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ABSTRACT

We describe the design and implementation of Walter, a key-value

store that supports transactions and replicates data across distant

sites. A key feature behind Walter is a new property called Parallel

Snapshot Isolation (PSI). PSI allows Walter to replicate data asyn-

chronously, while providing strong guarantees within each site. PSI

precludes write-write conflicts, so that developers need not worry

about conflict-resolution logic. To prevent write-write conflicts and

implement PSI, Walter uses two new and simple techniques: pre-

ferred sites and counting sets. We use Walter to build a social net-

working application and port a Twitter-like application.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Net-

works]: Distributed Systems—client/server; distributed applications; distributed

databases; D.4.5 [Operating Systems]: Reliability—fault-tolerance; H.3.4 [Infor-

mation Storage and Retrieval]: Systems and Software—distributed systems

General Terms: Algorithms, Design, Experimentation, Performance, Reliability

Keywords: Transactions, asynchronous replication, geo-distributed systems, dis-

tributed storage, key-value store, parallel snapshot isolation

1. INTRODUCTION

Popular web applications such as Facebook and Twitter are in-

creasingly deployed over many data centers or sites around the

world, to provide better geographic locality, availability, and dis-

aster tolerance. These applications require a storage system that is

geo-replicated—that is, replicated across many sites—to keep user

data, such as status updates, photos, and messages in a social net-

working application. An attractive storage choice for this setting is

a key-value store [16], which provides good performance and reli-

ability at low cost.

We describe Walter, a geo-replicated key-value store that sup-

ports transactions. Existing geo-distributed key-value stores pro-

vide no transactions or only restricted transactions (see Section 9).

Without transactions, an application must carefully coordinate ac-

cess to data to avoid race conditions, partial writes, overwrites, and

other hard problems that cause erratic behavior. Developers must

address these same problems for many applications. With trans-

actions, developers are relieved from concerns of atomicity, con-

sistency, isolation, durability, and coordination. For example, in

a social networking application, one may want to remove user A

from B’s friends list and vice versa. Without transactions, develop-

ers must write code carefully to prevent one removal from happen-

ing without the other. With transactions, developers simply bundle

.

those updates in a transaction.

Transactions in Walter ensure a new isolation property called

Parallel Snapshot Isolation (PSI), which provides a balance be-

tween consistency and latency [22, 54], as appropriate for web ap-

plications. In such applications, a user might log into the site closest

to her, where she accesses application servers, ad servers, authenti-

cation servers, etc. These hosts should observe a consistent storage

state. For example, in a social network, a user expects to see her

own posts immediately and in order. For that reason, the storage

system should provide a strong level of consistency among hosts in

her site. Across sites, weaker consistency is acceptable, because

users can tolerate a small delay for their actions to be seen by other

users. A weaker consistency is also desirable, so that transactions

can be replicated across sites asynchronously (lazy replication).

Eventual consistency [44, 47] is often the property provided by

asynchronous replication. When different sites update the same

data concurrently, there is a conflict that must be resolved by ap-

plication logic. This logic can be complex, and we want to avoid

forcing it upon developers.

With PSI, hosts within a site observe transactions according to a

consistent snapshot and a common ordering of transactions. Across

sites, PSI enforces only causal ordering, not a global ordering of

transactions, allowing the system to replicate transactions asyn-

chronously across sites. With causal ordering, if Alice posts a mes-

sage that is seen by Bob, and Bob posts a response, no user can

see Bob’s response without also seeing Alice’s original post. Be-

sides providing causal ordering, PSI precludes write-write conflicts

(two transactions concurrently writing to the same object) so that

developers need not write conflict resolution logic.

To prevent write-write conflicts and implement PSI, Walter re-

lies on two techniques: preferred sites and counting sets. In web

applications, writes to an object are often made by the user who

owns the object, at the site where this user logs into. Therefore, we

assign each object to a preferred site, where objects can be writ-

ten more efficiently. For example, the preferred site for the wall

posts of a user is the site closest to the user. Preferred sites are less

restrictive than primary sites, as we discuss in Section 2.

Preferred sites may not always suffice. For example, a friends

list can be updated by users in many sites. The second technique

in Walter to avoid conflicts is to use a new simple data type called

a counting set (cset), inspired by commutative data types [29]. A

cset is like a set, except that each element has an integer count. Un-

like sets, csets operations are commutative, and so they never con-

flict [25]. Therefore, transactions with csets can commit without

having to check for conflicts across sites. When developing appli-

cations for Walter, we used csets extensively to store friend lists,

message walls, photo albums, and message timelines. We found

that csets were versatile and easy to use.

Walter uses multi-version concurrency control within each site,

and it can quickly commit transactions that write objects at their

preferred sites or that use csets. For other transactions, Walter re-

sorts to two-phase commit to check for conflicts. We found that the



latter type of transaction can be avoided in the applications we built.

Using Walter as the storage system, we build WaltSocial, a Face-

book-like social networking application, and we port a third-party

Twitter-clone called ReTwis [2]. We find that the transactions pro-

vided by Walter are effective and efficient. Experiments on four

geographic locations on Amazon EC2 show that transactions have

low latency and high throughput. For example, the operation to post

a message on a wall in WaltSocial has a throughput of 16500 ops/s

and the 99.9-percentile latency is less than 50 ms.

In summary, our contributions are the following:

• We define Parallel Snapshot Isolation, an isolation property

well-suited for geo-replicated web applications. PSI provides

a strong guarantee within a site; across sites, PSI provides

causal ordering and precludes write-write conflicts.

• We describe the design and implementation of Walter, a geo-

replicated transactional key-value store that provides PSI. Wal-

ter can avoid common write-write conflicts without cross-site

communication using two simple techniques: preferred sites

and csets.

• We give distributed protocols to execute and commit transac-

tions in Walter.

• We use Walter to build two applications and demonstrate the

usefulness of its transactional guarantees. Our experience in-

dicates that Walter transactions simplify application develop-

ment and provide good performance.

2. OVERVIEW

Setting. A geo-replicated storage system replicates objects across

multiple sites. The system is managed by a single administrative

entity. Machines can fail by crashing; addressing Byzantine fail-

ures is future work. Network partitions between sites are rare: sites

are connected by highly-available links (e.g., private leased lines or

MPLS VPNs) and there are redundant links to ensure connectivity

during planned periods of link maintenance (e.g., using a ring topol-

ogy across sites). We wish to provide a useful back-end storage

system for web applications, such as social networks, web email,

social games, and online stores. The storage system should provide

reliability, a simple interface and semantics, and low latency.

Why transactions? We illustrate the benefit of transactions in a

social networking application, where users post photos and status

updates, befriend other users, and write on friends’ walls. Each site

has one or more application servers that access shared user data.

When Alice adds a new photo album, the application creates an ob-

ject for the new album, posts a news update on Alice’s wall, and

updates her album set. With transactions, the application groups

these writes into an atomic unit so that failures do not leave behind

partial writes (atomicity) and concurrent access by other servers are

not intermingled (isolation). Without transactions, the application

risks exposing undesirable inconsistent state to end users. For ex-

ample, Bob may see the wall post that Alice has a new album but not

find the album. Developers can sometimes alleviate these inconsis-

tencies manually, by finding and ensuring proper ordering of writes.

For example, the application can create the new album and wait for

it to be replicated before posting on the wall. Then, concurrent ac-

cess by Bob is not a problem, but a failure may leave behind an or-

phan album not linked to any user. The developer can deal with this

problem by logging and replaying actions—which amounts to im-

plementing rudimentary transactions—or garbage collecting dan-

gling structures. This non-transactional approach places significant

burden on developers.

We are not the first to point out the benefits of transactions to

data center applications. Sinfonia uses transactions for infrastruc-

ture services [3, 4], while Percolator [38] uses them for search in-

dexing. Both systems target applications on a single site, whereas

we target geo-replicated applications that span many sites.

One way to provide transactions in a geo-replicated setting is to

partition the data across several databases, where each database has

its primary at a different site. The databases are replicated asyn-

chronously across all sites, but each site is the primary for only

one of the partitions. Unfortunately, with this solution, transactions

cannot span multiple partitions, limiting their utility to applications.

Key features. Walter provides a unique combination of features to

support geo-replicated web applications:

• Asynchronous replication across sites. Transactions are repli-

cated lazily in the background, to reduce latency.

• Efficient update-anywhere for certain objects. Counting sets

can be updated efficiently anywhere, while other objects can

be updated efficiently at their preferred site.

• Freedom from conflict-resolution logic, which is complex and

burdensome to developers.

• Strong isolation within each site. This is provided by the PSI

property, which we cover below.

Existing systems do not provide some of the above features. For

instance, eventually consistent systems such as [44, 47] require

conflict-resolution logic; primary-copy database systems do not sup-

port any form of update-anywhere. We discuss related work in more

detail in Section 9.

Overview of PSI. Snapshot isolation [8] is a popular isolation con-

dition provided by commercial database systems such as Oracle and

SQLServer. Snapshot isolation ensures that (a) transactions read

from a snapshot that reflects a single commit ordering of trans-

actions, and (b) if two concurrent transactions have a write-write

conflict, one must be aborted. By imposing a single commit order-

ing, snapshot isolation forces implementations to coordinate trans-

actions on commit, even when there are no conflicts (Section 3.1).

Parallel snapshot isolation extends snapshot isolation by allow-

ing different sites to have different commit orderings. For exam-

ple, suppose site A executes transactions T1, T2 and site B exe-

cutes transactions T3, T4. PSI allows site A to first incorporate just

T1, T2 and later T3, T4, while site B first incorporates T3, T4 and

later T1, T2. This flexibility is needed for asynchronous replication:

site A (or site B) can commit transactions T1, T2 (or T3, T4) with-

out coordinating with the other site and later propagate the updates.

Although PSI allows different commit orderings at different sites,

it still preserves the property of snapshot isolation that commit-

ted transactions have no write-write conflicts, thereby avoiding the

need for conflict resolution. Furthermore, PSI preserves causal or-

dering: if a transaction T2 reads from T1 then T1 is ordered before

T2 at every site. We give a precise specification of PSI in Section 3.

We believe PSI provides strong guarantees that are well-suited

for web applications. Intuitively, PSI provides snapshot isolation

for all transactions executed within a single site. PSI’s relaxation

over snapshot isolation is acceptable for web applications where

each user communicates with one site at a time and there is no need

for a global ordering of all actions across all users. In a social net-

working application, Alice in site A may post a message at the same

time as Bob in site B. Under PSI, Alice may see her message first

before seeing Bob’s message, and Bob sees the opposite ordering,

which is reasonable since Alice and Bob post concurrently. As an-

other example, in an auction application, PSI allows bids on differ-

ent objects to be committed in different orders at different sites. (In

contrast, snapshot isolation requires the same ordering at all sites.)



Such relaxation is acceptable since the auction application requires

bid ordering on each object separately, not across all objects.

Avoiding conflicts efficiently. To avoid write-write conflicts across

sites, and implement PSI, Walter uses two techniques.

• Preferred sites. Each object is assigned a preferred site, which

is the site where writes to the object can be committed with-

out checking other sites for write conflicts. Walter executes

and commits a transaction quickly if all the objects that it

modifies have a preferred site where the transaction executes.

Objects can be updated at any site, not just the preferred site.

In contrast, some database systems have the notion of a pri-

mary site, which is the only site that can update the data.

This notion is more limiting than the notion of a preferred

site. For instance, suppose objects O1 and O2 are both repli-

cated at sites 1 and 2, but the primary of O1 is site 1 while the

primary of O2 is site 2. A transaction executing on site 1 can

read both objects (since they are both replicated at site 1), but

because the primary of O2 is not site 1, the transaction can

write only O1—which is limiting to applications. In practice,

this limitation is even more severe because database systems

assign primary sites at the granularity of the whole database,

and therefore non-primary sites are entirely read-only.

• Conflict-free counting set objects. Sometimes an object is

modified frequently from many sites and hence does not have

a natural choice for a preferred site. We address this problem

with counting set (cset) objects. Transactions in Walter sup-

port not just read and write operations, but also operations on

csets. Csets have the desirable property that transactions con-

currently accessing the cset object never generate write-write

conflicts. A cset is similar to a multiset in that it keeps a count

for each element. But, unlike a multiset, the count could be

negative [25]. A cset supports an operation add(x) to add ele-

ment x, which increments the counter of x in the cset; and an

operation rem(x) to remove x, which decrements the counter

of x. Because increment and decrement commute, add and

rem also commute, and so operations never conflict.

For example, a group of concurrent cset operations can be

ordered as add(x), add(y), rem(x) at one site, and ordered

as rem(x), add(x), add(y) at another site. Both reach the

final state containing just y with count 1. Note that removing

element x from an empty cset results in -1 copies of element

x, which is an anti-element: later addition of x to the cset

results in the empty cset.

3. PARALLEL SNAPSHOT ISOLATION

In this section, we precisely specify PSI—the guarantee provided

by Walter—and we discuss its properties and implications. We start

by reviewing snapshot isolation and explaining the framework that

we use to specify properties (Section 3.1). Then, we give the ex-

act specification of PSI and discuss its properties (Section 3.2).

We next explain how to extend PSI to include set operations (Sec-

tion 3.3). We then explain how developers can use PSI (Section 3.4)

and csets (Section 3.5) to build their applications.

3.1 Snapshot isolation

We specify snapshot isolation by giving an abstract specification

code that an implementation must emulate. The specification code

is centralized to make it as simple as possible, whereas an imple-

mentation can be distributed, complex, and more efficient. An im-

plementation code satisfies the specification code if both codes pro-

duce the same output given the same input (e.g., [32]). The input

operation startTx(x)

x.startTs ← new monotonic timestamp

return OK

operation write(x, oid, data)

append 〈oid, DATA(data)〉 to x.updates

return OK

operation read(x, oid)
return state of oid from x.updates and Log up to timestamp x.startTs

operation commitTx(x)

x.commitTs ← new monotonic timestamp

x.status ← chooseOutcome(x)

if x.status = COMMITTED

then append x.updates to Log with timestamp x.commitTs

return x.status

Figure 1: Specification of snapshot isolation.

function chooseOutcome(x)
if some write-conflicting transaction has committed after x started

then return ABORTED

else if some write-conflicting transaction has aborted after x started

or is currently executing

then return (either ABORTED or COMMITTED) // non-deterministic choice

else return COMMITTED

Figure 2: Transaction outcome in snapshot isolation.

T1 T3

T2

storage state

snapshot that
reads fromT3

time when all writes
of are appliedT3

T1 T2 T3

Figure 3: Depiction of snapshot isolation. The writes of T1 are seen

by T3 but not T2 as T2 reads from a snapshot prior to T1 ’s commit.

is given by calls to operations to start a transaction, read or write

data, commit a transaction, etc. The output is the return value of

these operations. Many clients may call the operations of the spec-

ification concurrently, resulting possibly in many outstanding calls;

however, the body of each operation is executed one at a time, using

a single thread.

The specification is given in Figures 1 and 2 and depicted in Fig-

ure 3. It is assumed that clients start a transaction x with x initially

⊥, then perform a sequence of reads and/or writes, and then try to

commit the transaction. The behavior is unspecified if any client

fails to follow this discipline, say by writing to a transaction that

was never started. To start transaction x, the code obtains a new

monotonically increasing timestamp, called the start timestamp of

x. The timestamp is stored as an attribute of x; in the code, x is

passed by reference. To write an object in transaction x, the code

stores the object id and data in a temporary update buffer. To read

an object, the code uses the update buffer—to check for any updates

to the object written by the transaction itself—as well as a snapshot

of the state when the transaction began. To determine the snapshot,

the code maintains a Log variable with a sequence of object ids,

data, and timestamps for the writes of previously-committed trans-

actions. Only committed transactions are in the log, not outstanding

ones. A read of an object reflects the updates in Log up to the trans-

action’s start timestamp. To commit transaction x, the code obtains

a new monotonically increasing timestamp, called the commit time-

stamp of x. It then determines the outcome of a transaction accord-

ing to the function in Figure 2. This function indicates the cases



when the outcome is abort, commit, or either one chosen nonde-

terministically.1 The code considers what happens after x started:

if some write-conflicting transaction committed then the outcome

is abort, where a write-conflicting transaction is one that writes an

object that x also writes. Otherwise if some write-conflicting trans-

action has aborted or is currently executing—meaning it has started

but its outcome has not been chosen—then the outcome is either

abort or commit, chosen nondeterministically. Otherwise, the out-

come is commit. If the outcome is commit, the writes of x are

appended to Log with x’s commit timestamp.

Note that the specification keeps internal variables—such as the

log, timestamps, and other attributes of a transaction—but an im-

plementation need not have these variables. It needs to emulate

only the return values of each operation.

The above specification of snapshot isolation implies that any

implementation must satisfy two key properties [51, Page 362]:

SI PROPERTY 1. (Snapshot Read) All operations read the most

recent committed version as of the time when the transaction began.

SI PROPERTY 2. (No Write-Write Conflicts) The write sets of

each pair of committed concurrent transactions must be disjoint.

Here, we say that two committed transactions are concurrent if one

of them has a commit timestamp between the start and commit

timestamp of the other.

Snapshot isolation is inadequate for a system replicated at many

sites, due to two issues. First, to define snapshots, snapshot iso-

lation imposes a total ordering of the commit time of all transac-

tions, even those that do not conflict2. Establishing such an ordering

when transactions execute at different sites is inefficient. Second,

the writes of a committed transaction must be immediately visible

to later transactions. Therefore a transaction can commit only after

its writes have been propagated to all remote replicas, thereby pre-

cluding asynchronous propagation of its updates.3 We define PSI to

address these problems.

3.2 Specification of PSI

We define PSI as a relaxation of snapshot isolation so that trans-

actions can propagate asynchronously and be ordered differently

across sites. Note that the PSI specification does not refer to pre-

ferred sites, since they are relevant only to the implementation of

PSI. The specification code is given in Figures 4 and 5 and de-

picted in Figure 6. As before, the specification is abstract and

centralized—there is a single thread that executes the code with-

out interleaving—but we expect that implementations will be dis-

tributed. Each transaction x has a site attribute denoted site(x).

There is a log per site, kept in a vector Log indexed by sites. A

transaction has one commit timestamp per site. A transaction first

commits locally, by writing its updates to the log at its site; sub-

sequently, the transaction propagates to and commits at the remote

sites. This propagation is performed by the upon statement which,

at some non-deterministic time, picks a committed transaction x

and a site s to which x has not been propagated yet, and then writes

the updates of x to the log at s. (For the moment, we ignore the

second line of the upon statement in the code.) As Figure 5 shows,

1Nondeterminism in specifications allows implementations to have either behavior.
2For example, suppose A=B=0 initially and transaction T1 writes A←1, transac-

tion T2 writes B←1, and both commit concurrently. Then T1 and T2 do not conflict

and can be ordered arbitrarily, so either (A=1, B=0) or (A=0, B=1) are valid

snapshots for transactions to read. However, it is illegal for both snapshots to occur,

because snapshot isolation either orders T1 before T2 or vice versa.
3A variant called weak snapshot isolation [15] allows a transaction to remain invisible

to others even after it commits, but that does not address the first issue above.

operation startTx(x)

x.startTs ← new monotonic timestamp

return OK

operation write(x, oid, data)

append 〈oid, DATA(data)〉 to x.updates

return OK

operation read(x, oid)
return state of oid from x.updates and Log[site(x)] up to timestamp x.startTs

operation commitTx(x)

x.commitTs[site(x)]← new monotonic timestamp

x.status ← chooseOutcome(x)

if x.outcome = COMMITTED

append x.updates to Log[site(x)] with timestamp x.commitTs[site(x)]
return x.status

upon [∃x, s: x.status = COMMITTED and x.commitTs[s] = ⊥ and

∀y such that y.commitTs[site(x)] < x.startTs : y.commitTs[s] 6= ⊥]
x.commitTs[s]← new monotonic timestamp

append x.updates to Log[s] with timestamp x.commitTs[s]

Figure 4: Specification of PSI.

function chooseOutcome(x)

if some write-conflicting transaction has committed at site(x) after x started

or is currently propagating to site(x) // text has definition of “propagating”

then return ABORTED

else if some write-conflicting transaction has aborted after x started

or is currently executing

then return (either ABORTED or COMMITTED)

else return COMMITTED

Figure 5: Transaction outcome in PSI.

site A state

site B state
T2

T1

T1 T2

T2 T1

Figure 6: PSI allows a transaction to have different commit times at

different sites. At site A, committed transactions are ordered as T1,

T2. Site B orders them differently as T2, T1.

a transaction is aborted if there is some write-conflicting transac-

tion that has committed at site(x) after x started or that is currently

propagating to site(x); a transaction y is propagating to a site s

if its status is committed but it has not yet committed at site s—

that is, y.status=COMMITTED and y.commitTs[s]=⊥. Otherwise,

if there is some concurrent write-conflicting transaction that has not

committed, the outcome can be abort or commit. Otherwise, the

outcome is commit. The outcome of a transaction is decided only

once: if it commits at its site, the transaction is not aborted at the

other sites. In Section 5.7, we discuss what to do when a site fails.

The above specification contains code that may be expensive to

implement directly, such as monotonic timestamps and checks for

write conflicts of transactions in different sites. We later give a

distributed implementation that can avoid these inefficiencies.

From the specification, it can be seen that PSI replaces property 1

of snapshot isolation with the following:

PSI PROPERTY 1. (Site Snapshot Read) All operations read the

most recent committed version at the transaction’s site as of the time

when the transaction began.

Intuitively, a transaction reads from a snapshot established at its

site. In addition, PSI essentially preserves property 2 of snapshot



operation setAdd(x, setid, id)

append 〈setid, ADD(id)〉 to x.updates

return OK

operation setDel(x, setid, id)

append 〈setid, DEL(id)〉 to x.updates

return OK

operation setRead(x, setid)
return state of setid from x.updates and Log[site(x)] up to timestamp x.startTs

Figure 7: Set operations in PSI specification.

isolation. To state the exact property, we say two transactions T1

and T2 are concurrent at site s if one of them has a commit time-

stamp at s between the start and commit timestamp of the other

at s. We say the transactions are somewhere-concurrent if they are

concurrent at site(T1) or at site(T2).

PSI PROPERTY 2. (No Write-Write Conflicts) The write sets of

each pair of committed somewhere-concurrent transactions must be

disjoint.

This property prevents the lost update anomaly (Section 3.4). The

specification of PSI also ensures causal ordering:

PSI PROPERTY 3. (Commit Causality Across Sites) If a trans-

action T1 commits at a site A before a transaction T2 starts at site

A, then T1 cannot commit after T2 at any site.

This property is ensured by the second line of the upon statement

in Figure 4: x can propagate to a site s only if all transactions that

committed at x’s site before x started have already propagated to s.

The property prevents a transaction x from committing before y at

a remote site when x has observed the updates of y. The property

also implies that write-conflicting transactions are committed in the

same order at all sites, to prevent the state at different sites from

diverging permanently.

3.3 PSI with cset objects

In the specification of PSI in Section 3.2, transactions operate on

objects via read and write operations, but it is possible to extend

the specification to support objects with other operations. We give

the extension for cset objects, but this extension should apply to

any object with commutative operations. To add an element to a

cset, the code appends an entry 〈setid, ADD, id〉 to the transaction’s

update buffer (x.updates) and, on commit, appends this entry to the

log. Similarly, to remove an element from a cset, the code appends

entry 〈setid, DEL, id〉. To read a cset, the code computes the state

of the cset: for each element, it sums the number of ADD minus the

number of DEL in the log and the update buffer, thus obtaining a

count for each element. Only elements with a non-zero count are

returned by the read operation. Because the operations to add and

remove elements in a cset commute, these operations do not cause

a write conflict. Note that a cset object does not support a write

operation since it does not commute with ADD. Figure 7 shows the

code of the specification.

A cset may have many elements, and reading the entire cset could

return large amounts of data. It is easy to extend the specification

with an operation setReadId to return the count of a chosen element

on a cset, by simply computing the state of the cset (using the log)

to extract the count of that element.

3.4 Using PSI

One way to understand an isolation property is to understand

what type of anomalous behavior it allows, so that developers know

Anomaly Serializability Snapshot PSI Eventual

Isolation Consis-

tency

Dirty read No No No Yes

Non-repeatable read No No No Yes

Lost update No No No Yes

Short fork No Yes Yes Yes

Long fork No No Yes Yes

Conflicting fork No No No Yes

Dirty read. A transaction reads the update made by another transaction that

has not yet committed; the other transaction may later abort or rewrite the

object, making the data read by the first transaction invalid. Example. Initially

A=0. T1 writes A←1 and A←2 and commits; concurrently, T2 reads A=1.

Non-repeatable read. A transaction reads the same object twice—once be-

fore and once after another transaction commits an update to it—obtaining

different results. Example. Initially A=0. T1 writes A←1 and commits; con-

currently T2 reads A=0 and then reads A=1.

Lost update. Transactions make concurrent updates to some common object,

causing one transaction to lose its updates. Example. Initially A=0. T1 reads

A=0, writes A←1, and commits. Concurrently, T2 reads A=0, writes A←2,

and commits.

Short fork. Transactions make concur-

rent disjoint updates causing the state

to fork. After committing, the state

is merged back. Example. Initially

A=B=0. T1 reads A=B=0, writes

A←1, and commits. Concurrently, T2

reads A=B=0, writes B←1, and com-

mits. Subsequently, T3 reads A=B=1.

T
1

T
2

T
3

reads here

Long fork. Transactions make concur-

rent disjoint updates causing the state

to fork. After they commit, the state

may remain forked but it is later merged

back. Example. Initially A=B=0. T1

reads A=B=0, writes A←1, and com-

mits; then T2 reads A=1, B=0. T3 and

T4 execute concurrently with T1 and T2,

as follows. T3 reads A=B=0, writes

B←1, and commits; then T4 reads

A=0, B=1. Finally, after T1, . . . , T4 fin-

ish, T5 reads A=B=1.

T
1

T
3

T
2

reads here

T
4

reads here

T
5

reads here

Conflicting fork. Transactions make concurrent conflicting updates causing

the state to fork in a way that requires application-specific or ad-hoc rules to

merge back. Example. Initially A=0. T1 writes A←1 and commits. Concur-

rently, T2 writes A←2 and commits. Some external logic determines that the

value of A should be 3, and subsequently T3 reads A=3.

Figure 8: Anomalies allowed by each isolation property.

what to expect. In this section, we consider PSI from that stand-

point, and we compare it against snapshot isolation and serializ-

ability. It is well-known that the weaker a property is, the more

anomalous behaviors it has, but at the same time, the more effi-

ciently it can be implemented. The anomalies allowed by PSI can

be seen as the price to pay for allowing asynchronous replication.

Figure 8 shows various anomalies and whether each isolation

property has those anomalies. Eventual consistency is very weak

and allows all anomalies. The first three anomalies are well-known

(e.g., [24]). Snapshot isolation and PSI prevent dirty and non-

repeatable reads, because a transaction reads from a snapshot, and

they prevent lost updates because there are no write-write conflicts.

Snapshot isolation allows the state to fork, because two or more

transactions may read from the same snapshot and make concurrent

updates to different objects. We call this a short fork, also known

as write skew, because the state merges after transactions commit.

With PSI, the state may remain forked after transactions commit

(when they execute in different sites), but the state is later merged

when the transactions propagate across sites. Due to its longer du-



ration, we call this a long fork. A conflicting fork occurs when the

states diverges due to conflicting updates, which is not allowed by

PSI.

Long forks are acceptable in web applications when users in a

site do not expect their updates to be instantly visible across all

sites. If the user wants to know that her updates are visible every-

where, she can wait for her transaction to commit at all sites. In

some cases, the fork may be noticeable to users: say, Alice posts

a message on her social network wall saying that she is the first to

flag a new promotion; she then confirms her statement by reading

her friend’s walls and seeing nothing there. With a long fork, Bob

could be simultaneously doing the same thing from a different site,

so that both Alice and Bob believe they posted their message first.

One way to avoid possible confusion among users is for the appli-

cation to show an “in-flight” mark on a freshly posted message; this

mark is removed only when the message has been committed at all

sites. Then, when Alice sees the mark, she can understand that her

in-flight message may not yet be visible to all her friends.

Having discussed the anomalies of PSI, we now discuss ways

that an application can use and benefit from PSI.

Multi-object atomic updates. With PSI, updates of a transaction

occur together, so an application can use a transaction to modify

many objects without exposing partial updates on each object.

Snapshots. With PSI, a transaction reads from a fixed consistent

snapshot, so an application can use a transaction to ensure that it is

reading consistent versions of different objects.

Read-modify-write operations. Because PSI disallows write-write

conflicts, a transaction can implement any atomic read-modify-write

operation, which reads an object and writes a new value based

on the value read. Such operations include atomic increment and

decrement of counters, atomic appends, and atomic edits.

Conditional writes. A particularly useful type of read-modify-

write operation is a conditional write, which writes an object only if

its content or version matches a value provided by the application.

With PSI, this is performed by reading the object, evaluating the

condition and, if it is satisfied, writing the object. This scheme can

be extended to check and write many objects at once.

3.5 Using cset operations

A cset is a mapping from ids to counts, possibly negative. The

mapping indicates how many times the element with a given id ap-

pears in the cset. There are two ways to use csets. First, when the

count is useful to the application, a cset can be used as is. For ex-

ample, a cset can keep the number of items in a shopping cart or

inventory, the number of accesses to a data item, or the number of

references to an object.

The second way to use a cset is as a conventional set, by hid-

ing the counts from the user. For example, a cset can keep a list

of friends, messages, active users, or photo albums. In these cases,

the count has no meaning to the user. The application should be

designed to keep the counts of elements at zero or one: the applica-

tion should not add an element to a cset when the element is already

present, or remove an element from a cset when the element is not

there. In some cases, however, concurrent updates may cause the

count to raise above one or drop below zero. For example, a user

may add the same friend to her friends list, and do so concurrently

at two different sites: the application sees a count of zero in both

sites, and so it adds the friend once at each site. This situation is

rare, because there must be updates to the same element in the same

cset, and those updates must be concurrent, but it may happen. This

is addressed by treating a count of one or more as present in the set,

and count of zero or less as absent from the set. For example, when

showing the list to the user, friends with negative counts are ex-

cluded. When the user adds a friend, if the count is negative, the

application adds the friend enough times for the count to be one.

When removing a friend, the application removes her enough times

for the count to be zero. This is done by the application, transpar-

ently to the user.

4. SERVICE

This section describes how clients view and use Walter. Each site

contains a Walter server and one or more application clients. Wal-

ter stores key-value object pairs grouped in containers (Section 4.1),

where each container is replicated across multiple sites. The Wal-

ter client interface is exposed as a user-level library with functions

to start transactions, read and write data, and commit transactions

(Section 4.2). Walter provides fault tolerance by replicating data

across sites (Section 4.3), and it allows users to trade-off durability

for availability (Section 4.4).

4.1 Objects and containers

Walter stores objects, where an object has a key and a value.

There are two types of objects: regular and cset. In a regular object,

the value is an uninterpreted byte sequence, while in cset object, the

value is a cset.

Each object is stored in a container, a logical organization unit

that groups objects with some common purpose. For example, in

a Web application, each user could have a container that holds all

of her objects. To reduce space overhead, all objects in a container

have the same preferred site, and Walter stores this information only

once, as an attribute of the container. Administrators choose the

preferred site to be the site most likely to modify the objects. For

example, each user may have a designated site where she logs into

the system (if she tries to log into a different site, she is redirected),

and this would be the preferred site of her objects.

Object ids consist of a container id and a local id. The container

id indicates to which container the object belongs, and the local id

differentiates objects within a container. Since the container id is

part of the object id, the container of an object cannot be changed.

4.2 Interface

Walter provides a client library for starting a transaction, manipu-

lating objects, and committing a transaction, with the PSI semantics

and operations explained in Sections 3.2 and 3.3. For regular ob-

jects, the available operations are read and write; for cset objects,

the available operations are read, add element, and delete element.

Walter replicates transactions asynchronously, and the interface

allows a client to receive a callback when (a) the transaction is

disaster-safe durable (Section 4.4), and (b) the transaction is glob-

ally visible, meaning it has been committed at all sites.

4.3 Replication

Walter provides both durability and availability by replicating

data within a single site and across multiple sites. Replication is

transparent to clients: all the replicas of an object have the same

object id, and the system accesses the replica closest to the client.

An object need not be replicated at all sites and clients can read ob-

jects even if they are not replicated at the local site, in which case

Walter fetches the data from a remote site.4 A transaction commits

4In the PSI specification, data is replicated at every site, but an implementation need

not do that, as long as it behaves identically in terms of responses to operations.



at every site, even where it is not replicated, following the seman-

tics of PSI in Section 3.2: once a transaction is committed at a site,

reads from that site see the effects of the transaction. Administra-

tors choose how many replicas and where they are. These settings

are stored as attributes of a container, so all objects of a container

are replicated similarly.

4.4 Durability and availability

Walter provides two levels of durability:

(Normal Durability) When a transaction commits at its site, writes

have been logged to a replicated cluster storage system [21, 28, 40,

48], so writes are not lost due to power failures. Data may be lost if

an entire data center is wiped out by a disaster.

(Disaster-safe Durability) A transaction is considered disaster-safe

durable if its writes have been logged at f+1 sites, where parameter

f determines the desired fault tolerance level: up to f sites may fail

without causing data loss. The default value of f is 1.

If an entire site s fails temporarily or is unreachable due to cross-

site network issues, it may have transactions that were locally com-

mitted but not yet propagated to other sites. In that case, the appli-

cation has two choices:

(Conservative) Wait for the site s to come back online, so that it can

propagate the missing transactions. But then clients cannot write to

objects whose preferred site is s until s comes back online—a loss

of availability for some writes.

(Aggressive) Sacrifice the durability of a few committed transac-

tions at site s for better availability, by replacing site s and aban-

doning its non-propagated transactions. Technically, this choice vi-

olates PSI, but one could extend the PSI definition to allow for lost

committed transactions when a site fails or disconnects. Applica-

tions can wait for important transactions to be marked disaster-safe

durable before confirming them to users.

Availability within a site comes from the availability of the clus-

ter storage system: if the Walter server at a site fails, the system

starts a new server, which can access the same cluster storage sys-

tem. Availability under network partitions or disasters comes from

cross-site replication. If a site fails, an application can warn users

before they are redirected to another site, because users may see a

different system state at the new site due to the semantics of PSI. In

practice, the state at different sites diverges by only a few seconds.

5. DESIGN AND ALGORITHMS

This section describes Walter’s design, emphasizing the proto-

cols for executing and committing transactions. We first give an

overview of the basic architecture (Section 5.1) and object ver-

sioning (Section 5.2). We then explain how to execute transac-

tions (Section 5.3) and how to commit certain common transac-

tions quickly (Section 5.4). Next, we explain how to commit other

transactions (Section 5.5) and how transactions are replicated asyn-

chronously (Section 5.6). Lastly, we consider failure recovery (Sec-

tion 5.7) and scalability (Section 5.8).

5.1 Basic architecture

There are multiple sites numbered 1, 2, . . . Each site contains a

local Walter server and a set of clients. A client communicates with

the server via remote procedure calls implemented by the API li-

brary. The server executes the actual operations to start and commit

transactions, and to access objects.

Walter employs a separate configuration service to keep track

of the currently active sites, and the preferred site and replica set

At Serveri: // i denotes the site number

CurrSeqNoi: integer with last assigned local sequence number

CommittedVTSi: vector indicating for each site how many transactions of

that site have been committed at site i

Historyi[oid]: a sequence of updates of the form 〈data, version〉 to oid,

where version = 〈j:n〉 for some j, n

GotVTSi: vector indicating for each site how many transactions of

that site have been received by site i

Figure 9: Variables at server on each site.

for each object container. The configuration service tolerates fail-

ures by running as a Paxos-based state machine replicated across

multiple sites. A Walter server confirms its role in the system by

obtaining a lease from the configuration service, similar to what is

done in [12, 46]. The lease assigns a set of containers to a preferred

site, and it is held by the Walter server at that site. A Walter server

caches the mapping from a container to its replica sites to avoid

contacting the configuration service at each access. Incorrect cache

entries do not affect correctness because a server rejects requests

for which it does not hold the corresponding preferred site lease.

5.2 Versions and vector timestamps

The PSI specification is centralized and uses a monotonic time-

stamp when a transaction starts and commits. But monotonic times-

tamps are expensive to produce across multiple sites. Thus, to im-

plement PSI, Walter replaces them with version numbers and vec-

tor timestamps. A version number (or simply version) is a pair

〈site, seqno〉 assigned to a transaction when it commits; it has the

site where the transaction executed, and a sequence number local to

that site. The sequence number orders all transactions within a site.

A vector timestamp represents a snapshot; it contains a sequence

number for each site, indicating how many transactions of that site

are reflected in the snapshot. A transaction is assigned a vector

timestamp startVTS when it starts. For example, if startVTS =
〈2, 4, 5〉 then the transaction reads from the snapshot containing 2

transactions from site 1, 4 from site 2, and 5 from site 3.

Given a version v=〈site, seqno〉 and a vector timestamp startVTS,

we say that v is visible to startVTS if seqno ≤ startVTS[site]. Intu-

itively, the snapshot of startVTS has enough transactions from site

to incorporate version v.

Figure 9 shows the variables at the server at site i. Variable

CurrSeqNo
i

has the last sequence number assigned by the server,

and CommittedVTSi[j] has the sequence number of the last trans-

action from each site j that was committed at site i. We discuss

History
i

and GotVTSi in Sections 5.3 and 5.6.

5.3 Executing transactions

To execute transactions, the server at each site i maintains a his-

tory denoted History
i
[oid] with a sequence of writes/updates for

each object oid, where each update is tagged with the version of

the responsible transaction. This history variable is similar to vari-

able Log in the PSI specification, except that it keeps a list per

object, and it has versions not timestamps. When a transaction x

starts, Walter obtains a new start vector timestamp startVTS con-

taining the sequence number of the latest transactions from each

site that were committed at the local site. To write an object, add to

a cset, or remove from a cset, Walter stores this update in a tem-

porary buffer x.updates. To read an object, Walter retrieves its

state from the snapshot determined by startVTS and any updates

in x.updates. Specifically, for a regular object, Walter returns the

last update in x.updates or, if none, the last update in the history

visible to startVTS. For a cset object, Walter computes its state by



At Serveri: // i denotes the site number

operation startTx(x)

x.tid← unique transaction id

x.startVTS← CommittedVTSi

return OK

operation write(x, oid, data): add 〈oid, DATA(data)〉 to x.updates; return OK

operation setAdd(x, setid, id): add 〈setid, ADD(id)〉 to x.updates; return OK

operation setDel(x, setid, id): add 〈setid, DEL(id)〉 to x.updates; return OK

operation read(x, oid)

if oid is locally replicated

then return state of oid reflecting x.updates and

all versions in Historyi[oid] visible to x.startVTS

else return state of oid reflecting x.updates,

the versions in Historysite(oid)[oid] visible to x.startVTS, and

the versions in Historyi[oid] visible to x.startVTS

operation setRead(x, setid): same as read(x, oid)

Figure 10: Executing transactions.

At Serveri: // i denotes the site number

function unmodified(oid, VTS): true if oid unmodified since VTS

function update(updates, version)

for each 〈oid, X〉 ∈ updates do add 〈X, version〉 to Historyi[oid]

operation commitTx(x)

x.writeset← {oid : 〈oid, DATA(∗)〉 ∈ x.updates } // ∗ is a wildcard

if ∀oid ∈ x.writeset : site(oid) = i then return fastCommit(x)

else return slowCommit(x)

function fastCommit(x)
if ∀oid ∈ x.writeset : unmodified(oid, startVTS) and oid not locked then

x.seqno← ++CurrSeqNoi // vertical bar indicates atomic region

update(x.updates, 〈i, x.seqno〉)
wait until CommittedVTSi[i] = x.seqno−1

CommittedVTSi[i]← x.seqno

x.outcome← COMMITTED

fork propagate(x)

else x.outcome← ABORTED

return x.outcome

Figure 11: Fast commit.

applying the updates in the history visible to startVTS and the up-

dates in x.updates.

The above explanation assumes an object is replicated locally.

If not, its local history History
i
[oid] will not have all of the ob-

ject’s updates (but it may have some recent updates). Therefore,

to read such an object, Walter retrieves the data from the object’s

preferred site and merges it with any updates in the local history

and in x.updates. To write, Walter buffers the write in x.updates

and, upon commit, stores the update in the local history while it is

being replicated to other sites; after that, the local history can be

garbage collected. Figure 10 shows the detailed pseudocode exe-

cuted by a server. Recall that clients invoke the operations at the

local server using a remote procedure call (not shown). The code is

multi-threaded and we assume that each line is executed atomically.

5.4 Fast commit

For transactions whose write-set has only objects with a local

preferred site, Walter uses a fast commit protocol. The write-set of a

transaction consists of all oids to which the transaction writes; it ex-

cludes updates to set objects. To fast commit a transaction x, Walter

first determines if x can really commit. This involves two checks

for conflicts. The first check is whether all objects in the write-set

are unmodified since the transaction started. To perform this check,

Walter uses the start vector timestamp: specifically, we say that an

object oid is unmodified since x.startVTS if all versions of oid in the

At Serveri: // i denotes the site number

function slowCommit(x)

// run 2pc among preferred sites of updated objects

sites ← {site(oid) : oid ∈ x.writeset}
pfor each s ∈ sites do // pfor is a parallel for

vote[s]← remote call prepare(x.tid,

{oid ∈ x.writeset : site(oid) = s}, x.startVTS)
if ∀s ∈ sites : vote[s] = YES then

x.seqno← ++CurrSeqNoi // vertical bar indicates atomic region

update(x.updates, 〈i, x.seqno〉)
wait until CommittedVTSi[i] = x.seqno− 1

CommittedVTSi[i]← x.seqno

release locks (at this server) with owner x.tid

x.outcome← COMMITTED

fork propagate(x)
else

pfor each s ∈ sites such that vote[s] = YES do remote call abort(x.tid)

x.outcome← ABORTED

return x.outcome

function prepare(tid, localWriteset, startVTS)

if ∀oid ∈ localWriteset : oid not locked and unmodified(oid, startVTS) then

for each oid ∈ localWriteset do lock oid with owner tid

return YES

else return NO

function abort(tid)
release locks (at this server) with owner tid

Figure 12: Slow commit.

history of the local site are visible to x.startVTS. The second check

is whether all objects in the write-set of x are unlocked; intuitively,

a locked object is one being committed by the slow commit proto-

col (Section 5.5). If either check fails, then x is aborted. Otherwise,

Walter proceeds to commit x, as follows. It assigns a new local se-

quence number to x, and then applies x’s updates to the histories

of the modified objects. Walter then waits until the local transac-

tion with preceding sequence number has been committed. This

typically happens quickly, since sequence numbers are assigned in

commit order. Finally, transaction x is marked as committed and

Walter propagates x to remote sites asynchronously as described in

Section 5.6. Figure 11 shows the detailed pseudocode. The nota-

tion site(oid) denotes the preferred site of oid. As before, we as-

sume that each line is executed atomically. A vertical bar indicates

a block of code with multiple lines that is executed atomically.

5.5 Slow commit

Transactions that write a regular object whose preferred site is

not local must be committed using the slow commit protocol, which

employs a type of two-phase commit among the preferred sites of

the written objects (not across all replicas of the objects). The pur-

pose of two-phase commit is to avoid conflicts with instances of fast

commit and other instances of slow commit. To commit a transac-

tion x, the server at the site of the transaction acts as the coordinator

in the two-phase protocol. In the first phase, the coordinator asks

the (servers at the) preferred sites of each written object to vote

based on whether those objects are unmodified and unlocked. If

an object is modified at the preferred site, then an instance of fast

commit conflicts with x; if the object is locked at the preferred site,

then another instance of slow commit conflicts with x. If either case

occurs, the site votes “no”, otherwise the site locks the objects and

votes “yes”. If any vote is “no”, the coordinator tells the sites to

release the previously acquired locks. Otherwise, the coordinator

proceeds to commit x as in the fast commit protocol: it assigns a

sequence number to x, applies x’s updates to the object histories,

marks x as committed, and propagates x asynchronously. When x



At Serveri: // i denotes the site number

function propagate(x)

send 〈PROPAGATE , x〉 to all servers

wait until ∀oid∈x.writeset: received 〈PROPAGATE-ACK , x.tid〉
from f+1 sites replicating oid including site(oid)

mark x as disaster-safe durable

send 〈DS-DURABLE , x〉 to all servers

wait until received 〈VISIBLE , x.tid〉 from all sites

mark x as globally visible

when received 〈PROPAGATE , x〉 from Serverj and

GotVTSi ≥ x.startVTS and GotVTSi[j] = x.seqno−1 do

if i 6= j then update(items in x.updates replicated in this site, 〈j : x.seqno〉)

// when i = j, update has been applied already when transaction committed

GotVTSi[j] = x.seqno

send 〈PROPAGATE-ACK , x.tid〉 to Serverj

when received 〈DS-DURABLE , x〉 and 〈PROPAGATE , x〉 from Serverj and

CommittedVTSi ≥ x.startVTS and CommittedVTSi[j] = x.seqno−1 do

CommittedVTSi[j]← x.seqno

release all locks with owner x.tid

send 〈VISIBLE , x.tid〉 to Serverj

Figure 13: Transaction replication.

commits, a site releases the acquired locks when x is propagated to

it. Figure 12 shows the detailed pseudocode.

5.6 Asynchronous propagation

After a transaction commits, it is propagated asynchronously to

other sites. The propagation protocol is simple: the site of a trans-

action x first copies the objects modified by x to the sites where

they are replicated. The site then waits until sufficiently many sites

indicate that they received (a) transaction x, (b) all transactions that

causally precede x according to x.startVTS, and (c) all transactions

of x’s site with a smaller sequence number. “Sufficiently many

sites” means at least f+1 sites replicating each object including

the object’s preferred site, where f is the disaster-safe tolerance pa-

rameter (Section 4.4). At this point, x is marked as disaster-safe

durable and all sites are notified. Transaction x commits at a re-

mote site j when (a) site j learns that x is disaster-safe durable, (b)

all transactions that causally precede x are committed at site j, and

(c) all transactions of x’s site with a smaller sequence number are

committed at site j. When x has committed at all sites, it is marked

as globally visible. The pseudocode is shown in Figure 13. Vector

GotVTSi keeps track of how many transactions site i has received

from each other site. Note that when a site i receives a remote

transaction and updates the history of its objects, the transaction is

not yet committed at i: it commits only when CommittedVTSi[j] is

incremented. The code omits simple but important optimizations:

when server i propagates transaction x to a remote server, it should

not send all the updates of x, just those updates replicated at the

remote server. Similarly, when it sends a DS-DURABLE message, a

server need not include the updates of x again.

5.7 Handling failures

Recovering from client or server failure. If a client crashes, its

outstanding transactions are aborted and any state kept for those

transactions at the server is garbage collected. Each server at a

site stores its transaction log in a replicated cluster storage system.

When a Walter server fails, the replacement server resumes propa-

gation for those committed transactions that have not yet been fully

propagated.

Handling a site failure. An entire site s may fail due to a disaster

or a power outage. Such failure is problematic because there may

be committed transactions at s that were not yet replicated at other

sites. As explained in Section 4.4, Walter offers two site recovery

options: conservative and aggressive. Recall that the conservative

option is to wait for s to come back online, while the aggressive op-

tion is to remove s and reassign the preferred site of its containers to

another site. To remove a failed site, Walter uses the configuration

service (Section 5.1). Each configuration indicates what sites are

active. Before switching to a new configuration that excludes site s,

the configuration service must find out the transactions committed

by s that will survive across the configuration change. Transaction

x of site s survives if x and all transactions that causally precede x

and all transactions of s with a smaller sequence number have been

copied to a site in the new configuration. The configuration service

queries the sites in the new configuration to discover what transac-

tions survive. Then, it asks each site to discard the replicated data

of non-surviving transactions and, in the background, it completes

the propagation of surviving transactions that are not yet fully repli-

cated. Finally, the configuration service reassigns the preferred site

of containers of s to another site, by having another site take over

the appropriate leases. While reconfiguration is in progress, sites

that are still active continue to commit transactions, except trans-

actions that write to objects whose preferred site was s, which are

postponed until those objects get a new preferred site.

Re-integrating a previously failed site. When a previously re-

moved site s recovers, it must be re-integrated into the system. The

configuration service starts a new reconfiguration that includes s.

To switch to the new configuration, s must first synchronize with

its replacement site s′ to integrate modifications committed by s′.

Once synchronization is finished, s takes over the lease for being

the preferred site for the relevant containers, and the new configu-

ration takes effect.

5.8 Scalability

Walter relies on a single server per site to execute and commit

transactions, which can become a scalability bottleneck. A sim-

ple way to scale the system is to divide a data center into several

“local sites”, each with its own server, and then partition the ob-

jects across the local sites in the data center. This is possible be-

cause Walter supports partial replication and allows transactions to

operate on an object not replicated at the site—in which case, the

transaction accesses the object at another site within the same data

center. We should note that PSI allows sites to diverge; to avoid ex-

posing this divergence to users, applications can be designed so that

a user always log into the same local site in the data center. Another

approach to scalability, which we do not explore in this paper, is to

employ several servers per site and replace the fast commit protocol

of Section 5.4 with distributed commit.

6. IMPLEMENTATION

The Walter implementation has a client-side library and a server,

written in C++, with a total of 30K lines of code. There is also a

PHP interface for web development with 600 lines of code. The

implementation differs from the design as follows. First, each Wal-

ter server uses direct-attached storage devices, instead of a cluster

storage system. Second, we have not implemented the scheme to

reintegrate a failed site (Section 5.7): currently, the administrator

must invoke a script manually to do that. Third, the client interface,

shown in Figure 14, differs cosmetically from the specification in

Section 3.2, due to the specifics of C++ and PHP. In C++, there is

a Transaction class and operations are methods of this class. Func-

tions read, setRead, and setReadId return the data via a parameter

(the C++ return value is a success indication). setRead provides an



Method Description

void start() start transaction

int commit() try to commit

int abort() abort

int read(Oid o, char **buf) read object

int write(Oid o, char *buf, int len) write object

Oid newid(ContainerId cid, OType otype) get new oid

int setAdd(Oid cset, Id id) add id to cset

int setDel(Oid cset, Id id) delete id from cset

int setRead(Oid cset, IdSetIterator **iter) read cset

int setReadId(Oid cset, Id id, int *answer) read id in cset

C++ Example:

Tx x;

x.start();

len = x.read(o1, &buf);

err = x.write(o2, buf, len);

...

res = x.commit();

PHP Example:

$x = waStartTx();

$buf = waRead($x, $o1);

$err = waWrite($x, $o2, $buf);

...

$res = waCommit($x);

Figure 14: Basic C++ API for Walter and C++ and PHP examples.

iterator for the ids in a cset. setReadId indicates the count of an

identifier in a cset. commit can optionally inform the client via sup-

plied callbacks—not shown—when the transaction is disaster-safe

durable and globally visible (i.e., committed at all sites). There is a

function newid to return a fresh oid, explained below.

There are no specialized functions to create or destroy objects.

Conceptually, all objects always exist and are initialized to nil, with-

out any space allocated to them. If a client reads a never-written

object, it obtains nil. Function newid returns a unique oid of a

never-written object of a chosen type (regular or cset) in a cho-

sen container. Destroying a regular object corresponds to writing

nil to it, while destroying a cset object corresponds to updating its

elements so that they have zero count. There are some additional

functions (not shown), including (a) management functions for ini-

tialization, shutdown, creating containers, and destroying contain-

ers; and (b) functions that combine multiple operations in a single

RPC to the server, to gain performance; these include functions for

reading or writing many objects, and for reading all objects whose

ids are in a cset. The functions to create and destroy containers run

outside a transaction; we expect them to be used relatively rarely.

Identifiers for containers and objects are currently restricted to a

fixed length, but it would be easy to make them variable-length.

The server stores object histories in a persistent log and maintains

an in-memory cache of recently-used objects. The persistent log is

periodically garbage collected to remove old entries. The entries in

the in-memory cache are evicted on an LRU basis. Since it is expen-

sive to reconstruct csets from the log, the eviction policy prefers to

evict regular objects rather than csets. There is an in-memory index

that keeps, for each object, a list of updates to the object, ordered

from most to least recent, where each update includes a pointer to

the data in the persistent log and a flag of whether the data is in

the cache. To speed up system startup and recovery, Walter peri-

odically checkpoints the index to persistent storage; the checkpoint

also describes transactions that are being replicated. Checkpointing

is done in the background, so it does not block transaction pro-

cessing. When the server starts, it reconstructs the index from the

checkpointed state and the data in the log after the checkpoint.

To improve disk efficiency, Walter employs group commit to

flush many commit records to disk at the same time. To reduce

the number of threads, the implementation makes extensive use of

asynchronous calls and callbacks when it invokes blocking and slow

operations. To enhance network efficiency, Walter propagates trans-

actions in periodic batches, where each batch remotely copies all

transactions that committed since the last batch.

Tx x;

x.start();

x.read(oidA, &profileA);

x.read(oidB, &profileB);

(* continues in next column *)

x.setAdd(profileA.friendlist, oidB);

x.setAdd(profileB.friendlist, oidA);

success = x.commit();

Figure 15: Transaction for befriend operation in WaltSocial.

The protocol for slow commit may starve because of repeated

conflicting instances of fast commit. A simple solution to this prob-

lem is to mark objects that caused the abort of slow commit and

briefly delay access to them in subsequent fast commits: this delay

would allow the next attempt of slow commit to succeed. We have

not implemented this mechanism since none of our applications use

slow commit.

7. APPLICATIONS

Using Walter, we built a social networking web site (WaltSocial)

and ported a third-party Twitter-like application called ReTwis [2].

Our experience suggests that it is easy to develop applications using

Walter and run them across multiple data centers.

WaltSocial. WaltSocial is a complete implementation of a sim-

ple social networking service, supporting the common operations

found in a system such as Facebook. These include befriend, status-

update, post-message, read-info as well as others. In WaltSocial,

each user has a profile object for storing personal information (e.g.,

name, email, hobbies) and several cset objects: a friend-list has oids

of the profile objects of friends, a message-list has oids of received

messages, an event-list has oids of events in the user’s activity his-

tory, and an album-list has oids of photo albums, where each photo

album is itself a cset with the oids of photo objects.

WaltSocial uses transactions to access objects and maintain data

integrity. For example, when users A and B befriend each other,

a transaction adds A’s profile oid to B’s friend-list and vice versa

(Figure 15). To post-message from A to B, a transaction writes an

object m with the message contents and adds its oid to B’s message-

list and to A’s event-list.

Each user has a container that stores her objects. The container

is replicated at all sites to optimize for reads. The system directs a

user to log into the preferred site of her container. User actions are

confirmed when transactions commit locally.

ReTwis. ReTwis is a Twitter-clone written in PHP using the Redis

key-value store [1]. Apart from simple get/put operations, this ap-

plication makes extensive use of Redis’s native support for certain

atomic operations, such as adding to or removing from a list, and

adding or subtracting from an integer. In Redis, cross-site replica-

tion is based on a master-slave scheme. For our port of ReTwis,

we replace Redis with Walter, so that ReTwis can update data on

multiple sites. We use Walter transactions and csets to provide the

equivalent atomic integer and list operation in Redis.

For each user, ReTwis has a timeline that tracks messages posted

by the users that the user is following. In the original implementa-

tion, a user’s timeline is stored in a Redis list. When a user posts

a message, ReTwis performs an atomic increment on a sequence

number to generate a postID, stores the message under the postID,

and appends the postID to each of her followers’ timelines. When a

user checks postings, ReTwis displays the 10 most recent messages

from her timeline. To port ReTwis to use Walter, we make several

changes: we use a cset object to represent each user’s timeline so

that different sites can add posts to a user’s timeline without con-

flicts. To post a message, we use a transaction that writes a message



under a unique postID, and adds the postID to the timeline of every

follower of the user.

We found the process of porting ReTwis to Walter to be quite

simple and straightforward: a good programmer without previous

Walter experience wrote the port in less than a day. Transactions

allow the data structure manipulations built into Redis to be im-

plemented by the application, while providing competitive perfor-

mance (Section 8.7).

8. EVALUATION

We evaluate the performance of Walter and its applications (Walt-

Social, ReTwis) using Amazon’s EC2. The highlights of our results

are the following:

• Transactions that modify objects at their preferred sites com-

mit quickly, with a 99.9-percentile latency of 27ms on EC2.

Committed transactions are asynchronously replicated to re-

mote sites within twice the network round-trip latency.

• Transactions that modify csets outside of their preferred sites

also commit quickly without cross-site coordination. Walt-

Social uses csets extensively and processes user requests with

a 99.9-percentile latency under 50ms.

• The overhead for supporting transactions in Walter is rea-

sonable. ReTwis running on Walter has a throughput 25%

smaller than running on Redis in a single site, but Walter al-

lows ReTwis to scale to multiple sites.

8.1 Experimental setup

Unless stated otherwise, experiments run on Amazon’s EC2 cloud

platform. We use machines in four EC2 sites: Virginia (VA), Cal-

ifornia (CA), Ireland (IE), and Singapore (SG), with the following

average round-trip latencies within and across sites (in ms):

VA CA IE SG
VA 0.5 82 87 261
CA 0.3 153 190
IE 0.5 277

SG 0.3

Within a site, the bandwidth between two hosts is over 600 Mbps;

across sites, we found a bandwidth limit of 22 Mbps.

We use extra-large EC2 virtual machine instances, with 7 GB of

RAM and 8 virtual cores, each equivalent to a 2.5 GHz Intel Xeon

processor. Walter uses write-ahead logging, where commit logs are

flushed to disk at commit time. Since one cannot disable write-

caching at the disk on EC2, where indicated we run experiments on

a private cluster outside of EC2, with machines with two quad core

Intel Xeon E5520 2.27 GHz processors and 8 GB of RAM.

Each EC2 site has a Walter server, and we run experiments with

different numbers of sites and replication levels, as shown below:

Experiment name Sites Replication level

1-site VA none
2-sites VA, CA 2
3-sites VA, CA, IE 3
4-sites VA, CA, IE, SG 4

Our microbenchmark workload (Sections 8.2–8.5) consists of

transactions that read or write a few randomly chosen 100-byte ob-

jects. (Changing the object size from 100 bytes to 1 KB yields

similar results.) We choose to evaluate small transactions because

our applications, WaltSocial and ReTwis, only access a few small

objects in each transaction. We consider a transaction to be disaster-

safe durable when it is committed at all sites in the experiment.

8.2 Base performance

We first evaluate the base performance of Walter, and compare

it against Berkeley DB 11gR2 (BDB), a commercial open-source

developer database library. The goal is to understand if Walter pro-

vides a usable base performance.

Benchmark setup. We configure BDB to use B-trees with default

pagesize and snapshot isolation; parameters are chosen for the best

performance. We configure BDB to have two replicas with asyn-

chronous replication. Since BDB allows updates at only one replica

(the primary), we set up the Walter experiment to also update at

one site. To achieve good throughput in BDB, we must use many

threads at the primary to achieve high concurrency. However, with

many threads, EC2 machines perform noticeably worse than private

machines. Therefore, we run the primary BDB replica in our pri-

vate cluster (with write-caching at the disk enabled), and the other

replica at the CA site of EC2. We do the same for Walter. Clients

and the server run on separate hosts. For BDB, we use an RPC

server to receive and execute client requests.

The workload consists of either read or write transactions each

accessing one 100-byte object. We populate BDB and Walter with

50,000 keys, which fits in the 1 GB cache of both systems. Walter

includes an optimization to reduce the number of RPCs, where the

start and commit of each transaction are piggybacked onto the first

and last access, respectively. Thus, transactions with one access

require just one RPC in Walter and in BDB.

Results. Figure 16 shows that throughput of read and write trans-

actions of Walter is comparable to that of BDB. Read throughput

is CPU-bound and mainly limited by the performance of our RPC

library in both systems. Walter’s read throughput is slightly lower

because it does more work than BDB by acquiring a local lock and

assigning a start timestamp vector when a transaction starts. The

commit and replication latency of BDB and Walter are also similar

and not shown here (see Section 8.3 for Walter’s latency).

8.3 Fast commit on regular objects

This microbenchmark evaluates the performance of transactions

on regular objects, using fast commit.

Benchmark setup. The experiments involve one to four sites. Ob-

jects are replicated at all sites, and their preferred sites are assigned

evenly across sites. At each site, we run multiple clients on differ-

ent hosts to issue transactions as fast as possible to its local Wal-

ter server. There are several workloads: read-only, write-only, and

mixed. Read-only or write-only transactions access one or five 100-

byte objects. The mixed workload consists of 90% read-only trans-

actions and 10% write-only transactions.

Result: throughput. Figure 17 shows Walter’s aggregate through-

put across sites as the number of sites varies. Read throughput is

bounded by the RPC performance and scales linearly with the num-

ber of sites, reaching 157 Ktps (thousands of transactions per sec-

ond) with 4 sites. Write throughput is lower than read throughput

due to lock contention within a Walter server. Specifically, when a

transaction commits, a thread needs to acquire a highly contended

lock to check for transaction conflicts. Moreover, write through-

put does not scale as well as read throughput as the number of

Name Read Tx throughput Write Tx throughput

Walter 72 Ktps 33.5 Ktps
Berkeley DB 80 Ktps 32 Ktps

Figure 16: Base read and write transaction throughput.
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Figure 17: Aggregate transaction throughput on EC2.
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Figure 18: Fast commit latency on EC2 and our private cluster.

sites increases. This is because data is replicated at all sites, so

the amount of work per write transaction grows with the number of

sites. Yet, the cost of replication is lower than that of committing

because replication is done in batches. Thus, the write throughput

still grows with the number of sites, but not linearly. Note that the

read and write throughput for transactions of size 1 in Figure 17

is only 50–60% of that in Figure 16 as a result of running this ex-

periment on EC2 instead of the private cluster. In the mixed work-

load, performance is mostly determined by how many operations

a transaction issues on average. For example, when there are 90%

read-only transactions each reading one object and 10% write-only

transactions each writing 5 objects, a transaction issues on average

only 1.4 requests to the server. As a result, a relatively high aggre-

gate throughput of 80 Ktps is reached across 4 sites.
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Figure 19: Replication latency for disaster-safe durability.

Result: latency. We measure the fast commit latency for write-

only transactions accessing 5 objects. We record the time elapsed

between issuing a commit and having the server acknowledge the

commit completion. Figure 18 shows the latency distribution mea-

sured on EC2, and in our private cluster with and without write

caching at the disk. The measurements were taken for a moderate

workload in which clients issued enough requests to achieve 70%

of maximal throughput. The points at the lower-end of the distribu-

tions in Figure 18 show latencies that we observe in a lightly loaded

system.

Because there is no cross-site coordination, fast commit is quick:

On EC2 the 99-percentile latency is 20 ms and the 99.9-percentile

is 27 ms. Since the network latency within a site is low at 0.5 ms,

the commit latency is dominated by the effects of queuing inside

the Walter server and of flushing the commit log to disk when com-

mitting transactions at a high throughput. Figure 18 also shows the

effect of disabling write-caching at the disk, measured on our pri-

vate cluster. Even in that case, the 99.9-percentile latency of a fast

commit is under 90 ms.

The latency for a committed transaction to become disaster-safe

durable is dominated by the network latency across sites. As shown

in Figure 19, the latency is distributed approximately uniformly be-

tween [RTTmax, 2 ∗ RTTmax] where RTTmax is the maximum round-

trip latency between VA and the other three sites. This is because

Walter propagates transactions in batches to maximize throughput,

so a transaction must wait for the previous batch to finish.

The latency for a committed transaction to become globally visi-

ble is an additional RTTmax after it has become disaster-safe durable

(not shown).

8.4 Fast commit on cset objects

We now evaluate transactions that modify csets.

Benchmark setup. We run the 4-site experiment in which each

transaction modifies two 100-byte objects at the preferred site and

adds an id to a cset with a remote preferred site.

Results. The latency distribution curve for committing transac-

tions (not shown) is similar to the curve corresponding to EC2 in

Figure 18. This is because transactions modifying csets commit

via the same fast commit protocol as transactions modifying reg-

ular objects at their preferred site. Across 4 sites, the aggregate

throughput is 26 Ktps, which is lower than the single-write transac-

tion throughput of 52 Ktps shown in Figure 17. This is because the

cset transactions issue 4 RPCs (instead of 1 RPC for the transactions

in Figure 17), to write two objects, modify a cset, and commit.

8.5 Slow commit

We now evaluate the slow commit protocol for transactions mod-

ifying objects with different preferred sites. Unlike fast commit,

slow commit requires cross-site coordination.

Benchmark setup. We run the 4-site experiments and have clients
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issue write-only transactions at the VA site. We vary the size of a

transaction from 2 to 4 objects. Each object written has a different

preferred site: the first, second, third, and fourth object’s preferred

sites are VA, CA, IE, and SG respectively.

Results. Figure 20 shows the commit latency (left-most three lines)

and the latency for achieving disaster-safe durability (right-most

three lines). The commit latency is determined by the round-trip

time between VA and the farthest preferred site of objects in the

writeset. This is because slow commit runs a two-phase proto-

col among the preferred sites of the objects in the writeset. For

example, for transactions of size 3, the commit latency is 87 ms,

which is the round-trip time from VA to IE. The latency for disaster-

safe durability is the commit latency plus the replication latency.

The replication latency is the same as for fast commit: it is uni-

formly distributed between [RTTmax, 2 ∗ RTTmax], where RTTmax is

the round-trip time between VA and SG.

To optimize performance, applications should minimize the use

of slow commits. Both WaltSocial and ReTwis avoid slow commits

by using csets.

8.6 WaltSocial performance

Transactions make it easy to develop WaltSocial. Our experi-

ments also show that WaltSocial achieves good performance.

Workload setup. The WaltSocial experiments involve 4 sites in

EC2. We populate Walter with 400, 000 users, each with 10 sta-

tus updates and 10 wall postings from other users. We run many

application clients at each site, where each client issues WaltSo-

cial operations. An operation corresponds to a user action, and

it is implemented by executing and committing a transaction that

reads and/or writes several data objects (Section 7). We measure

the latency and aggregate throughput for each operation. We also

evaluate two mixed workloads: mix1 consists of 90% read-info op-

erations and 10% update operations including status-update, post-

message and befriend; mix2 contains 80% read-info operations and

20% update operations.

Operation throughput. Figure 21 shows the throughput in thou-

sands operations per second (Kops/s) for each WaltSocial opera-

tion and for the mixed workloads. The read-info operation issues

read-only transactions; it has the highest aggregate throughput at

40 Kops/s. The other operations issue transactions that update ob-

jects; their throughput varies from 16.5 Kops/s to 20 Kops/s, de-

pending on the number of objects read and written in the transac-

tions. The mixed workloads are dominated by read-info operations,

hence their throughput values are closer to that of read-info. The

achieved throughput is likely sufficient for small or medium social

networks. To handle larger deployments, one might deploy several

sites per data center to scale the system (Section 5.8) .

Operation latency. Figure 22 shows the latency of WaltSocial op-

erations when the system has a moderate load. Operations finish

Operation # objs+csets # objs # of csets Throughput
read written written (1000 ops/s)

read-info 3 0 0 40
befriend 2 0 2 20
status-update 1 2 2 18
post-message 2 2 2 16.5
mix1 2.9 0.5 0.3 34
mix2 2.8 0.7 0.5 32

Figure 21: Transaction size and throughput for Waltsocial operations.
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quickly because the underlying transactions involve no cross-site

communication: transactions always read a local replica for any

object and transactions that update data use cset objects. The 99.9-

percentile latency of all operations in Figure 22 is below 50 ms. As

each WaltSocial operation issues read/write requests to Walter in

series, the latency is affected by the number of objects accessed by

different WaltSocial operations. The read-info operation involves

fewest objects and hence is faster than other operations.

8.7 ReTwis performance

We compare the performance of ReTwis using Walter and Redis

as the storage system, to assess the cost of Walter.

Workload setup. The Walter experiments involve one or two sites.

Redis does not allow updates from multiple sites, so the Redis ex-

periments involve one site. Since Redis is a semi-persistent key-

value store optimized for in-memory operations, we configure both

Walter and Redis to commit writes to memory. We run multiple

front-end web servers (Apache 2.2.14 with PHP 5.3.2) and client

emulators at each site. We emulate 500, 000 users who issue re-

quests to post a message (post), follow another user (follow), or

read postings in their own timeline (status). The mixed workload

consists of 85% status, 7.5% post and 7.5% follow operations.

Throughput comparison. Figure 23 shows the aggregate through-

put (Kops/s) for different workloads when running ReTwis with

Walter and Redis. As can be seen, with one site, ReTwis with Wal-

ter has similar performance as ReTwis with Redis: the slowdown is

no more than 25%. For example, the throughput of the post oper-

ation for Walter (1 site) is 4713 ops/s, compared to 5740 ops/s for



Redis. But ReTwis with Walter can use multiple sites to scale the

throughput. For example, the throughput of post using ReTwis with

Walter on two sites is 9527 ops/s—twice the throughput of one site.

9. RELATED WORK

Transactions in data centers. Early transactional storage for data

centers include Bigtable [12], Sinfonia [4], Percolator [38], and dis-

tributed B-trees [3]. Unlike Walter, these systems were designed for

a single data center only.

Storage systems that span many data centers often do not pro-

vide transactions (e.g., Dynamo [16]), or support only restricted

transactional semantics. For example, PNUTS [14] supports only

one-record transactions. COPS [31] provides only read-only trans-

actions. Megastore [7] partitions data and provides the ACID prop-

erties within a partition but, unlike Walter, it fails to provide full

transactional semantics for reads across partitions.

Transactions in disconnected or wide-area systems. Perdis [19]

is an object store with a check-out/check-in model for wide-area op-

erations: it creates a local copy of remote data (check-out) and later

reconciles local changes (check-in), relying on manual repair when

necessary. For systems with mobile nodes, tentative update trans-

actions [23] can commit at a disconnected node. Tentative commits

may be aborted later due to conflicts when the hosts re-connect

to servers, which requires reconciliation by an external user. In

contrast to the above systems, Walter does not require burdensome

operations for manual repair or reconciliation. Mariposa [45] is a

wide-area system whose main focus is on incentivizing a site to run

third-party read-only queries.

Database replication. There is much work on database replica-

tion, both commercially and academically. Commercial database

systems support master-slave replication across sites: one site is

the primary, the others are mirrors that are often read-only and up-

dated asynchronously. When asynchronous mirrors are writable,

applications must provide logic to resolve conflicts. On the aca-

demic side, the database replication literature is extensive; here we

summarize relevant recent work. Replication schemes are classi-

fied on two axes [23]: (1) who initiates updates (primary-copy vs

update-anywhere), and (2) when updates propagate (eager vs lazy).

With primary-copy, objects have a master host and only the mas-

ter initiates updates; with update-anywhere, any host may initiate

updates. With eager replication, updates propagate to the repli-

cas before commit; with lazy replication, replicas receive updates

asynchronously after commit. All four combinations of these two

dimensions are possible. Eager replication is implemented using

distributed two-phase commit [9]. Later work considers primary-

copy lazy replication and provides serializability by restricting the

placement of each object’s primary [13], or controlling when sec-

ondary nodes are updated [10, 36]. Update-anywhere lazy repli-

cation is problematic because conflicting transactions can commit

concurrently at different replicas. Thus, recent work considers hy-

brids between eager and lazy replication: updates propagate after

commit (lazy), but replicas also coordinate during transaction exe-

cution or commit to deal with conflicts (eager). This coordination

may involve a global graph to control conflicts [6, 11], or atomic

broadcast to order transactions [27, 37]. Later work considers snap-

shot isolation as a more efficient alternative to serializability [15,

17, 18, 30, 39, 52]. Walter differs from the above works because

they ensure a stronger isolation property—serializability or snap-

shot isolation—which inherently requires coordination across sites

to commit, whereas Walter commits common transactions without

such coordination.

Federated transaction management considers techniques to ex-

ecute transactions that span multiple database systems [41]. This

work differs from Walter because it does not consider issues in-

volving multiple sites and its main concern is to minimize changes

to database systems, rather than avoiding coordination across sites.

Relaxed consistency. Some systems provide weaker consistency,

where concurrent updates cause diverging versions that must be

reconciled later by application-specific mechanisms [16, 34, 47].

Eventual consistency permits replicas to diverge but, if updates stop,

replicas eventually converge again. Weak consistency may be tol-

erable [49], but it can lead to complex application logic. Inconsis-

tency can also be quantified and bounded [5, 26, 54], to improve the

user experience. Fork consistency [33] allows the observed opera-

tion history to fork and not converge again; it is intended for honest

clients to detect the misbehavior of malicious servers rather than to

provide efficient replication across sites.

Commutative data types. Prior work has shown how to exploit

the semantics of data types to improve concurrency. In [50], ab-

stract data types (such as sets, FIFO queues, and a bank account)

are characterized using a table of commutativity relations where

two operations conflict when they do not commute. In [20, 42], a

lock compatibility table is used to serialize access to abstract data

types, such as directory, set or FIFO queue, by exploiting the com-

mutativity of their operations. Because these works aim to achieve

serializability, not all operations on a set object are conflict-free

(e.g., testing the membership of element a conflicts with the inser-

tion of a in the set). As a result, operating on sets require coor-

dination to check for potential conflicts. In contrast, since we aim

to achieve the weaker PSI property, operations on Walter’s cset ob-

jects are always free of conflicts, allowing each data center to read

and modify these csets without any remote coordination.

Letia et al. [29] have proposed the use of commutative repli-

cated data types to avoid concurrency control and conflict resolu-

tion in replicated systems. Their work has inspired our use of csets.

Subsequent recent work [43] provides a theoretical treatment for

such data types and others—which are together called conflict-free

replicated data types or CRDTs—proposing sufficient conditions

for replica convergence under a newly-defined strong eventual con-

sistency model. While that work concerns replication of single op-

erations/objects at a time, not transactions, one could imagine using

general CRDTs with PSI and our protocols to replicate transactions

efficiently. U-sets [43, 53] are a type of set in which commutativ-

ity is achieved by preventing a removed element from being added

again. In contrast, csets achieve commutativity by augmenting ele-

ments with counts. Csets are similar to Z-relations [25], which are

mappings from tuples to integers, used to allow for decidability of

equivalence of queries in the context of query optimization.

Escrow transactions [35] update numeric data, such as account

balances, by holding some amount in escrow to allow concurrent

commutative updates. By exploiting commutativity, such transac-

tions resemble transactions with csets, but they differ in two ways.

First, escrow transactions operate on numeric data. Second, es-

crow transactions must coordinate among themselves to check the

amounts in escrow, which does not serve our goal of avoiding coor-

dination across distant sites.

10. CONCLUSION

Walter is a transactional geo-replicated key-value store with

properties that make it appealing as the storage system for web ap-



plications. A key feature behind Walter is Parallel Snapshot Isola-

tion (PSI), a precisely-stated isolation property that permits asyn-

chronous replication across sites without the need for conflict res-

olution. Walter relies on techniques to avoid conflicts across sites,

thereby allowing transactions to commit locally in a site. PSI thus

permits an efficient implementation, while also providing strong

guarantees to applications. We have demonstrated the usefulness

of Walter by building a Facebook-like social networking applica-

tion and porting a third-party Twitter clone. Both applications were

simple to implement and achieved reasonable performance.
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