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Abstract

To be agile and cost e�ective, data centers should allow dynamic re-
source allocation across large server pools. In particular, the data
center network should enable any server to be assigned to any ser-
vice. Tomeet these goals, we presentVL, a practical network archi-
tecture that scales to support huge data centers with uniform high
capacity between servers, performance isolation between services,
andEthernet layer- semantics. VL uses () �at addressing to allow
service instances to be placed anywhere in the network, () Valiant
Load Balancing to spread tra�c uniformly across network paths,
and () end-system based address resolution to scale to large server
pools, without introducing complexity to the network control plane.
VL’s design is driven by detailed measurements of tra�c and fault
data from a large operational cloud service provider. VL’s imple-
mentation leverages proven network technologies, already available
at low cost in high-speed hardware implementations, to build a scal-
able and reliable network architecture. As a result, VL networks
can be deployed today, and we have built a working prototype. We
evaluate the merits of the VL design using measurement, analysis,
and experiments. Our VL prototype shu�es . TB of data among
 servers in  seconds – sustaining a rate that is  of the max-
imum possible.

Categories and Subject Descriptors: C.. [Computer-Communi-
cation Network]: Network Architecture and Design

General Terms: Design, Performance, Reliability

Keywords: Data center network, commoditization

1. INTRODUCTION
Cloud services are driving the creation of data centers that hold

tens to hundreds of thousands of servers and that concurrently sup-
port a large number of distinct services (e.g., search, email, map-
reduce computations, and utility computing). �e motivations for
building such shared data centers are both economic and technical:
to leverage the economies of scale available to bulk deployments and
to bene�t from the ability to dynamically reallocate servers among
services as workload changes or equipment fails [, ]. �e cost is
also large – upwards of  million per month for a , server
data center — with the servers themselves comprising the largest
cost component. To be pro�table, these data centers must achieve
high utilization, and key to this is the property of agility — the ca-
pacity to assign any server to any service.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’09, August 17–21, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-594-9/09/08 ...$10.00.

Agility promises improved risk management and cost savings.
Without agility, each service must pre-allocate enough servers to
meet di�cult to predict demand spikes, or risk failure at the brink
of success. With agility, the data center operator can meet the �uc-
tuating demands of individual services from a large shared server
pool, resulting in higher server utilization and lower costs.

Unfortunately, the designs for today’s data center network pre-
vent agility in several ways. First, existing architectures do not
provide enough capacity between the servers they interconnect.
Conventional architectures rely on tree-like network con�gurations
built from high-cost hardware. Due to the cost of the equipment,
the capacity between di�erent branches of the tree is typically over-
subscribed by factors of : or more, with paths through the highest
levels of the tree oversubscribedby factors of : to :. �is lim-
its communication between servers to the point that it fragments the
server pool — congestion and computation hot-spots are prevalent
even when spare capacity is available elsewhere. Second, while data
centers host multiple services, the network does little to prevent a
tra�c �ood in one service from a�ecting the other services around
it—when one service experiences a tra�c�ood,it is common for all
those sharing the same network sub-tree to su�er collateral damage.
�ird, the routing design in conventional networks achieves scale by
assigning servers topologically signi�cant IP addresses and dividing
servers among VLANs. Such fragmentation of the address space
limits the utility of virtual machines, which cannot migrate out of
their original VLAN while keeping the same IP address. Further,
the fragmentation of address space creates an enormous con�gura-
tion burden when servers must be reassigned among services, and
the human involvement typically required in these recon�gurations
limits the speed of deployment.

To overcome these limitations in today’s design and achieve
agility, we arrange for the network to implement a familiar and
concrete model: give each service the illusion that all the servers
assigned to it, and only those servers, are connected by a single
non-interfering Ethernet switch—a Virtual Layer — andmaintain
this illusion even as the size of each service varies from  server to
,. Realizing this vision concretely translates into building a
network that meets the following three objectives:

• Uniform high capacity: �e maximum rate of a server-to-server
tra�c �ow should be limited only by the available capacity on the
network-interface cards of the sending and receiving servers, and
assigning servers to a service should be independent of network
topology.

• Performance isolation: Tra�c of one service should not be af-
fected by the tra�c of any other service, just as if each service was
connected by a separate physical switch.

• Layer- semantics: Just as if the servers were on a LAN—where
any IP address can be connected to any port of an Ethernet switch
due to �at addressing—data-centermanagement so
ware should
be able to easily assign any server to any service and con�gure



that server with whatever IP address the service expects. Virtual
machines should be able to migrate to any server while keeping
the same IP address, and the network con�guration of each server
should be identical to what it would be if connected via a LAN.
Finally, features like link-local broadcast, on which many legacy
applications depend, should work.

In this paper we design, implement and evaluate VL, a net-
work architecture for data centers that meets these three objectives
and thereby provides agility. In creating VL, a goal was to investi-
gate whether we could create a network architecture that could be
deployed today, so we limit ourselves from making any changes to
the hardware of the switches or servers, and we require that legacy
applications work unmodi�ed. However, the so
ware and operat-
ing systems on data-center servers are already extensively modi�ed
(e.g., to create hypervisors for virtualization or blob �le-systems to
store data). �erefore, VL’s design explores a new split in the re-
sponsibilities between host and network — using a layer . shim
in servers’ network stack to work around limitations of the network
devices. No new switch so
ware or APIs are needed.

VL consists of a network built from low-cost switch ASICs
arranged into a Clos topology [] that provides extensive path di-
versity between servers. Our measurements show data centers have
tremendous volatility in their workload, their tra�c, and their fail-
ure patterns. To cope with this volatility, we adopt Valiant Load
Balancing (VLB) [, ] to spread tra�c across all available paths
without any centralized coordination or tra�c engineering. Using
VLB, each server independently picks a path at random through the
network for each of the �ows it sends to other servers in the data
center. Common concerns with VLB, such as the extra latency and
the consumption of extra network capacity caused by path stretch,
are overcome by a combination of our environment (propagation
delay is very small inside a data center) and our topology (which
includes an extra layer of switches that packets bounce o� of). Our
experiments verify that our choice of using VLB achieves both the
uniform capacity and performance isolation objectives.

�e switches that make up the network operate as layer-
routers with routing tables calculated by OSPF, thereby enabling the
use of multiple paths (unlike Spanning Tree Protocol) while using a
well-trusted protocol. However, the IP addresses used by services
running in the data center cannot be tied to particular switches
in the network, or the agility to reassign servers between services
would be lost. Leveraging a trick used in many systems [], VL
assigns servers IP addresses that act as names alone, with no topo-
logical signi�cance. When a server sends a packet, the shim-layer
on the server invokes a directory system to learn the actual location
of the destination and then tunnels the original packet there. �e
shim-layer also helps eliminate the scalability problems created by
ARP in layer- networks, and the tunneling improves our ability to
implement VLB.�ese aspects of the design enable VL to provide
layer- semantics, while eliminating the fragmentation and waste of
server pool capacity that the binding between addresses and loca-
tions causes in the existing architecture.

Taken together, VL’s choices of topology, routing design, and
so
ware architecture create a huge shared pool of network capacity
that each pair of servers can draw from when communicating. We
implement VLB by causing the tra�c between any pair of servers
to bounce o� a randomly chosen switch in the top level of the Clos
topology and leverage the features of layer- routers, such as Equal-
Cost MultiPath (ECMP), to spread the tra�c along multiple sub-
paths for these two path segments. Further,we use anycast addresses
and an implementation of Paxos [] in a way that simpli�es the
design of the Directory System and, when failures occur, provides
consistency properties that are on par with existing protocols.
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Figure : A conventional network architecture for data centers
(adapted from �gure by Cisco []).

�e feasibility of our design rests on several questions that we
experimentally evaluate. First, the theory behind Valiant Load Bal-
ancing, which proves that the networkwill be hot-spot free, requires
that (a) randomization is performed at the granularity of small pack-
ets, and (b) the tra�c sent into the network conforms to the hose
model []. For practical reasons, however, VL picks a di�erent
path for each �ow rather than packet (falling short of (a)), and it
also relies on TCP to police the o�ered tra�c to the hose model
(falling short of (b), as TCP needs multiple RTTs to conform traf-
�c to the hose model). Nonetheless, our experiments show that for
data-center tra�c, the VL design choices are su�cient to o�er the
desired hot-spot free properties in real deployments. Second, the
directory system that provides the routing information needed to
reach servers in the data center must be able to handle heavy work-
loads at very low latency. We show that designing and implementing
such a directory system is achievable.

In the remainder of this paper we will make the following con-
tributions, in roughly this order.

• Wemake a �rst of its kind study of the tra�c patterns in a produc-
tion data center, and �nd that there is tremendous volatility in the
tra�c, cycling among - di�erent patterns during a day and
spending less than  s in each pattern at the th percentile.

• We design, build, and deploy every component of VL in an -
server cluster. Using the cluster, we experimentally validate that
VL has the properties set out as objectives, such as uniform ca-
pacity and performance isolation. We also demonstrate the speed
of the network, such as its ability to shu�e . TB of data among
 servers in  s.

• We apply Valiant Load Balancing in a new context, the inter-
switch fabric of a data center, and show that �ow-level tra�c split-
ting achieves almost identical split ratios (within  of optimal
fairness index) on realistic data center tra�c, and it smoothes uti-
lization while eliminating persistent congestion.

• We justify the design trade-o�s made in VL by comparing the
cost of a VL network with that of an equivalent network based
on existing designs.

2. BACKGROUND
In this section, we �rst explain the dominant design pattern for

data-center architecture today []. We then discuss why this archi-
tecture is insu�cient to serve large cloud-service data centers.

As shown in Figure , the network is a hierarchy reaching from
a layer of servers in racks at the bottom to a layer of core routers at
the top. �ere are typically  to  servers per rack, each singly con-
nected to a Top of Rack (ToR) switch with a  Gbps link. ToRs con-
nect to two aggregation switches for redundancy, and these switches
aggregate further connecting to access routers. At the top of the hi-
erarchy, core routers carry tra�c between access routers and man-



age tra�c into and out of the data center. All links use Ethernet as
a physical-layer protocol, with a mix of copper and �ber cabling.
All switches below each pair of access routers form a single layer-
 domain, typically connecting several thousand servers. To limit
overheads (e.g., packet �ooding and ARP broadcasts) and to iso-
late di�erent services or logical server groups (e.g., email, search,
web front ends, web back ends), servers are partitioned into vir-
tual LANs (VLANs). Unfortunately, this conventional design su�ers
from three fundamental limitations:

Limited server-to-server capacity: As we go up the hierar-
chy, we are confronted with steep technical and �nancial barriers
in sustaining high bandwidth. �us, as tra�cmoves up through the
layers of switches and routers, the over-subscription ratio increases
rapidly. For example, servers typically have : over-subscription to
other servers in the same rack — that is, they can communicate at
the full rate of their interfaces (e.g.,  Gbps). We found that up-links
from ToRs are typically : to : oversubscribed (i.e.,  to  Gbps
of up-link for  servers), and paths through the highest layer of
the tree can be : oversubscribed. �is large over-subscription
factor fragments the server pool by preventing idle servers from be-
ing assigned to overloaded services, and it severely limits the entire
data-center’s performance.

Fragmentation of resources: As the cost and performance of
communication depends on distance in the hierarchy, the conven-
tional design encourages service planners to cluster servers nearby
in the hierarchy. Moreover, spreading a service outside a single
layer- domain frequently requires recon�guring IP addresses and
VLAN trunks, since the IP addresses used by servers are topolog-
ically determined by the access routers above them. �e result is
a high turnaround time for such recon�guration. Today’s designs
avoid this recon�guration lag by wasting resources; the plentiful
spare capacity throughout the data center is o
en e�ectively re-
served by individual services (and not shared), so that each service
can scale out to nearby servers to respond rapidly to demand spikes
or to failures. Despite this, we have observed instances when the
growing resource needs of one service have forced data center oper-
ations to evict other services from nearby servers, incurring signif-
icant cost and disruption.

Poor reliability and utilization: Above the ToR, the basic re-
silience model is :, i.e., the network is provisioned such that if an
aggregation switch or access router fails, there must be su�cient re-
maining idle capacity on a counterpart device to carry the load. �is
forces each device and link to be run up to at most  of its maxi-
mumutilization. Further, multiple paths either do not exist or aren’t
e�ectively utilized. Within a layer- domain, the SpanningTree Pro-
tocol causes only a single path to be used even when multiple paths
between switches exist. In the layer- portion, Equal CostMultipath
(ECMP) when turned on, can use multiple paths to a destination
if paths of the same cost are available. However, the conventional
topology o�ers at most two paths.

3. MEASUREMENTS & IMPLICATIONS
To design VL, we �rst needed to understand the data cen-

ter environment in which it would operate. Interviews with archi-
tects, developers, and operators led to the objectives described in
Section , but developing the mechanisms on which to build the
network requires a quantitative understanding of the tra�c matrix
(who sends how much data to whom and when?) and churn (how
o
en does the state of the network change due to changes in demand
or switch/link failures and recoveries, etc.?). We analyze these as-
pects by studying production data centers of a large cloud service
provider and use the results to justify our design choices as well as
the workloads used to stress the VL testbed.
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Figure : Mice are numerous;  of �ows are smaller than
 MB. However, more than  of bytes are in �ows between
 MB and  GB.

Our measurement studies found two key results with implica-
tions for the network design. First, the tra�c patterns inside a data
center are highly divergent (as even over  representative tra�c
matrices only loosely cover the actual tra�cmatrices seen),and they
change rapidly andunpredictably. Second, the hierarchical topology
is intrinsically unreliable—even with huge e�ort and expense to in-
crease the reliability of the network devices close to the top of the
hierarchy, we still see failures on those devices resulting in signi�-
cant downtimes.

3.1 Data-Center Traffic Analysis
Analysis of Net�ow and SNMP data from our data centers re-

veals several macroscopic trends. First, the ratio of tra�c volume
between servers in our data centers to tra�c entering/leaving our
data centers is currently around : (excluding CDN applications).
Second, data-center computation is focused where high speed ac-
cess to data on memory or disk is fast and cheap. Although data
is distributed across multiple data centers, intense computation and
communication on data does not straddle data centers due to the
cost of long-haul links. �ird, the demand for bandwidth between
servers inside a data center is growing faster than the demand for
bandwidth to external hosts. Fourth, the network is a bottleneck
to computation. We frequently see ToR switches whose uplinks are
above  utilization.

To uncover the exact nature of tra�c inside a data center, we
instrumented a highly utilized , node cluster in a data center
that supports data mining on petabytes of data. �e servers are
distributed roughly evenly across  ToR switches, which are con-
nected hierarchically as shown in Figure .We collected socket-level
event logs from all machines over two months.

3.2 Flow Distribution Analysis
Distribution of �ow sizes: Figure  illustrates the nature of

�ows within the monitored data center. �e �ow size statistics
(marked as ‘+’s) show that the majority of �ows are small (a few
KB); most of these small �ows are hellos and meta-data requests to
the distributed �le system. To examine longer �ows, we compute a
statistic termed total bytes (marked as ‘o’s) by weighting each �ow
size by its number of bytes. Total bytes tells us, for a random byte,
the distribution of the �ow size it belongs to. Almost all the bytes
in the data center are transported in �ows whose lengths vary from
about  MB to about  GB. �e mode at around  MB springs
from the fact that the distributed �le system breaks long �les into
-MB size chunks. Importantly, �ows over a few GB are rare.
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Figure : Number of concurrent connections has two modes: ()
 �ows per nodemore than  of the time and ()  �ows per
node for at least  of the time.

Similar to Internet �ow characteristics [],we �nd that there are
myriad small �ows (mice). On the other hand, as compared with
Internet �ows, the distribution is simpler and more uniform. �e
reason is that in data centers, internal �ows arise in an engineered
environment driven by careful design decisions (e.g., the -MB
chunk size is driven by the need to amortize disk-seek times over
read times) and by strong incentives to use storage and analytic tools
with well understood resilience and performance.

Number of Concurrent Flows: Figure  shows the probability
density function (as a fraction of time) for the number of concur-
rent �ows going in and out of a machine, computed over all ,
monitored machines for a representative day’s worth of �ow data.
�ere are two modes. More than  of the time, an average ma-
chine has about ten concurrent �ows, but at least  of the time it
has greater than  concurrent �ows. We almost never see more
than  concurrent �ows.

�e distributions of �ow size and number of concurrent �ows
both imply that VLB will perform well on this tra�c. Since even big
�ows are only  MB ( s of transmit time at  Gbps), randomiz-
ing at �ow granularity (rather than packet) will not cause perpetual
congestion if there is unlucky placement of a few �ows. Moreover,
adaptive routing schemes may be di�cult to implement in the data
center, since any reactive tra�c engineering will need to run at least
once a second if it wants to react to individual �ows.

3.3 Traffic Matrix Analysis
Poor summarizability of tra�c patterns: Next, we ask the

question: Is there regularity in the tra�c that might be exploited
through careful measurement and tra�c engineering? If tra�c in the
DC were to follow a few simple patterns, then the network could be
easily optimized to be capacity-e�cient for most tra�c. To answer,
we examine how the Tra�c Matrix(TM) of the , server cluster
changes over time. For computational tractability, we compute the
ToR-to-ToR TM— the entry TM(t)i,j is the number of bytes sent
from servers in ToR i to servers in ToR j during the  s beginning
at time t. We compute one TM for every  s interval, and servers
outside the cluster are treated as belonging to a single “ToR”.

Given the timeseries of TMs, we �nd clusters of similar TMs
using a technique due to Zhang et al. []. In short, the technique
recursively collapses the tra�cmatrices that aremost similar to each
other into a cluster, where the distance (i.e., similarity) re�ects how
much tra�c needs to be shu�ed to make one TM look like the
other. We then choose a representative TM for each cluster, such
that any routing that can deal with the representative TM performs
no worse on every TM in the cluster. Using a single representative
TM per cluster yields a �tting error (quanti�ed by the distances be-
tween each representative TMs and the actual TMs they represent),
which will decrease as the number of clusters increases. Finally, if
there is a knee point (i.e., a small number of clusters that reduces
the �tting error considerably), the resulting set of clusters and their
representative TMs at that knee corresponds to a succinct number
of distinct tra�c matrices that summarize all TMs in the set.
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Figure : Lack of short-term predictability: �e cluster to which
a tra�c matrix belongs, i.e., the type of tra�c mix in the TM,
changes quickly and randomly.

Surprisingly, the number of representative tra�c matrices in
our data center is quite large. On a timeseries of  TMs, indicat-
ing a day’s worth of tra�c in the datacenter, even when approximat-
ing with 50 − 60 clusters, the �tting error remains high () and
only decreasesmoderately beyond that point. �is indicates that the
variability in datacenter tra�c is not amenable to concise summa-
rization and hence engineering routes for just a few tra�c matrices
is unlikely to work well for the tra�c encountered in practice.

Instability of tra�c patterns: Next we ask how predictable is
the tra�c in the next interval given the current tra�c? Tra�c pre-
dictability enhances the ability of an operator to engineer routing
as tra�c demand changes. To analyze the predictability of tra�c in
the network, we �nd the  best TM clusters using the technique
above and classify the tra�c matrix for each  s interval to the
best �tting cluster. Figure (a) shows that the tra�c pattern changes
nearly constantly, with no periodicity that could help predict the fu-
ture. Figure (b) shows the distribution of run lengths - how many
intervals does the network tra�c pattern spend in one cluster be-
fore shi
ing to the next. �e run length is  to the th percentile.
Figure (c) shows the time between intervals where the tra�c maps
to the same cluster. But for the mode at s caused by transitions
within a run, there is no structure to when a tra�c pattern will next
appear.

�e lack of predictability stems from the use of randomness to
improve the performance of data-center applications. For exam-
ple, the distributed �le system spreads data chunks randomly across
servers for load distribution and redundancy. �e volatility implies
that it is unlikely that other routing strategies will outperform VLB.

3.4 Failure Characteristics
To design VL to tolerate the failures and churn found in data

centers, we collected failure logs for over a year from eight produc-
tion data centers that comprise hundreds of thousands of servers,
host over a hundred cloud services and serve millions of users. We
analyzed hardware and so
ware failures of switches, routers, load
balancers, �rewalls, links and servers using SNMP polling/traps,
syslogs, server alarms, and transaction monitoring frameworks. In
all, we looked at M error events from over K alarm tickets.

What is the pattern of networking equipment failures? We
de�ne a failure as the event that occurs when a system or compo-
nent is unable to perform its required function for more than  s.
As expected, most failures are small in size (e.g.,  of network
device failures involve <  devices and  of network device fail-
ures involve <  devices) while large correlated failures are rare
(e.g., the largest correlated failure involved  switches). However,
downtimes can be signi�cant:  of failures are resolved in min,
 in <  hr, . in <  day, but . last >  days.

What is the impact of networking equipment failure? As dis-
cussed in Section , conventional data center networks apply : re-
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families— topologically signi�cant LocatorAddresses (LAs) and
�at Application Addresses (AAs).

dundancy to improve reliability at higher layers of the hierarchical
tree. Despite these techniques, we �nd that in . of failures all
redundant components in a network device group became unavail-
able (e.g., the pair of switches that comprise each node in the con-
ventional network (Figure ) or both the uplinks from a switch). In
one incident, the failure of a core switch (due to a faulty supervi-
sor card) a�ected ten million users for about four hours. We found
the main causes of these downtimes are networkmiscon�gurations,
�rmware bugs, and faulty components (e.g., ports). With no obvi-
ous way to eliminate all failures from the top of the hierarchy, VL’s
approach is to broaden the topmost levels of the network so that the
impact of failures is muted and performance degrades gracefully,
moving from : redundancy to n:m redundancy.

4. VIRTUAL LAYER TWO NETWORKING
Before detailing our solution, we brie�ydiscuss our designprin-

ciples and preview how they will be used in the VL design.
Randomizing to Cope with Volatility: VL copes with

the high divergence and unpredictability of data-center tra�c
matrices by using Valiant Load Balancing to do destination-
independent (e.g., random) tra�c spreading across multiple inter-
mediate nodes. We introduce our network topology suited for VLB
in §., and the corresponding �ow spreading mechanism in §..

VLB, in theory, ensures a non-interfering packet switched net-
work [], the counterpart of a non-blocking circuit switched net-
work, as long as (a) tra�c spreading ratios are uniform, and (b) the
o�ered tra�c patterns do not violate edge constraints (i.e., line card
speeds). To meet the latter condition, we rely on TCP’s end-to-end
congestion control mechanism. While our mechanisms to realize
VLB do not perfectly meet either of these conditions, we show in
§. that our scheme’s performance is close to the optimum.

Building on proven networking technology: VL is based on
IP routing and forwarding technologies that are already available
in commodity switches: link-state routing, equal-cost multi-path
(ECMP) forwarding, IP anycasting, and IP multicasting. VL uses
a link-state routing protocol to maintain the switch-level topology,
but not to disseminate endhosts’ information. �is strategyprotects
switches from needing to learn voluminous, frequently-changing
host information. Furthermore, the routing design uses ECMP for-
warding along with anycast addresses to enable VLB with minimal
control plane messaging or churn.

Separating names from locators: �e data center network
must support agility, whichmeans, in particular, support for hosting
any service on any server, for rapid growing and shrinking of server
pools, and for rapid virtual machine migration. In turn, this calls
for separating names from locations. VL’s addressing scheme sep-
arates server names, termed application-speci�c addresses (AAs),
from their locations, termed location-speci�c addresses (LAs). VL
uses a scalable, reliable directory system to maintain the mappings
between names and locators. A shim layer running in the network
stack on every server, called the VL agent, invokes the directory
system’s resolution service. We evaluate the performance of the di-
rectory system in §..

Embracing End Systems: �e rich and homogeneous pro-
grammability available at data-center hosts provides a mechanism
to rapidly realize new functionality. For example, the VL agent en-
ables �ne-grained path control by adjusting the randomization used
in VLB. �e agent also replaces Ethernet’s ARP functionality with
queries to the VL directory system. �e directory system itself is
also realized on servers, rather than switches, and thus o�ers �exi-
bility, such as �ne-grained, context-aware server access control and
dynamic service re-provisioning.

We next describe each aspect of the VL system and how they
work together to implement a virtual layer- network. �ese aspects
include the network topology, the addressing and routing design,
and the directory that manages name-locator mappings.

4.1 Scale-out Topologies
As described in §., conventional hierarchical data-center

topologies have poor bisection bandwidth and are also suscepti-
ble to major disruptions due to device failures at the highest levels.
Rather than scale up individual network devices with more capac-
ity and features, we scale out the devices — build a broad network
o�ering huge aggregate capacity using a large number of simple, in-
expensive devices, as shown in Figure . �is is an example of a
folded Clos network [] where the links between the Intermedi-
ate switches and the Aggregation switches form a complete bipar-
tite graph. As in the conventional topology, ToRs connect to two
Aggregation switches, but the large number of paths between ev-
ery two Aggregation switches means that if there are n Intermedi-
ate switches, the failure of any one of them reduces the bisection
bandwidth by only 1/n–a desirable graceful degradation of band-
width that we evaluate in §.. Further, it is easy and less expen-
sive to build a Clos network for which there is no over-subscription
(further discussion on cost is in §). For example, in Figure , we
use DA-port Aggregation and DI -port Intermediate switches, and
connect these switches such that the capacity between each layer is
DIDA/2 times the link capacity.

�eClos topology is exceptionally well suited for VLB in that by
indirectly forwarding tra�c through an Intermediate switch at the
top tier or “spine” of the network, the network can provide band-
width guarantees for any tra�c matrices subject to the hose model.
Meanwhile, routing is extremely simple and resilient on this topol-
ogy — take a random path up to a random intermediate switch and
a random path down to a destination ToR switch.

VL leverages the fact that at every generation of technol-
ogy, switch-to-switch links are typically faster than server-to-switch
links, and trends suggest that this gap will remain. Our current de-
sign uses G server links and G switch links, and the next design
point will probably be G server links with G switch links. By
leveraging this gap, we reduce the number of cables required to im-
plement the Clos (as compared with a fat-tree []), and we simplify
the task of spreading load over the links (§.).
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Figure : VLB in an example VL network. Sender S sends pack-
ets to destination D via a randomly-chosen intermediate switch
using IP-in-IP encapsulation. AAs are from 20/8, and LAs are
from 10/8. H(ft) denotes a hash of the �ve tuple.

4.2 VL2 Addressing and Routing
�is section explains how packets �ow through a VL network,

and how the topology, routing design, VL agent, and directory sys-
tem combine to virtualize the underlying network fabric— creating
the illusion that hosts are connected to a big, non-interfering data-
center-wide layer- switch.

4.2.1 Address resolution and packet forwarding

VL uses two di�erent IP-address families, as illustrated in Fig-
ure . �e network infrastructure operates using location-speci�c
IP addresses (LAs); all switches and interfaces are assigned LAs, and
switches run an IP-based (layer-) link-state routing protocol that
disseminates only these LAs. �is allows switches to obtain the com-
plete switch-level topology, as well as forward packets encapsulated
with LAs along shortest paths. On the other hand, applications use
application-speci�c IP addresses (AAs), which remain unaltered no
matter how servers’ locations change due to virtual-machinemigra-
tion or re-provisioning. Each AA (server) is associated with an LA,
the identi�er of the ToR switch to which the server is connected.
�e VL directory system stores the mapping of AAs to LAs, and
this mapping is created when application servers are provisioned to
a service and assigned AA addresses.

�e crux of o�ering layer- semantics is having servers believe
they share a single large IP subnet (i.e., the entire AA space) with
other servers in the same service, while eliminating the ARP and
DHCP scaling bottlenecks that plague large Ethernets.

Packet forwarding: To route tra�c between servers, which use
AA addresses, on an underlying network that knows routes for LA
addresses, the VL agent at each server traps packets from the host
and encapsulates the packet with the LA address of the ToR of the
destination as shown in Figure . Once the packet arrives at the
LA (the destination ToR), the switch decapsulates the packet and
delivers it to the destination AA carried in the inner header.

Address resolution: Servers in each service are con�gured to
believe that they all belong to the same IP subnet. Hence, when an
application sends a packet to anAA for the �rst time,the networking
stack on the host generates a broadcast ARP request for the destina-
tion AA.�e VL agent running on the host intercepts this ARP re-
quest and converts it to a unicast query to the VL directory system.
�e directory system answers the query with the LA of the ToR to
which packets should be tunneled. �e VL agent caches this map-
ping from AA to LA addresses, similar to a host’s ARP cache, such
that subsequent communication need not entail a directory lookup.

Access control via the directory service: A server cannot send
packets to anAA if the directory service refuses to provide it with an
LA throughwhich it can route its packets. �ismeans that the direc-

tory service can enforce access-control policies. Further, since the
directory system knows which server is making the request when
handling a lookup, it can enforce �ne-grained isolation policies. For
example, it could enforce the policy that only servers belonging to
the same service can communicatewith each other. An advantage of
VL is that, when inter-service communication is allowed, packets
�ow directly from a source to a destination, without being detoured
to an IP gateway as is required to connect two VLANs in the con-
ventional architecture.

�ese addressing and forwarding mechanisms were chosen for
two reasons. First, they make it possible to use low-cost switches,
which o
en have small routing tables (typically just 16K entries)
that can hold only LA routes, without concern for the huge number
of AAs. Second, they reduce overhead in the network control plane
by preventing it from seeing the churn in host state, tasking it to the
more scalable directory system instead.

4.2.2 Random traffic spreading over multiple paths

To o�er hot-spot-free performance for arbitrary tra�c matri-
ces, VL uses two related mechanisms: VLB and ECMP. �e goals
of both are similar — VLB distributes tra�c across a set of inter-
mediate nodes and ECMP distributes across equal-cost paths — but
each is needed to overcome limitations in the other. VL uses �ows,
rather than packets, as the basic unit of tra�c spreading and thus
avoids out-of-order delivery.

Figure  illustrates how theVL agent uses encapsulation to im-
plement VLB by sending tra�c through a randomly-chosen Inter-
mediate switch. �e packet is �rst delivered to one of the Intermedi-
ate switches, decapsulated by the switch, delivered to the ToR’s LA,
decapsulated again, and �nally sent to the destination.

While encapsulating packets to a speci�c, but randomly chosen,
Intermediate switch correctly realizes VLB, it would require updat-
ing a potentially huge number of VL agents whenever an Inter-
mediate switch’s availability changes due to switch/link failures. In-
stead, we assign the same LA address to all Intermediate switches,
and the directory system returns this anycast address to agents upon
lookup. Since all Intermediate switches are exactly three hops away
from a source host, ECMP takes care of delivering packets encapsu-
lated with the anycast address to any one of the active Intermediate
switches. Upon switch or link failures, ECMPwill react, eliminating
the need to notify agents and ensuring scalability.

In practice, however, the use of ECMP leads to two problems.
First, switches today only support up to -way ECMP, with -
way ECMP being released by some vendors this year. If there are
more paths available than ECMP can use, then VL de�nes several
anycast addresses, each associated with only as many Intermediate
switches as ECMP can accommodate. When an Intermediate switch
fails, VL reassigns the anycast addresses from that switch to other
Intermediate switches so that all anycast addresses remain live, and
servers can remain unaware of the network churn. Second, some
inexpensive switches cannot correctly retrieve the �ve-tuple values
(e.g., the TCP ports) when a packet is encapsulatedwith multiple IP
headers. �us, the agent at the source computes a hash of the �ve-
tuple values and writes that value into the source IP address �eld,
which all switches do use in making ECMP forwarding decisions.

�e greatest concern with both ECMP and VLB is that if “ele-
phant �ows” are present, then the random placement of �ows could
lead to persistent congestion on some links while others are under-
utilized. Our evaluation did not �nd this to be a problem on data-
centerworkloads (§.). Should it occur, initial results show theVL
agent can detect and deal with such situations with simple mecha-
nisms, such as re-hashing to change the path of large �ows when
TCP detects a severe congestion event (e.g., a full window loss).
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Figure : VL Directory SystemArchitecture

4.2.3 Backwards Compatibility

�is section describes how aVLnetwork handles external traf-
�c, as well as general layer- broadcast tra�c.

Interaction with hosts in the Internet: 20 of the tra�c han-
dled in our cloud-computing data centers is to or from the Internet,
so the network must be able to handle these large volumes. Since
VL employs a layer- routing fabric to implement a virtual layer-
 network, the external tra�c can directly �ow across the high-
speed silicon of the switches thatmake upVL,without being forced
through gateway servers to have their headers rewritten, as required
by some designs (e.g., Monsoon []).

Servers that need to be directly reachable from the Internet (e.g.,
front-end web servers) are assigned two addresses: an LA in addi-
tion to theAAused for intra-data-center communicationwith back-
end servers. �is LA is drawn from a pool that is announced via
BGP and is externally reachable. Tra�c from the Internet can then
directly reach the server, and tra�c from the server to external desti-
nations will exit toward the Internet from the Intermediate switches,
while being spread across the egress links by ECMP.

Handling Broadcast: VL provides layer- semantics to appli-
cations for backwards compatibility, and that includes supporting
broadcast and multicast. VL completely eliminates the most com-
mon sources of broadcast: ARP and DHCP. ARP is replaced by the
directory system, and DHCP messages are intercepted at the ToR
using conventional DHCP relay agents and unicast forwarded to
DHCP servers. To handle other general layer- broadcast tra�c,
every service is assigned an IP multicast address, and all broadcast
tra�c in that service is handled via IP multicast using the service-
speci�c multicast address. �e VL agent rate-limits broadcast traf-
�c to prevent storms.

4.3 Maintaining Host Information using
the VL2 Directory System

�eVLdirectory provides three key functions: () lookups and
() updates for AA-to-LAmappings; and () a reactive cache update
mechanism so that latency-sensitive updates (e.g., updating the AA
to LA mapping for a virtual machine undergoing live migration)
happen quickly. Our design goals are to provide scalability, relia-
bility and high performance.

4.3.1 Characterizing requirements

We expect the lookup workload for the directory system to be
frequent and bursty. As discussed in Section ., servers can com-
municate with up to hundreds of other servers in a short time period
with each �ow generating a lookup for an AA-to-LA mapping. For
updates, the workload is driven by failures and server startup events.
As discussed in Section ., most failures are small in size and large
correlated failures are rare.

Performance requirements: �ebursty nature ofworkload im-
plies that lookups require high throughput and low response time.

Hence, we choose  ms as the maximum acceptable response time.
For updates, however, the key requirement is reliability, and re-
sponse time is less critical. Further, for updates that are scheduled
ahead of time, as is typical of planned outages and upgrades, high
throughput can be achieved by batching updates.

Consistency requirements: Conventional L networks provide
eventual consistency for the IP to MAC address mapping, as hosts
will use a stale MAC address to send packets until the ARP cache
times out and a new ARP request is sent. VL aims for a similar
goal, eventual consistency of AA-to-LA mappings coupled with a
reliable update mechanism.

4.3.2 Directory System Design

�edi�ering performance requirements andworkload patterns
of lookups and updates led us to a two-tiered directory system ar-
chitecture. Our design consists of () a modest number (-
servers for K servers) of read-optimized, replicated directory
servers that cacheAA-to-LAmappings andhandle queries fromVL
agents, and () a small number (- servers) of write-optimized,
asynchronous replicated state machine (RSM) servers that o�er a
strongly consistent, reliable store of AA-to-LA mappings. �e di-
rectory servers ensure low latency, high throughput, and high avail-
ability for a high lookup rate. Meanwhile, the RSM servers ensure
strong consistency and durability, using the Paxos [] consensus
algorithm, for a modest rate of updates.

Each directory server caches all the AA-to-LAmappings stored
at theRSMservers and independently replies to lookups fromagents
using the cached state. Since strong consistency is not required, a
directory server lazily synchronizes its localmappingswith the RSM
every  seconds. To achieve high availability and low latency, an
agent sends a lookup to k (two in our prototype) randomly-chosen
directory servers. If multiple replies are received, the agent simply
chooses the fastest reply and stores it in its cache.

�e network provisioning system sends directory updates to a
randomly-chosen directory server, which then forwards the update
to a RSM server. �e RSM reliably replicates the update to every
RSM server and then replies with an acknowledgment to the direc-
tory server, which in turn forwards the acknowledgment back to the
originating client. As an optimization to enhance consistency, the
directory server can optionally disseminate the acknowledged up-
dates to a few other directory servers. If the originating client does
not receive an acknowledgmentwithin a timeout (e.g., s), the client
sends the same update to another directory server, trading response
time for reliability and availability.

Updating caches reactively: Since AA-to-LA mappings are
cached at directory servers and in VL agents’ caches, an update
can lead to inconsistency. To resolve inconsistency without wasting
server and network resources, our design employs a reactive cache-
updatemechanism. �e cache-updateprotocol leverages this obser-
vation: a stale host mapping needs to be corrected only when that
mapping is used to deliver tra�c. Speci�cally, when a stale map-
ping is used, some packets arrive at a stale LA—a ToR which does
not host the destination server anymore. �e ToR may forward a
sample of such non-deliverable packets to a directory server, trig-
gering the directory server to gratuitously correct the stale mapping
in the source’s cache via unicast.

5. EVALUATION
In this section we evaluate VL using a prototype running on

an  server testbed and  commodity switches (Figure ). Our
goals are �rst to show that VL can be built from components that
are available today, and second, that our implementation meets the
objectives described in Section .



Figure : VL testbed comprising  servers and  switches.

�e testbed is built using the Clos network topology of Fig-
ure , consisting of  Intermediate switches,  Aggregation switches
and  ToRs. �e Aggregation and Intermediate switches have 
Gbps Ethernet ports, of which  ports are used on each Aggre-
gation switch and  ports on each Intermediate switch. �e ToRs
switches have  Gbps ports and  Gbps ports. Each ToR is
connected to two Aggregation switches via Gbps links, and to
 servers via Gbps links. Internally, the switches use commodity
ASICs — the Broadcom  and  — although any switch
that supports line rate L forwarding, OSPF, ECMP, and IPinIP de-
capsulation will work. To enable detailed analysis of the TCP behav-
ior seen during experiments, the servers’ kernels are instrumented
to log TCP extended statistics [] (e.g., congestion window (cwnd)
and smoothed RTT) a
er each socket bu�er is sent (typically KB
in our experiments). �is logging only marginally a�ects goodput,
i.e., useful information delivered per second to the application layer.

We �rst investigate VL’s ability to provide high and uniform
network bandwidth between servers. �en,we analyze performance
isolation and fairness between tra�c �ows, measure convergence
a
er link failures, and �nally, quantify the performance of address
resolution. Overall, our evaluation shows that VL provides an ef-
fective substrate for a scalable data center network; VL achieves ()
 optimal network capacity, () a TCP fairness index of ., ()
graceful degradation under failures with fast reconvergence, and ()
K lookups/sec under ms for fast address resolution.

5.1 VL2 Provides Uniform High Capacity
Acentral objective ofVL is uniformhigh capacity between any

two servers in the data center. How closely does the performance
and e�ciency of a VL network match that of a Layer  switch with
: over-subscription?

To answer this question, we consider an all-to-all data shu�e
stress test: all servers simultaneously initiate TCP transfers to all
other servers. �is data shu�e pattern arises in large scale sorts,
merges and join operations in the data center. We chose this test
because, in our interactionswith application developers, we learned
that many use such operations with caution, because the operations
are highly expensive in today’s data center network. However, data
shu�es are required, and, if data shu�es can be e�ciently sup-
ported, it could have large impact on the overall algorithmic and
data storage strategy.

We create an all-to-all data shu�e tra�c matrix involving 
servers. Each of  servers must deliver MB of data to each of
the  other servers - a shu�e of . TB from memory to memory.

Figure  shows how the sum of the goodput over all �ows varies
with time during a typical run of the . TB data shu�e. All data is
carried over TCP connections, all of which attempt to connect be-
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Figure : Aggregate goodput during a .TB shu�e among 
servers.

ginning at time  (some �ows start late due to a bug in our tra�c
generator). VL completes the shu�e in  s. During the run,
the sustained utilization of the core links in the Clos network is
about . For the majority of the run, VL achieves an aggregate
goodput of . Gbps. �e goodput is evenly divided among the
�ows for most of the run, with a fairness index between the �ows
of . [], where . indicates perfect fairness (mean goodput
per �ow . Mbps, standard deviation . Mbps). �is goodput
is more than x what the network in our current data centers can
achieve with the same investment (see §).

How close is VL to the maximum achievable throughput in this
environment? To answer this question, we compute the goodput ef-
�ciency for this data transfer. �e goodput e�ciency of the network
for any interval of time is de�ned as the ratio of the sent goodput
summed over all interfaces divided by the sum of the interface ca-
pacities. An e�ciency of 1 would mean that all the capacity on all
the interfaces is entirely used carrying useful bytes from the time the
�rst �ow starts to when the last �ow ends.

To calculate the goodput e�ciency, two sources of ine�ciency
must be accounted for. First, to achieve a performance e�ciency
of 1, the server network interface cards must be completely full-
duplex: able to both send and receive  Gbps simultaneously. Mea-
surements show our interfaces are able to support a sustained rate
of . Gbps (summing the sent and received capacity), introducing
an ine�ciency of 1 −

1.8
2

= 10%. �e source of this ine�ciency is
largely the device driver implementation. Second, for every two full-
size data packets there is a TCP ACK, and these three frames have
 B of unavoidable overhead from Ethernet, IP and TCP headers
for every B sent over the network.�is results in an ine�ciency
of . �erefore, our current testbed has an intrinsic ine�ciency of
 resulting in a maximum achievable goodput for our testbed of
(75∗.83) = 62.3Gbps. Wederive this number by noting that every
unit of tra�c has to sink at a server, of which there are  instances
and each has a Gbps link. Taking this into consideration, the VL
network sustains an e�ciency of 58.8/62.3 = 94% with the dif-
ference from perfect due to the encapsulation headers (.), TCP
congestion control dynamics, and TCP retransmissions.

To put this number in perspective, we note that a conven-
tional hierarchical design with  servers per rack and : over-
subscription at the �rst level switch would take x longer to shuf-
�e the same amount of data as tra�c from each server not in the
rack () to each server within the rack () needs to �ow through
the Gbps downlink from �rst level switch to the ToR switch.

�e  e�ciency combined with the fairness index of .
demonstrates that VL promises to achieve uniform high band-
width across all servers in the data center.

5.2 VL2 Provides VLB Fairness
Due to its use of an anycast address on the intermediate

switches, VL relies on ECMP to split tra�c in equal ratios among
the intermediate switches. Because ECMP does �ow-level splitting,
coexisting elephant and mice �ows might be split unevenly at small
time scales. To evaluate the e�ectiveness of VL’s implementation
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Figure : Fairness measures how evenly �ows are split to inter-
mediate switches from aggregation switches.

of Valiant Load Balancing in splitting tra�c evenly across the net-
work, we created an experiment on our -node testbed with tra�c
characteristics extracted from the DC workload of Section . Each
server initially picks a value from the distribution of number of con-
current �ows and maintains this number of �ows throughout the
experiment. At the start, or a
er a �ow completes, it picks a new
�ow size from the associated distribution and starts the �ow(s). Be-
cause all �ows pass through the Aggregation switches, it is su�cient
to check at each Aggregation switch for the split ratio among the
links to the Intermediate switches. We do so by collecting SNMP
counters at  second intervals for all links from Aggregation to In-
termediate switches.

Before proceeding further, we note that, unlike the e�ciency
experiment above, the tra�c mix here is indicative of actual data
center workload. Wemimic the �ow size distribution and the num-
ber of concurrent �ows observed by measurements in §.

In Figure , for each Aggregation switch, we plot Jain’s fair-
ness index [] for the tra�c to Intermediate switches as a time se-
ries. �e average utilization of links was between  and . As
shown in the �gure, the VLB split ratio fairness index averagesmore
than . for all Aggregation switches over the duration of this ex-
periment. VL achieves such high fairness because there are enough
�ows at the Aggregation switches that randomization bene�ts from
statistical multiplexing. �is evaluation validates that our imple-
mentation ofVLB is an e�ectivemechanism for preventing hot spots
in a data center network.

Our randomization-based tra�c splitting in Valiant Load Bal-
ancing takes advantage of the 10x gap in speed between server line
cards and core network links. If the core network were built out of
links with the same speed as the server line cards, then only one full-
rate �ow will �t on each link, and the spreading of �ows has to be
perfect in order to prevent two long-lived �ows from traversing the
same link and causing congestion. However, splitting at a sub-�ow
granularity (for example, �owlet switching []) might alleviate this
problem.

5.3 VL2 Provides Performance Isolation
One of the primary objectives of VL is agility, which we de�ne

as the ability to assign any server, anywhere in the data center, to any
service (§). Achieving agility critically depends on providing suf-
�cient performance isolation between services so that if one service
comes under attack or a bug causes it to spray packets, it does not
adversely impact the performance of other services.

Performance isolation in VL rests on the mathematics of VLB
— that any tra�cmatrix that obeys the hosemodel is routed by split-
ting to intermediate nodes in equal ratios (through randomization)
to prevent any persistent hot spots. Rather than have VL perform
admission control or rate shaping to ensure the tra�c o�ered to the
network conforms to the hose model, we instead rely on TCP to en-
sure that each �ow o�ered to the network is rate-limited to its fair
share of its bottleneck.
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Figure : Aggregate goodput of two services with servers inter-
mingled on the ToRs. Service one’s goodput is una�ected as ser-
vice two ramps tra�c up and down.
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Figure : Aggregate goodput of service one as service two cre-
ates bursts containing successivelymore short TCP connections.

A key question we need to validate for performance isolation is
whether TCP reacts su�ciently quickly to control the o�ered rate
of �ows within services. TCP works with packets and adjusts their
sending rate at the time-scale of RTTs. Conformance to the hose
model, however, requires instantaneous feedback to avoid over-
subscription of tra�c ingress/egress bounds. Our next set of exper-
iments shows that TCP is "fast enough" to enforce the hose model
for tra�c in each service so as to provide the desired performance
isolation across services.

In this experiment, we add two services to the network. �e�rst
service has  servers allocated to it and each server starts a single
TCP transfer to one other server at time  and these �ows last for
the duration of the experiment. �e second service starts with one
server at  seconds and a new server is assigned to it every  sec-
onds for a total of  servers. Every server in service two starts an
GB transfer over TCP as soon as it starts up. Both the services’
servers are intermingled among the  ToRs to demonstrate agile as-
signment of servers.

Figure  shows the aggregate goodput of both services as a
function of time. As seen in the �gure, there is no perceptible change
to the aggregate goodput of service one as the �ows in service two
start or complete, demonstrating performance isolation when the
tra�c consists of large long-lived �ows. �rough extended TCP
statistics, we inspected the congestion window size (cwnd) of ser-
vice one’s TCP �ows, and found that the �ows �uctuate around their
fair share brie�y due to service two’s activity but stabilize quickly.

We would expect that a service sending unlimited rates of UDP
tra�c might violate the hose model and hence performance isola-
tion. We do not observe such UDP tra�c in our data centers, al-
though techniques such as STCP to make UDP “TCP friendly” are
well known if needed []. However, large numbers of short TCP
connections (mice),which are common inDCs (Section ), have the
potential to cause problems similar to UDP as each �ow can trans-
mit small bursts of packets during slow start.

To evaluate this aspect, we conduct a second experiment with
service one sending long-lived TCP �ows, as in experiment one.
Servers in service two create bursts of short TCP connections ( to
 KB), each burst containing progressively more connections. Fig-
ure  shows the aggregate goodput of service one’s �ows along with
the total number of TCP connections created by service two. Again,
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Figure : Aggregate goodput as all links to switches Interme-
diate and Intermediate are unplugged in succession and then
reconnected in succession. Approximate times of link manipu-
lation marked with vertical lines. Network re-converges in < 1s
a
er each failure and demonstrates graceful degradation.

service one’s goodput is una�ected by service two’s activity. We in-
spected the cwnd of service one’s TCP �ows and found only brief
�uctuations due to service two’s activity.

�e two experiments above demonstrate TCP’s natural enforce-
ment of the hose model combined with VLB and a network with no
oversubscription is su�cient to provide performance isolation be-
tween services.

5.4 VL2 Convergence After Link Failures
In this section, we evaluate VL’s response to a link or a switch

failure, which could be caused by a physical failure or due to the
routing protocol converting a link �ap to a link failure. We begin an
all-to-all data shu�e and then disconnect links between Interme-
diate and Aggregation switches until only one Intermediate switch
remains connected and the removal of one additional link would
partition the network. According to our study of failures, this type
of mass link failure has never occurred in our data centers, but we
use it as an illustrative stress test.

Figure  shows a time series of the aggregate goodput achieved
by the �ows in the data shu�e, with the times at which links were
disconnected and then reconnected marked by vertical lines. �e
�gure shows that OSPF re-converges quickly (sub-second) a
er
each failure. Both Valiant Load Balancing and ECMP work as ex-
pected, and the maximum capacity of the network gracefully de-
grades. Restoration, however, is delayed by the conservative defaults
for OSPF timers that are slow to act on link restoration. Hence, VL
fully uses a link roughly s a
er it is restored. We note, however,
that restoration does not interfere with tra�c and, the aggregate
goodput eventually returns to its previous level.

�is experiment also demonstrates the behavior of VL when
the network is structurally oversubscribed, i.e., the Clos network has
less capacity than the capacity of the links from the ToRs. For the
over-subscription ratios between : and : created during this ex-
periment, VL continues to carry the all-to-all tra�c at roughly 
of maximum e�ciency, indicating that the tra�c spreading in VL
fully utilizes the available capacity.

5.5 Directory-system performance
Finally, we evaluate the performance of the VL directory sys-

tem through macro- and micro-benchmark experiments. We run
our prototype on up to  machines with - RSM nodes, - di-
rectory server nodes, and the rest emulating multiple instances of
VL agents that generate lookups and updates. In all experiments,
the system is con�gured such that an agent sends a lookup request
to two directory servers chosen at random and accepts the �rst re-
sponse. An update request is sent to a directory server chosen at ran-
dom. �e response timeout for lookups and updates is set to s to
measure the worst-case latency. To stress test the directory system,

the VL agent instances generate lookups and updates following a
bursty random process, emulating storms of lookups and updates.
Each directory server refreshes all mappings (K) from the RSM
once every  seconds.

Our evaluation supports four main conclusions. First, the di-
rectory system provides high throughput and fast response time for
lookups; three directory servers can handle K lookups/sec with
latency under ms (th percentile latency). Second, the direc-
tory system can handle updates at rates signi�cantly higher than ex-
pected churn rate in typical environments: three directory servers
can handle K updates/sec within ms (th percentile latency).
�ird, our system is incrementally scalable; each directory server
increases the processing rate by about K for lookups and K for
updates. Finally, the directory system is robust to component (di-
rectory or RSM servers) failures and o�ers high availability under
network churns.
�roughput: In the �rst micro-benchmark,we vary the lookup and
update rate and observe the response latencies (st, th and th

percentile). We observe that a directory system with three direc-
tory servers handles K lookups/sec within ms, which we set as
the maximum acceptable latency for an “ARP request”. Up to K
lookups/sec, the system o�ers a median response time of < ms.
Updates, however, are more expensive, as they require executing a
consensus protocol [] to ensure that all RSM replicas are mutu-
ally consistent. Since high throughput is more important than la-
tency for updates, we batch updates over a short time interval (i.e.,
ms). We �nd that three directory servers backed by three RSM
servers can handle K updates/sec within ms and about K
updates/sec within s.
Scalability: To understand the incremental scalability of the di-
rectory system, we measured the maximum lookup rates (ensur-
ing sub-ms latency for  requests) with , , and  directory
servers. �e result con�rmed that the maximum lookup rates in-
creases linearly with the number of directory servers (with each
server o�ering a capacity of 17K lookups/sec). Based on this result,
we estimate the worst case number of directory servers needed for
a K server data center. From the concurrent �owmeasurements
(Figure ), we select as a baseline the median of  correspondents
per server. In theworst case, all K serversmay perform simul-
taneous lookups at the same time resulting in a million simultane-
ous lookups per second. As noted above, each directory server can
handle about K lookups/sec under ms at the th percentile.
�erefore, handling this worst case requires a modest-sized direc-
tory system of about  servers (0.06 of the entire servers).
Resilience and availability: We examine the e�ect of directory
server failures on latency. We vary the number of directory servers
while keeping the workload constant at a rate of K lookups/sec
and K updates/sec (a higher load than expected for three directory
servers). In Figure (a), the lines for one directory server show that
it can handle  of the lookup load (K) within ms. �e spike
at two seconds is due to the timeout value of s in our prototype. �e
entire load is handled by two directory servers, demonstrating the
system’s fault tolerance. Additionally, the lossy network curve shows
the latency of three directory servers under severe () packet
losses between directory servers and clients (either requests or re-
sponses), showing the system ensures availability under network
churns. For updates, however, the performance impact of the num-
ber of directory servers is higher than updates because each update
is sent to a single directory server to ensure correctness. Figure (b)
shows that failures of individual directory servers do not collapse
the entire system’s processing capacity to handle updates. �e step
pattern on the curves is due to a batching of updates (occurring ev-
ery ms). We also �nd that the primary RSM server’s failure leads
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Figure : �e directory system provides high throughput and fast response time for lookups and updates

to only about s delay for updates until a new primary is elected,
while a primary’s recovery or non-primary’s failures/recoveries do
not a�ect the update latency at all.

Fast reconvergence and robustness: Finally, we evaluate the
convergence latency of updates, i.e., the time between when an up-
date occurs until a lookup response re�ects that update. As de-
scribed in Section ., we minimize convergence latency by hav-
ing each directory server pro-actively send its committed updates
to other directory servers. Figure (c) shows that the convergence
latency is within ms for  of the updates and  of updates
have convergence latency within  ms.

6. DISCUSSION
In this section, we address several remaining concerns about

the VL architecture, including whether other tra�c engineering
mechanisms might be better suited to the data center than Valiant
Load Balancing, and the cost of a VL network.

Optimality of VLB: As noted in §.., VLB uses randomiza-
tion to copewith volatility, potentially sacri�cing some performance
for a best-case tra�c pattern by turning all tra�cpatterns (including
both best-case and worst-case) into the average case. �is perfor-
mance loss will manifest itself as the utilization of some links being
higher than they would under a more optimal tra�c engineering
system. To quantify the increase in link utilization VLB will su�er,
we compare VLB’s maximum link utilization with that achieved by
other routing strategies on the VL topology for a full day’s tra�c
matrices (TMs) (at min intervals) from the data center tra�c data
reported in Section ..

We �rst compare to adaptive routing (e.g., TeXCP []), which
routes each TM separately so as to minimize the maximum link
utilization for that TM — essentially upper-bounding the best per-
formance that real-time adaptive tra�c engineering could achieve.
Second, we compare to best oblivious routing over all TMs so as to
minimize the maximum link utilization. (Note that VLB is just one
among many oblivious routing strategies.) For adaptive and best
oblivious routing, the routings are computed using linear programs
in cplex. �e overall utilization for a link in all schemes is com-
puted as the maximum utilization over all routed TMs.

In Figure , we plot the CDF for link utilizations for the three
schemes. We normalized the link utilization numbers so that the
maximum utilization on any link for adaptive routing is 1.0. �e
results show that for the median utilization link in each scheme,
VLB performs about the same as the other two schemes. For the
most heavily loaded link in each scheme, VLB’s link capacity usage
is about  higher than that of the other two schemes. �us, evalu-
ations on actual data center workloads show that the simplicity and
universality of VLB costs relatively little capacity when compared to
much more complex tra�c engineering schemes.

Cost and Scale:With the range of low-cost commodity devices
currently available, the VL topology can scale to create networks
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Figure : CDFofnormalized linkutilizations forVLB, adaptive,
and best oblivious routing schemes, showing that VLB (and best
oblivious routing) comes close to matching the link utilization
performance of adaptive routing.

with no over-subscription between all the servers of even the largest
data centers. For example, switches with  ports (D = 144) are
available today for K, enabling a network that connects K
servers using the topology in Figure  and up to K servers us-
ing a slight variation. Using switches with D = 24 ports (which
are available today for K each), we can connect about K servers.
Comparing the cost of a VL network for K servers with a typ-
ical one found in our data centers shows that a VL network with
no over-subscription can be built for the same cost as the current
network that has : over-subscription. Building a conventional
network with no over-subscription would cost roughly x the cost
of a equivalent VL network with no over-subscription. We �nd
the same factor of - cost di�erence holds across a range of
over-subscription ratios from : to :. (We use street prices for
switches in both architectures and leave out ToR and cabling costs.)
Building an oversubscribed VL network does save money (e.g., a
VL networkwith : over-subscription costs  less than a non-
oversubscribedVL network), but the savings is probably not worth
the loss in performance.

7. RELATED WORK
Data-center network designs: Monsoon [] and Fat-tree []

also propose building a data center network using commodity swit-
ches and a Clos topology. Monsoon is designed on top of layer
 and reinvents fault-tolerant routing mechanisms already estab-
lished at layer . Fat-tree relies on a customized routing primitive
that does not yet exist in commodity switches. VL, in contrast,
achieves hot-spot-free routing and scalable layer- semantics us-
ing forwarding primitives available today and minor, application-
compatible modi�cations to host operating systems. Further, our
experiments using tra�c patterns from a real data center show that
random �ow spreading leads to a network utilization fairly close
to the optimum, obviating the need for a complicated and expen-
sive optimization scheme suggested by Fat-tree. We cannot empir-



ically compare with these approaches because they do not provide
results on communication-intensive operations (e.g., data shu�e)
that stress the network; they require special hardware []; and they
do not support agility and performance isolation.

DCell [] proposes a dense interconnection network built by
addingmultiple network interfaces to servers and having the servers
forward packets. VL also leverages the programmability of servers,
however, it uses servers only to control the way tra�c is routed as
switch ASICs are much better at forwarding. Furthermore, DCell
incurs signi�cant cabling complexity thatmay prevent large deploy-
ments. BCube [] builds on DCell, incorporating switches for
faster processing and active probing for load-spreading.

Valiant Load Balancing: Valiant introducedVLB as a random-
ized scheme for communication among parallel processors inter-
connected in a hypercube topology []. Among its recent appli-
cations, VLB has been used inside the switching fabric of a packet
switch []. VLB has also been proposed, with modi�cations and
generalizations [, ], for oblivious routing of variable tra�c on
the Internet under the hose tra�c model [].

Scalable routing: �e Locator/ID Separation Protocol [] pro-
poses “map-and-encap” as a key principle to achieve scalability and
mobility in Internet routing. VL’s control-plane takes a simi-
lar approach (i.e., demand-driven host-information resolution and
caching) but adapted to the data center environment and imple-
mented on end hosts. SEATTLE [] proposes a distributed host-
information resolution system running on switches to enhance Eth-
ernet’s scalability. VL takes an end host based approach to this
problem, which allows its solution to be implemented today, in-
dependent of the switches being used. Furthermore, SEATTLE
does not provide scalable data plane primitives, such as multi-path,
which are critical for scalability and increasing utilization of net-
work resources.

Commercial Networks: Data Center Ethernet (DCE) [] by
Cisco and other switch manufacturers shares VL’s goal of increas-
ing network capacity through multi-path. However, these industry
e�orts are primarily focused on consolidation of IP and storage area
network (SAN) tra�c, which is rare in cloud-service data centers.
Due to the requirement to support loss-less tra�c, their switches
need much bigger bu�ers (tens of MBs) than commodity Ethernet
switches do (tens of KBs), hence driving their cost higher.

8. SUMMARY
VL is a new network architecture that puts an end to the need

for oversubscription in the data center network, a result that would
be prohibitively expensive with the existing architecture.

VL bene�ts the cloud service programmer. Today, program-
mers have to be aware of network bandwidth constraints and con-
strain server to server communications accordingly. VL instead
provides programmers the simpler abstraction that all servers as-
signed to them are plugged into a single layer  switch, with hotspot
free performance regardless of where the servers are actually con-
nected in the topology. VL also bene�ts the data center operator as
today’s bandwidth and control plane constraints fragment the server
pool, leaving servers (which account for the lion’s share of data cen-
ter cost) under-utilized even while demand elsewhere in the data
center is unmet. Instead, VL enables agility: any service can be
assigned to any server, while the network maintains uniform high
bandwidth and performance isolation between services.

VL is a simple design that can be realized today with available
networking technologies, andwithout changes to switch control and
data plane capabilities. �e key enablers are an addition to the end-
system networking stack, throughwell-established and public APIs,
and a �at addressing scheme, supported by a directory service.

VL is e�cient. Our working prototype, built using commod-
ity switches, approaches in practice the high level of performance
that the theory predicts. Experiments with two data-center services
showed that churn (e.g., dynamic re-provisioning of servers, change
of link capacity, and micro-bursts of �ows) has little impact on TCP
goodput. VL’s implementation of Valiant Load Balancing splits
�ows evenly and VL achieves high TCP fairness. On all-to-all data
shu�e communications, the prototype sustains an e�ciency of 
with a TCP fairness index of ..
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