless of the structure of a program, we want the rea@to b
immediate while the write takes place “between” time stdps.

this way, we can be sure that any data read from a wormhole was

generated in the previous time step, allowing us to use wolesh
to create causal connections.

In fact, our second contribution is to show a connection be-
tween wormholes and causal commutative arrows (CCA) [Lal.et
2011]. In FRP applications, looping is achieved by feedimgdut-
put of a signal function back into the input. When expressed i
CCA an extra restriction is placed on the fedback data: ittrhas
from the past. This idea of causal, or temporal, looping fifl imto
our model, obviating the need for a primitive operator faydimg.
Indeed, causal loops are a higher level construction inanguage
rather than a core requirement.

Our third contribution is a formal specification and semasti
for a lazy, resource-typed FRP based on the Haskell [Peyioes]
et al. 2003] implementation that Winograd-Cort et al. [Z0fte-
sented. We show that since FRP programs act over time, the tra
sitions that govern their semantics should have a temporapo-

arrow-based implementation of functional reactive prograng
that uses wormholes and resource types to handle sidesefféate
we discuss in more detail what these terms mean.

2.1 Signal Processing

The easiest way to conceptualize arrow-based FRP is to think
of it as a language for expressirgignal processing diagrams
The lines in these diagrams can be thought ofigeals and the
boxes, that act on those signals sagnal functionsin general, the
signals should be thought of as continuous, time-varyirantjties,
although they can also represent streams of events.

Haskell is an excellent language to consider coding witbverr
based FRP due to irow syntax{Paterson 2001]. For example,
the following is a simple signal processing diagram that twas
signals, an inpuk and an outpuy, as well as one signal function,

sigfun

In Haskell this diagram would be coded as:

y « sigfun— x

This code fragment cannot appear alone, but instead musirbe p
of aproc construct. The expression in the middle must be a signal
function, whose type we write 8 ~~ T, for some typed; andTs.
The expression on the right may be any well-typed expressitin
type T1, and the expression on the left must be a variable or pattern
of typeT».

The purpose of the arrow notation is to allow the programmer
to manipulate the instantaneous values of the signals.Xeongle,
the following is a definition fosigfunthat integrates a signal and

arr :(a—b)— (a~b)

first :(a~b)— ((axc)~ (bxc))
(>>) u(a~b)—=(b~c)—(a~c)
loop :((cxa) ~ (cxb))— (a~b)

(I (axc) = (b~¢) = ((@+b)~c)
app ((a~b)yxa)~b

Figure 1. The types of the arrow operators.

multiplies the output by two:

sigfun:: Double~~ Double
sigfun= proc x — do
y + integral < x
returnA—y2

The first line gives the type afigfun a signal function that converts
a stream of typ®oubleinto a stream of typ®ouble The notation
“proc x — do ..."” introduces a signal function, binding the name
x to the instantaneous values of the input. The third line sehe
input signal into an integrator, whose output is nameéinally,
we multiply the valuey by two and feed it into a special signal
function,returnA that returns the result.

Of course, one can use arrows without Haskell's arrow syntax
Arrows are made up of three basic operators: constructan),(
partial application ffrst), and composition %=>). Furthermore,
arrows can be extended with loopifgdp) [Paterson 2001], choice
(I1) [Hughes 2000], and applicatiorafgp) [Hughes 2000]. The
types of these operators are shown in Figure 1. To simpliéy th
discussion, we omit further details about looping and aloither
than their typing rules given in Section 3.3.

For example, the signal functiosigfun defined earlier can be
written without arrow syntax as follows:

sigfun= integral>=> arr (AX.xx* 2)

2.2 Resource Tracking and Management

When signal functions become effectful, an insidious peobte-
velops. We want to think of signal functions as ordinary,gofumc-
tions, and as such, we should have the power to duplicate #iem
will. However, if the signal functions can perform side effe then
they may not behave properly when duplicated. ConsidereXer
ample, a signal function to play sound in real time:

playSound: SoundData-~ ()

playSoundakes a stream ddoundDataplays it to the computer’s
speakers, and returns unit values. Now consider the faligwode
shippet in arrow syntax:

_« playSound< sound
_ < playSound~< sound

We intend forplaySoundto represent a single real-world device,

Adding resource types to our previous example yields thpe fpr
playSound

{Speakerp
A

playSound: SoundData 0

With this type, the code snippet does not type-check. Weudisc
the typing rules in more detail in Section 3.

2.3 Wormholes

In addition to having resource types that represent phlysea
sources, we can have resource types that represent arlstdar
effects. Notably, we can consider using resource typegit@sent
mutable memory.

In particular, we can createveormholeas a reference in mem-
ory that comes with two fresh virtual resources, one for tiput
end and one for the output end, which we affectionately refeis
the blackholeandwhitehole respectivel# We access the ends of
the wormhole in the same manner that we might access any real
resource, and the same machinery that makes resource tgples w
for real resources makes mutation and direct memory aceéss s

2.4 Causality

Functional reactive programming itself does not need todusal.
That is, values along a signal can, in fact, depend on futaleeg.
Of course, in real-time systems, causality is forced to lesgmved
by the nature of the universe. For example, a program’s otrre
output cannot depend on a user’s future input. Thus, in thrécved
effectful FRP, we limit ourselves to causal signal funcéion

The main impact of this limitation has to do with fixed points
and looping in the signal function domain. We restrict sldoac-
tions so that they cannot perform limitless recursion withmov-
ing forward in time. That is, all loops must contain some sfrt
delay such that the input only depends on past outputs. Wizl
strictly causal looping

Liu etal. [2011] introduced thimit operator as an abstract form
of causal computation:

init ::a— (a~ a)

Technically, the current output a@fit i can depend on the current
and previous inputs; however, the typical definition is askyl
operator, and as such, the current output would depend grttual
previous inputs. Used in tandem with the ardoop operator from
Figure 1, one can define strictly causal loops. We offer just t

dLoop ::c— ((cxa) ~ (cx b)) — (a~ b)

The dLoop operator takes an initial value for the looping param-
eter, which will update in time but always be slightly deldye
Notice that whendLoop is given the simple swapping function
(A (x,y)-(y,X)) as its second argument, it reduces to an instance of
theinit function acting as a unit delay.

3. The Formal Language

but here we have two occurrences—what is the effect? Are the We Specify our |anguage in a similar manner to L|nd|ey et al.
sounds somehow merged together? Is one sound stream i§nored[2010]. We start with the lambda calculus extended with alpcd

A similar situation can be constructed for input where thguin
device provides a stream of events to multiple listenera. iew
event appears, should all listeners receive a copy of itsirgae,
and if only one, which?

In previous work, Winograd-Cort et al. [2012] proposed
source typess a solution to this problem. By adding a phantom
type parameter to each signal function, we were able to repre
sent what resources that signal function accesses. Thisf set
sources is then statically checked whenever two signaltifume

are composed—if the sets of resources of the two signal func-

tions are not disjoint, then the composition results in atgpror.

type and general recursion, which when necessary, we Vi@l re
to as.Z{— x}. We show the abstract syntax for this language in
Figure 2. We let's range over typess over variable namess over
expressions, ands over environments. A type judgmdnt-e: 1
indicates that that it follows from the mappings in the eoriment

I that expressiore has typet. Sums, products, and functions
satisfy3- andn-laws. This is a well established language, so rather

2This is a reference to the theoretical astronomical oditiig, “Einstein-
Rosen bridge,” a one-directional path through space-tinod shat matter
can only flow in through the black hole and out through the evhitle.

Typ 1t 2= () unit
| T1xXT2 binary product
| T1—=1 function
Var v
Exp e 1= v variable
| (e1,&) pair
| fste left-pair projection
| snde right-pair projection
| Ave abstraction
| ee application
Env ' = wVv1:T1,...,Vn: Ty type environment

Figure 2. The abstract syntax o {— x }.

Res r
ROp p = next(r) query resource

| put(r,e) set resource
RTp t = {(Tin, Tout) resource type
Typ 1 = ..

| 11 () 1) resource typed SF
Exp e = ..

| arr(e) SF construction

| first(e) SF partial application

| eg>>e SF composition

| rsf[r] SF resource interaction

| wormholefry,rp(a; €)

wormhole introduction

REn % = rp:ity,....fh:ty resource environment

than repeat the typing rules, it suffices to say that they are a Figure 3. The abstract syntax additions #6{— x } that describe

expected. We also borrow an expected operational semdhsts
utilizes lazy evaluation.

From there, we add the type for resource-typed, arrow-based

signal functions, and we add expressions for the three atend
operators for themar, first, and >>>). In the process, we also

add resources as a hew component to the language, comptbte wi

a resource type, resource operators, and a resource enenbn
Finally, we connect the resources to the expressions witira 6f
resource interactiorrgf), and we provide an operator for creating
new virtual resourcesnormhole).

We show our extension to the abstract syntax in Figure 3 and th

typing rules for resources and resource operators in Fgarel for
newly added expressions in Figure 5. In addition to the previ
syntax, we lets range over resources over resource typeps
over resource operators, ads over resource environments. A
type judgmentZ + r : t indicates that resource environme#t
contains an entry mapping resource resource typé. Typically,
we will combine judgments to the form, % ... indicating that
both environments may be used.

Lastly, we make the following definition of programs that our
language supports at the top level:

Definition 1. An expression p is program if it has type() & 0
for some set of resources R.

This restriction is actually rather minor. As our language i
defined for FRP, it is reasonable to require that the expressting
run is a signal function. Furthermore, as all input and outpua
program should be handled through resources, the inputtpdto
streams of a program need not contain any information.

3.1 Resources and Resource Operators

our language.

TY-RES— — ——
rZr:t)kFr:t

TY-R-NEXT

M2Z(r:(_,T)Fnext(r): 1
MZ¢e: T

Ty-R-PUT
I, 2(r : (Tin, Tout)) F put(r,e) : (Tin, Tout)

Figure 4. The typing rules for resources and resource operators.

updating the resource. The typing rules for resources agid db-
erators are shown in Figure 4.

The Ty-R-NEXT rule shows that theext value from a resource
has the same type as the resource’s output type. Yhe-PuTrule
says that an expressiertan beput into a resource if it matches the
input type of the resource, and the result is a resource cfdhres
type as the original resource.

Resources are used in the language at both the type levéiand t
expression level. At the type level, resources are assatvaith the
signal functions that use them. Specifically, they are ithetliin the
set of resources that is part of the type of signal functions.

At the expression level, resources can be accessed foranput
output via thersf expression. Given a resource, it essentially lifts
the resource into a signal function. The input type of thenalg
function is the input type of the resource, and the outpue tigp
similarly the output type of the resource. Furthermore, digmal

Resources should be thought of as infinite streams of data tha function is tagged with the given resource at the type lesdl.

correspond with real world objects. The default resourcéren-
ment,%,, is essentially the real world (i.e. user and outside data in
teraction) split up into discrete, quantized pieces, but rtual”
resources can be added to resource environments via wamhol

In our language, resources are basically “black boxes”. &e ¢
interact with them via the resource operatgoat(and next), but
as they represent external interaction, we do not examiem th
more closely. Resources each have a type of the f@mtout)
that indicates that the resource accepts expressions e@fitypnd
produces expressions of typgyt.

Resource operators are functions that take a resource tmnd in
act with it in some way. They are distinctly not expressiond a
are not used by expressions, but they are necessary forrdgfay
source interaction in the operational semantics. The tvesaiprs
we introduce are for examining a resource’s current statiefan

resource interaction, and thus all I/O, is donergiaexpressions.

New virtual resources are createdwgrmhole expressions. A
wormhole expression takes an initial value to be contained in the
wormhole’s memory, and produces two fresh virtual resairep-
resenting either end of it. In practice, it works similartyttow one
might use det expression in another language—thermhole ex-
pression takes two names for the fresh resources as well@s an
pression in which those resources are available. Note Hietuah
wormhole expressions do take two names for the resources they
produce, the resources are guaranteed to always be freshfeve
there are naming conflicts. That is, typical scoping rulggyap

The purpose of resources is to track I/O; therefore, desipite
fact that they are “usable” at the expression level, we dowaott
them to escape through an abstraction and so we do not eween all
them as first class values.

r#Zte:a—p
I',,%’}—arr(e):a&B

TY-ARR

E%’I—e:awR»B
% first(e): (a x y) < (B x y)

TY-FIRST

F,%I—el:asﬁﬁ F,%l—ez:BB%y
RIUR, =R RNR=0

F,,%’}—e1>>>e2:av'iy

Ty-CompP

Ty-RSF I
I, 2(r: (Tin, Tout)) F rsf[r] : Tin ~ Tout

M2 (7)o (O Fera £ B
rZ-e:1 R=R\{rw,rn}

r,Z% + wormhole[rw,rp)(&; €) : a 3 B

Ty-WH

Figure 5. The typing rules for the new expressions of our lan-
guage.

3.2 Signal Function Expressions

Here, we examine each of the typing rules for new expressiens
have added to the language (shown in Figure 5):

e The Tr-ARRrule states that the set of resource types for a pure
function lifted to a signal function is empty.

e The Ty-FIRST rule states that transforming a signal function
usingfirst does not alter the resource type.

e The Ty-Cowmp rule states that when two signal functions are
composed, their resource types must be disjoint, and thé+es
ing resource type is the union of the two.

e The Ty-RSF rule is for resource interaction. It says that the
input and output types of the signal function that interadts
a given resource must match the input and output types given
by the form of the resource. Furthermore, the signal functio
created will have the singleton resource type set contgithia
used resource.

e The Ty-WH rule is for wormhole introduction. It says that the
body of the wormhole is a signal function provided that two
resources are added4® one of the form((), T) (the whitehole)
and one of the fornit, ()) (the blackhole) where is the type of
the initializing expression. The result of the whole expies
is the same as that of the body except that the resourges
and r, are removed from the resource set. This omission is
valid because the virtual resources cannot escape the wwgmh
expressior?.

A more complete analysis of the reasoning for these typitesris
covered by Winograd-Cort et al. [2012].

3.3 Choice and Application

In Section 2.1, we mentioned the arrow extensions for chamk
application. They have little impact on the focus of this @ap
so we omit them from the language for simplicity. Howevelisit
worth mentioning that our language has no problem with thech a
can fully support them. Therefore, we provide their typintes to
demonstrate how they function in the presence of resoupsty

3This is similar to a trick used in Haskell to hide monadic effeby
using the universal type quantifiésrall to constrain the scope. Here, the
resources are only available inside the body of the wormhole

F“%’I—el:asiy I',,%’l—ez:Bngy

Ty-CHC RiIUR, =R
~ R
rZr-elle:(a+B)~y
TY-APP = =
M Z+-app:((a~B)xa)~B

The Ty-CHc rule is for the choice operator. When choosing, we
can be certain that only one branch will be chosen, so thétirggu
resource type set is the union of those of its inputs, whigh ar
not required to be disjoint. TheYFAPP rule, for the application
operator, allows for arbitrary evaluation of signal funcs, but it

is restricted such that those signal functions must all tiawesame
resource types.

4. Examples

We have introduced wormholes as a means to achieve sidaseffec
and non-local communication in FRP programs. The usefaloés
these concepts can be best demonstrated with a few examples.

4.1 Loops

One may wonder at the absense of looping in our language. We
mentioned in Section 2.4 that we would not adhere to the atand
arrow loop, but our language has no built-in delay loop eithe

We start by showing that a strictly causal implementatioimiof
(also mentioned in Section 2.4) can be produced as syntagjer
with a wormhole:

r#Zt-eq:a

Ty-INIT 3
MZEinitg:a~a

init i d:‘Efwormhole[rw,rb](i;rsf[rb] > rsflrw])
By attaching the blackhole and whitehole of a wormhole back t
back, we create a signal function that accepts present spdit
returns output delayed by one step. Essentially, we se¢hthirtit
operator is the connection of two ends of a wormhole.
Interestingly, we can attach the wormhole ends the other way

too. Obviously, this can lead to a trivial signal function tgpe

0 2 () that does nothing, but if we provide a signal function to

be run in between the connection, we can build the following:
M%Zte:y I',,%’}—e:(yxa)vR»(yxB)
%+t dLoop(e;e):a A B

Ty-DLooOP

dLoop(i;e) def wormhole[ry, rp)(i;
arr (Ax. ((),x)) > first(rsf[rw]) >>e
> first(rsfrp]) > arr (A(,X). X))

We are able to achieve delay looping by a clever use of a waienho
We first produce a new wormhole and provide the loop’s inil
tion value as its initial value. Tharr andfirst commands together
arrange the input so that the wormhole’s whitehole outpptised
with the external input just asis expecting. After that input is pro-
cessed by, the resultant loop argument is fed into the wormhole’s
blackhole, and the output value is returned. Due to the tdnesa
havior of wormholes, values that are output frenbecome new
input values toe on the next iteration. Thus, the input on the
iteration is given by the output on tme- 1% iteration.

In fact, even a built-in delay loop would not be able to parfor
better. The above loop delays by exactly one iteration. Wete
any less delayed, we would no longer satisfy our strict daysa
requirement.

4.2 Data transfer

One strength of wormholes is their ability to transfer daganizen
two disparate parts of a program. Typically, this would imeo
rewriting signal functions so that they consume or produceem

streams so that one can create a stream link between the twoP

components to be connected. However, this work is unnegessa
with wormholes.

First, we will assume that our language is extended with an
Integer data type; this will help us keep track of the data moving
through the wormhole. Next, we wil consider the followingotw
programs:

)
%)

We will assume that as long & andR;, are disjoint, therR; and

PR CR= (IntegerB/% Integen — (()
PR CR= (IntegerB/S Integen — (()

Unfortunately, the Haskell implementation of our systemas
as powerful and robust as the theory we have presented. IMotab
wormholes are conspicuously absent from the previous®sesti
implementation discussion, and in fact, we currently belithat a
roper implementation may not be feasible without new esitars
to Haskell's type system.

In previous work, wormholes were not as dynamic as we have
presented them here. The programmer was required to detlare
wormhole resources at the top level, and as such, only a,finite
pre-determined number of wormholes could be made. Even then
wormholes could not be generated with a loop as each resource
had to be attached manually.

One of our contributions in this paper is to show a better way t
make wormholes: the type signature shown in Figure 5 all@wg n
unique resources can be created dynamically. For the ingpitan
tion, we can use the same strategy of existential types akogetp
by the ST monad [Launchbury and Peyton Jones 1994]. Thus, the

Ry are disjoint also. These two programs both do almost the sametype for a function to make wormholes should be:

thing: they acquire a stream boftegess from a source, apply a given
signal function to them, and then send the result to an odiptite.
Our goal is to connect these two programs in order to cross the
streams. That is, we would like the stream fréinto go to the
output device of, and vice versa. Without wormholes, we would
be forced to examine and change the implementation and fygte o
least one of these two programs. However, instead, we camedefi

main= wormbhole[ry,,] (0;
wormhole[rw,, 'y,] (0;
Py (rsfrg,] > rsflry,]) >
P, (rsf[ry,] > rsflrw,])

We pair two wormholes together almost like tivot expressions,
except that we swap the inputs and outputs. This providesiths w
two functions that are able to communicate even when noresea
seem readily available.

5. Wormholes in Haskell

Previously, Winograd-Cort et al. [2012] provided a workiimg-
plementation of an arrow-based FRP system with wormholats th
utilized resource types. First, we noticed that since tiseurces
of a signal function are statically determinable, they $thdne im-
plemented through Haskell's type system. Thus, we let eaeh r
source have an empty type associated with it, and we levérage
Haskell's complex data types, type classes with functiclegen-
dencies, and type families to interact with them. Thus, ype of a
signal function is represented in Haskell by the three agnirdata
typeSF r a b, which translates ta~- b in the abstract language of
this paper.

Ideally, we would like a data type to encode sets at the type
level, but we were unable to achieve this. Two identical sats
have different representations, and the type checker iblena
unify them. Fortunately, between work on heterogeneous lis
[Kiselyov et al. 2004] and Haskell's new data kinds extensio
[Yorgey et al. 2012], type level lists are straightforwar im-
plement. In fact, our previous work showed that unioning afl w
as the property of disjointness is implementable with logter
neous lists. Where we previously used an un-kinded list, awh
since updated to employ the standard notation for type lkstsl
presented by the data kinds extension.

Our last step was to incorporate Haskell® monad directly
into the signal function framework to allow side effects tfer-
formed during signal function execution. Signal functiesource
interaction (thesf operator in our language here) was achieved by
programmer-level tagging of the appropriate resourcesgatith
the pipe (andsourceandsink) command.

wormhole:: forallt r a b.
t — (forall rw rb r’. SetDiff f /[rw,rb] r =
SF/[rw] ()t — SF’[rb]t () —» SFr' ab)
—SFrab

The classSetDiff xs ys zsvould have instances to define that the
setzswould contain all of the elements of the setexcept those
from the seys

The problem is that it does not seem possible to define the
SetDifftype class for the same reason that type level sets cannot
be constructed. In this case, there are multiple correastyprr
when givenr’, and the type system is unable to properly unify.

One option is to find a canonical representation for our sets s
that they can be reduced to lists. For instance, by assagiatich
resource with a type-level number, we can require that aureso
set is always sorted. In this way, there will be only one rsere
tation of any given type set, and the type checker will be able
unify two sets. However, awormholecan be recursively called,
there is no way to assign numbers to the existential wormiele
source types. Thus, we must restrict our functionalitys betcome
lists, unioning becomes concatentation, and set differeeguires
an order. In addition, the type eformholebecomes:

wormhole:: foralltrahb.
t — (forall rw rb.
SF’/[rw] ()t — SF/[rb]t () = SF (rw': rb’:
—SFrab

With this definition, we are forced to have the wormhole reses
ordered so that they come first, and because unioning, wiaiph h
pens during signal function composition, concatenatesures
type sets, this applies many more restrictions to using Wwoles
than we intend.

r)ab)

6. Operational Semantics

The operational semantics for resource typed signal fanstare
somewhat complex, and in an effort to demystify them, we sepa
rate the functionality into three distinct transitions. tAe highest
level, we apply a temporal transition. This transition dsthow
resources behave over time and explains how the signalidunct
itselfis “run”. (Recall from Definition 1 that only expressis with

type () 2 () are allowed as “runnable” programs.) Because our
language is lazy and evaluation is performed when necessary
pressions may be able to simplify themselves over time.d&fhes,
this transition will return an updated (potentially morelesated)
version of the input program.

The temporal transition makes use of a functional transitio
interpret the flow of data through the component signal fionst

ET-ARR——————
arr (e) val

ET-FIRST ———
first(e) val

ET-Comp —————
(e1>>>ep) val

ET-RSF———
TRS rsflr] val

ET-WH

(wormhole[ry, rp](&; €)) val

Figure 6. The evalution transition judgments for our extension to
L{—=x}.

of the program at a given point in time. Thus, the judgments in
the functional transition handle how the instantaneousesabf the
signals are processed by signal functions.

Because the expressions to be run can contain arbitraryd@mb
calculus, the functional transition judgments make usenahealu-
ation transition when necessary to evaluate expressioan sthict-
ness points are reached. This is a fairly simple transitiat per-
forms as a typical, lazy semantics of a lambda calculus.

A top-down view of the three transitions is the most intugtiv
way to describe their functionality. However, to define theétnis
easier to start with the evaluation transition and work oprfthere.
Therefore, we present the following transitions:

Evaluation transition
Functional transition

Temporal transition

e— €
(V%8 = (V€. %)
(%W P) & (@, 0P

where

eande are expressions

¥ andy’ are sets of triples
x andy are values

W and#' are sets of wormhole data

Z and%’' are resource environments, and
PandP’ are programs

In the following subsections, we discuss these transitiomaore
detail.

6.1 Evaluation transition

The evaluation transition is used to evaluate the non4siirea
components of the language. In an effort to conserve spactke
as given the evaluation semantics 6 — x }. That is, we assume
a classic, lazy semantics for lambda expressions and afiplic
product-type pairs and projection, and sum-type case sisaynd
injection. We show our additional rules for the five additbex-
pressions of our language in Figure 6.

We use the notatioa val to denote that expressiais a value
and needs no further evaluation.

Obviously, these rules are very straightforward: no ev@na
is done on signal functions in this transition. This traositis im-
portant for the operations a#{— x}, but it is strictly a formality
here.

The languageZ{— x} has a standard Canonical Forms Lemma
associated with it that explains that for each type, theeccaly
certain expressions that evaluate to a value of that typesifple
examination of these new rules to the transition, we cameixtiee
lemma as follows:

Lemma 1 (Canonical Forms) If e val and e: a . B, then e is
either an SF constructor, an SF partial application, an Sknpm-
sition, an SF resource interaction, or a wormhole introdoot

6.2 Functional transition

The functional transition details how a signal function &eks
when given a single step’s worth of input. It is a core compbioé
the temporal transition described in the next section assitetially
drives the signal function for an instant of time. The fuaotl
transition judgments are shown in Figure 7.

Before we discuss the judgments themselves, it is important
to examine the components being used. First, one will ndtiee
set?. ¥ represents the state of the resources (both real and yirtual
in the world at the particular moment in time that this tréiosi is
taking place. Each element of is actually a triple of a resource,
the value that resource is providing at this moment, and #haev
to be returned to that resource. At the start, we assume lthatt a
the elements have the forfnx,-), which indicates that resource
provides the valuex and has no value to receive. It should be no
surprise that the only judgments that read from or modifg Hat
are Fr-RSF and F-WH, the judgments for resource interaction
and virtual resource creation.

The second argument to each of the judgments (typically
in Figure 7) represents the streaming value being pipedtheo
signal function. However, since the functional transitisnonly
defined for an instant of time, rather than this value beinganal
stream, it is the instantaneous value on the stream at thésgiep.

Its partner is the second result, or the instantaneous \cltiee
streaming output of the input signal function.

The third argument is the expression being processed. The pu
pose of the functional transition is to describe how sigoatfions
behave when given values from their streaming input, andiels, s
itis only defined for signal functions (that is, expressitrat have

the typea B B for some seR). Notably, there are only judgments
corresponding to the forms given in the updated canonicahgo
lemma (Lemma 1). On the output end, this term representsahe p
tentially further evaluated form of the input expressiore Wove
later in Theorem 2 that this output expression is functigreduiv-
alent to the input one.

The first three terms of the output correspond to the threeser
of the input, but there is also an additional te#f) which contains
data about any wormholes processed during this transitioad-
dition to adding the two virtual resources created by a walmh
expression to the resource environment, we need to selydtaép
track of the fact that they are a pair. Therefo¥&, contains ele-
ments of the formjrp, rw, € wherery is the name of the blackhole
end of the wormholer,, is the name of the whitehole end, aad
is the value in the wormhole. We will use this informatiorelato
properly update wormholes over time in the temporal tréomsit

Note also that we use the teren—* € to denote continued
application of the evaluation transitien on e until it is evaluated
to a value. That value ig

As this is a critical piece of the overall semantics, we exami
each of the judgments individually:

e The Fr-ARR judgment does not touch the resources, so the
input 7 is returned untouched in the output. The expressign
does not need to be evaluated due to the lazy semanticsjbut it
the streaming output nonetheless. The final two outputsateve
that no further evaluation of the expression has been dodie an
no wormhole data was created.

e The Fr-FIRST judgment is only applicable when the input
streaming value is a pair (which is assured by the type checke
by using the ¥-FIRST rule). The first element of the pair is
recursively processed with the argumentitst, and the output

FT-ARR

(¥, x,arr(e)) = (¥,exarr (e),0)

FT-FIRST e e

(7%

=y e W)

(7, (x,2),first(e)) = (¥, (y,2),first(e"),#)

—* g
FT-Comp @ L

(’7/3)(36(1)3 (’7/,7y7]{7%)

e (V&)= (V" 26,72)

(7, x.e1>>6) = (

V7,2, €] >> & H1UW5)

FT-RSF

(VU {(r>y> ')}>X> rSf[rD = (7/ U {(r, ',X)},y, rSf[rL@)

*
Fr-wH 22" ¢

(VU{(YW,Q,'),(Y

)),')},X,e() > (”V/’y’e(/’W)

(¢, x,wormhole[ry, rpy](&; €)

b
)= (7, & # U{[rp,tw,al})

Figure 7. The functional

is formed by the updatedt’ and by re-pairing the outpyt As

the body of thefirst expressiong, was evaluated, its updated
form is returned along with any wormhole data the recursion
generated.

The Fr-Comp judgment first sends the streaming argument
throughe; recursively. Then, with the updatet!, it sends the
resulty throughe,. The resulting?”” andz are returned. Once
again, the updated expression is returned in the outputlyl as
the wormhole data from both recursive calls of the transitice
unioned together and returned.

The Fr-RSF judgment requireg’ to contain an element of the
form (r,y,-), wherer is the resource being accessgds the
value the resource currently has, and no output has beetosent
this resource yet. The streaming vahus put into the resource,
and the result is the streaming valydrom what was in the
resource. The set’ is updated, replacing the triple used here
with a new one of the fornfr,-,x’) showing that this resource
has essentially been “used up”.

The Fr-WH judgment first evaluates its bodyto the valued'.

For its recursive call, it updates the s&twith two new triples
corresponding to the two new resources created in the worm-
hole operation(rw, &,) and(rp, (),-). These are two fresh, un-
used triples thatsf operators can make use of in the baaly

As triples are never removed,” will include these two triples

as well. The result is thig”’ with the new triples, the streaming
value y, the updated body’, and the wormhole data from the
recursion updated with the elemdnj, ry, &] corresponding to
this wormhole. Note that the returned expression is no Ibage
wormhole but has been replaced with the body of the wormhole.
This is because now that this wormhole has been evaluased, it
values live inside¥” and it has been cataloged #—it is no
longer needed in the expression.

The following theorems provide some extra information alibe
overall functionality of this transition.

Theorem 1. If (¥,xe) = (¥ y,€,#), thenV(r,ab) € ¥,
A(r,d,b') € ¥ and V[ry,rw,i] € #, I(rp,ap,bp) € ¥’ and
EI(r.W7aVV7b\N) € /V/'

This theorem states that the elements in the inpuare pre-
served in the output. In fact, there is a direct correspoceldre-
tween them such that if the input set has an element with resou
then the output will too. Furthermore, when new values adedd
(as in Fr-WH), they correspond to values . The proof is
straightforward and proceeds by induction on the functitnaasi-
tion judgments. It has been omitted for brevity.

transition judgments.

Theorem 2. Ife: a = B and (¥ ,x,e) = (V',y,€,#), then é:

a R B and € has the same structure of sub-expressions as e with
the exception that wormhole expressions may have beercezpla
by their bodies. For each so replaced, there is a correspugdi
element in? of the form|ry,rw,i] such that and ry are the
virtual resources of said wormhole. FurthermoreCRR andVvr €
(R\R), either[r,_,_] € # or [_,r,] eV .

This theorem states exactly how the output expressiazan
be different from the input expressi@ Notably, it will still be a
signal function with the same input and output types andlitstill
behave in essentially the same way, but its set of resoupesty
may grow. Specifically, if the resource type set does grous it
because a wormhole expression was reduced to its body and the
virtual resources it introduced are now visible at a higlesel. A
notable corollary of this theorem is that# = 0, thene= €.

Proof. The proof follows by induction on the judgments and the
typing rule Ty-WH for wormholes. A cursory examination of the
judgments reveals that the only one to change the form of the
expression from input to output isTFAH, which replaces the input
expression with the body of the wormhole. The typing ruléstel

us that ife: a & B ande is a wormhole, then the body efhas

type a R B whereR =R\ {rw,rp}. Although the resource type
set may have grown, it could only have grown by the addition of
rp, fw, Or both. Furthermore, the elemdn, rw,] is added to the
output’?”’. O

Lastly, it may appear that multiplesf commands on the same
resource could be problematic; after all, the-RSF judgment
initially requires the resourceto have a triple of the fornfr,y,-),
but it results in the third element of the triple being filled That
is, there is nasf command judgment where the triple has a value
in the third element. However, as we prove later in Theoreiif 3,

the program has type . B, then it must have at most omsf
command for any given resource

6.3 Temporal transition

Because signal functions act over time, we need a transition
show their temporal behavior. At each time step, we prodess t
program, taking in the state of the world (i.e. all the reses) and
returning it updated. There is only one temporal transjtinn it is
quite complicated. It is shown in Figure 8.

This transition says that the resource environmghtthe set
of wormhole data#’, and a progran® transition into an updated
resource environment, an updated set of wormhole data, and a
potentially more evaluated program.

Yin = {(rvneXt(r)f) ‘ r GQ}U{(eriv') | [rbvrwvi} € W)}U{(rb’()v’) ‘ [rbvrwvi} € W)}

(%ﬂﬁ ()> P) 3 (%Ub ()- P/', %ew)
' ={put(r,0) [r € Z,(r,-,0) € Yout,0—~" 0'}

#' = {[rp,rw,if 0=-theni elseo] | (rp, -

,0) € Yout, b, Tws 1] € (W U Whew) }

BV P) S (% W' P)

Figure 8. The temporal transition.

The first precondition extracts data from the resources and will compete for the same resource. To express this, we msst fi

wormholes and compiles it into a form that the functionahtra
sition can use. For the resources, we create triples of tima fo
(r,next(r),-) meaning that the resourc@rovides the valuaext(r)
and is waiting for a return value. For wormholes, we actuati-
ate two triples, one for the blackhole and one for the whikeho
The whitehole uses the whitehole resource nag@nd the current
value in the wormhole, and the blackhole usgsand produces
only ().

This data is provided to the functional transition alonghwtie
programP. Becausé has typeg() B () by definition, the streaming
argument is set t¢). The result of the functional transition is the
updated value set/tyt), the streaming output d® (given by the
type to be()), the updated program, and a set of any new wormhole
data encountered during execution.

The last two preconditions are analogous to the first ong. the
extract the resource and wormhole data frégy. For every ele-
ment in¥oyt that corresponds to a resourceZh we take the output
valueo, evaluate it, and push it to the resource. The resulting up-
dated resources make up the new%étlt may be thab was never
filled and is still empty—theput operation is executed regardless
in order to push the resource one time step into the futurée No
that because of the use of the evaluation transition, thjs atts as
a strictness point for the streaming values of the signaitfans.

The wormhole data is extracted in much the same way. For
every element in/g that corresponds to a blackhole in either the
original wormhole data se#” or in the new addition$/new, We
examine the output value. If o was filled in, then the updated
wormhole entry contains the new value; otherwise, the wateh
keeps its old value.

In total, we see that the temporal transition uses the pnogra
P to update the resource® and the wormhole dat#’. Because
of Lemma 1, we can see tha#’ contains all the resources that
Z# did, and similarly,”’ contains all of the elements from both
and #new Therefore, if (%2, # ,P) LN (%', w',P), then this
transition can repeat indefinitely. That is, the next stepldide
(%', 9" P AN (%", w" ,P") and so on. Since each pass through
the transition represents one moment in time, this makesesena
valid way to represent program execution over time.

We can use the temporal transition to establish an overall se
mantics for a prograr® in our language. Recall th&Z, is the de-
fault resource environment containing all the resourceth®freal
world.

Definition 2. If P is a program (that is, an expression of the form
0 B () for some set R), then P will have the infinite trace starting
at state(Z,, 0, P) that uses only the temporal transitioh.

7. Safety

Here we show the safety that resource typing provides. Vémiht
to show that if a program is well typed, then no two components

define what it means to interact with a resource.

Definition 3 (Resource interaction)A program P interactonce
with a resource r at a given time step if it reads the value prztl
by r at that time step, returns a value to r at that time stepjoes
both simultaneously.

With this definition, we can state our resource safety theore

Theorem 3(Resource safety)lf a program P: a 2 B, then P will
interact only with resources in R, and for each resourcetiiiacts
with, it will do so at most once per time step.

This theorem tells us that any program that type checks will
only use the resources in its type and never have the problesnew
two components are vying for the same resource. The program
will be entirely deterministic in its resource managemant from
the type alone, one will be able to see which resources ithms t
potential to interact with while it runs.

Proof. The proof of resource safety begins by examining the tem-
poral transition. Because each elemen#ris a unique resource,
we know that interacting once each with different element&i
will never cause a problem. Furthermore, as all we do to ereat
' is exactly ongout operation on each resourc#! will likewise
have unique resources. The concern, then, comes from tlge fun
tional transition. We must prove that updates/fi are not being
overwritten by future updates during the functional tréosi
Therefore, the bulk of the proof proceeds by induction on the
functional transition where we must show that any elemeant§'i
are only being updated at most once. Based on the updateahCano

ical Forms Lemma (Lemma 1), we know that siree o B B, it
must be one of the five SF operators. We examine each in turn:

o SF constructor: If P is of the formarr (e), then by typing rule
TY-ARR, R= 0 and it will use judgment FARR. There are
no other transitions nor resource interaction being peréat
in this judgment, and sinc® = 0, we trivially satisfy our
conditions.

SF partial application: If P is of the formfirst(e), then by

typing rule Tv-FIRST, we know that ife has typea R B, then
R=R. Furthermore, we know th&will proceed via judgment
FT-FIRST. By our inductive hypothesis, we know thatwill
interact with each resource R at most once, and since no
resource interaction happens in this judgment, we satisfy o
conditions.

SF composition:WhenP is of the forme; >>> e, it will pro-
ceed by the F-Cowmp judgment. By typing rule Y-Comp, we
know thate; has resource type sBj ande, has resource type
setRy such thaR; UR, = RbutRy N Ry = 0. By our inductive
hypothesisg; evaluates interacting with at most the resources
in Ry and ey evaluates interacting with at most the resources
in Ry. However,R; andR, share no common resources, and to-
gether, they make uR. Therefore P does not interact with any

more resources than thoseRyand any inR that it interacts
with, it does so at most once.

SF resource interactionif P is of the formrsf(r], then it will
proceed by the FRSF judgment. Typing rule i-RSF tells us

that its type must bexr {J»} B. The transition completes in one
step with no preconditions making use of no further callg, bu
in fact, 7" is being modified, so resource interaction is taking
place. We see that the elementi#nhfor resource is the only

one being accessed and it happens precisely once. The &cess

allowed because trivially € {r}.
wormhole introduction: Pwill proceed by the F-WH judg-
ment when it is of the fornvormhole[ry, rp](&; €). Typing rule

Ty-WH tells us thak has typea 2 B the same aPB. First, we
recognize that no resource interaction can be performeg by
because it is never evaluated as a expression by the fuattion
transition. Even though we add values#o we do not modify

and existing values, so we are not doing any true resource in-

teraction in this transition. Therefore, our inductive biesis
tells us that only acceptable resource interaction is dorikd
transition of the precondition. O

This proof takes the progress and preservation of our séesant
for granted. The proofs for these can be located in Appendix A

8. Conclusion

We have expanded upon the concept of wormholes, providing a

clearer picture of their functionality than previous wolNot only
have we improved their design, allowing dynamic wormhole- cr
ation with existential resource types, but we have solidifteeir
theoretical foundation. This led us to new insights aboatdhpa-
bilities of wormholes, which has allowed us to draw a conioect
between them and causal loops. In fact, we show that in the pre
sense of wormholes, other looping structures are supesluou
Additionally, we have presented a novel way to conceptealiz

the program flow of an arrow-based FRP language by separating

the various components of the semantic transition anddoting

a temporal one. In doing so, we define the formal semantids tha
allow us to prove that resource types provide the safety wrat
claim they do. That is, no well-typed resource-typed sigoat-

tion can access resources that are not in its resource typanse
furthermore, any that it does access will be accessed frdgnaon
single component. Therefore, a proper implementation efréx
source type system should allow functional reactive pnognéng
with side effects without fear of the typical bugs that plagmpure
programming languages.

9. Related Work

The idea of using continuous modeling for dynamic, readbge
havior (now usually referred to as “functional reactive gnam-
ming,” or FRP) is due to Elliott, beginning with early work on
TBAG, a C++ based model for animation [Elliott et al. 1994(bS
sequent work on Fran (“functional reactive animation”) exaied
the ideas in Haskell [Elliott and Hudak 1997; Hudak 2000]eTh
design of Yampa [Courtney et al. 2003; Hudak et al. 2003] tstbp
arrows as the basis for FRP, which is what we use here.

Liu etal. [2011] introduced aArrowInit class to capture causal-
ity in their work on causal commutative arrows. Indeed, wendr
our inspiration for the design of our delay loops from thatist
ture. Although our work is somewhat more expressive sindg it
not limited to being only first-order, it does lack the bersedit be-
ing commutative, and as such, the optimizations for CCA ate n
applicable here.

Krishnaswami et al. [2012] also explore causaliity at theety
level. They describe a language that uses non-arrow-baR&d F
yet still manages to restrict space-leaks statically. Thiguage
is somewhat more expressive than ours as it allows a moreigene
loop operator, but it is not clear whether it can be easilypsethto
allow mutation or other side effects.

Cooper and Krishnamurthi [2006] embed an effectful imple-
mentation of FRP into PLT Scheme (now Racket) in FrTime. Al-
though similar in content and behavior, this system canrmtige
the resource safety that we do. Furthermore, the semaihiéds t
Cooper [2008] presents are quite different from ours, asdes u
an imperative style with heap updates where we introducéedtee
of resources.

The languag€lean[Brus et al. 1987; Plasmeijer and van Eeke-
len 2002] has a notion afniqueness type#n Clean, when an 1/O
operation is performed on a device, a value is returned dpakr
sents a new instantiation of that device; this value, in,tomast be
threaded as an argument to the next I/O operation, and sohis. T
single-threadedness can also be tackled uivegr logic [Girard
1987], and various authors have proposed language extsn&io
incorporate linear types, such as Wadler [1991]; HawHI[2@05];
Tov and Pucella [2011]; Wadler [1990]. In contrast, we docuwt-
cern ourselves with single-threadedness since we onlydraysig-
nal function to represent any particular 1/0O device. Ouufis on
ensuring that resource types do not conflict.

Recent work in linear-time temporal logic (LTL) [Jeffrey 22
Jeltsch 2012] explores the Curry-Howard correspondentvecies
LTL and FRP. This has led to another way to constrain the teatpo
behavior of reactive programs. Indeed, Jeffrey [2012] layssthe
basis for an implementation of a constructive LTL in a degeky
typed language such that reactive programs form proofs &f LT
properties.

Acknowledgments

This research was supported by a gift from Microsoft Redearc
and a grant from the National Science Foundation (CCF-083)16
Thanks to Shu-chun Weng for support and motivation.

References

G. Berry and L. Cosserat. The Esterel synchronous progragfanguage
and its mathematical semantics. $®minar on Concurrengyolume
197 of Lecture Notes in Computer Sciengemges 389—-448. Springer-
Verlag, July 1984.

T. Brus, M. van Eekelen, M. van Leer, M. Plasmeijer, and H.eBdregt.
CLEAN - A language for functional graph rewriting. Functional
Programming Languages and Computer Architectwelume 274 of
Lecture Notes in Computer Sciengeages 364-384. Springer-Verlag,
September 1987.

P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. Lustrdeglarative
language for programming synchronous systemg4th Symposium on
Principles of Programming Languagesages 178-188. ACM, January
1987.

. H. Cooperlntegrating dataflow evaluation into a practical higherelar
call-by-value languagePhD thesis, Brown University, Providence, RI,
USA, May 2008.

. H. Cooper and S. Krishnamurthi. Embedding dynamic datefia call-
by-value language. IfProgramming Languages and Systemslume
3924 ofLecture Notes in Computer Sciengages 294-308. Springer-
Verlag, March 2006.

. Courtney, H. Nilsson, and J. Peterson. The Yampa arcauélaskell
WorkshopHaskell '03, pages 7-18. ACM, August 2003.

. Elliott and P. Hudak. Functional reactive animation. International
Conference on Functional Programmingages 263-273. ACM, June
1997.

C. Elliott, G. Schechter, R. Yeung, and S. Abi-Ezzi. TBAG: iyinlevel
framework for interactive, animated 3D graphics applaradi In21st
Conference on Computer Graphics and Interactive Techsigoages
421-434. ACM, July 1994.

T. Gautier, P. L. Guernic, and L. Besnard. Signal: A deciagadianguage
for synchronous programming of real-time systems. Fumctional
Programming Languages and Computer Architectwelume 274 of
Lecture Notes in Computer Sciengeges 257-277. Springer-Verlag,
November 1987.

J.-Y. Girard. Linear logic. Theoretical Computer Sciencg0(1):1-102,
1987.

C. Hawblitzel. Linear types for aliased resources (extdnggsion). Tech-
nical Report MSR-TR-2005-141, Microsoft Research, RedindtA,
October 2005.

P. Hudak. The Haskell School of Expression — Learning Functional Pro-
gramming through MultimediaCambridge University Press, New York,
NY, 2000.

P. Hudak. The Haskell School of Music — from Signals
to Symphonies [Version 2.0], January 2011. URL
http://haskell.cs.yale.edu/?7p=112.

P. Hudak, S. Peyton Jones, and P. Wadler (editors). RepattheoiPro-
gramming Language Haskell, A Non-strict Purely Functidrexiguage
(Version 1.2).ACM SIGPLAN Notice27(5), May 1992.

P. Hudak, A. Courtney, H. Nilsson, and J. Peterson. Arroalots, and
functional reactive programming. Bummer School on Advanced Func-
tional Programming 2002, Oxford Universjtyolume 2638 of_ecture
Notes in Computer Sciencpages 159-187. Springer-Verlag, August
2003.

J. Hughes. Generalising monads to arrofésience of Computer Program-
ming, 37(1-3):67-111, May 2000.

A. Jeffrey. LTL types FRP: Linear-time temporal logic prefimns as
types, proofs as functional reactive programsSixth Workshop on Pro-
gramming Languages meets Program Verificatipages 49-60. ACM,
January 2012.

W. Jeltsch. Towards a common categorical semantics foatitime tem-
poral logic and functional reactive programming.28th Conference on
the Mathematical Foundations of Programming Semanfieges 215—
228. Elsevier, June 2012.

O. Kiselyov, R. Lammel, and K. Schupke. Strongly Typed Hageneous
Collections. CWI Technical Report SEN-E 0420, CWI, Augu3d2.

N. R. Krishnaswami, N. Benton, and J. Hoffmann. Higher-@rBanc-
tional Reactive Programming in Bounded Space.3%th Symposium
on Principles of Programming Languaggsges 45-58. ACM, January
2012.

J. Launchbury and S. Peyton Jones. Lazy functional stagadisr In
Conference on Programming Language Design and Implementat
pages 24-35. ACM, June 1994.

S. Lindley, P. Wadler, and J. Yallop. The arrow calculudournal of
Functional Programming20(1):51-69, January 2010.

H. Liu, E. Cheng, and P. Hudak. Causal commutative arra¥esirnal of
Functional Programming21(4-5):467—-496, September 2011.

P. Liu and P. Hudak. Plugging a space leak with an arelectronic Notes
in Theoretical Computer Scienc&93(1):29-45, November 2007.

E. Moggi. Computational lambda-calculus and monadsSyimposium on
Logic in Computer Scienc@ages 14-23. IEEE, June 1989.

R. Paterson. A new notation for arrows. $ixth International Conference
on Functional Programmingpages 229-240. ACM, September 2001.

S. Peyton Jones and P. Wadler. Imperative functional pnagriag. In20th
Symposium on Principles of Programming Languag&SM, January
1993. 71-84.

S. Peyton Jones et al. The Haskell 98 language and librarfesrevised
report.Journal of Functional Programming.3(1):0-255, January 2003.

R. Plasmeijer and M. van Eekelen. Clean — version 2.1 largyueport.
Technical report, Department of Software Technology, ©rsity of
Nijmegen, November 2002.

J. A. Tov and R. Pucella. Practical affine types. 38th Symposium on
Principles of Programming Languagegages 447-458. ACM, January
2011.

A. Voellmy and P. Hudak. Nettle: Taking the sting out of pramming
network routers. IfPractical Aspects of Declarative Languaggslume
6539 of Lecture Notes in Computer Scienc&pringer-Verlag, January
2011.

P. Wadler. Linear types can change the world!Working Conference on
Programming Concepts and Methogsges 347-359. IFIP TC 2, April
1990.

P. Wadler. Is there a use for linear logic? ®ymposium on Partial
Evaluation and Semantics Based Program Manipulatipages 255—
273. ACM, September 1991.

P. Wadler. The essence of functional programming.19th Symposium
on Principles of Programming languagegages 1-14. ACM, January
1992.

D. Winograd-Cort, H. Liu, and P. Hudak. Virtualizing Realevii Objects
in FRP. InPractical Aspects of Declarative Language®lume 7149
of Lecture Notes in Computer Scienpages 227-241. Springer-Verlag,
January 2012.

B. A. Yorgey, S. Weirich, J. Cretin, S. Peyton Jones, D. Mygtis, and J. P.
Magalhdes. Giving Haskell a Promotion. &th Workshop on Types
in Language Design and Implementatigrages 53-66. ACM, January
2012.

A. Proofs of Preservation and Progress

In order to prove preservation and progress for our semsntie
must show these properties for each of the transitions we hav
defined. Here we state and prove the relevant theorems.

Evaluation Transition

The evaluation transition is mostly lifted from a standeaagyl se-
mantics for.Z{— x}. The additions presented in Figure 6 simply
explain that the new expressions are all values. Therefoeser-
vation and progress follow trivially.

Functional Transition

Preservation for the functional transition proceeds irraightfor-
ward manner making sure that the streaming input is apatatyi
transitioned into a streaming output.

Theorem 4 (Preservation during functional transitionlf e : a 2
B, x:a,and(-,x,e) = (,Y,-,-), theny: B.

Proof. The proof of preservation proceeds by induction on the
derivation of the transition judgment along with the knoside of
preservation for the evaluation transition. Each of thegjudnts
can be proved trivially with a brief examination of the tygirules,
so we omit the details. O

Progress for the functional transition is a somewhat maes-in
esting concept. Because of the complexity of the transitia@are
forced to make a few assumptions about the input data:

Theorem 5 (Progress during functional transitionlf e : o R B,
x:a,and? contains elements such thate R, (r,a,-) € ¥ where

r: (Tin, Tout) @nd a: T, thendy: B.€ : a R B,7",# such that
(V,x.e) = (V')y e, ¥).

We require that in addition to the expressierbeing well-
formed and the streaming argumenbeing of the right type, the
set ¥ must also be “well-formed”. That is, for every resource
that e might interact with (all resources iR), there is a triple
in ¥ corresponding to that resource that contains values of the
appropriate types. Notably, they must all be resourceshédna not
seen any interaction. This is not an unreasonable requitease

we proved in Theorem 3 that at any point during the functional
execution, no resources see more than one interaction.

Proof. The proof of progress proceeds by induction on the deriva-
tion of the functional transition judgment. Based on the @acal
Forms Lemma (Lemma 1), we know that the functional transitio
need only apply to the five forms of a signal function, and we se
by inspection that it does. We examine each judgment in turn:

e SF constructo(FT-ARR): Wheneis of the formarr (¢/), typing
rule Ty-ARRtells us thate : a — B. Asx: a, the streaming
outpute xis of type B as necessary. The other outputs exist
regardless of the form & .

SF partial application(FT-FIRsT): If eis of the formfirst (¢/),
then the typing rule Y-FIrRsTtells us tha€ has resource type
setR just ase does. Our inductive hypothesis tells us that out-
puts are available for our recursive transition. The stiegm
output (y,z) has the appropriate type, and the expression out-
put, formed by applyindirst to the expression output of the
recursive transition has the same typeas

e SF composition{FT-ComMpP): e may be of the fornme; > e.

By typing rule Ty-Comp, we know thake: o R v,er:a 2 B,

andey: 8 2 y. The evaluation transitions progress, and by our
inductive hypothesis, the functional transitions in thegandi-
tion progress as well. The output is formed from the resuits o
the precondition with the streaming valaéeing of typey as

required. The expression output, made by composing the two

expressiong] andej has the same type as
SF resource interactio(FT-RSF): Ifeis of the formrsf[r], then

the typing rule Tv-RSF tells us that its type must he{L} B and
r:{(a,B). By the conditions of our theorer¥, must contain an
element(r,y,-) such thaty : 8. Therefore, the streaming output
y is of the right type. Lastly, the output expression is idesulti
to the input expression.

e Wormhole introductiofFT-WH): We use typing rule ¥-WH
whene is of the formwormhole[ry, rp](&; enody); it tells us

that epoqy has typea R B whereR =R\ {rw,rp}. Before
using our inductive hypothesis, we must prove that the value
set for the recursive call meets our requirements. We know
that (RU {rw,rp}) 2 R, so ¥ U{(rw,8,),(rp,(),")} clearly
satisfies the condition. Therefore, the streaming outpuitl be

of type B. Furthermore, the output expressighmust have the
same type asyoqy Which satisfies our output requirement]

Temporal Transition

By the definition of the overall operational semantics (D&éin 2),

we know that the trace of any prograhis infinite. As long as
we can prove progress, preservation is irrelevant. We make u
of the preservation and progress theorems for the evatuatiol
functional transitions shown earlier to prove the follogin

Theorem 6 (Progress of overall semantics)f P is a program
with typea R B and RC %, then the trace of P will always be

able to progress via the temporal transitieh when starting from
(Z%0,0,P).

Proof. The judgment for the temporal transition allows the input to
progress so long as the preconditions are met. The first tondi
defines?, to contain elements for each resourceznas well as
for each whitehole and blackhole pair #. This is used in the
second condition, which will progress only if we can provatth
(%n,(),P) will progress through the functional transitioR.may
access resources Ras well as any virtual resources introduced

through wormholes. In the base case, the functional tiansitas
never been run, ariddoes not contain any virtual resources. Then,
becausdR C %, ¥ contains elements for every resourcejrso
we meet the conditions of the functional progress theorehe{T
orem 5). In the inductive case, we are dealing with a potiyntia
further evaluated prograf with resource®’, which may contain
virtual resources. Then, all virtual resources will haverbgener-
ated from previous passes through the functional tramsitind all
of the virtual resources will be represented’#y Once againyi,
will contain elements for each resourceRh and the functional
transition can progress.

The last two preconditions are simply defintions @f and
" such thatR contains the same number of elements keyed by
the same resource names #sand that?’ contains the same
whitehole and blackhole resource name/ass well as any new
wormhole data entries frotfhew

The output progran®’ is not the same aB. Notably, its type

may have changed {0 L3 (). From Theorem 2, we know th&t is

the setR with up to two new virtual resources for each element
of #hew corresponding to the whiteholes and blackholes of the
elements of#hew This is fine for exactly the reason that these
new resources are “documented” #hew and #new iS unioned
with % for the output of the transition. Therefore, when is
being generated in the next iteration, all of the resouréd® will

be represented, both the original onesZnand any virtual ones
created and documentedifi.

Finally, we must consider the overall base case. On the first
iteration through the temporal transition, there can be intal
resources because no wormhole expressions have beeneskbgut
the functional transition yet. Therefore, the initial wdrate set?
can be the empty set. O

