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ABSTRACT
Brick and object-based storage architectures have emerged
as a means of improving the scalability of storage clusters.
However, existing systems continue to treat storage nodes
as passive devices, despite their ability to exhibit significant
intelligence and autonomy. We present the design and im-
plementation of RADOS, a reliable object storage service
that can scales to many thousands of devices by leveraging
the intelligence present in individual storage nodes. RADOS
preserves consistent data access and strong safety seman-
tics while allowing nodes to act semi-autonomously to self-
manage replication, failure detection, and failure recovery
through the use of a small cluster map. Our implementa-
tion offers excellent performance, reliability, and scalability
while providing clients with the illusion of a single logical
object store.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Reliability, availability,
and serviceability; D.4.3 [File Systems Management]:
Distributed file systems; D.4.7 [Organization and De-
sign]: Distributed systems

General Terms
design, performance, reliability

Keywords
clustered storage, petabyte-scale storage, object-based stor-
age

1. INTRODUCTION
Providing reliable, high-performance storage that scales has
been an ongoing challenge for system designers. High-throughput
and low-latency storage for file systems, databases, and re-
lated abstractions are critical to the performance of a broad
range of applications. Emerging clustered storage architec-
tures constructed from storage bricks or object storage de-
vices (OSDs) seek to distribute low-level block allocation

decisions and security enforcement to intelligent storage de-
vices, simplifying data layout and eliminating I/O bottle-
necks by facilitating direct client access to data [1, 6, 7, 8,
21, 27, 29, 31]. OSDs constructed from commodity com-
ponents combine a CPU, network interface, and local cache
with an underlying disk or RAID, and replace the conven-
tion block-based storage interface with one based on named,
variable-length objects.

However, systems adopting this architecture largely fail to
exploit device intelligence. As in conventional storage sys-
tems based on local or network-attached (SAN) disk drives
or those embracing the proposed T10 OSD standard, devices
passively respond to read and write commands, despite their
potential to encapsulate significant intelligence. As storage
clusters grow to thousands of devices or more, consistent
management of data placement, failure detection, and fail-
ure recovery places an increasingly large burden on client,
controller, or metadata directory nodes, limiting scalability.

We have designed and implemented RADOS, a Reliable, Au-
tonomic Distributed Object Store that seeks to leverage de-
vice intelligence to distribute the complexity surrounding
consistent data access, redundant storage, failure detection,
and failure recovery in clusters consisting of many thousands
of storage devices. Built as part of the Ceph distributed file
system [27], RADOS facilitates an evolving, balanced dis-
tribution of data and workload across a dynamic and het-
erogeneous storage cluster while providing applications with
the illusion of a single logical object store with well-defined
safety semantics and strong consistency guarantees.

At the petabyte scale, storage systems are necessarily dy-
namic: they are built incrementally, they grow and contract
with the deployment of new storage and decommissioning of
old devices, devices fail and recover on a continuous basis,
and large amounts of data are created and destroyed. RA-
DOS ensures a consistent view of the data distribution and
consistent read and write access to data objects through the
use of a versioned cluster map. The map is replicated by
all parties (storage and client nodes alike), and updated by
lazily propagating small incremental updates.

By providing storage nodes with complete knowledge of the
distribution of data in the systems, devices can act semi-
autonomously using peer-to-peer like protocols to self-manage
data replication, consistently and safely process updates,
participate in failure detection, and respond to device fail-
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Figure 1: A cluster of many thousands of OSDs store
all objects in the system. A small, tightly coupled
cluster of monitors collectively manages the clus-
ter map that specifies cluster membership and the
distribution of data. Each client exposes a simple
storage interface to applications.

ures and the resulting changes in the distribution of data
by re-replicating or migrating data objects. This eases the
burden on the small monitor cluster that manages the mas-
ter copy of the cluster map and, through it, the rest of the
storage cluster, enabling the system to seamlessly scale from
a few dozen to many thousands of devices.

Our prototype implementation exposes an object interface
in which byte extents can be read or written (much like a
file), as that was our initial requirement for Ceph. Data ob-
jects are replicated n ways across multiple OSDs to protect
against node failures. However, the scalability of RADOS
is in no way dependent on the specific object interface or
redundancy strategy; objects that store key/value pairs and
parity-based (RAID) redundancy are both planned.

2. SCALABLE CLUSTER MANAGEMENT
A RADOS system consists of a large collection of OSDs and
a small group of monitors responsible for managing OSD
cluster membership (Figure 1). Each OSD includes a CPU,
some volatile RAM, a network interface, and a locally at-
tached disk drive or RAID. Monitors are stand-alone pro-
cesses and require a small amount of local storage.

2.1 Cluster Map
The storage cluster is managed exclusively through the ma-
nipulation of the cluster map by the monitor cluster. The
map specifies which OSDs are included in the cluster and
compactly specifies the distribution of all data in the sys-
tem across those devices. It is replicated by every storage
node as well as clients interacting with the RADOS cluster.
Because the cluster map completely specifies the data distri-
bution, clients expose a simple interface that treats the en-
tire storage cluster (potentially tens of thousands of nodes)
as a single logical object store.

Each time the cluster map changes due to an OSD status
change (e. g., device failure) or other event effecting data
layout, the map epoch is incremented. Map epochs allow
communicating parties to agree on what the current distri-
bution of data is, and to determine when their information

epoch: map revision
up: OSD 7→ { network address, down }
in: OSD 7→ { in, out }
m: number of placement groups (2k − 1)

crush: CRUSH hierarchy and placement rules

Table 1: The cluster map specifies cluster member-
ship, device state, and the mapping of data objects
to devices. The data distribution is specified first by
mapping objects to placement groups (controlled by
m) and then mapping each PG onto a set of devices
(CRUSH).

is (relatively) out of data. Because cluster map changes
may be frequent, as in a very large system where OSDs fail-
ures and recoveries are the norm, updates are distributed
as incremental maps: small messages describing the differ-
ences between two successive epochs. In most cases, such
updates simply state that one or more OSDs have failed
or recovered, although in general they may include status
changes for many devices, and multiple updates may be bun-
dled together to describe the difference between distant map
epochs.

2.2 Data Placement
RADOS employs a data distribution policy in which objects
are pseudo-randomly assigned to devices. When new storage
is added, a random subsample of existing data is migrated
to new devices to restore balance. This strategy is robust
in that it maintains a probabilistically balanced distribution
that, on average, keeps all devices similarly loaded, allow-
ing the system to perform well under any potential work-
load [22]. Most importantly, data placement is a two stage
process that calculates the proper location of objects; no
large or cumbersome centralized allocation table is needed.

Each object stored by the system is first mapped into a
placement group (PG), a logical collection of objects that
are replicated by the same set of devices. Each object’s PG
is determined by a hash of the object name o, the desired
level of replication r, and a bit mask m that controls the
total number of placement groups in the system. That is,
pgid = (r, hash(o)&m), where & is a bit-wise AND and the
mask m = 2k−1, constraining the number of PGs by a power
of two. As the cluster scales, it is periodically necessary to
adjust the total number of placement groups by changing
m; this is done gradually to throttle the resulting migration
of PGs between devices.

Placement groups are assigned to OSDs based on the cluster
map, which maps each PG to an ordered list of r OSDs upon
which to store object replicas. Our implementation utilizes
CRUSH, a robust replica distribution algorithm that calcu-
lates a stable, pseudo-random mapping [28]. (Other place-
ment strategies are possible; even an explicit table map-
ping each PG to a set of devices is still relatively small
(megabytes) even for extremely large clusters.) From a high
level, CRUSH behaves similarly to a hash function: place-
ment groups are deterministically but pseudo-randomly dis-
tributed. Unlike a hash function, however, CRUSH is stable:
when one (or many) devices join or leave the cluster, most



PGs remain where they are; CRUSH shifts just enough data
to maintain a balanced distribution. In contrast, hashing
approaches typically force a reshuffle of all prior mappings.
CRUSH also uses weights to control the relative amount of
data assigned to each device based on its capacity or perfor-
mance.

Placement groups provide a means of controlling the level of
replication declustering. That is, instead of an OSD sharing
all of its replicas with one or more devices (mirroring), or
with sharing each object with different device(s) (complete
declustering), the number of replication peers is related to
the number of PGs µ it stores—typically on the order of 100
PGs per OSD. Because distribution is stochastic, µ also af-
fects the variance in device utilizations: more PGs per OSD
result in a more balanced distribution. More importantly,
declustering facilitates distributed, parallel failure recovery
by allowing each PG to be independently re-replicated from
and to different OSDs. At the same time, the system can
limit its exposure to coincident device failures by restricting
the number of OSDs with which each device shares common
data.

2.3 Device State
The cluster map includes a description and current state
of devices over which data is distributed. This includes the
current network address of all OSDs that are currently online
and reachable (up), and an indication of which devices are
currently down. RADOS considers an additional dimension
of OSD liveness: in devices are included in the mapping and
assigned placement groups, while out devices are not.

For each PG, CRUSH produces a list of exactly r OSDs that
are in the mapping. RADOS then filters out devices that
are down to produce the list of active OSDs for the PG. If
the active list is currently empty, PG data is temporarily
unavailable, and pending I/O is blocked.

OSDs are normally both up and in the mapping to actively
service I/O, or both down and out if they have failed, pro-
ducing an active list of exactly r OSDs. OSDs may also be
down but still in the mapping, meaning that they are cur-
rently unreachable but PG data has not yet been remapped
to another OSD (similar to the “degraded mode” in RAID
systems). Likewise, they may be up and out, meaning they
are online but idle. This facilitates a variety of scenarios,
including tolerance of intermittent periods of unavailability
(e. g., an OSD reboot or network hiccup) without initiat-
ing any data migration, the ability to bring newly deployed
storage online without using it immediately (e. g., to allow
the network to be tested), and the ability to safely migrate
data off old devices before they are decommissioned.

2.4 Map Propagation
Because the RADOS cluster may include many thousands
of devices or more, it is not practical to simply broadcast
map updates to all parties. Fortunately, differences in map
epochs are significant only when they vary between two com-
municating OSDs (or between a client and OSD), which
must agree on their proper roles with respect to the particu-
lar PG the I/O references. This property allows RADOS to
distribute map updates lazily by combining them with exist-
ing inter-OSD messages, effectively shifting the distribution

burden to OSDs.

Each OSD maintains a history of past incremental map up-
dates, tags all messages with its latest epoch, and keeps
track of the most recent epoch observed to be present at each
peer. If an OSD receives a message from a peer with an older
map, it shares the necessary incremental(s) to bring that
peer in sync. Similarly, when contacting a peer thought to
have an older epoch, incremental updates are preemptively
shared. The heartbeat messages periodically exchanged for
failure detection (see Section 3.3) ensure that updates spread
quickly—in O(log n) time for a cluster of n OSDs.

For example, when an OSD first boots, it begins by inform-
ing a monitor (see Section 4) that is has come online with a
OSDBoot message that includes its most recent map epoch.
The monitor cluster changes the OSD’s status to up, and
replies with the incremental updates necessary to bring the
OSD fully up to date. When the new OSD begins contact-
ing OSDs with whom it shares data (see Section 3.4.1), the
exact set of devices who are affected by its status change
learn about the appropriate map updates. Because a boot-
ing OSD does not yet know exactly which epochs its peers
have, it shares a safe recent history (at least 30 seconds) of
incremental updates.

This preemptive map sharing strategy is conservative: an
OSD will always share an update when contacting a peer
unless it is certain the peer has already seen it, resulting
in OSDs receiving duplicates of the same update. However,
the number of duplicates an OSD receives is bounded by the
number of peers it has, which is in turn determined by the
number of PGs µ it manages. In practice, we find that the
actual level of update duplication is much lower than this
(see Section 5.1).

3. INTELLIGENT STORAGE DEVICES
The knowledge of the data distribution encapsulated in the
cluster map allows RADOS to distribute management of
data redundancy, failure detection, and failure recovery to
the OSDs that comprise the storage cluster. This exploits
the intelligence present in OSDs by utilizing peer to peer-like
protocols in a high-performance cluster environment.

RADOS currently implements n-way replication combined
with per-object versions and short-term logs for each PG.
Replication is performed by the OSDs themselves: clients
submit a single write operation to the first primary OSD,
who is then responsible for consistently and safely updat-
ing all replicas. This shifts replication-related bandwidth to
the storage cluster’s internal network and simplifies client
design. Object versions and short-term logs facilitate fast
recovery in the event of intermittent node failure (e. g., a
network disconnect or node crash/reboot).

We will briefly describe how the RADOS cluster architecture—
in particular, the cluster map—enables distributed repli-
cation and recovery operations, and how these capabilities
can be generalized to include other redundancy mechanisms
(such as parity-based RAID codes).

3.1 Replication
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Figure 2: Replication strategies implemented by
RADOS. Primary-copy processes both reads and
writes on the first OSD and updates replicas in par-
allel, while chain forwards writes sequentially and
processes reads at the tail. Splay replication com-
bines parallel updates with reads at the tail to min-
imize update latency.

RADOS implements three replication schemes: primary-
copy [3], chain [26], and a hybrid we call splay replication.
The messages exchanged during an update operation are
shown in Figure 2. In all cases, clients send I/O opera-
tions to a single (though possibly different) OSD, and the
cluster ensures that replicas are safely updated and con-
sistent read/write semantics (i. e., serializability) are pre-
served. Once all replicas are updated, a single acknowledge-
ment is returned to the client.

Primary-copy replication updates all replicas in parallel, and
processes both reads and writes at the primary OSD. Chain
replication instead updates replicas in series: writes are sent
to the primary (head), and reads to the tail, ensuring that
reads always reflect fully replicated updates. Splay replica-
tion simply combines the parallel updates of primary-copy
replication with the read/write role separation of chain repli-
cation. The primary advantage is a lower number of message
hops for 2-way mirroring.

3.2 Strong Consistency
All RADOS messages—both those originating from clients
and from other OSDs—are tagged with the sender’s map
epoch to ensure that all update operations are applied in a
fully consistent fashion. If a client sends an I/O to the wrong
OSD due to an out of data map, the OSD will respond with
the appropriate incrementals so that the client can redirect
the request. This avoids the need proactively share map
updates with clients: they will learn about them as they
interact with the storage cluster. In most cases, they will
learn about updates that do not affect the current operation,
but allow future I/Os to be directed accurately.

If the master copy of the cluster map has been updated to
change a particular PGs membership, updates may still be
processed by the old members, provided they have not yet
heard of the change. If the change is learned by a PG replica

first, it will be discovered when the primary OSD forwards
updates to replicas and they respond with the new incre-
mental map updates. This is completely safe because any
set of OSDs who are newly responsible for a PG are required
to contact all previously responsible (non-failed) nodes in or-
der to determine the PGs correct contents; this ensures that
prior OSDs learn of the change and stop performing I/O
before newly responsible OSDs start.

Achieving similar consistency for read operations is slightly
less natural than for updates. In the event of a network fail-
ure that results in an OSD becoming only partially unreach-
able, the OSD servicing reads for a PG could be declared
“failed” but still be reachable by clients with an old map.
Meanwhile, the updated map may specify a new OSD in its
place. In order to prevent any read operations from being
processed by the old OSD after new updates are processed
by the new one, we require timely heartbeat messages be-
tween OSDs in each PG in order for the PG to remain read-
able. That is, if the OSD servicing reads hasn’t heard from
other replicas in H seconds, reads will block. Before another
OSD to take over the primary role for a PG, it must either
obtain positive acknowledgement from the old OSD (ensur-
ing they are aware of their role change), or delay for the
same time interval. In the current implementation, we use
a relatively short heartbeat interval of two seconds. This
ensures both timely failure detection and a short interval
of PG data unavailability in the event of a primary OSD
failure.

3.3 Failure Detection
RADOS employs an asynchronous, ordered point to point
message passing library for communication. A failure on
the TCP socket results in a limited number of reconnect
attempts before a failure is reported to the monitor cluster.
Storage nodes exchange periodic heartbeat messages with
their peers (those OSDs with whom they share PG data) to
ensure that device failures are detected. OSDs that discover
that they have been marked down simply sync to disk and
kill themselves to ensure consistent behavior.

3.4 Data Migration and Failure Recovery
RADOS data migration and failure recovery are driven en-
tirely by cluster map updates and subsequent changes in the
mapping placement groups to OSDs. Such changes may be
due to device failures, recoveries, cluster expansion or con-
traction, or even complete data reshuffling from a totally
new CRUSH replica distribution policy—device failure is
simply one of many possible causes of the generalized prob-
lem of establishing a new distribution of data across the
storage cluster.

RADOS makes no continuity assumptions about data distri-
bution between one map and the next. In all cases, RADOS
employs a robust peering algorithm to establish a consistent
view of PG contents and to restore the proper distribution
and replication of data. This strategy relies on the basic
design premise that OSDs aggressively replicate a PG log
and its record of what the current contents of a PG should
be (i. e., what object versions it contains), even when object
replicas may be missing locally. Thus, even if recovery is
slow and object safety is degraded for some time, PG meta-
data is carefully guarded, simplifying the recovery algorithm



and allowing the system to reliably detect data loss.

3.4.1 Peering
When an OSD receives a cluster map update, it walks through
all new map incrementals up through the most recent to ex-
amine and possibly adjust PG state values. Any locally
stored PGs whose active list of OSDs changes are marked
must re-peer. Considering all map epochs (not just the
most recent) ensures that intermediate data distributions
are taken into consideration: if an OSD is removed from a
PG and then added again, it is important to realize that
intervening updates to PG contents may have occurred. As
with replication, peering (and any subsequent recovery) pro-
ceeds independently for every PG in the system.

Peering is driven by the first OSD in the PG (the primary).
For each PG an OSD stores for which it is not the current
primary (i. e., it is a replica, or a stray which is longer in
the active set), a Notify message is sent to the current pri-
mary. This message includes basic state information about
the locally stored PG, including the most recent update,
bounds of the PG log, and the most recent known epoch
during which the PG successfully peered. Notify messages
ensure that a new primary for a PG discovers its new role
without having to consider all possible PGs (of which there
may be millions) for every map change. Once aware, the
primary generates a prior set, which includes all OSDs that
may have participated in the PG since it was last success-
fully peered. The prior set is explicitly queried to solicit a
notify to avoid waiting indefinitely for a prior OSD that does
not actually store the PG (e. g., if peering never completed
for an intermediate PG mapping).

Armed with PG metadata for the entire prior set, the pri-
mary can determine the most recent update applied on any
replica, and request whatever log fragments are necessary
from prior OSDs in order to bring the PG logs up to date
on active replicas. If available PG logs are insufficient (e. g.,
if one or more OSDs has no data for the PG), a list of the
complete PG contents is generated. For node reboots or
other short outages, however, this is not necessary—the re-
cent PG logs are sufficient to quickly resynchronize replicas.

Finally, the primary OSD shares missing log fragments with
replica OSDs, such that all replicas know what objects the
PG should contain (even if they are still missing locally),
and begins processing I/O while recovery proceeds in the
background.

3.4.2 Recovery
A critical advantage of declustered replication is the ability
to parallelize failure recovery. Replicas shared with any sin-
gle failed device are spread across many other OSDs, and
each PG will independently choose a replacement, allowing
re-replication to just as many more OSDs. On average, in
a large system, any OSD involved in recovery for a single
failure will be either pushing or pulling content for only a
single PG, making recovery very fast.

Recovery in RADOS is motivated by the observation that
I/O is most often limited by read (and not write) through-
put. Although each individual OSD, armed with all PG
metadata, could independently fetch any missing objects,

this strategy has two limitations. First, multiple OSDs in-
dependently recovering objects in the same PG they will
probably not pull the same objects from the same OSDs at
the same time, resulting in duplication of the most expen-
sive aspect of recovery: seeking and reading. Second, the
update replication protocols (described in Section 3.1) be-
come increasingly complex if replica OSDs are missing the
objects being modified.

For these reasons, PG recovery in RADOS is coordinated
by the primary. As before, operations on missing objects
are delayed until the primary has a local copy. Since the
primary already knows which objects all replicas are missing
from the peering process, it can preemptively “push” any
missing objects that are about to be modified to replica
OSDs, simplifying replication logic while also ensuring that
the surviving copy of the object is only read once. If the
primary is pushing an object (e. g., in response to a pull
request), or if it has just pulled an object for itself, it will
always push to all replicas that need a copy while it has
the object in memory. Thus, in the aggregate, every re-
replicated object is read only once.

4. MONITORS
A small cluster of monitors are collectively responsible for
managing the storage system by storing the master copy of
the cluster map and making periodic updates in response to
configuration changes or changes in OSD state (e. g., device
failure or recovery). The cluster, which is based in part on
the Paxos part-time parliament algorithm [14], is designed to
favor consistency and durability over availability and update
latency. Notably, a majority of monitors must be available
in order to read or update the cluster map, and changes are
guaranteed to be durable.

4.1 Paxos Service
The cluster is based on a distributed state machine service,
based on the Paxos, in which the cluster map is the current
machine state and each successful update results in a new
map epoch. The implementation simplifies standard Paxos
slightly by allowing only a single concurrent map mutation
at a time (as in Boxwood [17]), while combining the basic
algorithm with a lease mechanism that allows requests to be
directed at any monitor while ensuring a consistent ordering
of read and update operations. 1

The cluster initially elects a leader to serialize map updates
and manage consistency. Once elected, the leader begins by
requesting the map epochs stored by each monitor. Moni-
tors have a fixed amount of time T (currently two seconds)
to respond to the probe and join the quorum. If a major-
ity of the monitors are active, the first phase of the Paxos
algorithm ensures that each monitor has the most recent
committed map epoch (requesting incremental updates from
other monitors as necessary), and then begins distributing
short-term leases to active monitors.

Each lease grants active monitors permission to distribute
copies of the cluster map to OSDs or clients who request
1This is implemented as a generic service and used to man-
age a variety of other global data structures in Ceph, includ-
ing the MDS cluster map and state for coordinating client
access to the system.



it. If the lease term T expires without being renewed, it is
assumed the leader has died and a new election is called.
Each lease is acknowledged to the leader upon receipt; if
the leader does not receive timely acknowledgements when
a new lease is distributed, it assumes an active monitor has
died and a new election is called (to establish a new quorum).
When a monitor first boots up, or finds that a previously
called election does not complete after a reasonable interval,
an election is called.

When an active monitor receives an update request (e. g.,
a failure report), it first checks to see if it is new. If, for
example, the OSD in question was already marked down,
the monitor simply responds with the necessary incremental
map updates to bring the reporting OSD up to date. New
failures are forwarded to the leader, who aggregates updates.
Periodically the leader will initiate a map update by incre-
menting the map epoch and using the Paxos update protocol
to distribute the update proposal to other monitors, simul-
taneously revoking leases. If the update is acknowledged by
a majority of monitors, a final commit message issues a new
lease.

The combination of a synchronous two-phase commit and
the probe interval T ensures that if the active set of monitors
changes, it is guaranteed that all prior leases (which have a
matching term T ) will have expired before any subsequent
map updates take place. Consequently, any sequence of map
queries and updates will result in a consistent progression
of map versions—significantly, map versions will never “go
backwards”—regardless of which monitor messages are sent
to and despite any intervening monitor failures, provided a
majority of monitors are available.

4.2 Workload and Scalability
In the general case, monitors do very little work: most map
distribution is handled by storage nodes (see Section 2.4),
and device state changes (e. g., due to a device failure) are
normally infrequent.

The leasing mechanism used internally by the monitor clus-
ter allows any monitor to service reads from OSDs or clients
requesting the latest copy of the cluster map. Such requests
rarely originate from OSDs due to the preemptive map shar-
ing, and clients request updates only when OSD operations
time out and failure is suspected. The monitor cluster can
be expanded to distribute this workload (beyond what is
necessary purely for reliability) for large clusters.

Requests that require a map update (e. g., OSD boot no-
tifications or reports of previously unreported failures) are
forwarded to the current leader. The leader aggregates mul-
tiple changes into a single map update, such that the fre-
quency of map updates is tunable and independent of the
size of the cluster. Nonetheless, a worst case load occurs
when large numbers of OSDs appear to fail in a short pe-
riod. If each OSD stores µ PGs and f OSDs fail, then an
upper bound on the number of failure reports generated is
on the order of µf , which could be very large if a large OSD
cluster experiences a network partition. To prevent such a
deluge of messages, OSDs send heartbeats at semi-random
intervals to stagger detection of failures, and then throttle
and batch failure reports, imposing an upper bound on mon-

itor cluster load proportional to the cluster size. Non-leader
monitors then forward reports of any given failure only once,
such that the request workload on the leader is proportional
to fm for a cluster of m monitors.

5. PARTIAL EVALUATION
Performance of the object storage layer (EBOFS) utilized by
on each OSD has been previously measured in conjunction
with Ceph [27]. Similarly, the data distribution properties
of CRUSH and their effect on aggregate cluster throughput
are evaluated elsewhere [27, 28]. In this short paper we
focus only on map distribution, as that directly impacts the
clusters’ ability to scale. We have not yet experimentally
evaluated monitor cluster performance, although we have
confidence in the architecture’s scalability.

5.1 Map Propagation
The RADOS map distribution algorithm (Section 2.4) en-
sures that updates reach all OSDs after only log n hops.
However, as the size of the storage cluster scales, the fre-
quency of device failures and related cluster updates in-
creases. Because map updates are only exchanged between
OSDs who share PGs, the hard upper bound on the number
of copies of a single update an OSD can receive is propor-
tional to µ.

In simulations under near-worst case propagation circum-
stances with regular map updates, we found that update
duplicates approach a steady state even with exponential
cluster scaling. In this experiment, the monitors share each
map update with a single random OSD, who then shares
it with its peers. In Figure 3 we vary the cluster size x

and the number of PGs on each OSD (which corresponds
to the number of peers it has) and measure the number
of duplicate map updates received for every new one (y).
Update duplication approaches a constant level—less than
20% of µ—even as the cluster size scales exponentially, im-
plying a fixed map distribution overhead. We consider a
worst case scenario in which the only OSD chatter are pings
for failure detection, which means that, generally speaking,
OSDs learn about map updates (and the changes known by
their peers) as slowly as possible. Limiting map distribution
overhead thus relies only on throttling the map update fre-
quency, which the monitor cluster already does as a matter
of course.

6. FUTURE WORK
Our current implementation has worked well as a basis for
the Ceph distributed file system. However, the scalable clus-
ter management services it provides are much more general
than Ceph’s requirements, and there are a number of addi-
tional research directions we are pursuing.

6.1 Key-value Storage
The reliable and scalable object storage service that RA-
DOS provides is well-suited for a variety of non-file storage
abstractions. In particular, the current interface based on
reading and writing byte ranges is primarily an artifact of
the intended usage for file data storage. Objects might have
any query or update interface or resemble any number of
fundamental data structures. We are currently working on
abstracting the specific object interface to allow key/value
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Figure 3: Duplication of map updates received by
individual OSDs as the size of the cluster grows. The
number of placement groups on each OSD effects
number of peers it has who may share map updates.

storage, as with a dictionary or index data structure. This
would facilitate distributed and scalable B-link trees that
map ordered keys to data values (much like Boxwood [17]),
as well as high-performance distributed hash tables [24].
The primary research challenge is to preserve a low-level ex-
tent interface that will allow recovery and replication code
to remain simple and generic, and to facilitate alternative
redundancy strategies (such as parity-based RAID codes)
that are defined in terms of byte ranges.

6.2 Scalable FIFO Queues
Another storage data structure that is often required at scale
is a FIFO queue, like that provided by GFS [7]. Unlike GFS,
however, we hope to create a distributed and scalable FIFO
data structure in RADOS with reliable queue insertion.

6.3 Object-granularity Snapshot
Many storage systems provide snapshot functionality on a
volume-wide basis, allowing a logical point-in-time copy of
the system to be created efficiently. As systems grow to
petabytes and beyond, however, it becomes increasingly doubt-
ful that a global snapshot schedule or policy will be ap-
propriate for all data. We are currently implementing an
object-granularity clone operation to create object copies
with copy-on-write behavior for efficient storage utilization,
and are extending the RADOS client interface to allow trans-
parent versioning for logical point-in-time copies across sets
of objects (i. e., files, volumes, etc.). Although this re-
search is being driven by our efforts to incorporate flexible
snapshot-like functionality in Ceph, we expect it to general-
ize to other applications of RADOS.

6.4 Load Balancing
Although RADOS manages scalability in terms of total ag-
gregate storage and capacity, we have not yet addressed the
issue of many clients accessing a single popular object. We
have done some preliminary experimentation with a read
shedding mechanism which allows a busy OSD to shed reads
to object replicas for servicing, when the replica’s OSD has
a lower load and when consistency allows (i. e., there are

no conflicting in-progress updates). Heartbeat messages ex-
change information about current load in terms of recent
average read latency, such that OSDs can determine if a
read is likely to be service more quickly by a peer. This fa-
cilitates fine-grained balancing in the presence of transient
load imbalance, much like D-SPTF [16]. Although prelimi-
nary experiments are promising, a comprehensive evaluation
has not yet been conducted.

More generally, the distribution of workload in RADOS is
currently dependent on the quality of the data distribution
generated by object layout into PGs and the mapping of
PGs to OSDs by CRUSH. Although we have considered
the statistical properties of such a distribution and demon-
strated the effect of load variance on performance for certain
workloads, the interaction of workload, PG distribution, and
replication can be complex. For example, write access to a
PG will generally be limited by the slowest device storing
replicas, while workloads may be highly skewed toward pos-
sibly disjoint sets of heavily read or written objects. To
date we have conducted only minimal analysis of the effects
of such workloads on efficiency in a cluster utilizing declus-
tered replication, or the potential for techniques like read
shedding to improve performance in such scenarios.

6.5 Quality of Service
The integration of intelligent disk scheduling, including the
prioritization of replication versus workload and quality of
service guarantees, is an ongoing area of investigation within
the research group [32].

6.6 Parity-based Redundancy
In addition to n-way replication, we would also like to sup-
port parity-based redundancy for improved storage efficiently.
In particular, intelligent storage devices introduce the pos-
sibility of seamlessly and dynamically adjusting the redun-
dancy strategy used for individual objects based on their
temperature and workload, much like AutoRAID [30] or
Ursa Minor [1].

In order to facilitate a broad range of parity-based schemes,
we would like to incorporate a generic engine such as REO [12].
Preserving the existing client protocol currently used for
replication—in which client reads and writes are serialized
and/or replicated by the primary OSD—would facilitate
flexibility in the choice of encoding and allow the client to
remain ignorant of the redundancy strategy (replication or
parity-based) utilized for a particular object. Although data
flow may be non-ideal in certain cases—a client could write
each parity fragments directly to each OSD—aggregate net-
work utilization is only slightly greater than the optimum [11],
and often better than straight replication.

7. RELATED WORK
Most distributed storage systems utilize centralized meta-
data servers [1, 4, 7] or collaborative allocation tables [23] to
manage data distribution, ultimately limiting system scala-
bility. For example, like RADOS, Ursa Minor [1] provides a
distributed object storage service (and, like Ceph, layers a
file system service on top of that abstraction). In contrast
to RADOS, however, Ursa Minor relies on an object man-
ager to maintain a directory of object locations and storage



strategies (replication, erasure coding, etc.), limiting scala-
bility and placing a lookup in the data path. Although the
architecture could allow it, our implementation does not cur-
rently provide the same versatility as Ursa Minor’s dynamic
choice of timing and failure models, or support for online
changes to object encoding (although encoding changes are
planned for the future); instead, we have focused on scal-
able performance in a relatively controlled (non-Byzantine)
environment.

The Sorrento [25] file system’s use of collaborative hash-
ing [10] bears the strongest resemblance to RADOS’s ap-
plication of CRUSH. Many distributed hash tables (DHTs)
use similar hashing schemes [5, 19, 24], but these systems
do not provide the same combination of strong consistency
and performance that RADOS does. For example, DHTs
like PAST [19] rely on an overlay network [20, 24, 34] in
order for nodes to communicate or to locate data, limiting
I/O performance. More significantly, objects in PAST are
immutable, facilitating cryptographic protection and sim-
plifying consistency and caching, but limiting the systems
usefulness as a general storage service. CFS [5] utilizes the
DHash DHT to provide a distributed peer-to-peer file ser-
vice with cryptographic data protection and good scalability,
but performance is limited by the use of the Chord [24] over-
lay network. In contrast to these systems, RADOS targets
a high-performance cluster or data center environment; a
compact cluster map describes the data distribution, avoid-
ing the need for an overlay network for object location or
message routing.

Most existing object-based storage systems rely on controllers
or metadata servers to perform recovery [4, 18], or centrally
micro-manage re-replication [7], failing to leverage intelli-
gent storage devices. Other systems have adopted declus-
tered replication strategies to distribute failure recovery, in-
cluding OceanStore [13], Farsite [2], and Glacier [9]. These
systems focus primarily on data safety and secrecy (using
erasure codes or, in the case of Farsite, encrypted replicas)
and wide-area scalability (like CFS and PAST), but not per-
formance. FAB (Federated Array of Bricks) [21] provides
high performance by utilizing two-phase writes and voting
among bricks to ensure linearizability and to respond to fail-
ure and recovery. Although this improves tolerance to in-
termittent failures, multiple bricks are required to ensure
consistent read access, while the lack of complete knowledge
of the data distribution further requires coordinator bricks
to help conduct I/O. FAB can utilize both replication and
erasure codes for efficient storage utilization, but relies on
the use of NVRAM for good performance. In contrast, RA-
DOS’s cluster maps drive consensus and ensure consistent
access despite a simple and direct data access protocol.

Xin et al. [33] conduct a quantitative analysis of reliabil-
ity with FaRM, a declustered replication model in which—
like RADOS—data objects are pseudo-randomly distributed
among placement groups and then replicated by multiple
OSDs, facilitating fast parallel recovery. They find that
declustered replication improves reliability at scale, partic-
ularly in the presence of relatively high failure rates for new
disks (“infant mortality”). Lian et al. [15] find that relia-
bility further depends on the number of placement groups
per device, and that the optimal choice is related to the

amount of bandwidth available for data recovery versus de-
vice bandwidth. Although both consider only independent
failures, RADOS leverages CRUSH to mitigate correlated
failure risk with failure domains.

8. CONCLUSION
RADOS provides a scalable and reliable object storage ser-
vice without compromising performance. The architecture
utilizes a globally replicated cluster map that provides all
parties with complete knowledge of the data distribution,
typically specified using a function like CRUSH. This avoids
the need for object lookup present in conventional architec-
tures, which RADOS leverages to distribute replication, con-
sistency management, and failure recovery among a dynamic
cluster of OSDs while still preserving consistent read and
update semantics. A scalable failure detection and cluster
map distribution strategy enables the creation of extremely
large storage clusters, with minimal oversight by the tightly-
coupled and highly reliable monitor cluster that manages the
master copy of the map.

Because clusters at the petabyte scale are necessarily het-
erogeneous and dynamic, OSDs employ a robust recovery al-
gorithm that copes with any combination of device failures,
recoveries, or data reorganizations. Recovery from transient
outages is fast and efficient, and parallel re-replication of
data in response to node failures limits the risk of data loss.
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