
Wormholes: Introducing Effects to FRP

Daniel Winograd-Cort
Yale University
dwc@cs.yale.edu

Paul Hudak
Yale University

paul.hudak@yale.edu

Abstract
Functional reactive programming (FRP) is a useful model forpro-
gramming real-time and reactive systems in which one definesa
signal functionto process a stream of input values into a stream of
output values. However, performing side effects (e.g. memory mu-
tation or input/output) in this model is tricky and typically unsafe.
In previous work, Winograd-Cort et al. [2012] introducedresource
typesandwormholesto address this problem.

This paper better motivates, expands upon, and formalizes the
notion of a wormhole to fully unlock its potential. We show, for ex-
ample, that wormholes can be used to define the concept of causal-
ity. This in turn allows us to provide behaviors such as looping, a
core component of most languages, without building it directly into
the language. We also improve upon our previous design by making
wormholes less verbose and easier to use.

To formalize the notion of a wormhole, we define an extension
to the simply typed lambda calculus, complete with typing rules
and operational semantics. In addition, we present a new form of
semantic transition that we call atemporal transition to specify
how an FRP program behaves over time and to allow us to better
reason about causality. As our model is designed for a Haskell
implementation, the semantics are lazy. Finally, with the language
defined, we prove that our wormholes indeed allow side effects to
be performed safely in an FRP framework.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Semantics; D.3.2 [Pro-
gramming Languages]: Language Classifications—Applicative
(functional) languages

General Terms Design, Languages

Keywords Functional Reactive Programming, Arrows, Resource
Types, Stream Processing, Side Effects, Causality

1. Introduction
Functional reactive programming (FRP) is based on the notion of
a signal, i.e. a time-varying value. Although signals are invariably
represented as streams of data, FRP allows one to think of them as
having instantaneous values for any given moment in time, and to
think of programs as running to completion on each of those values

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Haskell’12, September 13, 2012, Copenhagen, Denmark.
Copyright c© 2012 ACM 978-1-4503-1574-6/12/09. . . $10.00

in an infinitesimal period of time.1 In practice, because computers
cannot process instantaneously, this is typically implemented as a
loop that proceeds at a given or variable clock rate, whose mechan-
ics are an abstraction of the language. In this way, FRP programs
are similar to circuit, or signal processing, diagrams, thus facillitat-
ing reasoning about program behavior.

However, standard FRP systems (such as Fran [Elliott and Hu-
dak 1997]) lend themselves far too easily to space and time leaks
[Liu and Hudak 2007]. One can address these leaks by using an
arrow-based[Hughes 2000] design such as used inYampa[Hudak
et al. 2003; Courtney et al. 2003] (which has been used for ani-
mation, robotics, GUI design, and more),Nettle[Voellmy and Hu-
dak 2011] (for networking), andEuterpea[Hudak 2011] (for audio
processing and sound synthesis). Instead of treating signals as first
class values, thesignal functionbecomes the core component. By
using arrows, one can compose and manipulate signal functions
fairly easily.

An arrow-based FRP program is still a pure functional program.
That is, the signal-based computations are performed usingpure
functions, and the input and output of the program—which may
include I/O commands—are handled separately, i.e. outsideof the
program. In this sense, there is anI/O bottleneckon either end of
the signal function that represents a complete program. Allof the
input data must be separated from its source so that it can be fed
purely into the appropriate signal function, and all of the output
data must be separately piped to the proper output devices. We see
this as an imperfect system, as ideally the sources and sinkswould
be directly connected to their data.

1.1 Background and Motivation

A purely functional language does not admit side effects. Indeed,
the original Haskell Report (Version 1.0) released in 1990,as well
as the more widely publicized Version 1.2 [Hudak et al. 1992]
specified a pure language, and the I/O system was defined in terms
of both streams and continuations, which are equivalent (one can be
defined straightforwardly in terms of the other). In 1989 theuse of
monads to capture abstract computations was suggested by Moggi
[1989], subsequently introduced into Haskell by Wadler [1992],
and further popularized by Peyton Jones and Wadler [1993].

Originally conceived as a pure algebraic structure, and captured
elegantly using Haskell’s type classes, it was soon realized that
monads could be used for I/O and other kinds of side effects. In-
deed, Version 1.3 of Haskell, released in 1996, specifies a monadic
I/O system. The inherent data dependencies induced by the oper-
ators in the monad type class provide a way to sequence I/O ac-
tions in a predictable, deterministic manner (often called“single
threaded”). The Haskell I/O monad is simply namedIO, and prim-
itive I/O operations are defined with this monadic type to allow

1 This is consistent with the family ofsynchronouslanguages such as Lus-
tre [Caspi et al. 1987], Esterel [Berry and Cosserat 1984], and Signal [Gau-
tier et al. 1987]

essentially any kind of I/O. A monadic action that returns a value
of typea has typeIO a.

To make this approach sound, a program engaged in I/O must
have typeIO (), and there can be no function, sayrunIO :: IO a→a,
that allows one to “escape” from the I/O monad. It’s easy to see why
this would be unsound. Consider the expression:

runIO m1+ runIO m2

If both m1 andm2 produce I/O actions, then it is not clear in which
order the I/O actions will occur, since a pure language does not
normally express an order of evaluation for(+), and in general we
would like (+) to be commutative.

I/O is, of course, just one form of effect. For example, one might
want to have mutable arrays (meaning that updates can be done“in-
place” in constant time). A purely functional approach cannot pro-
vide constant-time performance for both reads and writes. Haskell
has two solutions to this problem: First, Haskell defines anIOArray
that can be allocated and manipulated in an imperative style. Prede-
fined operations on the array are defined in terms of the I/O monad,
and thus manipulating a mutable array becomes part of the single-
threaded flow of control induced by theIO monad, as discussed
earlier.

A problem with this approach is that it is common to want to
define some local computation using an array and hide the details
of how the array is implemented. Requiring that each such local
computation inject the array allocation and subsequent mutations
into the global I/O stream is thus not modular, and seems unnatural
and restrictive.

What we would like is a monad within which we can allocate
and manipulate mutable arrays (and not perform any I/O), andthen
“escape” from that monad with some desired result. Haskell’s ST
monad [Launchbury and Peyton Jones 1994] does just that. Haskell
further defines a type constructorSTArraythat can be used to define
arrays that can be allocated and manipulated just like anIOArray.
Once the programmer is done with the local computation, theST
monad can be escaped using the function:

runST:: (forall s. ST s a)→ a

The “trick” that makes this sound is the use of the existential (phan-
tom) type variableswithin theSTmonad and the operations defined
on the arrays. For example, returning the value of an array reference
would be unsound—it would mean that the mutable array could be
further mutated in other contexts, with potentially unpredictable re-
sults. However, this is not possible in Haskell’sSTmonad, because
the type of the array reference contains the hidden existential type,
thus resulting in a type error.

1.2 Effects in FRP

Monads can be used for many pure computations as well as other
kinds of effects, but the above has focused on two kinds of effects:
I/O and mutable data structures. It is important to distinguish these
two, since there are inherent differences: I/O devices are generally
fixed—each printer, monitor, mouse, database, MIDI device,and
so on, is a unique physical device—and they cannot be createdon
the fly. With a mutable data structure, the situation is different: such
data structures can be created on the fly and allocated dynamically
as required by the program. It is also worth noting that for both
I/O devices and mutable data structures, the sequence of actions
performed on each of them must generally be ordered, as it would
be in an imperative language, but conceptually, at least, actions on
a printer, a MIDI device, or some number of separately allocated
mutable data structures, could be performed concurrently.

So the question now is, how do we introduce these kinds of ef-
fects into FRP? Indeed, do these kinds of effects even make sense in
an FRP language? Allowing side effects directly in a signal func-

tion has been explored (as in FrTime [Cooper and Krishnamurthi
2006]), but results in an imperative, impure design (equational rea-
soning is lost).

A normal Haskell variable is time-invariant, meaning that its
value in a particular lexical context and in a particular invocation
of a function that contains it, is fixed. In a language based onFRP,
a variable is conceptually time-varying—its value in a particular
lexical context and in a particular invocation of a functionthat
contains it, is not fixed, but rather depends on the time.

A key insight for our work is that the sequencing provided by a
monad can be achieved in FRP by using the ordering of events in
an event stream. In the case of I/O, another key insight is that each
of the I/O devices can be viewed as a signal function that is a “vir-
tualized” version of that device. To guarantee soundness,resource
typescan be defined that guarantee uniqueness, as Winograd-Cort
et al. [2012] described. Resource types assure that an FRP program
remains deterministic despite I/O effects by restricting the access of
any given real-world device to only one point in the program.For
example, the keyboard could be represented as a signal function
that produced keystroke events. Any given keystroke shouldonly
produce a single event, but if this signal function were usedin mul-
tiple places in the program, each instance might produce a distinct
event. Therefore, the signal function itself would be tagged with a
Keyboardresource type, and if a programmer attempted to use it
more than once in the same program, the program would producea
type error.

In the case of mutable data structures, a similar approach can be
taken. For example, we could define a function:

sfArray:: Size→ SF (Event Request) (Event Response)

such thatsfArray n is a signal function encapsulating a mutable
array of sizen. (SF a bis the type of signal function whose input
is a signal carrying values of typea, and whose output is a signal
carrying values of typeb.) That signal function would take as input
a stream ofRequestevents (such as read or write) and return a
stream ofResponseevents (such as the value returned by a read,
acknowledgement of a successful write, or an index-out-of-bounds
error). Note the similarity of this approach to the originalstream
I/O design in early Haskell [Hudak et al. 1992].

This design is also analogous to theSTArraydesign, in that in-
place updates of the array are possible in a sound way, and every
invocation ofsfArray creates a new mutable array. However, no
changes to the type system are required to ensure soundness (in
particular, no hidden existential types are needed, nor areresource
types). Using this idea, many kinds of mutable data structures are
possible, as well as, for example, a random number generator.
(Winograd-Cort et al. [2012] described a random number generator
that was resource typed, but in fact, as with the mutable array
above, no resource types are needed to ensure soundness. Every
invocation of a suitably defined random number generator will
create a fresh stream of random numbers.)

1.3 Wormholes

Can we do more? What other kinds of effects might be desired for
FRP? The remainder of this paper focuses on the notion of aworm-
hole, which can be viewed in two ways: (1) as a non-local one-way
communication channel through which one can transfer signal val-
ues from one part of a program to another, in a completely safe
manner, or (2) a mutable variable that can be written to and read
from independently. By analogy, wormholes are a bit likeMVARs
in Haskell, but in the FRP framework, the details are considerably
different. The main insight is that to have such a feature in FRP, we
need to separate the reads from the writes. Thus a wormhole con-
sists oftwo signal functions, one for reading, and one for writing.
We refer to these as thewhiteholeandblackhole, respectively. To

make this approach sound, resource types are used to ensure that
each whitehole and blackhole is used just once.

Wormholes will be discussed in much more detail later, but
here is a simple example of their use. Supposewh andbh are the
signal functions for the whitehole and blackhole, respectively, of
a wormhole. Assuming they are executing in the same arrow and
lexical scope, the following two signal functions communicate to
each other non-locally through the wormhole:

sf1 = proc ()→ do
... -- create some local data
← bh−≺ localData

...

returnA−≺7

sf2 = proc ()→ do
...

dataFromSF1← wh−≺ ()
...

returnA−≺42

Note that the data does not affect the signal function types—the
data passes through the wormhole as if by magic. If one did not
have wormholes, one would have to add the type oflocalData to
the output ofsf1 and input ofsf2, and in a larger context ensure that
the two were composed properly. This example is a bit contrived,
and it is not advisable to program in this style all the time—types
are useful, and one of the hallmarks of functional programming—
but one can imagine using this technique when debugging, for
example.

The astute reader will note that this approach is seemingly
unsound—what ifbh is used by some other part of the program,
thus creating write conflicts? The answer is that resource types are
used to ensure that this does not happen.

1.4 Contributions

In previous work, Winograd-Cort et al. [2012] sketched the idea of
a wormhole as an alternative method for general kinds of effects.
In this paper we expand on these ideas significantly, as described in
this section.

Our first contribution is recognizing that the order of execution
of a wormhole affects program behavior. One could allow the
read and write from a wormhole to happen in either order, but
this allows two nearly identical programs to potentially have very
different behaviors. We show that restricting wormholes such that
the read always happens before the write allows sounder reasoning
as well as introduces a new possibility for control flow. Intuitively,
regardless of the structure of a program, we want the read to be
immediate while the write takes place “between” time steps.In
this way, we can be sure that any data read from a wormhole was
generated in the previous time step, allowing us to use wormholes
to create causal connections.

In fact, our second contribution is to show a connection be-
tween wormholes and causal commutative arrows (CCA) [Liu etal.
2011]. In FRP applications, looping is achieved by feeding the out-
put of a signal function back into the input. When expressed in
CCA an extra restriction is placed on the fedback data: it must be
from the past. This idea of causal, or temporal, looping fits well into
our model, obviating the need for a primitive operator for looping.
Indeed, causal loops are a higher level construction in our language
rather than a core requirement.

Our third contribution is a formal specification and semantics
for a lazy, resource-typed FRP based on the Haskell [Peyton Jones
et al. 2003] implementation that Winograd-Cort et al. [2012] pre-
sented. We show that since FRP programs act over time, the tran-
sitions that govern their semantics should have a temporal compo-

nent. Thus, we define program execution as an infinite trace through
a “temporal” transition. The input and output of the programis han-
dled through the resources, which are represented as streams built
into the environment that resource types allow us to track. The key
to this model’s success is the subtle interconnection of thecompo-
nents: the temporal transition is meaningless without the resources
to represent side effects, and the resources’ inherent real-world
quality makes reasoning temporally a necessity. With the seman-
tics well specified, we are able to substantiate our previouswork’s
claims of side effect safety.

Finally, in addition to formalizing the semantics, we improve
upon the original design. In previous work, not only did each
wormhole need to be defined at the top level of a program, but
for every wormhole that a program used, the program’s type would
bloat with more terms. By slightly modifying the way wormholes
are introduced, we are able to remove both of these restrictions
without any significant loss in usability.

In the next section we introduce our core language features,
which we follow up with a formal definition of the language in
Section 3. Section 4 illustrates some examples of the various ways
wormholes can be used, and Section 5 describes our work in im-
plementing wormholes in Haskell. In Section 6 we describe the op-
erational semantics and in Section 7 we prove that our language
properly implements the desired features. Finally, Sections 8 and 9
discuss our conclusions and related work.

2. Language Features
In the introduction we described the basis for our language:an
arrow-based implementation of functional reactive programming
that uses wormholes and resource types to handle side effects. Here
we discuss in more detail what these terms mean.

2.1 Signal Processing

The easiest way to conceptualize arrow-based FRP is to think
of it as a language for expressingsignal processing diagrams.
The lines in these diagrams can be thought of assignals, and the
boxes, that act on those signals, assignal functions. In general, the
signals should be thought of as continuous, time-varying quantities,
although they can also represent streams of events.

Haskell is an excellent language to consider coding with arrow-
based FRP due to itsarrow syntax[Paterson 2001]. For example,
the following is a simple signal processing diagram that hastwo
signals, an inputx and an outputy, as well as one signal function,
sigfun.

sigfun xy

In Haskell this diagram would be coded as:

y← sigfun−≺x

This code fragment cannot appear alone, but instead must be part
of a proc construct. The expression in the middle must be a signal
function, whose type we write asT1 T2 for some typesT1 andT2.
The expression on the right may be any well-typed expressionwith
typeT1, and the expression on the left must be a variable or pattern
of typeT2.

The purpose of the arrow notation is to allow the programmer
to manipulate the instantaneous values of the signals. For example,
the following is a definition forsigfun that integrates a signal and

arr :: (a→ b)→ (a b)
first :: (a b)→ ((a×c) (b×c))
(>>>) :: (a b)→ (b c)→ (a c)
loop :: ((c×a) (c×b))→ (a b)
(|||) :: (a c)→ (b c)→ ((a+b) c)
app :: ((a b)×a) b

Figure 1. The types of the arrow operators.

multiplies the output by two:

sigfun :: Double Double
sigfun= proc x→ do

y← integral−≺x
returnA−≺y∗2

The first line gives the type ofsigfun, a signal function that converts
a stream of typeDoubleinto a stream of typeDouble. The notation
“proc x→ do ...” introduces a signal function, binding the name
x to the instantaneous values of the input. The third line sends the
input signal into an integrator, whose output is namedy. Finally,
we multiply the valuey by two and feed it into a special signal
function,returnA, that returns the result.

Of course, one can use arrows without Haskell’s arrow syntax.
Arrows are made up of three basic operators: construction (arr),
partial application (first), and composition (>>>). Furthermore,
arrows can be extended with looping (loop) [Paterson 2001], choice
(|||) [Hughes 2000], and application (app) [Hughes 2000]. The
types of these operators are shown in Figure 1. To simplify the
discussion, we omit further details about looping and choice, other
than their typing rules given in Section 3.3.

For example, the signal functionsigfundefined earlier can be
written without arrow syntax as follows:

sigfun= integral>>>arr (λx.x∗2)

2.2 Resource Tracking and Management

When signal functions become effectful, an insidious problem de-
velops. We want to think of signal functions as ordinary, pure func-
tions, and as such, we should have the power to duplicate themat
will. However, if the signal functions can perform side effects, then
they may not behave properly when duplicated. Consider, forex-
ample, a signal function to play sound in real time:

playSound:: SoundData ()

playSoundtakes a stream ofSoundData, plays it to the computer’s
speakers, and returns unit values. Now consider the following code
snippet in arrow syntax:

← playSound−≺sound1
← playSound−≺sound2

We intend forplaySoundto represent a single real-world device,
but here we have two occurrences—what is the effect? Are the
sounds somehow merged together? Is one sound stream ignored?
A similar situation can be constructed for input where the input
device provides a stream of events to multiple listeners. Ifa new
event appears, should all listeners receive a copy of it or just one,
and if only one, which?

In previous work, Winograd-Cort et al. [2012] proposedre-
source typesas a solution to this problem. By adding a phantom
type parameter to each signal function, we were able to repre-
sent what resources that signal function accesses. This setof re-
sources is then statically checked whenever two signal functions
are composed—if the sets of resources of the two signal func-
tions are not disjoint, then the composition results in a type error.

Adding resource types to our previous example yields this type for
playSound:

playSound:: SoundData
{Speakers}
 ()

With this type, the code snippet does not type-check. We discuss
the typing rules in more detail in Section 3.

2.3 Wormholes

In addition to having resource types that represent physical re-
sources, we can have resource types that represent arbitrary side
effects. Notably, we can consider using resource types to represent
mutable memory.

In particular, we can create awormholeas a reference in mem-
ory that comes with two fresh virtual resources, one for the input
end and one for the output end, which we affectionately referto as
the blackholeandwhitehole, respectively.2 We access the ends of
the wormhole in the same manner that we might access any real
resource, and the same machinery that makes resource types work
for real resources makes mutation and direct memory access safe.

2.4 Causality

Functional reactive programming itself does not need to be causal.
That is, values along a signal can, in fact, depend on future values.
Of course, in real-time systems, causality is forced to be preserved
by the nature of the universe. For example, a program’s current
output cannot depend on a user’s future input. Thus, in the world of
effectful FRP, we limit ourselves to causal signal functions.

The main impact of this limitation has to do with fixed points
and looping in the signal function domain. We restrict signal func-
tions so that they cannot perform limitless recursion without mov-
ing forward in time. That is, all loops must contain some sortof
delay such that the input only depends on past outputs. We call this
strictly causal looping.

Liu et al. [2011] introduced theinit operator as an abstract form
of causal computation:

init :: a→ (a a)

Technically, the current output ofinit i can depend on the current
and previous inputs; however, the typical definition is as a delay
operator, and as such, the current output would depend on only the
previous inputs. Used in tandem with the arrowloop operator from
Figure 1, one can define strictly causal loops. We offer just that:

dLoop :: c→ ((c×a) (c×b))→ (a b)

The dLoop operator takes an initial value for the looping param-
eter, which will update in time but always be slightly delayed.
Notice that whendLoop is given the simple swapping function
(λ (x,y).(y,x)) as its second argument, it reduces to an instance of
the init function acting as a unit delay.

3. The Formal Language
We specify our language in a similar manner to Lindley et al.
[2010]. We start with the lambda calculus extended with a product
type and general recursion, which when necessary, we will refer
to asL {→×}. We show the abstract syntax for this language in
Figure 2. We letτs range over types,vs over variable names,es over
expressions, andΓs over environments. A type judgmentΓ ⊢ e : τ
indicates that that it follows from the mappings in the environment
Γ that expressione has typeτ. Sums, products, and functions
satisfyβ - andη-laws. This is a well established language, so rather

2 This is a reference to the theoretical astronomical oddity,the “Einstein-
Rosen bridge,” a one-directional path through space-time such that matter
can only flow in through the black hole and out through the white hole.

Typ τ ::= () unit
| τ1× τ2 binary product
| τ1→ τ2 function

Var v
Exp e ::= v variable

| (e1,e2) pair
| fst e left-pair projection
| snde right-pair projection
| λv.e abstraction
| e1 e2 application

Env Γ ::= v1 : τ1, ...,vn : τn type environment

Figure 2. The abstract syntax ofL {→×}.

than repeat the typing rules, it suffices to say that they are as
expected. We also borrow an expected operational semanticsthat
utilizes lazy evaluation.

From there, we add the type for resource-typed, arrow-based
signal functions, and we add expressions for the three standard
operators for them (arr , first , and>>>). In the process, we also
add resources as a new component to the language, complete with
a resource type, resource operators, and a resource environment.
Finally, we connect the resources to the expressions with a form of
resource interaction (rsf), and we provide an operator for creating
new virtual resources (wormhole).

We show our extension to the abstract syntax in Figure 3 and the
typing rules for resources and resource operators in Figure4 and for
newly added expressions in Figure 5. In addition to the previous
syntax, we letrs range over resources,ts over resource types,ρs
over resource operators, andRs over resource environments. A
type judgmentR ⊢ r : t indicates that resource environmentR

contains an entry mapping resourcer to resource typet. Typically,
we will combine judgments to the formΓ,R ⊢ ... indicating that
both environments may be used.

Lastly, we make the following definition of programs that our
language supports at the top level:

Definition 1. An expression p is aprogram if it has type()
R
 ()

for some set of resources R.

This restriction is actually rather minor. As our language is
defined for FRP, it is reasonable to require that the expression being
run is a signal function. Furthermore, as all input and output for a
program should be handled through resources, the input and output
streams of a program need not contain any information.

3.1 Resources and Resource Operators

Resources should be thought of as infinite streams of data that
correspond with real world objects. The default resource environ-
ment,Ro, is essentially the real world (i.e. user and outside data in-
teraction) split up into discrete, quantized pieces, but new “virtual”
resources can be added to resource environments via wormholes.

In our language, resources are basically “black boxes”. We can
interact with them via the resource operators (put andnext), but
as they represent external interaction, we do not examine them
more closely. Resources each have a type of the form〈τin,τout〉
that indicates that the resource accepts expressions of type τin and
produces expressions of typeτout.

Resource operators are functions that take a resource and inter-
act with it in some way. They are distinctly not expressions and
are not used by expressions, but they are necessary for defining re-
source interaction in the operational semantics. The two operators
we introduce are for examining a resource’s current state and for

Res r
ROp ρ ::= next(r) query resource

| put(r,e) set resource
RTp t ::= 〈τin,τout〉 resource type
Typ τ ::= ...

| τ1
{r1,...}
 τ2 resource typed SF

Exp e ::= ...

| arr (e) SF construction
| first(e) SF partial application
| e1>>>e2 SF composition
| rsf[r] SF resource interaction
| wormhole[rw, rb](ei ; e)

wormhole introduction
REn R ::= r1 : t1, ..., rn : tn resource environment

Figure 3. The abstract syntax additions toL {→×} that describe
our language.

TY-RES
Γ,R(r : t) ⊢ r : t

TY-R-NEXT
Γ,R(r : 〈 ,τ〉) ⊢ next(r) : τ

TY-R-PUT
Γ,R ⊢ e : τin

Γ,R(r : 〈τin,τout〉) ⊢ put(r,e) : 〈τin,τout〉

Figure 4. The typing rules for resources and resource operators.

updating the resource. The typing rules for resources and their op-
erators are shown in Figure 4.

The TY-R-NEXT rule shows that thenext value from a resource
has the same type as the resource’s output type. The TY-R-PUT rule
says that an expressionecan beput into a resource if it matches the
input type of the resource, and the result is a resource of thesame
type as the original resource.

Resources are used in the language at both the type level and the
expression level. At the type level, resources are associated with the
signal functions that use them. Specifically, they are included in the
set of resources that is part of the type of signal functions.

At the expression level, resources can be accessed for inputand
output via thersf expression. Given a resource, it essentially lifts
the resource into a signal function. The input type of the signal
function is the input type of the resource, and the output type is
similarly the output type of the resource. Furthermore, thesignal
function is tagged with the given resource at the type level.All
resource interaction, and thus all I/O, is done viarsf expressions.

New virtual resources are created bywormhole expressions. A
wormhole expression takes an initial value to be contained in the
wormhole’s memory, and produces two fresh virtual resources rep-
resenting either end of it. In practice, it works similarly to how one
might use alet expression in another language—thewormhole ex-
pression takes two names for the fresh resources as well as anex-
pression in which those resources are available. Note that although
wormhole expressions do take two names for the resources they
produce, the resources are guaranteed to always be fresh even if
there are naming conflicts. That is, typical scoping rules apply.

The purpose of resources is to track I/O; therefore, despitethe
fact that they are “usable” at the expression level, we do notwant
them to escape through an abstraction and so we do not even allow
them as first class values.

TY-ARR
Γ,R ⊢ e : α → β

Γ,R ⊢ arr (e) : α /0
 β

TY-FIRST
Γ,R ⊢ e : α R

 β

Γ,R ⊢ first(e) : (α× γ) R
 (β × γ)

TY-COMP

Γ,R ⊢ e1 : α R1
 β Γ,R ⊢ e2 : β R2

 γ
R1∪R2 = R R1∩R2 = /0

Γ,R ⊢ e1>>>e2 : α R
 γ

TY-RSF
Γ,R(r : 〈τin,τout〉) ⊢ rsf[r] : τin

{r}
 τout

TY-WH
Γ,R(rw : 〈(),τ〉, rb : 〈τ,()〉) ⊢ e : α R′

 β
Γ,R ⊢ ei : τ R= R′ \{rw, rb}

Γ,R ⊢ wormhole[rw, rb](ei ; e) : α R
 β

Figure 5. The typing rules for the new expressions of our lan-
guage.

3.2 Signal Function Expressions

Here, we examine each of the typing rules for new expressionswe
have added to the language (shown in Figure 5):

• The TY-ARR rule states that the set of resource types for a pure
function lifted to a signal function is empty.

• The TY-FIRST rule states that transforming a signal function
usingfirst does not alter the resource type.

• The TY-COMP rule states that when two signal functions are
composed, their resource types must be disjoint, and the result-
ing resource type is the union of the two.

• The TY-RSF rule is for resource interaction. It says that the
input and output types of the signal function that interactswith
a given resource must match the input and output types given
by the form of the resource. Furthermore, the signal function
created will have the singleton resource type set containing the
used resource.

• The TY-WH rule is for wormhole introduction. It says that the
body of the wormhole is a signal function provided that two
resources are added toR: one of the form〈(),τ〉 (the whitehole)
and one of the form〈τ,()〉 (the blackhole) whereτ is the type of
the initializing expression. The result of the whole expression
is the same as that of the body except that the resourcesrw
and rb are removed from the resource set. This omission is
valid because the virtual resources cannot escape the wormhole
expression.3

A more complete analysis of the reasoning for these typing rules is
covered by Winograd-Cort et al. [2012].

3.3 Choice and Application

In Section 2.1, we mentioned the arrow extensions for choiceand
application. They have little impact on the focus of this paper,
so we omit them from the language for simplicity. However, itis
worth mentioning that our language has no problem with them and
can fully support them. Therefore, we provide their typing rules to
demonstrate how they function in the presence of resource types:

3 This is similar to a trick used in Haskell to hide monadic effects by
using the universal type quantifierforall to constrain the scope. Here, the
resources are only available inside the body of the wormhole.

TY-CHC

Γ,R ⊢ e1 : α R1
 γ Γ,R ⊢ e2 : β R2

 γ
R1∪R2 = R

Γ,R ⊢ e1 |||e2 : (α +β) R
 γ

TY-APP
Γ,R ⊢ app : ((α R

 β)×α)
R
 β

The TY-CHC rule is for the choice operator. When choosing, we
can be certain that only one branch will be chosen, so the resulting
resource type set is the union of those of its inputs, which are
not required to be disjoint. The TY-APP rule, for the application
operator, allows for arbitrary evaluation of signal functions, but it
is restricted such that those signal functions must all havethe same
resource types.

4. Examples
We have introduced wormholes as a means to achieve side effects
and non-local communication in FRP programs. The usefulness of
these concepts can be best demonstrated with a few examples.

4.1 Loops

One may wonder at the absense of looping in our language. We
mentioned in Section 2.4 that we would not adhere to the standard
arrow loop, but our language has no built-in delay loop either.

We start by showing that a strictly causal implementation ofinit
(also mentioned in Section 2.4) can be produced as syntacticsugar
with a wormhole:

TY-INIT
Γ,R ⊢ ei : α

Γ,R ⊢ init ei : α /0
 α

init i
def
= wormhole[rw, rb](i; rsf[rb]>>> rsf[rw])

By attaching the blackhole and whitehole of a wormhole back to
back, we create a signal function that accepts present inputand
returns output delayed by one step. Essentially, we see thatthe init
operator is the connection of two ends of a wormhole.

Interestingly, we can attach the wormhole ends the other way
too. Obviously, this can lead to a trivial signal function oftype

()
/0
 () that does nothing, but if we provide a signal function to

be run in between the connection, we can build the following:

TY-DLOOP
Γ,R ⊢ ei : γ Γ,R ⊢ e : (γ×α)

R
 (γ×β)

Γ,R ⊢ dLoop(ei ;e) : α R
 β

dLoop(i;e) def
= wormhole[rw, rb](i;

arr (λx. ((),x))>>> first(rsf[rw])>>>e

>>>first(rsf[rb])>>>arr (λ (,x). x))

We are able to achieve delay looping by a clever use of a wormhole.
We first produce a new wormhole and provide the loop’s initializa-
tion value as its initial value. Thearr andfirst commands together
arrange the input so that the wormhole’s whitehole output ispaired
with the external input just ase is expecting. After that input is pro-
cessed bye, the resultant loop argument is fed into the wormhole’s
blackhole, and the output value is returned. Due to the causal be-
havior of wormholes, values that are output frome become new
input values toe on the next iteration. Thus, the input on thenth

iteration is given by the output on then−1st iteration.
In fact, even a built-in delay loop would not be able to perform

better. The above loop delays by exactly one iteration. If itwere
any less delayed, we would no longer satisfy our strict causality
requirement.

4.2 Data transfer

One strength of wormholes is their ability to transfer data between
two disparate parts of a program. Typically, this would involve
rewriting signal functions so that they consume or produce more
streams so that one can create a stream link between the two
components to be connected. However, this work is unnecessary
with wormholes.

First, we will assume that our language is extended with an
Integerdata type; this will help us keep track of the data moving
through the wormhole. Next, we wil consider the following two
programs:

P1 : R′1 ⊆R1⇒ (Integer
R′1
 Integer)→ (()

R1
 ())

P2 : R′2 ⊆R2⇒ (Integer
R′2
 Integer)→ (()

R2
 ())

We will assume that as long asR′1 andR′2 are disjoint, thenR1 and
R2 are disjoint also. These two programs both do almost the same
thing: they acquire a stream ofIntegers from a source, apply a given
signal function to them, and then send the result to an outputdevice.

Our goal is to connect these two programs in order to cross their
streams. That is, we would like the stream fromP1 to go to the
output device ofP2 and vice versa. Without wormholes, we would
be forced to examine and change the implementation and type of at
least one of these two programs. However, instead, we can define:

main= wormhole[rw1, rb1](0;
wormhole[rw2, rb2](0;

P1 (rsf[rb1]>>> rsf[rw2]) >>>
P2 (rsf[rb2]>>> rsf[rw1])

We pair two wormholes together almost like twoinit expressions,
except that we swap the inputs and outputs. This provides us with
two functions that are able to communicate even when no streams
seem readily available.

5. Wormholes in Haskell
Previously, Winograd-Cort et al. [2012] provided a workingim-
plementation of an arrow-based FRP system with wormholes that
utilized resource types. First, we noticed that since the resources
of a signal function are statically determinable, they should be im-
plemented through Haskell’s type system. Thus, we let each re-
source have an empty type associated with it, and we leveraged
Haskell’s complex data types, type classes with functionaldepen-
dencies, and type families to interact with them. Thus, the type of a
signal function is represented in Haskell by the three argument data
typeSF r a b, which translates toa

r
 b in the abstract language of

this paper.
Ideally, we would like a data type to encode sets at the type

level, but we were unable to achieve this. Two identical setscan
have different representations, and the type checker is unable to
unify them. Fortunately, between work on heterogeneous lists
[Kiselyov et al. 2004] and Haskell’s new data kinds extension
[Yorgey et al. 2012], type level lists are straightforward to im-
plement. In fact, our previous work showed that unioning as well
as the property of disjointness is implementable with heteroge-
neous lists. Where we previously used an un-kinded list, we have
since updated to employ the standard notation for type levellists
presented by the data kinds extension.

Our last step was to incorporate Haskell’sIO monad directly
into the signal function framework to allow side effects to be per-
formed during signal function execution. Signal function resource
interaction (thersf operator in our language here) was achieved by
programmer-level tagging of the appropriate resources along with
thepipe(andsourceandsink) command.

Unfortunately, the Haskell implementation of our system isnot
as powerful and robust as the theory we have presented. Notably,
wormholes are conspicuously absent from the previous section’s
implementation discussion, and in fact, we currently believe that a
proper implementation may not be feasible without new extensions
to Haskell’s type system.

In previous work, wormholes were not as dynamic as we have
presented them here. The programmer was required to declareall
wormhole resources at the top level, and as such, only a finite,
pre-determined number of wormholes could be made. Even then,
wormholes could not be generated with a loop as each resource
had to be attached manually.

One of our contributions in this paper is to show a better way to
make wormholes: the type signature shown in Figure 5 allows new,
unique resources can be created dynamically. For the implementa-
tion, we can use the same strategy of existential types as employed
by theST monad [Launchbury and Peyton Jones 1994]. Thus, the
type for a function to make wormholes should be:

wormhole:: forall t r a b.
t→ (forall rw rb r ′. SetDiff r′ ′[rw, rb] r ⇒

SF ′[rw] () t→ SF ′[rb] t ()→ SF r ′ a b)
→ SF r a b

The classSetDiff xs ys zswould have instances to define that the
setzswould contain all of the elements of the setxs except those
from the setys.

The problem is that it does not seem possible to define the
SetDiff type class for the same reason that type level sets cannot
be constructed. In this case, there are multiple correct types for r
when givenr ′, and the type system is unable to properly unify.

One option is to find a canonical representation for our sets so
that they can be reduced to lists. For instance, by associating each
resource with a type-level number, we can require that a resource
set is always sorted. In this way, there will be only one represen-
tation of any given type set, and the type checker will be ableto
unify two sets. However, aswormholecan be recursively called,
there is no way to assign numbers to the existential wormholere-
source types. Thus, we must restrict our functionality: sets become
lists, unioning becomes concatentation, and set difference requires
an order. In addition, the type ofwormholebecomes:

wormhole:: forall t r a b.
t→ (forall rw rb.

SF ′[rw] () t→ SF ′[rb] t ()→ SF (rw ′ : rb ′ : r) a b)
→ SF r a b

With this definition, we are forced to have the wormhole resources
ordered so that they come first, and because unioning, which hap-
pens during signal function composition, concatenates resource
type sets, this applies many more restrictions to using wormholes
than we intend.

6. Operational Semantics
The operational semantics for resource typed signal functions are
somewhat complex, and in an effort to demystify them, we sepa-
rate the functionality into three distinct transitions. Atthe highest
level, we apply a temporal transition. This transition details how
resources behave over time and explains how the signal function
itself is “run”. (Recall from Definition 1 that only expressions with

type ()
R
 () are allowed as “runnable” programs.) Because our

language is lazy and evaluation is performed when necessary, ex-
pressions may be able to simplify themselves over time. Therefore,
this transition will return an updated (potentially more evaluated)
version of the input program.

The temporal transition makes use of a functional transition to
interpret the flow of data through the component signal functions

ET-ARR
arr (e) val

ET-FIRST
first(e) val

ET-COMP
(e1>>>e2) val

ET-RSF
rsf[r] val

ET-WH
(wormhole[rw, rb](ei ; e)) val

Figure 6. The evalution transition judgments for our extension to
L {→×}.

of the program at a given point in time. Thus, the judgments in
the functional transition handle how the instantaneous values of the
signals are processed by signal functions.

Because the expressions to be run can contain arbitrary lambda
calculus, the functional transition judgments make use of an evalu-
ation transition when necessary to evaluate expressions when strict-
ness points are reached. This is a fairly simple transition that per-
forms as a typical, lazy semantics of a lambda calculus.

A top-down view of the three transitions is the most intuitive
way to describe their functionality. However, to define them, it is
easier to start with the evaluation transition and work up from there.
Therefore, we present the following transitions:

e 7→ e′ Evaluation transition
(V ,x,e) ⇛ (V ′,y,e′,W) Functional transition

(R,W ,P)
t
7→ (R ′,W ′,P′) Temporal transition

where

eande′ are expressions
V andV ′ are sets of triples
x andy are values

W andW ′ are sets of wormhole data
R andR

′ are resource environments, and
P andP′ are programs

In the following subsections, we discuss these transitionsin more
detail.

6.1 Evaluation transition

The evaluation transition is used to evaluate the non-streaming
components of the language. In an effort to conserve space, we take
as given the evaluation semantics forL {→×}. That is, we assume
a classic, lazy semantics for lambda expressions and application,
product-type pairs and projection, and sum-type case analysis and
injection. We show our additional rules for the five additional ex-
pressions of our language in Figure 6.

We use the notatione val to denote that expressione is a value
and needs no further evaluation.

Obviously, these rules are very straightforward: no evaluation
is done on signal functions in this transition. This transition is im-
portant for the operations ofL {→×}, but it is strictly a formality
here.

The languageL {→×} has a standard Canonical Forms Lemma
associated with it that explains that for each type, there are only
certain expressions that evaluate to a value of that type. Bysimple
examination of these new rules to the transition, we can extend the
lemma as follows:

Lemma 1 (Canonical Forms). If e val and e: α R
 β , then e is

either an SF constructor, an SF partial application, an SF compo-
sition, an SF resource interaction, or a wormhole introduction.

6.2 Functional transition

The functional transition details how a signal function behaves
when given a single step’s worth of input. It is a core component of
the temporal transition described in the next section as it essentially
drives the signal function for an instant of time. The functional
transition judgments are shown in Figure 7.

Before we discuss the judgments themselves, it is important
to examine the components being used. First, one will noticethe
setV . V represents the state of the resources (both real and virtual)
in the world at the particular moment in time that this transition is
taking place. Each element ofV is actually a triple of a resource,
the value that resource is providing at this moment, and the value
to be returned to that resource. At the start, we assume that all of
the elements have the form(r,x, ·), which indicates that resourcer
provides the valuex and has no value to receive. It should be no
surprise that the only judgments that read from or modify this set
are FT-RSF and FT-WH, the judgments for resource interaction
and virtual resource creation.

The second argument to each of the judgments (typicallyx
in Figure 7) represents the streaming value being piped intothe
signal function. However, since the functional transitionis only
defined for an instant of time, rather than this value being anactual
stream, it is the instantaneous value on the stream at this time step.
Its partner is the second result, or the instantaneous valueof the
streaming output of the input signal function.

The third argument is the expression being processed. The pur-
pose of the functional transition is to describe how signal functions
behave when given values from their streaming input, and as such,
it is only defined for signal functions (that is, expressionsthat have

the typeα R
 β for some setR). Notably, there are only judgments

corresponding to the forms given in the updated canonical forms
lemma (Lemma 1). On the output end, this term represents the po-
tentially further evaluated form of the input expression. We prove
later in Theorem 2 that this output expression is functionally equiv-
alent to the input one.

The first three terms of the output correspond to the three terms
of the input, but there is also an additional termW , which contains
data about any wormholes processed during this transition.In ad-
dition to adding the two virtual resources created by a wormhole
expression to the resource environment, we need to separately keep
track of the fact that they are a pair. Therefore,W contains ele-
ments of the form[rb, rw,e] whererb is the name of the blackhole
end of the wormhole,rw is the name of the whitehole end, ande
is the value in the wormhole. We will use this information later to
properly update wormholes over time in the temporal transition.

Note also that we use the terme 7→∗ e′ to denote continued
application of the evaluation transition7→ on e until it is evaluated
to a value. That value ise′

As this is a critical piece of the overall semantics, we examine
each of the judgments individually:

• The FT-ARR judgment does not touch the resources, so the
inputV is returned untouched in the output. The expressione x
does not need to be evaluated due to the lazy semantics, but itis
the streaming output nonetheless. The final two outputs reveal
that no further evaluation of the expression has been done and
no wormhole data was created.

• The FT-FIRST judgment is only applicable when the input
streaming value is a pair (which is assured by the type checker
by using the TY-FIRST rule). The first element of the pair is
recursively processed with the argument tofirst , and the output

FT-ARR
(V ,x,arr (e))⇛ (V ,e x,arr (e), /0)

FT-FIRST
e 7→∗ e′ (V ,x,e′)⇛ (V ′,y,e′′,W)

(V ,(x,z),first(e))⇛ (V ′,(y,z),first(e′′),W)

FT-COMP
e1 7→

∗ e′1 (V ,x,e′1)⇛ (V ′,y,e′′1,W1) e2 7→
∗ e′2 (V ′,y,e′2)⇛ (V ′′,z,e′′2,W2)

(V ,x,e1>>>e2)⇛ (V ′′,z,e′′1 >>>e′′2,W1∪W2)

FT-RSF
(V ∪{(r,y, ·)},x, rsf[r])⇛ (V ∪{(r, ·,x)},y, rsf[r], /0)

FT-WH
e 7→∗ e′ (V ∪{(rw,ei , ·),(rb,(), ·)},x,e′)⇛ (V ′,y,e′′,W)

(V ,x,wormhole[rw, rb](ei ; e))⇛ (V ′,y,e′′,W ∪{[rb, rw,ei]})

Figure 7. The functional transition judgments.

is formed by the updatedV ′ and by re-pairing the outputy. As
the body of thefirst expression,e, was evaluated, its updated
form is returned along with any wormhole data the recursion
generated.

• The FT-COMP judgment first sends the streaming argumentx
throughe1 recursively. Then, with the updatedV ′, it sends the
resulty throughe2. The resultingV ′′ andz are returned. Once
again, the updated expression is returned in the output. Lastly,
the wormhole data from both recursive calls of the transition are
unioned together and returned.

• The FT-RSF judgment requiresV to contain an element of the
form (r,y, ·), wherer is the resource being accessed,y is the
value the resource currently has, and no output has been sentto
this resource yet. The streaming valuex is put into the resource,
and the result is the streaming valuey from what was in the
resource. The setV is updated, replacing the triple used here
with a new one of the form(r, ·,x′) showing that this resource
has essentially been “used up”.

• The FT-WH judgment first evaluates its bodye to the valuee′.
For its recursive call, it updates the setV with two new triples
corresponding to the two new resources created in the worm-
hole operation:(rw,ei , ·) and(rb,(), ·). These are two fresh, un-
used triples thatrsf operators can make use of in the bodye′.
As triples are never removed,V ′ will include these two triples
as well. The result is thisV ′ with the new triples, the streaming
value y, the updated bodye′′, and the wormhole data from the
recursion updated with the element[rb, rw,ei] corresponding to
this wormhole. Note that the returned expression is no longer a
wormhole but has been replaced with the body of the wormhole.
This is because now that this wormhole has been evaluated, its
values live insideV and it has been cataloged inW —it is no
longer needed in the expression.

The following theorems provide some extra information about the
overall functionality of this transition.

Theorem 1. If (V ,x,e) ⇛ (V ′,y,e′,W), then ∀(r,a,b) ∈ V ,
∃(r,a′,b′) ∈ V ′ and ∀[rb, rw, i] ∈ W , ∃(rb,ab,bb) ∈ V ′ and
∃(rw,aw,bw) ∈ V ′.

This theorem states that the elements in the inputV are pre-
served in the output. In fact, there is a direct correspondence be-
tween them such that if the input set has an element with resourcer,
then the output will too. Furthermore, when new values are added
(as in FT-WH), they correspond to values inW . The proof is
straightforward and proceeds by induction on the functional transi-
tion judgments. It has been omitted for brevity.

Theorem 2. If e : α R
 β and (V ,x,e)⇛ (V ′,y,e′,W), then e′ :

α R′
 β and e′ has the same structure of sub-expressions as e with

the exception that wormhole expressions may have been replaced
by their bodies. For each so replaced, there is a corresponding
element inW of the form[rb, rw, i] such that rb and rw are the
virtual resources of said wormhole. Furthermore, R⊆ R′ and∀r ∈
(R′ \R), either[r, ,] ∈W or [, r,] ∈W .

This theorem states exactly how the output expressione′ can
be different from the input expressione. Notably, it will still be a
signal function with the same input and output types and it will still
behave in essentially the same way, but its set of resource types
may grow. Specifically, if the resource type set does grow, itis
because a wormhole expression was reduced to its body and the
virtual resources it introduced are now visible at a higher level. A
notable corollary of this theorem is that ifW = /0, thene= e′.

Proof. The proof follows by induction on the judgments and the
typing rule TY-WH for wormholes. A cursory examination of the
judgments reveals that the only one to change the form of the
expression from input to output is FT-WH, which replaces the input
expression with the body of the wormhole. The typing rule tells

us that ife : α R
 β ande is a wormhole, then the body ofe has

type α R′
 β whereR= R′ \ {rw, rb}. Although the resource type

set may have grown, it could only have grown by the addition of
rb, rw, or both. Furthermore, the element[rb, rw,ei] is added to the
outputW .

Lastly, it may appear that multiplersf commands on the same
resource could be problematic; after all, the FT-RSF judgment
initially requires the resourcer to have a triple of the form(r,y, ·),
but it results in the third element of the triple being filled in. That
is, there is norsf command judgment where the triple has a value
in the third element. However, as we prove later in Theorem 3,if

the program has typeα R
 β , then it must have at most onersf

command for any given resourcer.

6.3 Temporal transition

Because signal functions act over time, we need a transitionto
show their temporal behavior. At each time step, we process the
program, taking in the state of the world (i.e. all the resources) and
returning it updated. There is only one temporal transition, but it is
quite complicated. It is shown in Figure 8.

This transition says that the resource environmentR, the set
of wormhole dataW , and a programP transition into an updated
resource environment, an updated set of wormhole data, and a
potentially more evaluated program.

Vin = {(r,next(r), ·) | r ∈R}∪{(rw, i, ·) | [rb, rw, i] ∈W)}∪{(rb,(), ·) | [rb, rw, i] ∈W)}

(Vin,(),P)⇛ (Vout,(),P′,Wnew)

R ′ = {put(r,o′) | r ∈R,(r, ,o) ∈ Vout,o 7→∗ o′}

W ′ = {[rb, rw, if o= · then i elseo] | (rb, ,o) ∈ Vout, [rb, rw, i] ∈ (W ∪Wnew)}

(R,W ,P)
t
7→ (R ′,W ′,P′)

Figure 8. The temporal transition.

The first precondition extracts data from the resources and
wormholes and compiles it into a form that the functional tran-
sition can use. For the resources, we create triples of the form
(r,next(r), ·)meaning that the resourcer provides the valuenext(r)
and is waiting for a return value. For wormholes, we actuallycre-
ate two triples, one for the blackhole and one for the whitehole.
The whitehole uses the whitehole resource namerw and the current
value in the wormhole, and the blackhole usesrb and produces
only ().

This data is provided to the functional transition along with the

programP. BecauseP has type()
R
 () by definition, the streaming

argument is set to(). The result of the functional transition is the
updated value set (Vout), the streaming output ofP (given by the
type to be()), the updated program, and a set of any new wormhole
data encountered during execution.

The last two preconditions are analogous to the first one: they
extract the resource and wormhole data fromVout. For every ele-
ment inVout that corresponds to a resource inR, we take the output
valueo, evaluate it, and push it to the resource. The resulting up-
dated resources make up the new setR ′. It may be thato was never
filled and is still empty—theput operation is executed regardless
in order to push the resource one time step into the future. Note
that because of the use of the evaluation transition, this step acts as
a strictness point for the streaming values of the signal functions.

The wormhole data is extracted in much the same way. For
every element inVout that corresponds to a blackhole in either the
original wormhole data setW or in the new additionsWnew, we
examine the output valueo. If o was filled in, then the updated
wormhole entry contains the new value; otherwise, the wormhole
keeps its old value.

In total, we see that the temporal transition uses the program
P to update the resourcesR and the wormhole dataW . Because
of Lemma 1, we can see thatR ′ contains all the resources that
R did, and similarly,W ′ contains all of the elements from both
W and Wnew. Therefore, if(R,W ,P)

t
7→ (R ′,W ′,P′), then this

transition can repeat indefinitely. That is, the next step would be
(R ′,W ′,P′)

t
7→ (R ′′,W ′′,P′′) and so on. Since each pass through

the transition represents one moment in time, this makes sense as a
valid way to represent program execution over time.

We can use the temporal transition to establish an overall se-
mantics for a programP in our language. Recall thatRo is the de-
fault resource environment containing all the resources ofthe real
world.

Definition 2. If P is a program (that is, an expression of the form

()
R
 () for some set R), then P will have the infinite trace starting

at state(Ro, /0,P) that uses only the temporal transition
t
7→.

7. Safety
Here we show the safety that resource typing provides. We intend
to show that if a program is well typed, then no two components

will compete for the same resource. To express this, we must first
define what it means to interact with a resource.

Definition 3 (Resource interaction). A program P interactsonce
with a resource r at a given time step if it reads the value produced
by r at that time step, returns a value to r at that time step, ordoes
both simultaneously.

With this definition, we can state our resource safety theorem:

Theorem 3(Resource safety). If a program P: α R
 β , then P will

interact only with resources in R, and for each resource it interacts
with, it will do so at most once per time step.

This theorem tells us that any program that type checks will
only use the resources in its type and never have the problem where
two components are vying for the same resource. The program
will be entirely deterministic in its resource management,and from
the type alone, one will be able to see which resources it has the
potential to interact with while it runs.

Proof. The proof of resource safety begins by examining the tem-
poral transition. Because each element inR is a unique resource,
we know that interacting once each with different elements in R

will never cause a problem. Furthermore, as all we do to create
R ′ is exactly oneput operation on each resource,R ′ will likewise
have unique resources. The concern, then, comes from the func-
tional transition. We must prove that updates inVout are not being
overwritten by future updates during the functional transition.

Therefore, the bulk of the proof proceeds by induction on the
functional transition where we must show that any elements in V

are only being updated at most once. Based on the updated Canon-

ical Forms Lemma (Lemma 1), we know that sinceP : α R
 β , it

must be one of the five SF operators. We examine each in turn:

• SF constructor: If P is of the formarr (e), then by typing rule
TY-ARR, R= /0 and it will use judgment FT-ARR. There are
no other transitions nor resource interaction being performed
in this judgment, and sinceR = /0, we trivially satisfy our
conditions.

• SF partial application: If P is of the formfirst(e), then by

typing rule TY-FIRST, we know that ife has typeα R′
 β , then

R=R′. Furthermore, we know thatP will proceed via judgment
FT-FIRST. By our inductive hypothesis, we know thate will
interact with each resource inR′ at most once, and since no
resource interaction happens in this judgment, we satisfy our
conditions.

• SF composition:WhenP is of the forme1>>>e2, it will pro-
ceed by the FT-COMP judgment. By typing rule TY-COMP, we
know thate1 has resource type setR1 ande2 has resource type
setR2 such thatR1∪R2 = R but R1∩R2 = /0. By our inductive
hypothesis,e1 evaluates interacting with at most the resources
in R1 and e2 evaluates interacting with at most the resources
in R2. However,R1 andR2 share no common resources, and to-
gether, they make upR. Therefore,P does not interact with any

more resources than those inR, and any inR that it interacts
with, it does so at most once.

• SF resource interaction:If P is of the formrsf[r], then it will
proceed by the FT-RSF judgment. Typing rule TY-RSF tells us

that its type must beα
{r}
 β . The transition completes in one

step with no preconditions making use of no further calls, but
in fact, V is being modified, so resource interaction is taking
place. We see that the element inV for resourcer is the only
one being accessed and it happens precisely once. The accessis
allowed because triviallyr ∈ {r}.

• wormhole introduction: Pwill proceed by the FT-WH judg-
ment when it is of the formwormhole[rw, rb](ei ;e). Typing rule

TY-WH tells us thate has typeα R
 β the same asP. First, we

recognize that no resource interaction can be performed byei
because it is never evaluated as a expression by the functional
transition. Even though we add values toV , we do not modify
and existing values, so we are not doing any true resource in-
teraction in this transition. Therefore, our inductive hypothesis
tells us that only acceptable resource interaction is done in the
transition of the precondition.

This proof takes the progress and preservation of our semantics
for granted. The proofs for these can be located in Appendix A.

8. Conclusion
We have expanded upon the concept of wormholes, providing a
clearer picture of their functionality than previous work.Not only
have we improved their design, allowing dynamic wormhole cre-
ation with existential resource types, but we have solidified their
theoretical foundation. This led us to new insights about the capa-
bilities of wormholes, which has allowed us to draw a connection
between them and causal loops. In fact, we show that in the pre-
sense of wormholes, other looping structures are superfluous.

Additionally, we have presented a novel way to conceptualize
the program flow of an arrow-based FRP language by separating
the various components of the semantic transition and introducing
a temporal one. In doing so, we define the formal semantics that
allow us to prove that resource types provide the safety thatwe
claim they do. That is, no well-typed resource-typed signalfunc-
tion can access resources that are not in its resource type set, and
furthermore, any that it does access will be accessed from only a
single component. Therefore, a proper implementation of the re-
source type system should allow functional reactive programming
with side effects without fear of the typical bugs that plague impure
programming languages.

9. Related Work
The idea of using continuous modeling for dynamic, reactivebe-
havior (now usually referred to as “functional reactive program-
ming,” or FRP) is due to Elliott, beginning with early work on
TBAG, a C++ based model for animation [Elliott et al. 1994]. Sub-
sequent work on Fran (“functional reactive animation”) embedded
the ideas in Haskell [Elliott and Hudak 1997; Hudak 2000]. The
design of Yampa [Courtney et al. 2003; Hudak et al. 2003] adopted
arrows as the basis for FRP, which is what we use here.

Liu et al. [2011] introduced anArrowInit class to capture causal-
ity in their work on causal commutative arrows. Indeed, we drew
our inspiration for the design of our delay loops from that struc-
ture. Although our work is somewhat more expressive since itis
not limited to being only first-order, it does lack the benefits of be-
ing commutative, and as such, the optimizations for CCA are not
applicable here.

Krishnaswami et al. [2012] also explore causaliity at the type
level. They describe a language that uses non-arrow-based FRP
yet still manages to restrict space-leaks statically. Thislanguage
is somewhat more expressive than ours as it allows a more generic
loop operator, but it is not clear whether it can be easily adapted to
allow mutation or other side effects.

Cooper and Krishnamurthi [2006] embed an effectful imple-
mentation of FRP into PLT Scheme (now Racket) in FrTime. Al-
though similar in content and behavior, this system cannot provide
the resource safety that we do. Furthermore, the semantics that
Cooper [2008] presents are quite different from ours, as he uses
an imperative style with heap updates where we introduce theidea
of resources.

The languageClean[Brus et al. 1987; Plasmeijer and van Eeke-
len 2002] has a notion ofuniqueness types. In Clean, when an I/O
operation is performed on a device, a value is returned that repre-
sents a new instantiation of that device; this value, in turn, must be
threaded as an argument to the next I/O operation, and so on. This
single-threadedness can also be tackled usinglinear logic [Girard
1987], and various authors have proposed language extensions to
incorporate linear types, such as Wadler [1991]; Hawblitzel [2005];
Tov and Pucella [2011]; Wadler [1990]. In contrast, we do notcon-
cern ourselves with single-threadedness since we only haveone sig-
nal function to represent any particular I/O device. Our focus is on
ensuring that resource types do not conflict.

Recent work in linear-time temporal logic (LTL) [Jeffrey 2012;
Jeltsch 2012] explores the Curry-Howard correspondence between
LTL and FRP. This has led to another way to constrain the temporal
behavior of reactive programs. Indeed, Jeffrey [2012] laysout the
basis for an implementation of a constructive LTL in a dependently
typed language such that reactive programs form proofs of LTL
properties.

Acknowledgments
This research was supported by a gift from Microsoft Research
and a grant from the National Science Foundation (CCF-0811665).
Thanks to Shu-chun Weng for support and motivation.

References
G. Berry and L. Cosserat. The Esterel synchronous programming language

and its mathematical semantics. InSeminar on Concurrency, volume
197 of Lecture Notes in Computer Science, pages 389–448. Springer-
Verlag, July 1984.

T. Brus, M. van Eekelen, M. van Leer, M. Plasmeijer, and H. Barendregt.
CLEAN – A language for functional graph rewriting. InFunctional
Programming Languages and Computer Architecture, volume 274 of
Lecture Notes in Computer Science, pages 364–384. Springer-Verlag,
September 1987.

P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. Lustre: Adeclarative
language for programming synchronous systems. In14th Symposium on
Principles of Programming Languages, pages 178–188. ACM, January
1987.

G. H. Cooper.Integrating dataflow evaluation into a practical higher-order
call-by-value language. PhD thesis, Brown University, Providence, RI,
USA, May 2008.

G. H. Cooper and S. Krishnamurthi. Embedding dynamic dataflow in a call-
by-value language. InProgramming Languages and Systems, volume
3924 ofLecture Notes in Computer Science, pages 294–308. Springer-
Verlag, March 2006.

A. Courtney, H. Nilsson, and J. Peterson. The Yampa arcade. In Haskell
Workshop, Haskell ’03, pages 7–18. ACM, August 2003.

C. Elliott and P. Hudak. Functional reactive animation. InInternational
Conference on Functional Programming, pages 263–273. ACM, June
1997.

C. Elliott, G. Schechter, R. Yeung, and S. Abi-Ezzi. TBAG: A high level
framework for interactive, animated 3D graphics applications. In21st
Conference on Computer Graphics and Interactive Techniques, pages
421–434. ACM, July 1994.

T. Gautier, P. L. Guernic, and L. Besnard. Signal: A declarative language
for synchronous programming of real-time systems. InFunctional
Programming Languages and Computer Architecture, volume 274 of
Lecture Notes in Computer Science, pages 257–277. Springer-Verlag,
November 1987.

J.-Y. Girard. Linear logic. Theoretical Computer Science, 50(1):1–102,
1987.

C. Hawblitzel. Linear types for aliased resources (extended version). Tech-
nical Report MSR-TR-2005-141, Microsoft Research, Redmond, WA,
October 2005.

P. Hudak. The Haskell School of Expression – Learning Functional Pro-
gramming through Multimedia. Cambridge University Press, New York,
NY, 2000.

P. Hudak. The Haskell School of Music – from Signals
to Symphonies. [Version 2.0], January 2011. URL
http://haskell.cs.yale.edu/?p=112.

P. Hudak, S. Peyton Jones, and P. Wadler (editors). Report onthe Pro-
gramming Language Haskell, A Non-strict Purely FunctionalLanguage
(Version 1.2).ACM SIGPLAN Notices, 27(5), May 1992.

P. Hudak, A. Courtney, H. Nilsson, and J. Peterson. Arrows, robots, and
functional reactive programming. InSummer School on Advanced Func-
tional Programming 2002, Oxford University, volume 2638 ofLecture
Notes in Computer Science, pages 159–187. Springer-Verlag, August
2003.

J. Hughes. Generalising monads to arrows.Science of Computer Program-
ming, 37(1–3):67–111, May 2000.

A. Jeffrey. LTL types FRP: Linear-time temporal logic propositions as
types, proofs as functional reactive programs. InSixth Workshop on Pro-
gramming Languages meets Program Verification, pages 49–60. ACM,
January 2012.

W. Jeltsch. Towards a common categorical semantics for linear-time tem-
poral logic and functional reactive programming. In28th Conference on
the Mathematical Foundations of Programming Semantics, pages 215–
228. Elsevier, June 2012.

O. Kiselyov, R. Lämmel, and K. Schupke. Strongly Typed Heterogeneous
Collections. CWI Technical Report SEN-E 0420, CWI, August 2004.

N. R. Krishnaswami, N. Benton, and J. Hoffmann. Higher-Order Func-
tional Reactive Programming in Bounded Space. In39th Symposium
on Principles of Programming Languages, pages 45–58. ACM, January
2012.

J. Launchbury and S. Peyton Jones. Lazy functional state threads. In
Conference on Programming Language Design and Implementation,
pages 24–35. ACM, June 1994.

S. Lindley, P. Wadler, and J. Yallop. The arrow calculus.Journal of
Functional Programming, 20(1):51–69, January 2010.

H. Liu, E. Cheng, and P. Hudak. Causal commutative arrows.Journal of
Functional Programming, 21(4–5):467–496, September 2011.

P. Liu and P. Hudak. Plugging a space leak with an arrow.Electronic Notes
in Theoretical Computer Science, 193(1):29–45, November 2007.

E. Moggi. Computational lambda-calculus and monads. InSymposium on
Logic in Computer Science, pages 14–23. IEEE, June 1989.

R. Paterson. A new notation for arrows. InSixth International Conference
on Functional Programming, pages 229–240. ACM, September 2001.

S. Peyton Jones and P. Wadler. Imperative functional programming. In20th
Symposium on Principles of Programming Languages. ACM, January
1993. 71–84.

S. Peyton Jones et al. The Haskell 98 language and libraries:The revised
report.Journal of Functional Programming, 13(1):0–255, January 2003.

R. Plasmeijer and M. van Eekelen. Clean – version 2.1 language report.
Technical report, Department of Software Technology, University of
Nijmegen, November 2002.

J. A. Tov and R. Pucella. Practical affine types. In38th Symposium on
Principles of Programming Languages, pages 447–458. ACM, January
2011.

A. Voellmy and P. Hudak. Nettle: Taking the sting out of programming
network routers. InPractical Aspects of Declarative Languages, volume
6539 ofLecture Notes in Computer Science. Springer-Verlag, January
2011.

P. Wadler. Linear types can change the world! InWorking Conference on
Programming Concepts and Methods, pages 347–359. IFIP TC 2, April
1990.

P. Wadler. Is there a use for linear logic? InSymposium on Partial
Evaluation and Semantics Based Program Manipulation, pages 255–
273. ACM, September 1991.

P. Wadler. The essence of functional programming. In19th Symposium
on Principles of Programming languages, pages 1–14. ACM, January
1992.

D. Winograd-Cort, H. Liu, and P. Hudak. Virtualizing Real-World Objects
in FRP. InPractical Aspects of Declarative Languages, volume 7149
of Lecture Notes in Computer Science, pages 227–241. Springer-Verlag,
January 2012.

B. A. Yorgey, S. Weirich, J. Cretin, S. Peyton Jones, D. Vytiniotis, and J. P.
Magalhães. Giving Haskell a Promotion. In8th Workshop on Types
in Language Design and Implementation, pages 53–66. ACM, January
2012.

A. Proofs of Preservation and Progress
In order to prove preservation and progress for our semantics, we
must show these properties for each of the transitions we have
defined. Here we state and prove the relevant theorems.

Evaluation Transition

The evaluation transition is mostly lifted from a standard lazy se-
mantics forL {→×}. The additions presented in Figure 6 simply
explain that the new expressions are all values. Therefore,preser-
vation and progress follow trivially.

Functional Transition

Preservation for the functional transition proceeds in a straightfor-
ward manner making sure that the streaming input is appropriately
transitioned into a streaming output.

Theorem 4 (Preservation during functional transition). If e : α R

β , x : α, and(,x,e)⇛ (,y, ,), then y: β .

Proof. The proof of preservation proceeds by induction on the
derivation of the transition judgment along with the knowledge of
preservation for the evaluation transition. Each of the judgments
can be proved trivially with a brief examination of the typing rules,
so we omit the details.

Progress for the functional transition is a somewhat more inter-
esting concept. Because of the complexity of the transition, we are
forced to make a few assumptions about the input data:

Theorem 5 (Progress during functional transition). If e : α R
 β ,

x : α, andV contains elements such that∀r ∈R,(r,a, ·) ∈ V where

r : 〈τin,τout〉 and a: τin, then∃y : β ,e′ : α R′
 β ,V ′,W such that

(V ,x,e)⇛ (V ′,y,e′,W).

We require that in addition to the expressione being well-
formed and the streaming argumentx being of the right type, the
set V must also be “well-formed”. That is, for every resource
that e might interact with (all resources inR), there is a triple
in V corresponding to that resource that contains values of the
appropriate types. Notably, they must all be resources thathave not
seen any interaction. This is not an unreasonable requirement as

we proved in Theorem 3 that at any point during the functional
execution, no resources see more than one interaction.

Proof. The proof of progress proceeds by induction on the deriva-
tion of the functional transition judgment. Based on the Canonical
Forms Lemma (Lemma 1), we know that the functional transition
need only apply to the five forms of a signal function, and we see
by inspection that it does. We examine each judgment in turn:

• SF constructor(FT-ARR): Whene is of the formarr (e′), typing
rule TY-ARR tells us thate′ : α → β . As x : α, the streaming
output e x is of type β as necessary. The other outputs exist
regardless of the form ofe′.

• SF partial application(FT-FIRST): If e is of the formfirst(e′),
then the typing rule TY-FIRST tells us thate′ has resource type
setR just ase does. Our inductive hypothesis tells us that out-
puts are available for our recursive transition. The streaming
output (y,z) has the appropriate type, and the expression out-
put, formed by applyingfirst to the expression output of the
recursive transition has the same type ase.

• SF composition(FT-COMP): e may be of the forme1 >>> e2.

By typing rule TY-COMP, we know thate : α R
 γ , e1 : α R1

 β ,

ande2 : β R2
 γ . The evaluation transitions progress, and by our

inductive hypothesis, the functional transitions in the precondi-
tion progress as well. The output is formed from the results of
the precondition with the streaming valuez being of typeγ as
required. The expression output, made by composing the two
expressionse′′1 ande′′2 has the same type ase.

• SF resource interaction(FT-RSF): Ife is of the formrsf[r], then

the typing rule TY-RSF tells us that its type must beα
{r}
 β and

r : 〈α,β 〉. By the conditions of our theorem,V must contain an
element(r,y, ·) such thaty : β . Therefore, the streaming output
y is of the right type. Lastly, the output expression is identical
to the input expression.

• Wormhole introduction(FT-WH): We use typing rule TY-WH
when e is of the formwormhole[rw, rb](ei ;ebody); it tells us

that ebody has typeα R′
 β where R = R′ \ {rw, rb}. Before

using our inductive hypothesis, we must prove that the value
set for the recursive call meets our requirements. We know
that (R∪ {rw, rb}) ⊇ R′, so V ∪ {(rw,ei , ·),(rb,(), ·)} clearly
satisfies the condition. Therefore, the streaming outputy will be
of typeβ . Furthermore, the output expressione′′ must have the
same type asebody which satisfies our output requirement.

Temporal Transition

By the definition of the overall operational semantics (Definition 2),
we know that the trace of any programP is infinite. As long as
we can prove progress, preservation is irrelevant. We make use
of the preservation and progress theorems for the evaluation and
functional transitions shown earlier to prove the following:

Theorem 6 (Progress of overall semantics). If P is a program

with typeα R
 β and R⊆ Ro then the trace of P will always be

able to progress via the temporal transition
t
7→ when starting from

(Ro, /0,P).

Proof. The judgment for the temporal transition allows the input to
progress so long as the preconditions are met. The first condition
definesVin to contain elements for each resource inR as well as
for each whitehole and blackhole pair inW . This is used in the
second condition, which will progress only if we can prove that
(Vin,(),P) will progress through the functional transition.P may
access resources inR as well as any virtual resources introduced

through wormholes. In the base case, the functional transition has
never been run, andRdoes not contain any virtual resources. Then,
becauseR⊆Ro, Vin contains elements for every resource inR, so
we meet the conditions of the functional progress theorem (The-
orem 5). In the inductive case, we are dealing with a potentially
further evaluated programP′ with resourcesR′, which may contain
virtual resources. Then, all virtual resources will have been gener-
ated from previous passes through the functional transition, and all
of the virtual resources will be represented byW . Once again,Vin
will contain elements for each resource inR′, and the functional
transition can progress.

The last two preconditions are simply defintions ofR ′ and
W ′ such thatR′ contains the same number of elements keyed by
the same resource names asR and thatW ′ contains the same
whitehole and blackhole resource names asW as well as any new
wormhole data entries fromWnew.

The output programP′ is not the same asP. Notably, its type

may have changed to()
R′
 (). From Theorem 2, we know thatR′ is

the setR with up to two new virtual resources for each element
of Wnew corresponding to the whiteholes and blackholes of the
elements ofWnew. This is fine for exactly the reason that these
new resources are “documented” inWnew and Wnew is unioned
with W for the output of the transition. Therefore, whenV is
being generated in the next iteration, all of the resources of R′ will
be represented, both the original ones inR and any virtual ones
created and documented inW .

Finally, we must consider the overall base case. On the first
iteration through the temporal transition, there can be no virtual
resources because no wormhole expressions have been executed by
the functional transition yet. Therefore, the initial wormhole setW
can be the empty set.

