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Abstract
Graphical user interfaces (GUIs) mediate many of our interac-
tions with computers. Functional Reactive Programming (FRP) is a
promising approach to GUI design, providing high-level, declara-
tive, compositional abstractions to describe user interactions and
time-dependent computations. We present Elm, a practical FRP
language focused on easy creation of responsive GUIs. Elm has
two major features: simple declarative support for Asynchronous
FRP; and purely functional graphical layout.

Asynchronous FRP allows the programmer to specify when the
global ordering of event processing can be violated, and thus en-
ables efficient concurrent execution of FRP programs; long-running
computation can be executed asynchronously and not adversely af-
fect the responsiveness of the user interface.

Layout in Elm is achieved using a purely functional declarative
framework that makes it simple to create and combine text, images,
and video into rich multimedia displays.

Together, Elm’s two major features simplify the complicated
task of creating responsive and usable GUIs.

Categories and Subject Descriptors D.3.2 [Language Classifica-
tions]: Data-flow languages; Applicative (functional) languages

General Terms Languages, Design

Keywords Functional Reactive Programming, Graphical User In-
terfaces

1. Introduction
Elm is a functional reactive programming language that aims
to simplify the creation of responsive graphical user interfaces
(GUIs), and specifically targets GUIs for web applications. Func-
tional reactive programming (FRP) applies pure functional pro-
gramming paradigms to time-varying values, known as signals.
FRP is a highly promising approach for implementing GUIs, where
time-varying values can represent input and output (including user
interaction, server requests and responses), and other information
about the execution environment. By enforcing a purely functional
programming style, programmers can explicitly model complex
time-dependent relationships in a high-level declarative way.

However, previous FRP languages and implementations have
suffered from at least two kinds of inefficiencies: unnecessary
recomputation and global delays.
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Semantics of most FRP languages assume that signals change
continuously. Thus, their implementations sample input signals as
quickly as possible, and continually recompute the program with
the latest values for the signals. In practice, however, many sig-
nals change discretely and infrequently, and so constant sampling
leads to unnecessary recomputation. By contrast, Elm assumes that
all signals are discrete, and uses this assumption to detect when a
signal is unchanged, and in that case, avoid unnecessary recompu-
tation.

In Elm, signals change only when a discrete event occurs. An
event occurs when a program input (such as the mouse position)
changes. Events require recomputation of the program, as the result
of the program may have changed. Previous FRP systems require
that events are processed synchronously: one at a time in the exact
order of occurrence. In general, synchronization is required to
allow the programmer to reason about the behavior of the FRP
system, and ensure correct functionality.

However, processing an event may take significant time, result-
ing in delays to the entire FRP system. Pipelining event processing
can help to reduce latency, but because the global order of events
must be respected, an event cannot finish processing until all pre-
vious events have finished. In GUIs, this is unacceptable behavior:
the user interface should remain responsive, even if a previous user
action triggered a long-running computation.

Elm provides programmers with a simple abstraction to spec-
ify when computation can occur asynchronously. Combined with
pipelined execution of event processing, this allows long-running
computation to execute concurrently with other event processing,
avoids global delays, and allows GUIs to remain responsive.

The ability to specify asynchronous computation within an FRP
paradigm is the key novelty of Elm. We formalize this language
feature by presenting the semantics of a core Asynchronous FRP
calculus. However, Elm is also a practical and expressive program-
ming language, which we demonstrate through the implementation
of an Elm compiler, and the use of the resulting compiler to develop
rich, responsive GUIs that perform non-trivial computation. The
Elm compiler produces JavaScript code that can be immediately
and easily deployed in web applications. Elm is publicly available.1

Like previous work on efficient FRP (e.g., [25, 30, 31]), Elm
restricts use of signals to enable efficient implementation. Elm
is strictly more expressive than these previous approaches, since
(1) discrete signals generalize continuous signals [31], (2) we em-
bed a discrete version of Arrowized FRP [25] in Elm, and (3) we
additionally allow the programmer to specify when signal updates
should be computed asynchronously.

The rest of the paper is structured as follows. In Section 2 we
describe key features of Elm through several simple Elm programs.
In Section 3 we present a formalization of the core language of
Elm, including semantics and a type system. The full Elm language

1 Available at http://elm-lang.org/.
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Figure 1. Purely functional graphics: basic layout

extends the core language with libraries and syntactic sugar to sim-
plify the creation of expressive GUIs. In Section 4 we describe
some of these libraries (including the embedding of discrete Arrow-
ized FRP [25]). Elm has a fully functional compiler that compiles
Elm programs to JavaScript and HTML, suitable for immediate in-
clusion in web applications. We describe the compiler in Section 5.
We discuss related work in Section 6 and conclude in Section 7.

2. Elm through Examples
We present key features of Elm through several simple Elm pro-
grams. The first example highlights Elm’s purely functional graph-
ical layout. The second example demonstrates how Elm’s graph-
ics primitives use FRP to easily produce rich interactive GUIs.
The third example shows Elm’s async construct, which allows
programmers to specify that potentially long-running computation
should execute asynchronously, and thus ensures that the user in-
terface remains responsive.

Example 1 The following Elm program lays out three graphical
elements vertically, as shown in Figure 1.
content = flow down [ plainText "Welcome to Elm!"

, image 150 50 "flower.jpg"
, asText (reverse [1..9]) ]

main = container 180 100 middle content

Variable main is distinguished in Elm: the value of this variable
will be displayed on the screen when the program is executed. In
the program above, main is defined to be a 180 by 100 container
with content defined by variable content. The content is placed
in the middle of the container. (Positioning elements is notoriously
difficult in HTML; Elm provides a simple abstraction, allowing the
position of content within a container to be specified as topLeft,
midTop, topRight, midLeft, middle, and so on.)

Variable content has type Element, indicating that it is a
graphical element that can be displayed, and/or composed with
other graphical elements. The value of content at runtime is a
composite element, comprising three elements stacked vertically.
The three elements are the text "Welcome to Elm!", a 150 by
50 image, and the text representation of a list containing numbers
from 9 down to 1, which are combined together using function
flow : Direction -> [Element] -> Element (i.e., flow is
a function that takes a value of type Direction, a list of Elements,
and produces an Element).

Values of type Element occupy a rectangular area of the screen
when displayed, making Elements easy to compose. Elm provides
primitives and library functions to create more complex Element
values, and non-rectangular graphical elements. Elm and its li-
braries provide a simple declarative syntax and semantics, making
layout easy to reason about.

Example 2 This example displays the position of the mouse
pointer, as seen in Figure 2. Although extremely simple to de-

Figure 2. A basic FRP program: tracking mouse movement

scribe, this is often head-scratchingly difficult to implement in to-
day’s GUI frameworks, since the content is dynamically updated.
In Elm, however, it is a one liner:

main = lift asText Mouse.position

This code relies on signals, which are the key abstraction of
FRP. A signal is a value that changes over time. In Elm, a signal that
represents a value of type τ changing over time has type Signal τ .
For example, a graphical element that changes over time, such as an
animation, is a Signal Element. Indeed, variable main typically
has type Signal Element, since what to display on the screen
changes over time.2

In the code above, the position of the mouse is represented as a
signal of a pair of integers, indicating the coordinates of the mouse.

Mouse.position : Signal (Int,Int)

Function lift : (a -> b) -> Signal a -> Signal b
takes a function from values of type a to values of type b, and
a signal of values of type a, and applies the function to each
value, resulting in a signal of type b. In the example above, func-
tion asText : a -> Element (which converts Elm values into
a textual representation) is applied to every value of the signal
Mouse.position, thus converting a signal of coordinates into a
signal of Elements. As the position of the mouse changes, so does
the Element that is being displayed. This is shown in Figure 2.

In Elm, all signals are discrete. That means that instead of
the system needing to frequently sample a continuously changing
value (i.e., the system pulls values from the external environment),
the system waits to be notified when the value has changed (i.e.,
values are pushed to the system only when they change). Elm is
a push-based system [12], meaning that computation is performed
only when values change. This reduces needless recomputation. In
the example above, function asText is only applied to a mouse
coordinate when the mouse position changes.

Example 3 This example highlights Elm’s ability to perform
asynchronous computation over signals. It uses words entered by
the user to find and fetch an image from a web service (such as
Flickr), which may take significant time. The program simultane-
ously displays the current position of the mouse, with the position
being updated in a timely manner, regardless of how long image
fetching takes.
(inputField, tags) = Input.text "Enter a tag"

getImage tags =
lift (fittedImage 300 200)

(syncGet (lift requestTag tags))

scene input pos img =
flow down [ input, asText pos, img ]

main = lift3 scene inputField
Mouse.position
(async (getImage tags))

2 Variable main is also allowed to have type Element, as in Example 1.
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Code Input.text "Enter a tag" creates a text input field,
and returns a pair (inputField, tags), where inputField is
a signal of graphical elements for the input field, and tags is a
signal of strings. Each time the text in the input field changes (due
to the user typing), both signals produces a new value: the updated
element and the current text in the input field.

Function getImage takes a signal of strings, and returns a sig-
nal of images. For each string that the user enters, this function
requests from the server a URL of an image with tags (i.e., key-
words) that match the string. Function requestTag takes a string,
and constructs an appropriate HTTP request to the server. (We elide
the definition of requestTag, which simply performs string con-
catenation.) Expression lift requestTag tags is thus a signal
of HTTP requests. Built-in function syncGet issues the requests,
and evaluates to a signal of image URLs (actually, a signal of JSON
objects returned by the server requests; the JSON objects contain
image URLs). Function fittedImage (definition elided) takes di-
mensions and an image URL and constructs an image Element.

Function scene takes as its arguments input (an Element),
pos (an arbitrary value) and img (an Element), and composes them
vertically.

Value main puts the pieces together, applying function scene
to three signals: the signal of elements representing the text field in
which the user types, the mouse position (Mouse.position), and
the signal of images derived from the user’s input (getImage tags).
Primitive function lift3 is similar to function lift described
above, but takes a function a -> b -> c -> d, a signal of values
of type a, a signal of values of type b, and a signal of values of type
c, and applies the function to the current values of the three signals,
each time any of the three signals produces a new value.

Keyword async indicates that the getImage computation
should run asynchronously. Without the async keyword, the pro-
gram must respect the global ordering of events: when the tags
signal produces a new string, processing of new Mouse.position
values must wait until an image is fetched from the server. The
result would be an unresponsive GUI that hangs (i.e., does not dis-
play the current mouse position) from when the user types in the
input field until an image is fetched. By contrast, with the async
keyword, the program does not have to respect the order of values
generated by getImage tags with respect to values generated by
Mouse.position. The GUI remains responsive, regardless of how
long it takes to fetch an image from the web service.

The async construct can be applied to any signal, and provides
a simple, composable way for the programmer to specify when
computation over a signal may occur asynchronously, and thus to
ensure that long-running computation does not cause the GUI to
become unresponsive.

The behavior of this example Elm program is difficult to im-
plement in most practical programming frameworks. For example,
implementation with JavaScript+AJAX requires nested call-backs.
Also, such an example is impossible to implement in current FRP
languages as no previous work permits explicit asynchrony and
concurrent execution.

3. Core Language
The full Elm language contains libraries and syntactic sugar that
simplify the creation of rich and responsive GUIs. In this section,
we present a simple core language—FElm, for “Featherweight
Elm”—that presents the semantics of Elm’s key abstractions.

FElm combines a simply-typed functional language with a
small set of reactive primitives. Programmers have direct access
to signals, which can be transformed and combined with the full
power of a functional language. A type system restricts the use
of reactive primitives to ensure that the program can be executed
efficiently. FElm uses a two-stage semantics. In the first stage, func-

Numbers n ∈ Z
Variables x ∈ Var

Input signals i ∈ Input

Expressions e ::= () | n | x | λx :η. e | e1 e2 | e1 ⊕ e2
| if e1 e2 e3 | let x = e1 in e2 | i
| liftn e e1 ... en | foldp e1 e2 e3
| async e

Simple types τ ::= unit | int | τ → τ ′

Signal types σ ::= signal τ | τ → σ | σ → σ′

Types η ::= τ | σ

Figure 3. Syntax of FElm

tional constructs are evaluated, and signals are left uninterpreted.
In the second stage, signals are evaluated: as the external environ-
ment generates new values for input signals, the new values are
processed as appropriate.

3.1 Syntax
The syntax of FElm is presented in Figure 3. Expressions include
the unit value (), integers n, variables x, functions λx :η. e, appli-
cations e1 e2, let expressions let x = e1 in e2, and conditional
expressions if e1 e2 e3 which are all standard constructs for func-
tional languages. (Conditional expression if e1 e2 e3 evaluates to
e2 if e1 evaluates to a non-zero value, e3 otherwise.) Metavariable
⊕ ranges over total binary operations on integers.

We assume a set of identifiers Input that denote input signals
from the external environment, and use i to range over these identi-
fiers. Signals can be thought of as streams of values. For example,
an input signal representing the width of a window can be thought
of as a stream of integer values such that every time the window
width changes, a new value for the signal is generated. An input sig-
nal representing whether the left mouse button is currently pressed
down may be represented as a stream of boolean values. Input sig-
nals may also include special signals, for example, to generate a
new unit value at fixed time intervals, creating a timer.

An event occurs when an input signal generates a new value.
Events may trigger computation. In FElm, every signal always has
a “current” value: it is the most recent value generated by the signal,
or, for an input signal that has not yet generated a new value, it is
an appropriate default value associated with that input signal. Thus,
every input signal is required to have a default value, which then
induces default values for other signals.

The remaining expressions (liftn e e1 ... en, foldp e1 e2 e3,
and async e) are primitives for manipulating signals, and are
described in more detail below.

Transforming and combining signals For each natural number
n ≥ 0, we have primitive liftn e e1 ... en which allows a
function e to transform and combine signals e1 . . . en.

Intuitively, if e is a function of type τ1 → τ2 → · · · →
τn → τ , and expressions ei are of type signal τi respectively, then
liftn e e1 ... en applies function e to the values from signals
e1 . . . en, and has type signal τ (i.e., it is a signal that produces
values of type τ ). For example,

lift1 (λx : int. x+x) Window.width

is a signal of integers obtained by doubling the values from input
signal Window.width.
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Signals can also be combined. For example, expression

lift2 (λy : int. λz : int. y÷ z) Mouse.x Window.width

takes two input signals of integers (Mouse.x and Window.width),
and produces a signal of integers by combining values from the
two input signals. It computes the relative position of the mouse’s
x-coordinate with respect to the window width. Note that the rela-
tive position is computed each time an event occurs for either input
signal. Moreover, events are globally ordered, and signal compu-
tation is synchronous in that it respects the global order of events:
the sequence of relative positions will reflect the order of events on
Mouse.x and Window.width.

Past-dependent transformation The liftn primitives operate
only on the current values of signals. By contrast, the foldp prim-
itive can compute on both the current and previous values of a
signal. Primitive foldp performs a fold on a signal from the past,
similar to the way in which the standard function foldl performs
a fold on lists from the left of the list. The type of foldp is

(τ → τ ′ → τ ′)→ τ ′ → signal τ → signal τ ′

for any τ and τ ′. Consider foldp e1 e2 e3. Here, e1 is a function
of type τ → τ ′ → τ ′, e2 is a value of type τ ′ and e3 is a
signal that produces values of type τ . Type τ ′ is the type of the
accumulator, and e2 is the initial value of the accumulator. As
values are produced by signal e3, function e1 is applied to the new
value and the current accumulator, to produce a new accumulator
value. Expression foldp e1 e2 e3 evaluates to the signal of
accumulator values.

For example, suppose that Keyboard.lastPressed is an input
signal that indicates the latest key that has been pressed. Then the
following signal counts the number of key presses. (We assume that
which key is pressed is encoded as an integer.)

foldp (λk : int. λc : int. c+1) 0 Keyboard.lastPressed

Asynchronous composition The async primitive allows a pro-
grammer to specify when certain computations on signals can be
computed asynchronously with respect to the rest of the program.
This annotation allows the programmer to specify when it is per-
missible to ignore the global ordering of events. The use and benefit
of this construct is described in more detail, including a thorough
example, in Section 3.3.2.

3.2 Type System
FElm’s type system ensures that FElm programs cannot produce
signals of signals. There are two kinds of types: simple types τ and
signal types σ. Type syntax is presented in Figure 3. Simple types
include base types (unit for the unit value and int for integers) and
functions from simple types to simple types (τ → τ ′). Signal types
σ include type signal τ (for signals that produce values of type τ ),
and functions that produce signal types (τ → σ and σ → σ′).

The type system rules out programs that use signals of sig-
nals, for the following reason. Intuitively, if we have signals of
signals, then after a program has executed for, say 10 minutes,
we might create a signal that (through the use of foldp) depends
on the history of an input signal, say Window.width. To compute
the current value of this signal, should we use the entire history
of Window.width? But that would require saving all history of
Window.width from the beginning of execution, even though we
do not know whether the history will be needed later. Alternatively,
we could compute the current value of the signal just using the cur-
rent and new values of Window.width (i.e., ignoring the history).
But this would allow the possibility of having two identically de-
fined signals that have different values, based on when they were
created. We avoid these issues by ruling out signals of signals. This

T-UNIT

Γ ` () : unit

T-NUMBER

Γ ` n : int

T-VAR

Γ(x) = η

Γ ` x : η

T-INPUT

Γ(i) = signal τ

Γ ` i : signal τ

T-LAM

Γ, x :η ` e : η′

Γ ` λx :η. e : η → η′

T-ASYNC

Γ ` e : signal τ

Γ ` async e : signal τ

T-OP
Γ ` e1 : int

Γ ` e2 : int

Γ ` e1 ⊕ e2 : int

T-APP
Γ ` e1 : η → η′

Γ ` e2 : η

Γ ` e1 e2 : η′

T-COND
Γ ` e1 : int

Γ ` e2 : η Γ ` e3 : η

Γ ` if e1 e2 e3 : η

T-LET
Γ ` e1 : η

Γ, x : η ` e2 : η′

Γ ` let x = e1 in e2 : η′

T-LIFT
Γ ` e : τ1 → · · · → τn → τ

Γ ` ei : signal τi ∀i ∈ 1..n

Γ ` liftn e e1 ... en : signal τ

T-FOLD
Γ ` ef : τ → τ ′ → τ ′

Γ ` eb : τ ′ Γ ` es : signal τ

Γ ` foldp ef eb es : signal τ ′

Figure 4. Inference rules for typing judgment Γ ` e : η

does not overly restrict the expressiveness of the language, which
we discuss further in Section 4.

The typing judgment for FElm has the form Γ ` e : η, indicat-
ing that expression e has type η under type context Γ, which maps
variables and input signal identifiers to types. Figure 4 presents in-
ference rules for this judgment. The rules for the primitive operators
that manipulate signals are as described above, and the remaining
inference rules are mostly standard. Note that the typing rule for
conditional expressions if e1 e2 e3 requires that the test expres-
sion e1 has type int, and in particular, cannot be a signal. A program
e is well typed if Γinput ` e : η holds for a type environment Γinput

that maps every input i ∈ Input to a signal type.

3.3 Semantics
FElm programs are evaluated in two stages. In the first stage, all
and only functional constructs are evaluated, resulting in a term
in an intermediate language that clearly shows how signals are
connected together. The intermediate language is similar to the
source language of Real-Time FRP [30] and Event-Driven FRP
[31]. In the second stage, signals are evaluated: new values arriving
on input signals trigger computation in a push-based manner.

3.3.1 Functional Evaluation
We define an intermediate language according to the grammar in
Figure 5. The intermediate language separates values of simple
types (unit, numbers, and functions over simple types), and signal
terms (which will be the basis for the evaluation of signals).

A small step operational semantics for evaluation of FElm pro-
grams to the intermediate language is given in Figure 6. A FElm
program e will evaluate to a final term, which is either a simple
value v, or a signal term s. The inference rules use evaluation
contexts E to implement a left-to-right call-by-value semantics.
Rule APPLICATION converts function applications to let expres-
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Values v ::= () | n | λx :τ. e

Signal terms s ::= x | let x = s in u | i | liftn v s1 ... sn
| foldp v1 v2 s | async s

Final terms u ::= v | s

Figure 5. Syntax of intermediate language

E ::= [·] | E e | E ⊕ e | v ⊕ E |
if E e2 e3 | let x = E in e | let x = s in E |
liftn E e1 ... en | liftn v s1 ... E ... en |
foldp E e2 e3 | foldp v1 E e3 | foldp v1 v2 E |
async E

F ::= [·] e | [·]⊕ e | v ⊕ [·] | if F e2 e3 |
liftn [·] e1 ... en | foldp [·] e2 e3 | foldp v1 [·] e3

CONTEXT

e −→ e′

E[e] −→ E[e′]

OP

v = v1 ⊕ v2
v1 ⊕ v2 −→ v

COND-TRUE

v 6= 0

if v e2 e3 −→ e2

COND-FALSE

if 0 e2 e3 −→ e3

APPLICATION

(λx :η. e1) e2 −→ let x = e2 in e1

REDUCE

let x = v in e −→ e[v/x]

EXPAND

x 6∈ fv(F [·])
F [let x = s in u] −→ let x = s in F [u]

Figure 6. Semantics for functional evaluation

sions. Rule REDUCE performs beta-reduction for let expressions
let x = v in e, but only when x is bound to a simple value. If x is
bound to a signal term, then (as shown by context let x = s in E)
subexpression e is evaluated without substitution of x. This ensures
that signal expressions are not duplicated, and reduces unnecessary
computation in the second stage of evaluation, which is described
in Section 3.3.2. (This is similar to a call-by-need calculus [5, 22],
which avoids duplication of unevaluated expressions.)

Rule EXPAND expands the scope of a let expression to allow
evaluation to continue. Contexts F describe where Rule EXPAND
can be applied, and includes all contexts where a simple value v
is required. For a context F , we write fv(F [·]) for the set of free
variables in F . We assume that expressions are equivalent up to
renaming of bound variables, and an appropriate variable x can
always be chosen such that x 6∈ fv(F [·]).

If a FElm program is well typed, then the first stage of evalua-
tion does not get stuck, and always evaluates to a final term. (We
write −→∗ for the reflexive transitive closure of the relation −→.)

Theorem 1 (Type Soundness and Normalization). Let type en-
vironment Γinput map every input i ∈ Input to a signal type. If
Γinput ` e : η then e −→∗ u and Γinput ` u : η for some final
term u.

Global Event 
Dispatcher

Mouse.x Window.width

λy.λz.y÷z

lift2 (λy : int. λz : int. y÷ z) Mouse.x Window.width

Figure 7. Signal graph for relative x-position of mouse

3.3.2 Signal Evaluation
If a FElm program evaluates to a simple value v, then the program
does not use signals, and is not a reactive program. If, however,
it evaluates to a signal term s then we perform the second stage
of evaluation, performing computation as input signals produce
new values. We first present the intuition behind signal evaluation,
then present a working example to solidify the intuition. We then
provide a semantics for signal terms by translation to Concurrent
ML (CML) [27].

Intuition A signal term can be visualized as a directed acyclic
graph, where nodes are input signals (i ∈ Input), liftn terms,
and foldp terms. The definition and use of variables define edges
between the nodes. (Asynchronous terms async s are described
below.) We refer to these visualizations as signal graphs.

Nodes representing input signals have no incoming edges from
other signal nodes, a node representing term liftn v s1 ... sn has
n incoming edges, and a node representing term foldp v1 v2 s
has a single incoming edge. Signal graphs are acyclic since FElm
has no way to construct recursive signal terms. Figure 7 shows an
example of a signal graph for a simple FElm program.

We refer to nodes with no incoming edges as source nodes.
Source nodes include input signals, and, as we will see below,
async s nodes. Source nodes are the source of new values. An
event occurs when the signal represented by a source node produces
a new value. Input signal events are triggered by the external envi-
ronment, for example, mouse clicks or key presses. A global event
dispatcher is responsible for notifying source nodes when events
occur. The global event dispatcher ensures that events are totally
ordered and no two events occur at exactly the same time. In signal
graphs, we draw dashed lines from the global event dispatcher to
all source nodes.

Nodes for liftn and foldp terms perform computation on
values produced by signals. Lift terms perform (pure) computation
on the current values of signals: term liftn v s1 ... sn applies
function v to the current values of the n signals to produce a new
value. A node for term foldp v1 v2 s maintains the current value
of the accumulator (initially v2), and when a new value is received
from signal s, applies function v1 to the new value and the current
value of accumulator, to produce the new value of the accumulator,
which is also the new value for the signal foldp v1 v2 s.

Conceptually, signal computation is synchronous: when an
event occurs (i.e., a source node produces a new value), then it
is as if the new value propagates completely through the signal
graph before the next event is processed. However, if the actual
semantics used this approach, then global delays would occur, as
processing of a new event would be blocked until processing of all
previous events has finished.

We maintain the simple synchronous semantics, but allow more
efficient implementations, by pipelining the execution of the signal
graph: conceptually, each node in a signal graph has its own thread
of control to perform computation, and each edge in a signal graph
holds an unbounded FIFO queue of values. Whenever an event
occurs, all source nodes are notified by the global event dispatcher:
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the one source node to which the event is relevant produces the
new value, and all other source nodes generate a special value
noChange v, where v is the current (unchanged) value of the signal.
Thus, every source node produces one value for each event. When
a node in the signal graph performs computation, it must take a
value from the front of each incoming edge’s queue: computation
at the node is blocked until values are available on all incoming
edges. If all incoming values indicate no change, then the node
does not perform any new computation, but instead propagates
the value noChange v′, where v′ is the latest value of the signal
represented by the node. If any value on the incoming edge is a
new value (i.e., is not a noChange v value), then the node performs
computation (which, in the case of a foldp node, updates the
state) and propagates the newly computed value. This preserves
the simple synchronous semantics, but allows computation at each
node to occur in parallel.

The noChange v′ values are a form of memoization—allowing
nodes to avoid needless recomputation—but in the case of foldp
nodes, are also critical to ensure correct execution. For example,
a foldp term that counts the number of key presses (as in Sec-
tion 3.1) should increment the counter only when a key is actually
pressed, not every time any event occurs.

The synchrony of execution can be bypassed with the async
construct. The node for a term async s is a source node: it has no
incoming edges from other signal nodes, and whenever an event
at another source node occurs, a noChange v value is propagated
from the node. When signal s produces a new value, then a new
event for term async s is generated. That is, when s produces a
value, it is treated like an event from the external environment, and
will be processed in a pipelined manner by the signal graph. The
async construct, combined with pipelined execution of the signal
graph, allows the programmer to easily separate long-running com-
putations, while maintaining a relatively straightforward semantics
for the FRP program. This allows a programmer to ensure that a
GUI remains responsive even in the presence of significant compu-
tation trigged by user actions.

Example Consider the following program which takes in a signal
of English words, pairing both the original word and the French
translation of the word in a 2-tuple:

wordPairs = lift2 (,) words (lift toFrench words)

For simplicity, we assume that words is an input signal (i.e., words
are given by the external environment), and function toFrench
takes an English word and produces a French word, and may take
significant time to perform the translation. Function (,) takes two
arguments and constructs a pair from them. The signal graph for
wordPairs is shown in Figure 8(a). Although function toFrench
may take significant time, it is important that the propagation of
values from signal words is synchronous, as each English word
must be matched up with its translation. This example motivates
the need for FRPs to be synchronous: the programmer must be able
to ensure that values from signals are matched up appropriately.

However, there is a tension between synchronization and fast
updates. Consider an expression that combines our wordPairs
signal with the mouse position.

lift2 (,) wordPairs Mouse.position

The intent of this program is to display the current position of
the mouse, in addition to translating English words to French.
Figure 8(b) shows the signal graph for this program. However,
synchronous update means that while translation is occurring, the
mouse position will not be updated. In this case, it is not important
to maintain the synchronization between updates of the mouse
position and updates of the wordPairs signal: it is perfectly fine
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(,)
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wordPairs

Global 
Event 

Dispatcher
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wordPairs
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Figure 8. Example signal graphs

(and, in this case, preferable) to allow the mouse events to “jump
ahead” of the translation computation.

The async primitive allows the programmer to break this syn-
chronization in a controlled way. Informally, the annotation says
“this subgraph does not need to respect the global order of events”.

The following code uses async to indicate that the wordPairs
subgraph should not block mouse updates.

lift2 (,) (async wordPairs) Mouse.position

The signal graph for this program, shown in Figure 8(c), has two
distinct sections: the “primary subgraph” that combines translation
pairs with the mouse position and the “secondary subgraph” that
produces translation pairs. Effectively, the async primitive breaks a
fully synchronous graph into one primary subgraph and an arbitrary
number of secondary subgraphs. Event order is maintained within
each subgraph, but not between them. The resulting graph is more
responsive, but it does not respect global event ordering. In the
example above, this is a desirable improvement.

Translation to Concurrent ML We define the semantics of FElm
by translation to Concurrent ML (CML) [27]. We target CML
because it has simple support for concurrency, it is type safe, and
its theory is well understood.

The translation to CML is a direct instantiation of the intuition
given above: each node in the signal graph has a thread that per-
forms computation for the node, there is a channel for each edge in
the signal graph (representing the FIFO queue for the edge), and the
global event dispatcher is explicitly represented. Figure 9 defines
a datatype and several CML helper functions that assist with the
translation. The event data type wraps a value to indicate whether
the value of the signal has changed. Function change takes an event
value, and indicates whether it represents a changed value or not,
and function bodyOf unwraps an event value to return the actual
value. Function guid is used to obtain unique identifiers for source
nodes.

Figure 10 presents the translation of signal terms to CML.
Translation of signal s, denoted JsK, produces a pair (v,c), where
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datatype ’a event = NoChange ’a | Change ’a
change e = case e of | NoChange _ => False

| Change _ => True
bodyOf e = case e of | NoChange v => v

| Change v => v

counter = ref 0
guid () = counter := !counter + 1; !counter

Figure 9. Translation helper functions

JiK = J 〈i, mci, vi〉 K

J 〈id, mc, v〉 K = spawn (fn _ => loop v) ; (v, cout)
where cout = mailbox ()

loop prev =
let msg = if (recv (port eventNotify)) == id

then Change (recv (port mc))
else NoChange prev

in send cout msg ; loop (bodyOf msg)

Jliftn f s1 ... snK = spawn (fn _ => loop v) ; (v, cout)
where (v1, c1), ... , (vn, cn) = Js1K, ... , JsnK

v, cout = JfKV v1 ... vn, mailbox ()
loop prev =

let (m1, ... , mn) = (recv c1, ... , recv cn)
msg = if exists change [m1, ... , mn] then

Change (JfKV (bodyOf x1) ... (bodyOf xn))
else NoChange prev

in send cout msg ; loop (bodyOf msg)

Jfoldp f v sK = spawn (fn _ => loop JvKV) ; (JvKV, cout)
where (_, cin), cout = JsK, mailbox ()

loop acc =
let msg = case recv cin of

| NoChange _ -> NoChange acc
| Change v -> Change (JfKV v acc)

in send cout msg ; loop (bodyOf msg)

Jlet x = sin in soutK = spawn loop ;
(let xv,xch = v,mcout in JsoutK)

where (v, cin), mcout = JsinK, mChannel ()
loop () = send mcout (recv cin) ; loop ()

JxK = (xv, port xch)

JvK = JvKV

Jasync sK = spawn loop ; J 〈id, cout, d〉 K
where (d, cin), cout, id = JsK, mChannel (), guid ()

loop () = case recv cin of
| NoChange _ -> loop ()
| Change v -> send cout v ;

send newEvent id ; loop ()

Figure 10. Translation from signal terms to CML

v is the default and initial value of the signal, and c is a mailbox, a
buffered non-blocking channel to which new values of the signal
are sent. Recall that we assume that every input signal has an
appropriate default value, which then induces default values for all
other signals. We assume a translation function J·KV that translates
values (i.e., unit (), integers n, and functions λx :τ. e) to CML.

The translation of each signal term creates a new thread that
performs computation to produce values for the signal. For source
nodes, this involves listening on a multicast channel for messages
sent from the global dispatcher. For other nodes, the thread waits
for input on all incoming edges, then either performs the appropri-

ate computation for the node (if at least one of the incoming values
is an event of the form Change v), or propagates an event value
NoChange v where v is the latest computed value for the signal.
We now describe the translation of each signal term in more detail.

The translation for input signal i assumes that i is a CML in-
teger value, that there is a suitable default value vi for the signal,
and that there is a multicast channel mci on which new values for
the input signal will be sent. We abstract translation of this triple
〈i, mci, vi〉, since it is re-used by the translation for async. Trans-
lation of the triple creates a mailbox cout to publish values for
the input signal. It creates a thread that receives messages from
the global event dispatcher on the eventNotify multicast channel
(“recv (port eventNotify)”). For each event, the global event
dispatcher sends a message on the eventNotify channel that con-
tains the unique integer identifier of the source node for which the
event is relevant. If this is the id of the input signal, then the thread
takes a value v from the input signal channel (“recv (port mc)”)
and sends Change v on cout. Otherwise, the thread sends value
NoChange v′, where v′ is the last value of the input signal.

Translation of liftn f s1 ... sn creates a mailbox cout on
which to send new values for the signal. It spawns a thread that
waits to receive an event value from each of n signals. If any of the
values indicate a change has occurred, then function f is applied to
the current value of the signals to produce a value v and Change v
is sent on the signal’s channel. Otherwise, NoChange v′ is sent on
the channel, where v′ is the last value of the input signal.

Translation of foldp f v s is similar to a lift term, except that
the fold has a single input signal, the initial value for the signal is
the explicitly specified value v, and function f is given the previous
value of the fold signal in addition to values received on signal s.

Translation of let expressions and variables work together to en-
sure that FElm’s runtime system does not have duplicate nodes. A
let expression node serves as a multicast station, forwarding mes-
sages to possibly many different nodes. Translation of let x =
sin in sout translates sin, and binds variables xv and xch in the
translation of sout to be, respectively, the initial value of signal sin
and a multicast channel on which values produced by sin are mul-
ticast. Thus, variables are translated to the pair (xv, port xch),
where port xch returns a port that allows receipt of messages sent
on the multicast channel.

Translation of async s returns the translation of the triple
〈id, cout, v〉, where id is a newly generated unique identifier for
the source node representing the term, cout is a newly created
multicast channel, and d is the default value for signal s. The
translation spawns a thread that listens for Change v events to be
produced by signal s, upon receiving a new value, sends that value
on multicast channel cout, and notifies the global event dispatcher
that source node id has a new event (“send newEvent id”).

The translation of program s is executed within the context of
the FElm CML runtime system, presented in Figure 11. There are
two important loops: the global event dispatcher eventDispatch
receives events from the newEvent mailbox, and notifies all source
nodes of the new event, using the eventNotify multicast channel;
the display loop displayLoop updates the user’s view as new dis-
play values are produced by the translation of the program s. To-
gether, these loops are the input and output for a FElm program,
with eventDispatch feeding values in and displayLoop out-
putting values to the screen. Note that the newEvent mailbox is
a FIFO queue, preserving the order of events sent to the mailbox.

The displayLoop depends on the translation of a signal term
s. The translation produces both the initialDisplay which is
the first screen to be displayed and the nextDisplay channel upon
which display updates are sent. The display loop just funnels values
from the nextDisplay channel to the screen.
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newEvent = mailbox ()
eventNotify = mChannel ()
eventDispatch () =

let id = recv newEvent in
send eventNotify id ; eventDispatch ()

(initialDisplay, nextDisplay) = JsK
send display initialDisplay
displayLoop () = let v = recv nextDisplay in

send display v ; displayLoop ()

spawn eventDispatch ; spawn displayLoop

Figure 11. FElm CML runtime system

4. Building GUIs with Elm
Elm extends the FElm core calculus to a full language for build-
ing rich interactive GUIs, including libraries for constructing and
composing GUI components. Elm can represent quite complex in-
teractions with a small amount of code. The signal abstraction en-
courages a separation between reactive code and code focused on
the layout of GUI components. This separation is due in part to
Elm’s purely functional and declarative approach to graphical lay-
out, which allows a programmer to say what they want to display,
without specifying how this should be done.

Elm has additional base values, including strings, floating point
numbers, time, tuples, and graphical values such as Elements and
Forms. Elm libraries provide data structures such as options, lists,
sets, and dictionaries. Elm provides support for receiving input
from mouse, keyboard, and touch devices, for accessing window
attributes, and for network communication via HTTP. Elm supports
JSON data structures and Markdown (making text creation easier).
Elm’s type system allows let-polymorphism and recursive simple
types (but not recursive signal types). Elm supports type inference,
has extensible records, and has a module system.

In this section we describe some key concepts and libraries for
building GUIs with Elm, focusing on features unique to Elm.

4.1 Elements and Forms
Elm has two major categories of graphical primitives: elements
and forms. An element (a value of type Element) is a rectangle
with a known width and height. Elements can contain text, im-
ages, or video. They can be easily created and composed, making
it simple to quickly lay out a multimedia display. Elements can be
resized using functions width and height, both of which have
type Int -> Element -> Element. Examples in the Introduc-
tion demonstrated the composition of elements.

A form (a value of type Form) allows non-rectangular shapes
and text to be defined and composed. A form is an arbitrary 2D
shape (including lines, shapes, text, and images) and a form can
be enhanced by specifying texture and color. Forms can be moved,
rotated, and scaled.

There are several subtypes of Form, including Line and Shape.
Primitive functions can be used to construct forms, including line
(which takes a list of points, and returns a line that goes through
each point), polygon (which takes a list of points and returns an
irregular polygon that goes through each of the points), and library
functions such as rect to create rectangles, oval to construct
ovals, and ngon to construct regular polygons.

Several functions allow lines and shapes to be given different
colors, fills, and rendering. Forms can be moved, scaled, and rotated
using primitive functions move, scale, and rotate.

Function collage provides the ability to combine forms in
an unstructured way to produce an element. It takes as arguments

square = rect 70 70
pentagon = ngon 5 20
circle = oval 50 50
zigzag = path [ (0,0), (10,10), (0,30), (10,40) ]

main = collage 140 140
[ filled green pentagon,

outlined (dashed blue) circle,
rotate (degrees 70)

(outlined (solid black) square),
move 40 40 (trace (solid red) zigzag) ]

Figure 12. Creating and combining shapes

Signal Type and Description
Mouse.position Signal (Int, Int)

Current coordinates of the mouse.

Mouse.clicks Signal ()
Triggers on mouse clicks.

Window.dimensions Signal (Int, Int)
Current dimensions of window.

Time.every Time -> Signal Time
Update every t milliseconds.

Time.fps Float -> Signal Time
Time deltas, updating at the given FPS.

Touch.touches Signal [Touch]
List of ongoing touches. Useful

for defining gestures.

Touch.taps Signal { x:Int, y:Int }
Position of the latest tap.

Keyboard.keysDown Signal [KeyCode]
List of keys that are currently pressed.

Keyboard.arrows Signal { x:Int, y:Int }
Arrow keys pressed.

e.g., up+right is {x=1,y=1}

Keyboard.shift Signal Bool
Is the shift key down?

Input.text String ->
(Signal Element, Signal String)

Create a text input field.

Figure 13. Some Elm input signals and signal constructors

width, height, and list of forms.

collage : Int -> Int -> [Form] -> Element

Figure 12 shows an example of creating several forms, changing
their attributes, transforming them, and using collage to combine
them into an element.

4.2 Reactive GUIs
To allow programmers to write GUIs that interact with the user,
and react to user input and events in the external environment,
Elm provides several primitive signals that can be used in Elm
programs. These are the identifiers Input used in FElm to denote
input signals from the external environment. Figure 13 describes
some of Elm’s signals and signal constructors. Signal constructor
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pics = [ "shells.jpg", "car.jpg", "book.jpg" ]
display i =

image 475 315 (ith (i ‘mod‘ length pics) pics)

count s = foldp (\_ c -> c + 1) 0 s
index1 = count Mouse.clicks
index2 = count (Time.every (3 * second))
index3 = count Keyboard.lastPressed

main = lift display index1

Figure 14. A simple slide-show: reacting to user input

Time.every takes a floating point number t. The resulting signal is
the current time, updated every t milliseconds. This signal enables
time-indexed animations and allows update rates to be tuned by the
programmer. Signal constructor Time.fps allows a programmer to
specify a desired frame rate. The resulting signal is a sequence of
time deltas (i.e., the time elapsed since the last event), making it
easy to do time-stepped animations. The frame rate is managed by
the Elm runtime system, accommodating performance constraints.

Input components such as text boxes, buttons, and sliders are
represented as a pair of signals: an element (for the graphical
component) and a value (for the value input). For example, the
library function

Input.text :

String -> (Signal Element, Signal String)

allows a programmer to construct a text input component. The code

(Input.text "Name")

returns a pair of a signal of Elements (for the graphical input field)
and a signal of Strings representing the current user input. The
graphical element uses the string "Name" as the greyed-out default
text, indicating the desired user input. The element can be displayed
on the screen, and the signals will be updated every time the text in
the field changes.

Figure 14 shows how different user inputs can be used to imple-
ment a slide show. The code displays a single image from a list of
images, pics. The user can cycle through the images by clicking
the mouse. (In the accompanying diagram, the arrows indicate pos-
sible transitions between pictures, not actual graphical elements.)
The program could easily be modified to change images using a
timer as seen in index2 which increments every three seconds.
It could also change images when a key is pressed as in index3.
The Keyboard.lastPressed signal updates to the latest character
pressed.

4.3 Signal Functions
Elm embeds an implementation of discrete Arrowized FRP (AFRP),
based on the naive continuation-based implementation described in
the first AFRP paper [25]. To better capture the fact that our imple-
mentation is discrete (stepping forward only when provided with
an input) this is called the Automaton library in Elm.

Arrowized FRP is a purely functional way to structure stateful
programs. It introduced signal functions [25] which can encapsu-
late state and safely be switched in and out of a program. A signal
function is conceptually equivalent to Elm’s signal nodes: a set of
external inputs, internal state, and an output. Although signal func-
tions and signal nodes are equivalent, Elm’s core language does

not allow one to work with signal nodes directly. Arrowized FRP
allows this, making it possible to dynamically reconfigure a single
node. This direct embedding of AFRP gives Elm the flexibility of
signal functions without resorting to the use of signals-of-signals.

An Automaton is defined as a continuation that when given an
input a, produces the next continuation and an output b.
data Automaton a b = Step (a -> (Automaton a b, b))

This allows state to be kept around by continually placing it
in the next continuation (the next step). Dynamic collections and
dynamic switching are possible because an automaton is a pure data
structure with no innate dependencies on inputs (whereas signals
depend on an input by definition). Elm provides the following
functions to make it easier to create pure and stateful automata:
pure : (a -> b) -> Automaton a b
init : (a -> b -> b) -> b -> Automaton a b

This lets a programmer create stateful components that can be
switched in and out of a program. Notice the similarity between
the types of init and foldp.

To use an Automaton, Elm provides the step function which
steps an automaton forward once, and the run function which feeds
a signal into an automaton, stepping it forward on each change.
step : a -> Automaton a b -> (Automaton a b, b)
step input (Step f) = f input

run : Automaton a b -> b -> Signal a -> Signal b
run automaton base inputs =
let step’ input (Step f, _) = f input
in lift snd (foldp step’ (automaton,base) inputs)

Functions run and foldp are equivalent in expressive power.
We defined run using foldp, but we could have taken Automatons
as primitives and defined foldp using run, as follows.
foldp : (a -> b -> b) -> b -> Signal a -> Signal b
foldp f base inputs = run (init f base) base inputs

We chose foldp as our underlying abstraction partly because it
makes Elm more accessible to users unfamiliar with arrows, arrow
notation, type classes, and category theory. It also allows us to
improve on our naive embedding of discrete AFRP, or add alternate
embeddings, without changing the core language.

5. Implementation
We have implemented an Elm-to-JavaScript compiler, and have a
prototype implementation of Elm as an embedded domain-specific
language (DSL) in Haskell.

The use of Asynchronous FRP has the potential to ensure that
GUIs remain responsive despite long-running computation. We
do not provide direct performance evaluations of Elm, although
in our experience GUIs implemented with Elm have not required
any performance tuning other than identifying signals to mark as
asynchronous. We note that it is easy to write programs such that
Elm provides arbitrarily better responsiveness over synchronous
FRP. For example, in the following code, function f can be made
arbitrarily long-running. While the asynchronous code (signal
asyncEg) will remain responsive (continuing to display Mouse.x),
the synchronous case (signal syncEg) will be unresponsive until
evaluation of f completes.
syncEg = lift2 (,) Mouse.x (lift f Mouse.y)
asyncEg =

lift2 (,) Mouse.x (async (lift f Mouse.y))

Similarly, it is possible to write programs such that the pipelined
evaluation of signals has arbitrarily better performance than non-
pipelined execution by ensuring that the signal graph of the pro-
gram is sufficiently deep.
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Elm-to-JavaScript compiler The Elm-to-JavaScript compiler is
implemented in about 2,700 lines of Haskell code. The output of
compiling an Elm program is an HTML file. The compiler can
also output a JavaScript file for embedding an Elm program into
an existing project. The compiler output works on any modern
browser. We provide a Foreign Function Interface to JavaScript to
allow Elm to integrate with existing JavaScript libraries.

We have targeted JavaScript as it is extremely expressive for
graphics and has unmatched cross-platform support. It is perhaps
the most widely used and supported GUI platform, albeit notori-
ously difficult to reason about its graphical layout model and to
create readable asynchronous code.

JavaScript has poor support for concurrency, and as such the
Elm-to-JavaScript compiler supports concurrent execution only for
asynchronous requests, such as HTTP requests and non-blocking
file I/O. JavaScript does provide heavy-weight threads, called Web
Workers, but communication and interaction between threads is
limited. We investigated using Web Workers to implement async,
but found their overhead to be too high compared with simpler ap-
proaches. We anticipate that if and when JavaScript supports light-
weight threads, we will be able to more fully support asynchrony
and concurrency in the Elm-to-JavaScript compiler.

Elm programs typically take longer to execute than an equiva-
lent hand-written JavaScript program, in a similar way that hand-
tuned assembly code is often more efficient than compiled high-
level language code. Indeed, a key benefit of Elm is providing bet-
ter abstractions to programmers for building GUIs. However, the
current prototype Elm-to-JavaScript compiler is efficient enough
to execute all existing Elm programs while providing a responsive
user experience on commodity web browsers on standard laptop
and desktop machines.

The Elm-to-JavaScript compiler has been used to build the
Elm website (http://elm-lang.org/) along with nearly 200 exam-
ples, including a nine-line analog clock, forms with client-side error
checking, a graphing library that handles cartesian and radial coor-
dinates, a slide-show API, and a Flickr image search interface. Elm
has also been used to make Pong and other games, which require
highly interactive GUIs.

Elm-in-Haskell library We also have a prototype Elm-in-Haskell
library (144 lines of Haskell code) that supports the key features
of Elm. While it does not have as extensive a suite of libraries
and syntactic sugar, it does fully support the async construct and
implement concurrent (pipelined) evaluation of signals. We use
the Control.Concurrent.Chan.Strict module and General-
ized Abstract Data Types to provide a type-safe implementation of
Elm. By using strict channels we ensure that unevaluated expres-
sions do not escape and cause unintended sequentialization.

6. Related Work
Elm is an asynchronous FRP programming language for creating
rich and interactive GUIs. We focus on work related to the efficient
FRP implementation, and to FRP frameworks for creating GUIs.

6.1 Efficient FRP Implementation
“Traditional” Functional Reactive Programming (FRP) was intro-
duced in the Fran system [13] which suffered severe efficiency
problems as a result of its expressive semantics. It permitted sig-
nals that depended on any past, present, or future value. As a result,
its implementation had to save all past values of a signal just in
case, growing memory linearly with time.

Real-time FRP (RT-FRP) [30, 32] ensures that signals cannot
be used in ways that do not have an efficient implementation. Like
Elm, RT-FRP uses a two-tiered language: an unrestricted base lan-
guage (λ-calculus with recursion) and a limited reactive language

for manipulating signals, which supports recursion but not higher-
order functions (making it less expressive than traditional FRP).
RT-FRP ensures that reactive updates will terminate as long as the
base language terms terminate, and memory will not grow unless it
grows in the base language. Although not strong guarantees, they
are a significant improvement over traditional FRP, which might
(needlessly) use space linear in a program’s running time.

Event-Driven FRP (E-FRP) [31] builds on the efficiency gains
of RT-FRP by introducing discrete signals. E-FRP programs are
event-driven in that no changes need to be propagated unless an
event has occurred (i.e., the value of a signal has changed) which
improves efficiency of the computation.

Xu and Khoo [32] suggest a concurrent runtime for RT-FRP
as future work but to the best of our knowledge, this has not
been pursued. Like RT-FRP, Elm uses a two-tiered language to
restrict the inefficient use of signals. However, whereas RT-FRP
uses different syntactic constructs to separate functional and signal
terms, Elm has a unified syntax but a stratified type system. This
allows Elm to avoid non-standard syntactic constructs and accept
more expressions, while restricting inefficient use of signals. Like
E-FRP, Elm uses discrete signals to ensure efficiency and does
not support recursively defined signals. The original paper on E-
FRP suggests that discrete signals may be compatible with RT-FRP
style recursion [31], but we have found that such an extension is
not particularly important for creating GUIs. Improving upon these
systems, we provide a concurrent runtime, and introduce a simple
mechanism—the async annotation—to allow programmers to
easily take advantage of concurrency.

Arrowized FRP (AFRP) [20, 21, 24, 25, 29] aims to regain much
of the expressiveness of traditional FRP and keep the efficiency
gains of RT-FRP. This is achieved by requiring programmers to use
signal functions instead of having direct access to signals. Signal
functions are conceptually equivalent to functions that take a signal
of type a as an input, and return a signal of type b.

Signal functions solve the semantic problems associated with
dynamically-created stateful signals by keeping state in signal
functions instead of in signals. Unlike traditional FRP, a signal
function cannot depend on arbitrary past values. Thus, AFRP al-
lows programs to dynamically change how signals are processed
without space leaks. Although there is no direct access to sig-
nals, AFRP achieves the expressiveness of traditional FRP via
continuation-based switching and dynamic collections of signal
functions.

Signal functions can be embedded in Elm (see Section 4.3),
which brings the benefits of discrete AFRP to Elm programmers,
allowing programs to dynamically create graphical components,
without requiring signals of signals. Elm’s discrete semantics make
it clear how to allow asynchrony and concurrency, which appears
to be semantically problematic in a continuous AFRP.

Parallel FRP [26], like Elm, enables concurrent signal process-
ing. Parallel FRP relaxes the order of events within a single signal,
allowing events to be processed out of order. In a server setting,
this means that requests do not need to be processed in the order
received, so responses can be computed in parallel and returned
immediately. In a GUI setting, such intra-signal asynchrony is typ-
ically inappropriate, as it would allow, for example, key presses to
be processed out of order. Instead, Elm permits inter-signal asyn-
chrony: relaxing the order of events between multiple signals. We
believe that intra- and inter-signal asynchrony are compatible, but
inter-signal asynchrony is more useful in GUI programming.

Self-adjusting computation (e.g., [1, 2, 11]) is motivated by the
desire to reduce redundant re-computation. As seen in FElm’s pipe-
lined signal evaluation (Section 3.3.2), avoiding needless recom-
putation helps performance and is required for correctness (due
to the stateful nature of the foldp construct). Although FElm
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avoids some needless recomputation, it currently propagates many
noChange v messages through the signal graph. Insights from self-
adjusting computation could be used to reduce these messages and
improve performance. Indeed, it appears likely that modifiable ref-
erences [1] (used in self-adjusting computation to represent values
that may change and thus trigger recomputation) can be used to
encode signals, and can also express asynchronous signals [3].

6.2 FRP GUI Frameworks
Both traditional FRP and Arrowized FRP have been used as the
basis of several Haskell-embedded GUI frameworks, including:
FranTk [28] (the original GUI framework for Fran [13]); Fruit [9]
and Yampa/Animas [10, 16] (based on Arrowized FRP); and Reac-
tive Banana [4] (based on traditional FRP but avoids time leaks with
carefully restricted APIs, disallowing signals-of-signals). Each of
these Haskell-embedded libraries suffer from two problems. First,
due to its lazy semantics, embedding the language in Haskell can
lead to unexpectedly slow updates and unnecessary memory usage,
which can be an issue for GUIs. Second, these Haskell-embedded
libraries are a wrapper around a Haskell wrapper around an im-
perative GUI framework. This complicates both the design and the
installation of the frameworks. Indeed, FranTk [28] includes event
listeners—an imperative abstraction—because they map more nat-
urally onto the Tcl/Tk backend.

Several frameworks embed FRP in imperative languages. Flap-
jax [23] extends JavaScript with traditional FRP. Flapjax interoper-
ates easily with existing JavaScript code, as it is simply a JavaScript
library. Frappé [8] adds FRP functionality to Java. Ignatoff et al.
[18] adapt an object-oriented GUI library for use with the FRP lan-
guage FrTime [7]. By necessity, these projects—including Elm—
all rely on imperative GUI frameworks. This creates incentive to
“work well” with existing code using these frameworks, or to be
“close to the metal” of the framework. However, these incentives
can be destructive, with imperative constructs muddying the clarity
and simplicity of FRP. To maintain the declarative nature of FRP,
Elm introduces a purely functional graphics library on a platform
that is widely supported and easy to install. Interaction between
Elm and JavaScript is handled by a simple foreign function inter-
face (FFI) that maintains a clean separation between functional and
imperative code.

Elm provides a functional abstraction for graphical layout.
Elm’s collage API is similar to previous work on free-form func-
tional graphics [6, 14, 15, 17, 19]. Unlike this previous work, Elm
supports user interaction and designs for animation, enabling cre-
ation of GUIs as opposed to purely static pictures and graphics.

7. Conclusion
We have developed the Elm programming language, a practical
asynchronous FRP language focused on easy creation of responsive
GUIs. We introduced Asynchronous FRP to allow programmers to
easily specify when a potentially long-running signal computation
should be computed asynchronously, and thus enable efficient con-
current execution of FRP programs. We captured the key concepts
of asynchronous FRP in a core calculus.

By combining asynchronous FRP with purely functional layout
of graphical elements, Elm simplifies the complicated task of cre-
ating responsive and usable graphical user interfaces.
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