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ABSTRACT
Unicorn is an online, in-memory social graph-aware index-
ing system designed to search trillions of edges between tens
of billions of users and entities on thousands of commodity
servers. Unicorn is based on standard concepts in informa-
tion retrieval, but it includes features to promote results
with good social proximity. It also supports queries that re-
quire multiple round-trips to leaves in order to retrieve ob-
jects that are more than one edge away from source nodes.
Unicorn is designed to answer billions of queries per day at
latencies in the hundreds of milliseconds, and it serves as an
infrastructural building block for Facebook’s Graph Search
product. In this paper, we describe the data model and
query language supported by Unicorn. We also describe its
evolution as it became the primary backend for Facebook’s
search o↵erings.

1. INTRODUCTION
Over the past three years we have built and deployed a

search system called Unicorn1. Unicorn was designed with
the goal of being able to quickly and scalably search all basic
structured information on the social graph and to perform
complex set operations on the results. Unicorn resembles
traditional search indexing systems [14, 21, 22] and serves
its index from memory, but it di↵ers in significant ways be-
cause it was built to support social graph retrieval and social
ranking from its inception. Unicorn helps products to splice
interesting views of the social graph online for new user ex-
periences.

Unicorn is the primary backend system for Facebook Graph
Search and is designed to serve billions of queries per day
with response latencies less than a few hundred milliseconds.
As the product has grown and organically added more fea-
tures, Unicorn has been modified to suit the product’s re-
quirements. This paper is intended to serve as both a nar-

1The name was chosen because engineers joked that—much
like the mythical quadruped—this system would solve all of
our problems and heal our woes if only it existed.
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rative of the evolution of Unicorn’s architecture, as well as
documentation for the major features and components of
the system.

To the best of our knowledge, no other online graph re-
trieval system has ever been built with the scale of Unicorn
in terms of both data volume and query volume. The sys-
tem serves tens of billions of nodes and trillions of edges
at scale while accounting for per-edge privacy, and it must
also support realtime updates for all edges and nodes while
serving billions of daily queries at low latencies.

This paper includes three main contributions:

• We describe how we applied common information re-
trieval architectural concepts to the domain of the so-
cial graph.

• We discuss key features for promoting socially relevant
search results.

• We discuss two operators, apply and extract, which
allow rich semantic graph queries.

This paper is divided into four major parts. In Sections 2–
5, we discuss the motivation for building unicorn, its design,
and basic API. In Section 6, we describe how Unicorn was
adapted to serve as the backend for Facebook’s typeahead
search. We also discuss how to promote and rank socially
relevant results. In Sections 7–8, we build on the imple-
mentation of typeahead to construct a new kind of search
engine. By performing multi-stage queries that traverse a
series of edges, the system is able to return complex, user-
customized views of the social graph. Finally, in Sections
8–10, we talk about privacy, scaling, and the system’s per-
formance characteristics for typical queries.

2. THE SOCIAL GRAPH
Facebook maintains a database of the inter-relationships

between the people and things in the real world, which it
calls the social graph. Like any other directed graph, it
consists of nodes signifying people and things; and edges
representing a relationship between two nodes. In the re-
mainder of this paper, we will use the terms node and entity
interchangeably.

Facebook’s primary storage and production serving ar-
chitectures are described in [30]. Entities can be fetched
by their primary key, which is a 64-bit identifier (id). We
also store the edges between entities. Some edges are di-
rectional while others are symmetric, and there are many
thousands of edge-types. The most well known edge-type
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Figure 1: Friend relationships in the social graph.
Each friend of the center user is represented by a
shaded dot, and each friend relationship among this
user’s friends is represented by a line.

in the social graph is the friend relation, which is symmet-
ric. Another explicit relationship in Facebook’s social graph
is likes, which is an edge from a user to a page that the
user has liked. It is common for certain edge-types to be
tightly coupled with an inverse edge. The inverse of likes
is likers, which is an edge from a page to a user who has
liked that page. There are many other edge-types that are
used to build product features. Table 1 lists some of the
most common edge-types in the social graph.

Although there are many billions of nodes in the social
graph, it is quite sparse: a typical node will have less than
one thousand edges connecting it to other nodes. The aver-
age user has approximately 130 friends. The most popular
pages and applications have tens of millions of edges, but
these pages represent a tiny fraction of the total number of
entities in the graph.

3. DATA MODEL
Because the social graph is sparse, it is logical to represent

it as a set of adjacency lists. Unicorn is an inverted index
service that implements an adjacency list service. Each ad-
jacency list contains a sorted list of hits, which are (DocId,
HitData) pairs. We use the words hit and result inter-
changeably. A DocId (document identifier) is a pair of (sort-
key, id), and HitData is just an array of bytes that store
application-specific data. The sort-key is an integer, and
hits are sorted first by sort-key (highest first) and secondly
by id (lowest first). The sort-key enables us to store the
most globally important ids earlier in the adjacency list. If
an id is associated with a sort-key in any adjacency list, it
must be associated with the same sort-key in all adjacency
lists. We also refer to these adjacency lists as posting lists.

In a full-text search system, the HitData would be the
place where positional information for matching documents
is kept, so our usage of the phrase is somewhat idiosyncratic.
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Figure 2: Converting a node’s edges into posting
lists in an inverted index. Users who are friends
of id 8 correspond to ids in hits of the posting
list. Each hit also has a corresponding sort-key
and (optional) HitData byte array. Assuming we
have three shards and the partitioning function is a
simple modulus, we are only showing shard 0 here.
There would be similar lists (with di↵erent ids and
sort-keys) for friend:8 in the other two shards.

PostingListn ! (Hitn,0, Hitn,1, ..., Hitn,k�1)
Hiti,j ! (DocIdi,j , HitDatai,j)
DocIdi,j ! (sort-keyi,j , idi,j)

HitData is not present in all terms, as much of the per-id
data is stored in a separate data structure (see Section 6.2).
One application of HitData is for storing extra data use-
ful for filtering results. For example, a posting list might
contain the ids of all users who graduated from a specific
university. The HitData could store the graduation year and
major.

Unicorn is sharded (partitioned) by result-id (the ids in
query output; as opposed to sharding by input terms) and
optimized for handling graph queries. We chose to partition
by result-id because we wanted the system to remain avail-
able in the event of a dead machine or network partition.
When queried for friends of Jon Jones, it is better to return
some fraction of the friends of Jon Jones than no friends
at all. A further advantage of document-sharding instead
of term-sharding is that most set operations can be done
at the index server (leaf) level instead of being performed
higher in the execution stack. This allows us to split the
computational load among a greater number of machines,
and it also cuts down on bandwidth between machines.

As in most search systems, posting lists are referenced by
terms, which, by convention, are of the form:

<edge-type>:<id>

There is no strict requirement for terms to be of this form,
but such terms can be used in special graph operators de-
scribed in Section 7.1. Edge-type is merely a string such as
friend or like. For example, assume the id of user Jon
Jones is 5. Clients can request the friend-list for Jon Jones
by requesting the term friend:5. Figure 2 gives another
example of this model.

We can model other real-world structures as edges in Uni-
corn’s graph. For example, we can imagine that there is a
node representing the concept female, and we can connect
all female users to this node via a gender edge. Assuming
the identifier for this female node is 1, then we can find all
friends of Jon Jones who are female by intersecting the sets
of result-ids returned by friend:5 and gender:1.

2



Edge-Type #-out in-id-type out-id-type Description
friend hundreds USER USER Two users are friends (symmetric)
likes a few USER PAGE pages (movies, businesses, cities, etc.) liked by a user

likers 10–10M PAGE USER users who have liked a page
live-in 1000–10M PAGE USER users who live in a city
page-in thousands PAGE PAGE pages for businesses that are based in a city
tagged hundreds USER PHOTO photos in which a user is tagged

tagged-in a few PHOTO USER users tagged in a photo (see Section 7.2)
attended a few USER PAGE schools and universities a user attended

Table 1: A sampling of some of the most common edge-types in the social graph. The second column gives
the typical number of hits of the output type that will be yielded per term.

4. API AND QUERY LANGUAGE
Clients send queries to Unicorn as Thrift [2, 26] requests,

the essential part of which is the query string. The client
passes the Thrift request to a library that handles sending
the query to the correct Unicorn cluster. Internally, client
queries are sent to a Unicorn cluster that is in close geo-
graphical proximity to the client if possible. Query strings
are s-expressions that are composed of several operators (see
Table 3), and they describe the set of results the client wishes
to receive.

Like many other search systems, Unicorn supports And
and Or operators, which yield the intersection and union
of N posting lists, respectively. From the discussion above,
a client who wishes to find all female friends of Jon Jones
would issue the query (and friend:5 gender:1). If there
exists another user Lea Lin with id 6, we could find all
friends of Jon Jones or Lea Lin by issuing the query (or

friend:5 friend:6).
Unicorn also supports a Difference operator, which re-

turns results from the first operand that are not present in
the second operand. Continuing with the example above, we
could find female friends of Jon Jones who are not friends of
Lea Lin by using (difference (and friend:5 gender:1)

friend:6). As demonstrated by the query above, Unicorn
operators support composition, which allows us construct
complex queries to create interesting views of the social
graph.

For some queries, results are simply returned in DocId
ordering. Another common ranking method is to sort re-
sults by the number of terms that matched the result. For
the query (or friend:5 friend:6), some of the results will
match friend:5, some will match friend:6, and some will
match both. In many applications it is useful to give pref-
erence to results that match more terms.

5. ARCHITECTURE
Client queries are sent to a Unicorn top-aggregator, which

dispatches the query to one rack-aggregator per rack. These
rack-aggregators dispatch the query to all index servers in
their respective racks. Figure 3 shows a top-aggregator com-
municating with a single tier (a set of all index partitions).
Each index server is responsible for serving and accepting
updates for one shard of the index. The rack aggregators and
top-aggregator are responsible for combining and truncat-
ing results from multiple index shards in a sensible way be-
fore the top-aggregator finally sends a response back to the
client. Rack-aggregators solve the problem that the avail-
able bandwidth to servers within a rack is higher than the

bandwidth between servers on di↵erent racks. Tiers are typ-
ically replicated for increased throughput and redundancy,
and a rack-aggregator is part of a particular replica for a
tier, although it knows how to forward requests to another
replica in the event that a shard is dead.
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Figure 3: Unicorn tier consisting of three racks.
Rack-aggregator processes are stateless and run on
every machine (40 or 80) in the racks but are omit-
ted from the diagram for simplicity.

The index server stores adjacency lists and performs set
operations on those lists, the results of which are returned
to the aggregators. In the index server, intersection, union,
and di↵erence operations proceed as is described in stan-
dard information retrieval texts [22]. One salient property
of our system is that each index shard typically contains
a few billion terms, and the total number of unique terms
in an entire index of users is typically in the tens of bil-
lions. This number increases as more types of entities are
added. Although the number of terms is greater than is
typical for a full-text search system, the posting lists are
generally shorter, with the 50th and 99th percentiles within
a representative shard being 3 and 59 hits, respectively. The
longest posting list within a shard is typically in the tens of
millions of hits. We have experimented with several inverted
index formats [17, 22, 31]—both immutable and mutable—
to optimize for decoding e�ciency and memory footprint.
Updates are applied to a mutable index layer, which sits on

3



top of the immutable layer and is treated as a set of ad-
ditions and subtractions to posting lists in the immutable
layer. Because decoding speed is dominated by memory ac-
cess time for very short posting lists, we get the greatest
performance gains by optimizing for decoding the posting
lists that consume more than a single CPU-cache line.

As mentioned above, all posting lists are sharded (parti-
tioned) by result-id. Since our ids are assigned essentially
randomly, this means that each of our shards has approxi-
mately the same number of ids assigned to it. Because of
this sharding scheme, the full list of hits for a given term
will likely be divided across multiple—often all—index par-
titions. The index server serves all data from memory; it
never reads from secondary storage in normal operation ex-
cept at startup.

Building Indices
Unicorn indices are built using the Hadoop framework [1].
The raw data comes from regular scrapes of our databases
that contain the relevant table columns. These database
scrapes are accessible via Hive [27]. A client who wishes to
put new data into Unicorn merely needs to write the small
amount of code necessary to convert Hive rows into (term,

sort-key, id, HitData) tuples and optional per-id meta-
data. We have a custom Hadoop pipeline that converts these
tuples into a Unicorn index, which is then copied out to the
relevant production servers.

Because many applications within Facebook require their
data to be fresh with the latest up-to-the-minute updates to
the social graph, we also support realtime updates. These
graph mutations are written by our frontend cluster into
Scribe [8, 9]. There is a distributed scribe tailer system that
processes these updates and sends the corresponding muta-
tion Thrift requests to Unicorn index servers. For a given
update-type, which is known as a category, each index server
keeps track of the timestamp of the latest update it has re-
ceived for that category. When a new index server becomes
available after a network partition or machine replacement,
the scribe tailer can query the index server for its latest
update timestamps for each category and then send it all
missing mutations.

6. TYPEAHEAD
One of the first major applications of Unicorn was to re-

place the backend for Facebook’s typeahead search. Typea-
head enables Facebook users to find other users by typing
the first few characters of the person’s name. Users are
shown a list of possible matches for the query, and the re-
sults dynamically update as users type more characters. As
of the end of 2012, this system serves over 1B queries per
day, and it is a convenient way for users to navigate across
Facebook properties and applications2.

A typeahead query consists of a string, which is a prefix of
the name of the individual the user is seeking. For example,
if a user is typing in the name of “Jon Jones” the typeahead
backend would sequentially receive queries for “J”, “Jo”,

2The original backend system for typeahead [10] was one of
the first large-scale consumer systems to do instantaneous
search, and it was already serving hundreds of millions of
queries per day. However it was beginning to get di�cult to
scale as Facebook reached half a billion users, and experi-
mentation was di�cult.

“Jon”, “Jon ”, “Jon J”, etc3. For each prefix, the backend
will return a ranked list of individuals for whom the user
might be searching. Some of these individuals will be within
the user’s explicit circle of friends and networks.

Index servers for typeahead contain posting lists for every
name prefix up to a predefined character limit. These post-
ing lists contain the ids of users whose first or last name
matches the prefix. A simple typeahead implementation
would merely map input prefixes to the posting lists for
those prefixes and return the resultant ids.

6.1 Social Relevance
One problem with the approach described above is that it

makes no provision for social relevance: a query for “Jon”
would not be likely to select people named “Jon” who are
in the user’s circle of friends.

A solution would be to use the And operator to select
only results that are friends of the user. For example, if
Jon Jones is searching for people whose names begin with
“Mel”, the Unicorn query might be something like: (and

mel* friend:3). This approach is too simple in practice
because it ignores results for users who might be relevant but
are not friends with the user performing the search. To han-
dle this problem, we could execute two separate queries—the
original query and then another query that selects friends-
only—but this is expensive. What we actually want is a way
to force some fraction of the final results to possess a trait,
while not requiring this trait from all results. This is what
the WeakAnd operator accomplishes.
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Figure 4: Index structures for query (weak-and

(term friend:3 :optional-hits 2) (term melanie)

(term mars*)). ids are shown below sort keys. ids
returned from this query would be 20, 7, 88, and 64.
id 62 would not be returned because hits 20 and 88
have already exhausted our optional hits.

The WeakAnd operator is a modification of And that
allows operands to be missing from some fraction of the
results within an index shard. For these optional terms,
clients can specify an optional count or optional weight that
allows a term to be missing from a certain absolute number
or fraction of results, respectively. If the optional count for
a term is non-zero , then this term is not required to yield a
particular hit, but the index server decrements the optional
count for each such non-matching hit. Once the optional
count for a particular term reaches zero, the term becomes
a required term and thus must include the id of subsequent
hit candidates for them to be included in the result set.
Figure 4 shows how WeakAnd can be used when user Jon

3We will ignore how the system handles alternative spellings
and typos, although there are modules that handle this.
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Jones performs the query “Melanie Mars” (a prefix of the
full name “Melanie Marshall”). Here, we only allow a finite
number of hits to be non-friends of Jon Jones. This ensures
that some results will be friends of Jon Jones if any match
the text, but it also ensures that we don’t miss very good
results who are not friends with Jon Jones.

A similar operator to WeakAnd is StrongOr, which is
a modification of Or that requires certain operands to be
present in some fraction of the matches. StrongOr is useful
for enforcing diversity in a result set. For example, if most of
Jon Jones’ friends live in either Beijing (100), San Francisco
(101), or Palo Alto (102), we could fetch a geographically
diverse sample of Jon’s friends by executing:

(strong-or friend:5

(and friend:5 live-in:100

:optional-weight 0.2)

(and friend:5 live-in:101

:optional-weight 0.2)

(and friend:5 live-in:102

:optional-weight 0.1))

The optional weights in the operands above mean at least
20% of the results must be people who live in Beijing. An-
other 20% must be people who live in San Francisco, and
10% must be people who live in Palo Alto. The remainder
of results can be people from anywhere (including the cities
above). See Table 3 for more information.

6.2 Scoring
It is often useful to return results in an order di↵erent

from sorting by DocId. For example, we might want to
prioritize results for individuals who are close in age to the
user typing the query. This requires that we store the age (or
birth date) of users with the index. For storing per-entity
metadata, Unicorn provides a forward index, which is simply
a map of id to a blob that contains metadata for the id. The
forward index for an index shard only contains entries for the
ids that reside on that shard. Based on Thrift parameters
included with the client’s request, the client can select a
scoring function in the index server that scores each result.
The scoring function computes a floating point score for a
DocId. It takes several factors as input including the original
query, the terms that yielded the DocId, the HitData (if
any), and the forward index blob for the id (if any). The
number of results to score per shard can be specified by the
client, but it defaults to the number of results requested
multiplied by a constant factor.

The index server returns the results with the highest scores,
and aggregators generally give priority to documents with
higher scores. However, without some way of maintaining
result diversity in the rack-aggregator and top-aggregator,
the interesting properties of results yielded by WeakAnd
and StrongOr could be lost as results are aggregated and
truncated. We have implemented special heap-based data
structures for ensuring that results are not strictly selected
based on highest scores, but rather that results that add to
diversity of the result-set—even if they have lower scores—
are given an opportunity to be part of the final result set.
More discussion of this scheme can be found in [11].

6.3 Additional Entities
Typeahead can also be used to search for other entity-

types in addition to people. Typeahead searches can yield

results that are pages, events, and Facebook applications.
To support these distinct types of entities while still keeping
the size of our tiers at a manageable level, we split Unicorn
into multiple entity-type specific tiers—or verticals—and
modified the top-aggregator to query and combine results
from multiple verticals. Edges of the same result-type are
placed in the same vertical, so the posting lists for friend

edges and likers edges reside in the same vertical since they
both yield user ids. This means that set operations like And
and Or can still happen at the leaf level, and ids which will
never be merged or intersected need not be stored together.
An alternative implementation would have been to squash
all result-types into the same tier, but this led to oversized
tiers of many thousands of machines. By partitioning ids by
vertical, verticals can be replicated as necessary to serve the
query load specific to that entity type. An additional advan-
tage of splitting our architecture into verticals is that each
vertical can have a team dedicated to managing the data
within the tier and building optimal ranking algorithms.

The top-aggregator continues to be the interface through
which clients speak to Unicorn. It accepts queries from the
frontend and dispatches the query to the necessary verti-
cals. Verticals can be omitted based on properties of the
user’s query, so di↵erent verticals have di↵erent load char-
acteristics. Results from verticals are collected, combined,
and truncated as necessary to deliver high quality results to
the user.

Figure 5 shows an example Unicorn system that has four
verticals. We omit vertical replicas from the diagram, al-
though these are typically used to enable higher throughput
and fault tolerance. Each vertical has its own unique num-
ber of machines, which is indicated in the figure by some
verticals being composed of one, two, or three racks. The
verticals listed in the figure are for illustrative purposes only,
and there are additional verticals in the real production sys-
tem.

7. GRAPH SEARCH
Many search systems exist which accept text tokens and

yield DocIds of some form. However, in a graph search sys-
tem, there are interesting graph results that are more than
one edge away from the source nodes. Without some form of
denormalization, this requires supporting queries that take
more than one round-trip between the index server and the
top-aggregator. Because terms themselves are a combina-
tion of an edge-type and an id, we can take a pre-specified
edge-type from the client and combine it with result ids from
a round of execution to generate and execute a new query.
As an example, we might want to know the pages liked by
friends of Melanie Marshall (7) who like Emacs (42). We
can answer this by first executing the query (and friend:7

likers:42), collecting the results, and creating a new query
that produces the union of the pages liked by any of these
individuals:

Inner (and friend:7 likers:42) ! 5, 6
Outer (or likes:5 likes:6)

The ability to use the results of previous executions as
seeds for future executions creates new applications for a
search system, and this was the inspiration for Facebook’s
Graph Search consumer product [4]. We wanted to build
a general-purpose, online system for users to find entities
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Figure 5: Example of Unicorn cluster architecture with multiple verticals. The top-aggregator determines
which vertical(s) each query needs to be sent to, and it sends the query to the racks for that vertical.
Per-vertical replicas are omitted for simplicity.

in the social graph that matched a set of user-defined con-
straints. In the following sections, we will describe the ad-
ditional features we built for Graph Search.

7.1 Apply
A unique feature of unicorn compared to other IR sys-

tems is its Apply, or graph-traversal, operator. Apply al-
lows clients to query for a set of ids and then use those ids
to construct and execute a new query. Similar to the apply
construct in languages like JavaScript, the apply operator
is used to perform an operation—in this case prepending a
prefix to inner result ids and finding the union of the re-
sultant terms—on a set of inner query results. Algorithm 1
describes the operator in detail.

Algorithm 1 Apply Operator (in top-aggregator)

1: procedure Apply(prefix, innerQ)
2: innerResults Search(innerQ)
3: outerQ “(or”
4: for each result in innerResults limit L do
5: term Concat(prefix, “ : ”, result.id)
6: outerQ Concat(outerQ, “ ”, term)
7: end for
8: outerQ Concat(outerQ, “)”)
9: outerResults Search(outerQ)
10: return outerResults
11: end procedure

1: procedure Search(query)
2: . Fetches query results from leaves and merges
3: return results
4: end procedure

Graph Search adds a photos vertical that tracks hundreds
of billions of photo ids4. The unicorn photos vertical stores a
tagged edge-type that returns the photo ids in which a user
is tagged. If a client wants to find all photos of Jon Jones’

4Users can “tag” their friends in photos to create a struc-
tured assocation between the individual and the photo, and
photos typically have zero or a few tags.

friends, the client could naively issue a query for friend:5,
collect the N results, and issue a second query for

(or tagged:<id0> ... tagged:<idn�1>)

However, the apply operator allows the client to retrieve
photos-of-friends in one query and push most of the compu-
tational cost down to the backend:

(apply tagged: friend:5)

In an Apply operation, the latter operand (friend:5 in
Figure 6) is executed first as the so-called inner query (first
round), and these inner results are prepended with the first
operand (tagged:) and conjoined with an Or for the outer
query (second round). As shown in Algorithm 1, we limit
the number of generated operands for the outer query to
some limit L. This limit can be overridden by clients but is
typically around 5000 for performance reasons.

When the client uses Apply, Unicorn is essentially doing
what the client would have done. However, the network la-
tency saved by doing extra processing within the Unicorn
cluster itself and the ability write the aggregation and pro-
cessing of the extra steps in a high performance language
makes Apply a good “win”. In addition, client code is
simplified because clients do not need to deal with messy
aggregation and term-generation code for multiple passes.
In some sense, Apply is merely syntactic sugar to allow
the system to perform expensive operations lower in the
hardware stack. However, by allowing clients to show se-
mantic intent, further optimizations are sometimes possible
(see query planning discussion in Section 7.1.2 below). This
scheme also allows more automation related to training col-
laborative inner-outer query ranking models. It is helpful to
think of Apply as analogous to Join because it can lever-
age aggregate data and metadata to execute queries more
e�ciently than clients themselves.

7.1.1 Example: Friends-of-Friends
The canonical example for apply is finding so-called friends-

of-friends of a user. Jon Jones’s friends-of-friends are de-
picted in figure 6. Jon’s friends are Amy, Bob, Chuck,
Dana, and Ed. Jon’s friends-of-friends are simply the friends
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Amy

188

15

53

22

Bob

10

11

12

13

Chuck

16

35

41

55

68

Dana

31

44

52

66

Jon

Ed

Figure 6: Friends-of-friends for user Jon Jones. All
shaded circles would be returned.

of these individuals. Because Chuck and Bob are mutual
friends, they are also friends-of-friends of Jon. Jon is also
a friend-of-friends of himself since he is—by definition—a
friend of his friends. Clients can use the Difference op-
erator to eliminate Jon and his friends from the friend-of-
friends result-set if they desire. Not all of Jon’s friends are
contained in the set of his friends-of-friends, so clients often
take the union of these sets with the Or operator.

The top-aggregator handles processing the client’s request
in multiple passes. In the first pass of a query such as
(apply friend: friend:5), the top-aggregator sends the
inner query to all users racks first. The top-aggregator has
logic to map term prefixes to the appropriate vertical, or
clients can manually specify a vertical for the inner and
outer query. Once it collects the results for the inner query,
it constructs an “outer” query based on the results of the
inner query. In our example, if the results of the inner query
are ids: 10,11,13,17,18 then the top-aggregator would con-
struct a new query (or friend:10 friend:11 friend:13

friend:17 friend:18) and send this new query, again, to
all users racks. Once the results for this outer query are
gathered, the results are re-sorted and truncated if neces-
sary, and then they are returned to the client.

We support arbitrary nesting of apply operators. Because
of the latency associated with adding an extra round of back-
end fetching and the CPU-cost and bandwidth of having
more than a few hundred terms in a query, most apply oper-
ations are one level. We have found that friends-of-friends is
very useful in practice, but friends-of-friends-of-friends adds
virtually no benefit. However we have clients who regularly
employ multi-level apply operations.

Apply allows us to serve interesting views on the so-
cial graph on-line without being required to denormalize
the data. Considering the friends-of-friends example again,
there are several possible ways such a query could be imple-
mented. Naively, we could explicitly store the list of friends-
of-friends for every user and reference it via

friend: only F-o-F inline

Est. #Hits/User 130 48k
Est. Total Bytes 484GB 178TB
Avg. Latency 20ms 7ms
Variance medium low

Table 2: Comparing friends-of-friends (F-o-F) im-
plementations

friend-of-friend:<user>

. However such an implementation would take up an unrea-
sonable amount of space: While each user has 130 friends on
average, they have approximately 48000 friends-of-friends5.
Even assuming only 4 bytes per posting list entry, this would
still take over 178TB to store the posting lists for 1 billion
users, which would require hundreds of machines.

Compare such an approach to our apply-based implemen-
tation in Unicorn. Here, we only have terms for friend:.
Given the same assumptions, this corpus would take up
484GB and would fit comfortably on a handful of machines.
In most situations, the trade-o↵ in extra space one makes
by inlining friends-of-friends is not worth the execution time
saved by an extra round-trip to the index server. The de-
normalization approach also su↵ers from being necessarily
ad hoc. It can only cover the limited range of query patterns
that are anticipated at indexing time. Another approach for
finding friend-of-friends is discussed in [29].

The Apply operator is often used with term-count rank-
ing. Instead of merely returning Jon Jones’s friends-of-
friends ordered by DocId, we can rank them by the number
of terms that matched each result. In figure 6, we can no-
tice that some of the colored circles have more edges than
others. These edges represent how many common friends
these individuals have with Jon Jones, and the edge count
is a good proxy for social distance.

7.1.2 Example: Restaurants
Assume we wanted to answer the query: “Restaurants in

San Francisco liked by people from Beijing”, and assume our
index has a term page-type:restaurant that returns pages
that are restaurants. To answer the query, we can attempt
to use the following s-expression:

(and (term page-type:restaurant)

(term place-in:102)

(apply likes: (term live-in:100)))

The inner query of the apply operator would have millions
of results, which is too many to return to the top-aggregator
— let alone to use for constructing an outer query. In prac-
tice, the highest number of terms we can use as part of the
outer query is around 105 because of network and CPU la-
tency issues6. Hence we are forced to truncate the inner
results, which may lead to perfectly good restaurants in San
5This number di↵ers from the expected quantity of 1302 =
16900 because a user’s friends typically have more friends
than the global average.
6Specifically, each query term lookup typically causes at
least one CPU-cache miss. Ignoring thread parallelism and
assuming 100ns per main memory reference, this will already
take 100000 ⇤ 100 ns = 10ms, which is a significant fraction
of our per-index-server request timeout.
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Operator Example S-expression Description

term (term friend:5) Friends of Jon Jones (Terms may also ap-
pear naked inside of other operands.)

and (and friend:5 friend:6) Friends of Jon Jones who are also friends
of Lea Lin

or (or friend:5 friend:6 friend:7) Friends of Jon Jones or Lea Lin or Melanie
Marshall

di↵erence (difference friend:5 (or friend:6 friend:7)) Friends of Jon Jones who are not friends of
Lea Lin or Melanie Marshall

weak-and
(weak-and friend:6

(term friend:7 :optional-weight 0.2))
Friends of Lea Lin, of whom at least 80%
must also be friends of Melanie Marshall.
Number of non-matching hits can be spec-
ified as an absolute number or as a fraction
of total results (see Section 6.1)

strong-or
(strong-or

(term live-in:101 :optional-weight 0.1)

(term live-in:102 :optional-weight 0.1))
People who live in Palo Alto or San Fran-
cisco. At least 10% of results must be San
Francisco residents, and 10% must be Palo
Alto residents

apply (apply friend: (and friend:5 friend:6)) Friends of Jon and Lea Lin’s mutual friends

Table 3: Unicorn operators. Jon Jones is user 5, Lea Lin is 6, and Melanie Marshall is 7. San Francisco and
Palo Alto are 101 and 102, respectively.

Francisco being omitted from the result set because of in-
ner apply truncation. We will describe three approaches for
solving this problem.

First, we can be smarter about which results we return
from the inner query. For example, at scoring-time, we could
prioritize users who have ever lived or worked near San Fran-
cisco, since they are more likely to have liked a restaurant
in San Francisco.

Second, we can selectively denormalize edges if a use-
case is common enough. Here, we could create a new edge,
liked-page-in, that returns the set of users who have ever
liked a page associated with a particular city (this data-set
can be computed o✏ine). Given such an edge, we can con-
vert the inner part of the Apply to:

(and (term live-in:100)

(term liked-page-in:101))

This ensures that we select only users who have liked pages
in San Francisco. Another viable, albeit memory intensive,
approach would be to fully denormalize away the Apply
altogether. We could create a new edge, in-X-likefrom:Y,
that returns pages in some location, X, liked by people from
another location, Y 7. If all such edges were indexed, we
could answer the original user query by executing:

(and

(term

pages-in-101-liked-by-people-from:100)

(term page-type:restaurant))

Another downside of this approach is that it might be in-
teresting to know which users from Beijing like the returned
7There is no constraint in our index implementation that
prevents terms from being parameterized by two ids, al-
though space would be a concern. One way to prevent the
index size from blowing up would be to exclude terms with
fewer than K hits.

San Francisco restaurants, although this could be solved by
performing additional queries to select these users.

A final strategy for solving the inner apply truncation
problem is to use query planning to avoid inner trunca-
tion altogether. This is analogous to query planning in a
DBMS for complicated JOIN operations [23, 25]. For our
original query, the top-aggregator could recognize that there
are fewer restaurants in San Francisco than there are users
from Beijing. Thus, we could first execute a query to find
all restaurants in San Francisco, and then we could find
all likers of these restaurants who live in Beijing. This re-
quires that we work backwards from the final results (people
from Beijing who like restaurants in San Francisco) to get
the desired results (the restaurants themselves), but this is
straightforward assuming we keep track of which terms from
the outer query matched our final results.

A way to directly express this approach in the query lan-
guage, which comes at the cost of an extra round of backend
fetches, is to intersect the inner query itself with an apply
that e↵ectively inverts the original query. In this approach,
the modified query would be:

(and (term page-type:restaurant)

(term place-in:102)

(apply likes:

(and live-in:100

(apply likers:

(and

(term page-in:101)

(term page-type:restaurant)

)))))

In practice, good inner result ranking solves the vast ma-
jority of truncation problems, although this is an area of
active monitoring and development. Initial deployments of
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selective denormalization and apply inversion show promis-
ing results.

7.2 Extract
The Extract operator was created as a way to tackle a

common use-case: Say a client wishes to look up “People
tagged in photos of Jon Jones”. Given the architecture we
have discussed so far, the natural solution would be to use
the Apply operator to look up photos of Jon Jones in the
photos vertical and then to query the users vertical for peo-
ple tagged in these photos. However, this approach blows
up our index size because it creates hundreds of billions of
new terms in the users vertical. To merely store pointers
to the posting lists for these terms—not term hashes or
the terms themselves—it would require hundreds of GB per
shard, which is more than the amount of RAM in a single
machine.

For this case of billions of “one-to-few” mappings, it makes
better sense to store the result ids in the forward index of the
secondary vertical and do the lookup inline. For the example
above, this means that we store the ids of people tagged in a
photo in the forward index data for that photo in the photos
vertical. This is a case where partially denormalizing the
data actually saves space, and this inline lookup of desired
ids from the forward index is what the Extract operator
does.

Algorithm 2 describes how extract works on the index
server. For the sake of simplicity, we ignore scoring. In some
cases it makes sense to score (and possibly reject) results
from iter before looking up the extracted result. Some-
times the extracted results are sent to their natural vertical
to be scored and ranked. We also omit the implementation
of the ExtractSet, although this is non-trivial. A disadvan-
tage of this approach is that the same extracted result may
be returned by multiple shards, leaving duplicate removal
as a task for the top-aggregator. Because extract does not
fundamentally require extra round-trips—unlike the apply
operator—performance overhead of extract is minimal. The
extra forward index lookup adds very little extra compu-
tational cost, since, typically, the forward index entry has
already been fetched in order to score the source document.

Algorithm 2 Extract Operator (in index server)

1: procedure Extract(query, extractKey)
2: extractSet None
3: eKey  extractKey
4: iter = execute(query)
5: for each result in iter do
6: e = Lookup(fwdIndex, result.id, eKey)
7: insert(extractSet, e)
8: end for
9: return extractSet.results
10: end procedure

8. LINEAGE
Facebook takes privacy very seriously, and it is important

not to show results that would violate the privacy settings
of our users. Certain graph edges cannot be shown to all
users but rather only to users who are friends with or in the
same network as a particular person.

Unicorn itself does not have privacy information incorpo-
rated into its index. Instead, our approach is to give callers
all the relevant data concerning how a particular result was
generated in Unicorn so that the caller—typically our PHP
frontend—can make a proper privacy check on the result.

This design decision imposes a modest e�ciency penalty
on the overall system, but it has two major justifications.
First, we did not want our system to provide the strict con-
sistency and durability guarantees that would be needed for
a full privacy solution. If a user “un-friends” another user,
the first user’s friends-only content immediately and irre-
vocably must become invisible to the second user. Even
a 30-second lag-time is unacceptable. The engineering ef-
fort required to guarantee that our realtime pipeline stayed
strictly up-to-date was deemed overly burdensome. Dead
and flaky machines add further complications. In CAP-
speak, we chose availability and partition tolerance. Unicorn
is not an authoritative database system.

An even stronger reason to keep privacy logic separate
from Unicorn is the DRY (“Don’t Repeat Yourself”) princi-
ple of software development [19]. Facebook has organically
accumulated a massive set of complex, privacy-related busi-
ness logic in its frontend. Good software design dictates
that we leverage this logic instead of replicating it in an-
other place. The modest e�ciency costs of this approach
only get progressively lower as Facebook invests in broad
e�ciency initiatives [3, 6].

To enable clients to make privacy decisions, a string of
metadata is attached to each search result to describe its
lineage. Lineage is a structured representation of the edges
that were traversed in order to yield a result. Figure 7 gives
an example of what is represented by the lineage for a par-
ticular search result. The lineage is serialized as JSON or
a Thrift structure and added to each result in the response
Thrift object.

AMD@I?�À Ã AMD@I?�À Ä

AMD@I?�Ã ¼» AMD@I?�Ä ¼»

�II@M

�PO@M

Figure 7: Lineage for Chuck (10) in the query rep-
resented by Figure 6. Amy (8) is friends with Jon
Jones (5), and Chuck is friends with Amy. Alterna-
tively, Bob (9) is friends with Jon Jones, and Chuck
is also friends with Bob. For the user to be able to
see that Chuck is a friend-of-friends of Jon Jones,
the user must be allowed to see either the two edges
on the LHS or the two edges on the RHS (or all four
edges).

Given the lineage for an id in the Unicorn results, our
frontend can query an authoritative privacy service to de-
termine if su�cient edges are visible to include the id in the
user’s search results. While the lineage for a single result can
sometimes take many kilobytes, the bandwidth and compu-
tational cost for processing lineage has not been a major
hindrance for Graph Search, as Facebook infrastructure is
already designed to spend significant resources on privacy
checks.
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9. HANDLING FAILURES AND SCALE
A system with thousands of machines in a single replica

is bound to experience frequent machine failures and occa-
sional network partitions. Sharding by id provides some
degree of “passive” safety, since serving incomplete results
for a term is strongly preferable to serving empty results.
As is typical of many cluster architectures, Facebook has
systems for automatically replacing dead machines, so re-
placements can often be spun-up within a small multiplier
of the time it takes to copy the needed index data to the
new machine.

Additionally, having multiple copies of a vertical provides
for both horizontal scalability and redundancy. Rack ag-
gregators know how to forward requests to a shard copy in
another rack in the event that a shard becomes unavailable.
Several checks are performed to ensure that such redundant
requests are not executed during peak system load or when
cascading failures might be possible.

Each vertical can have a di↵erent replication factor to op-
timize for the load and redundancy requirements specific
to that vertical. Additionally, analysis sometimes shows
that particular term families within a vertical are especially
“hot”. In these cases, it is possible to build a custom, smaller
subset of a particular vertical to provide extra replication for
these hot term families. For instance, analysis showed that
friend: and likers: terms were especially common. We
created a special “friends and fans” tier-type with a high
replication factor, and we added logic to the top-aggregator
to detect these queries and forward them to the new tiers.
This enabled us to reduce the replication factor of the users
vertical and realize significant capital savings.

10. PERFORMANCE EVALUATION
We have executed some benchmarks to provide a bet-

ter understanding of basic query performance and Apply
performance. All queries below were executed on a set
of seven racks consisting of 37 identical machines per rack
(259 shards). Each machine is built per Facebook’s Open
Compute [7] spec and has dual 2.2GHz Sandy Bridge Intel
CPUs and a 10 Gbps NIC. The index contains friend: and
likers: terms and fits in memory.

As a baseline, we evaluated the query “People who like
Computer Science”, which corresponds to the s-expression:

(term likers:104076956295773)

There are over 6M likers of computer science on Facebook.
For all queries, we requested 100 results. Table 4 shows the
relevant data for the query above.

Next, we build an Apply on top of this base query by
finding the friends of these individuals:

(apply friend: likers:104076956295773)

Since there are millions of results for the inner query, the
inner result set will be truncated before executing the outer
query. The graphs below show how performance is a↵ected
as the inner truncation limit is increased from 10 to 100k.

Query likers:104076956295773

Latency 11ms
Aggregate CPU 31220µs
Relative deviation 17.7%

Table 4: Relevant statistics for baseline query “Peo-
ple who like computer science”. The query was run
100 times, and 100 results were requested each time.
These are the average statistics. Latency is mea-
sured in wall-time as seen from a caller to the top-
aggregator. Aggregate CPU is the total CPU time
(not wall time) spent executing the query summed
across all 37 index servers. Relative deviation is
computed as the standard deviation of index server
response times (as seen by the rack aggregators)
normalized by the mean response time.
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The first two plots above show that increasing the in-
ner truncation limit leads to higher latency and cost, with
latency passing 100ms at approximately a limit of 5000.
Query cost increases sub-linearly, but there will likely always
be queries whose inner result sets will need to be truncated
to prevent latency from exceeding a reasonable threshold
(say, 100ms).

This means that—barring architectural changes—we will
always have queries that require inner truncation. As men-
tioned in section 7.1.2, good inner query ranking is typically
the most useful tool. However, it is always possible to con-
struct “needle-in-a-haystack” queries that elicit bad perfor-
mance. Query planning and selective denormalization can
help in many of these cases.

The final plot shows that relative deviation increases grad-
ually as the truncation limit increases. Larger outer queries
have higher variance per shard as perceived by the rack ag-
gregator. This is likely because network queuing delays be-
come more likely as query size increases.

11. RELATED WORK
In the last few years, sustained progress has been made in

scaling graph search via the SPARQL language, and some
of these systems focus, like Unicorn, on real-time response
to ad-hoc queries [24, 12]. Where Unicorn seeks to handle a
finite number of well understood edges and scale to trillions
of edges, SPARQL engines intend to handle arbitrary graph
structure and complex queries, and scale to tens of millions
of edges [24]. That said, it is interesting to note that the
current state-of-the-art in performance is based on variants
of a structure from [12] in which data is vertically partitioned
and stored in a column store. This data structure uses a
clustered B+ tree of (subject-id, value) for each property
and emphasizes merge-joins, and thus seems to be evolving
toward a posting-list-style architecture with fast intersection
and union as supported by Unicorn.

Recently, work has been done on adding keyword search
to SPARQL-style queries [28, 15], leading to the integration
of posting lists retrieval with structured indices. This work
is currently at much smaller scale than Unicorn. Starting
with XML data graphs, work has been done to search for
subgraphs based on keywords (see, e.g. [16, 20]). The focus
of this work is returning a subgraph, while Unicorn returns
an ordered list of entities.

In some work [13, 18], the term ’social search’ in fact refers
to a system that supports question-answering, and the social
graph is used to predict which person can answer a question.

While some similar ranking features may be used, Unicorn
supports queries about the social graph rather than via the
graph, a fundamentally di↵erent application.

12. CONCLUSION
In this paper, we have described the evolution of a graph-

based indexing system and how we added features to make it
useful for a consumer product that receives billions of queries
per week. Our main contributions are showing how many
information retrieval concepts can be put to work for serv-
ing graph queries, and we described a simple yet practical
multiple round-trip algorithm for serving even more com-
plex queries where edges are not denormalized and instead
must be traversed sequentially.
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Open Source
All Unicorn index server and aggregator code is written in
C++. Unicorn relies extensively on modules in Facebook’s
“Folly” Open Source Library [5]. As part of the e↵ort of
releasing Graph Search, we have open-sourced a C++ im-
plementation of the Elias-Fano index representation [31] as
part of Folly.
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