HyperDex: A Distributed, Searchable Key-Value Store

Robert Escriva
Computer Science
Department
Cornell University

escriva@cs.cornell.edu

ABSTRACT

Distributed key-value stores are now a standard component
of high-performance web services and cloud computing ap-
plications. While key-value stores offer significant perfor-
mance and scalability advantages compared to traditional
databases, they achieve these properties through a restricted
API that limits object retrieval—an object can only be re-
trieved by the (primary and only) key under which it was
inserted. This paper presents HyperDex, a novel distributed
key-value store that provides a unique search primitive that
enables queries on secondary attributes. The key insight
behind HyperDex is the concept of hyperspace hashing in
which objects with multiple attributes are mapped into a
multidimensional hyperspace. This mapping leads to effi-
cient implementations not only for retrieval by primary key,
but also for partially-specified secondary attribute searches
and range queries. A novel chaining protocol enables the
system to achieve strong consistency, maintain availability
and guarantee fault tolerance. An evaluation of the full sys-
tem shows that HyperDex is 12-13x faster than Cassandra
and MongoDB for finding partially specified objects. Ad-
ditionally, HyperDex achieves 2-4x higher throughput for
get/put operations.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design

Keywords

Key-Value Store, NoSQL, Fault-Tolerance, Strong Consis-
tency, Performance

1. INTRODUCTION

Modern distributed applications are reshaping the land-
scape of storage systems. Recently emerging distributed
key-value stores such as BigTable [11], Cassandra [32] and
Dynamo [19] form the backbone of large commercial appli-
cations because they offer scalability and availability prop-
erties that traditional database systems simply cannot pro-
vide. Yet these properties come at a substantial cost: the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGCOMM’12, August 13-17, 2012, Helsinki, Finland.

Copyright 2012 ACM 978-1-4503-1419-0/12/08 ...$15.00.

Bernard Wong
Cheriton School of Computer
Science
University of Waterloo
bernard@uwaterloo.ca

Emin Gin Sirer
Computer Science
Department
Cornell University

egs@systems.cs.cornell.edu

data retrieval API is narrow and restrictive, permitting an
object to be retrieved using only the key under which it
was stored, and the consistency guarantees are often quite
weak. Queries based on secondary attributes are either not
supported, utilize costly secondary indexing schemes or enu-
merate all objects of a given type.

This paper introduces HyperDex, a high-performance, scal-
able, consistent and distributed key-value store that provides
a new search primitive for retrieving objects by secondary
attributes. HyperDex achieves this extended functionality
by organizing its data using a novel technique called hyper-
space hashing. Similar to other hashing techniques [23,29,
36,47], hyperspace hashing deterministically maps objects to
servers to enable efficient object insertion and retrieval. But
it differs from these techniques because it takes into account
the secondary attributes of an object when determining the
mapping for an object. Specifically, it maps objects to co-
ordinates in a multi-dimensional Euclidean space — a hyper-
space — which has axes defined by the objects’ attributes.
Each server in the system is mapped onto a region of the
same hyperspace, and owns the objects that fall within its
region. Clients use this mapping to deterministically insert,
remove, and search for objects.

Hyperspace hashing facilitates efficient search by signifi-
cantly reducing the number of servers to contact for each
partially-specified search. The construction of the hyper-
space mapping guarantees that objects with matching at-
tribute values will reside on the same server. Through geo-
metric reasoning, clients can restrict the search space for a
partially-specified query to a subset of servers in the system,
thereby improving search efficiency. Specificity in searches
works to the clients’ advantage: a fully-specified search con-
tacts exactly one server.

A naive hyperspace construction, however, may suffer from
a well-known problem with multi-attribute data known as
“curse of dimensionality [6].” With each additional secondary
attribute, the hyperspace increases in volume exponentially.
If constructed in this fashion, each server would be respon-
sible for a large volume of the resulting hyperspace, which
would in turn force search operations to contact a large num-
ber of servers, counteracting the benefits of hyperspace hash-
ing. HyperDex addresses this problem by partitioning the
data into smaller, limited size subspaces of fewer dimensions.

Failures are inevitable in all large-scale deployments. The
standard approaches for providing fault tolerance store ob-
jects on a fixed set of replicas determined by a primary
key. These techniques, whether they employ a consensus
algorithm among the replicas and provide strong consis-



tency [18,46], or spray the updates to the replicas and only
achieve eventual consistency [19,32,45,49], assume that the
replica sets remain fixed even as the objects are updated.
Such techniques are not immediately suitable in our setting
because, in hyperspace hashing, object attributes determine
the set of servers on which an object resides, and conse-
quently, each update may implicitly alter the replica set.
Providing strong consistency guarantees with low overhead
is difficult, and more so when replica sets change dynami-
cally and frequently. HyperDex utilizes a novel replication
protocol called value-dependent chaining to simultaneously
achieve fault tolerance, high performance and strong con-
sistency. Value-dependent chaining replicates an object to
withstand f faults (which may span server crashes and net-
work partitions) and ensures linearizability, even as replica
sets are updated. Thus, HyperDex’s replication protocol
guarantees that all get operations will immediately see the
result of the last completed put operation — a stronger con-
sistency guarantee than those offered by the current gener-
ation of NoSQL data stores.

Overall, this paper describes the architecture of a new key-
value store whose API is one step closer to that of traditional
RDBMSs while offering strong consistency guarantees, fault-
tolerance for failures affecting a threshold of servers and
high performance, and makes three contributions. First,
it describes a new hashing technique for mapping struc-
tured data to servers. This hashing technique enables ef-
ficient retrieval of multiple objects even when the search
query specifies both equality and range predicates. Second,
it describes a fault-tolerant, strongly-consistent replication
scheme that accommodates object relocation. Finally, it re-
ports from a full implementation of the system and deploy-
ment in a data center setting consisting of 64 servers, and
demonstrates that HyperDex provides performance that is
comparable to or better than Cassandra and MongoDB, two
current state-of-the-art cloud storage systems, as measured
using the industry-standard YCSB [15] benchmark. More
specifically, HyperDex achieves 12-13x higher throughput
for search workloads than the other systems, and consis-
tently achieves 2-4x higher throughput for traditional key-
value workloads.

The rest of this paper is structured as follows: Section
2 describes hyperspace hashing. Section 3 specifies how to
deal with spaces of high dimensionality through data parti-
tioning. Section 4 specifies the value-dependent replication
protocol used in HyperDex. Section 5 outlines our full im-
plementation of HyperDex. Section 6 evaluates HyperDex
under a variety of workloads. Section 7 discusses related
work for hyperspace hashing and HyperDex. We discuss
how our system relates to the CAP Theorem in Section 8
and conclude with a summary of our contributions.

2. APPROACH

In this section, we describe the data model used in Hyper-
Dex, outline hyperspace hashing, and sketch the high-level
organization and operation of the system.

2.1 Data Model and API

HyperDex stores objects that consist of a key and zero or
more secondary attributes. As in a relational database, Hy-
perDex objects match an application-provided schema that
defines the typed attributes of the object and are persisted in

tables. This organization permits straightforward migration
from existing key-value stores and database systems.
HyperDex provides a rich API that supports a variety of
datastructures and a wide range of operations. The system
natively supports primitive types, such as strings, integers
and floats, as well as composite types, such as lists, sets
or maps constructed from primitive types. The dozens of op-
erations that HyperDex provides on these datatypes fall into
three categories. First, basic operations, consisting of get,
put, and delete, enable a user to retrieve, update, and de-
stroy an object identified by its key. Second, the search op-
eration enables a user to specify zero or more ranges for sec-
ondary attributes and retrieve the objects whose attributes
fall within the specified, potentially singleton, ranges. Fi-
nally, a large set of atomic operations, such as cas and
atomic-inc, enable applications to safely perform concur-
rent updates on objects identified by their keys. Since com-
posite types and atomic operations are beyond the scope of
this paper, we focus our discussion on the get, put, delete,
and search operations that form the core of HyperDex.

2.2 Hyperspace Hashing

HyperDex represents each table as an independent multi-
dimensional space, where the dimensional axes correspond
directly to the attributes of the table. HyperDex assigns ev-
ery object a corresponding coordinate based on the object’s
attribute values. An object is mapped to a deterministic
coordinate in space by hashing each of its attribute values
to a location along the corresponding axis.

Consider, for the following discussion, a table containing
user information that has the attributes first-name, last-
name, and telephone-number. For this schema, Hyper-
Dex would create a three dimensional space where the first-
name attribute comprises the x-axis, the last-name attribute
comprises the y-axis, and the telephone-number attribute
comprises the z-axis. Figure 1 illustrates this mapping.

Hyperspace hashing determines the object to server map-
ping by tessellating the hyperspace into a grid of non-over-
lapping regions. Each server is assigned, and is responsible
for, a specific region. Objects whose coordinates fall within
a region are stored on the corresponding server. Thus, the
hyperspace tessalation serves like a multi-dimensional hash
bucket, mapping each object to a unique server.

The tessalation of the hyperspace into regions (called the
hyperspace mapping), as well as the assignment of the re-
gions to servers, is performed by a fault-tolerant coordinator.
The primary function of the coordinator is to maintain the
hyperspace mapping and to disseminate it to both servers
and clients. The hyperspace mapping is initially created by
dividing the hyperspace into hyperrectangular regions and
assigning each region to a virtual server. The coordinator
is then responsible for maintaining this mapping as servers
fail and new servers are introduced into the system.

The geometric properties of the hyperspace make object
insertion and deletion simple. To insert an object, a client
computes the coordinate for the object by hashing each of
the object’s attributes, uses the hyperspace mapping to de-
termine the region in which the object lies, and contacts
that server to store the object. The hyperspace mapping
obviates the need for server-to-server routing.

2.3 Search Queries

The hyperspace mapping described in the preceding sec-
tions facilitates a geometric approach to resolving search



Phone Number
John

Smith

First Name

L /

Last Name

Figure 1: Simple hyperspace hashing in three di-
mensions. Each plane represents a query on a sin-
gle attribute. The plane orthogonal to the axis for
“Last Name” passes through all points for last_name
= ‘Smith’, while the other plane passes through all
points for first_name = ‘John’. Together they rep-
resent a line formed by the intersection of the two
search conditions; that is, all phone numbers for
people named “John Smith”. The two cubes show
regions of the space assigned to two different servers.
The query for “John Smith” needs to contact only
these servers.

operations. In HyperDex, a search specifies a set of at-
tributes and the values that they must match (or, in the case
of numeric values, a range they must fall between). Hyper-
Dex returns objects which match the search. Each search
operation uniquely maps to a hyperplane in the hyperspace
mapping. A search with one attribute specified maps to
a hyperplane that intersects that attribute’s axis in exactly
one location and intersects all other axes at every point. Al-
ternatively, a search that specifies all attributes maps to
exactly one point in hyperspace. The hyperspace mapping
ensures that each additional search term potentially reduces
the number of servers to contact and guarantees that addi-
tional search terms will not increase search complexity.

Clients maintain a copy of the hyperspace mapping, and
use it to deterministically execute search operations. A
client first maps the search into the hyperspace using the
mapping. It then determines which servers’ regions intersect
the resulting hyperplane, and issues the search request to
only those servers. The client may then collect matching
results from the servers. Because the hyperspace mapping
maps objects and servers into the same hyperspace, it is
never necessary to contact any server whose region does not
intersect the search hyperplane.

Range queries correspond to extruded hyperplanes. When
an attribute of a search specifies a range of values, the cor-
responding hyperplane will intersect the attribute’s axis at
every point that falls between the lower and upper bounds of
the range. Note that for such a scheme to work, objects’ rela-
tive orders for the attribute must be preserved when mapped
onto the hyperspace axis.

Figure 1 illustrates a query for first_name = ‘John’ and
last_name = ‘Smith’. The query for first_name = ‘John’

hyperspace

VAR N Ve VS
| [ e s [ |+ oo

l subspace 0  subspace 1 subspace S
ke

y subspace

Figure 2: HyperDex partitions a high-dimensional
hyperspace into multiple low-dimension subspaces.

corresponds to a two-dimensional plane which intercepts the
first_name axis at the hash of ‘John’. Similarly, the query
for last_name = ‘Smith’ creates another plane which inter-
sects the last_name axis. The intersection of the two planes
is the line along which all phone numbers for John Smith re-
side. Since a search for John Smith in a particular area code
defines a line segment, a HyperDex search needs to contact
only those nodes whose regions intersect that segment.

3. DATA PARTITIONING

HyperDex’s Euclidean space construction significantly re-
duces the set of servers that must be contacted to find match-
ing objects.

However, the drawback of coupling the dimensionality of
hyperspace with the number of searchable attributes is that,
for tables with many searchable attributes, the hyperspace
can be very large since its volume grows exponentially with
the number of dimensions. Covering large spaces with a grid
of servers may not be feasible even for large data-center de-
ployments. For example, a table with 9 secondary attributes
may require 2° regions or more to support efficient searches.
In general, a D dimensional hyperspace will need O(2D )
servers.

HyperDex avoids the problems associated with high-di-
mensionality by partitioning tables with many attributes
into multiple lower-dimensional hyperspaces called subspaces.
Each of these subspaces uses a subset of object attributes as
the dimensional axes for an independent hyperspace. Fig-
ure 2 shows how HyperDex can partition a table with D
attributes into multiple independent subspaces. When per-
forming a search on a table, clients select the subspace that
contacts the fewest servers, and will issue the search to
servers in exactly one subspace.

Data partitioning increases the efficiency of a search by
reducing the dimensionality of the underlying hyperspace.
In a 9-dimensional hyperspace, a search over 3 attributes
would need to contact 64 regions of the hyperspace (and
thus, 64 servers). If, instead, the same table were parti-
tioned into 3 subspaces of 3 attributes each, the search will
never contact more than 8 servers in the worst case, and
exactly one server in the best case. By partitioning the ta-
ble, HyperDex reduces the worst case behavior, decreases
the number of servers necessary to maintain a table, and
increases the likelihood that a search is run on exactly one
server.

Data partitioning forces a trade-off between search gener-
ality and efficiency. On the one hand, a single hyperspace
can accommodate arbitrary searches over its associated at-
tributes. On the other hand, a hyperspace which is too large



will always require that partially-specified queries contact
many servers. Since applications often exhibit search local-
ity, HyperDex applications can tune search efficiency by cre-
ating corresponding subspaces. As the number of subspaces
grows, so, too, do the costs associated with maintaining data
consistency across subspaces. Section 4 details how Hyper-
Dex efficiently maintains consistency across subspaces while
maintaining a predictably low overhead.

3.1 Key Subspace

The basic hyperspace mapping, as described so far, does
not distinguish the key of an object from its secondary at-
tributes. This leads to two significant problems when im-
plementing a practical key-value store. First, key lookups
would be equivalent to single attribute searches. Although
HyperDex provides efficient search, a single attribute search
in a multi-dimensional space would likely involve contacting
more than one server. In this hypothetical scenario, key op-
erations would be strictly more costly than key operations
in traditional key-value stores.

HyperDex provides efficient key-based operations by cre-
ating a one-dimensional subspace dedicated to the key. This
subspace, called the key subspace, ensures that each object
will map to exactly one region in the resulting hyperspace.
Further, this region will not change as the object changes
because keys are immutable. To maintain the uniqueness
invariant, put operations are applied to the key subspace
before the remaining subspaces.

3.2 Object Distribution Over Subspaces

Subspace partitioning exposes a design choice in how ob-
jects are distributed and stored on servers. One possible
design choice is to keep data in normalized form, where
every subspace retains, for each object, only those object
attributes that serve as the subspace’s dimensional axes.
While this approach would minimize storage requirements
per server, as attributes are not duplicated across subspaces,
it would lead to more expensive search and object retrieval
operations since reconstituting the object requires cross-serv-
er cooperation. In contrast, an alternative design choice is
to store a full copy of each object in each subspace, which
leads to faster search and retrieval operations at the expense
of additional storage requirements per server.

Hyperspace hashing supports both of these object distri-
bution techniques. The HyperDex implementation, how-
ever, relies upon the latter approach to implement the repli-
cation scheme described in Section 4.

3.3 Heterogeneous Objects

In a real deployment, the key-value store will likely be
used to hold disparate objects with different schema. Hyper-
Dex supports this through the table abstraction. Each table
has a separate set of attributes which make up the objects
within, and these attributes are partitioned into subspaces
independent of all other tables. As a result, HyperDex man-
ages multiple independent hyperspaces.

4. CONSISTENCY AND REPLICATION

Because hyperspace hashing maps each object to multiple
servers, maintaining a consistent view of objects poses a
challenge. HyperDex employs a novel technique called value-
dependent chaining to provide strong consistency and fault
tolerance in the presence of concurrent updates.

For clarity, we first describe value-dependent chaining with-
out concern for fault tolerance. Under this scheme, a single
failure leaves portions of the hyperspace unavailable for up-
dates and searches. We then describe how value-dependent
chaining can be extended such that the system can tolerate
up to f failures in any one region.

4.1 Value Dependent Chaining

Because hyperspace hashing determines the location of
an object by its contents, and subspace partitioning creates
many object replicas, objects will be mapped to multiple
servers and these servers will change as the objects are up-
dated. Change in an object’s location would cause problems
if implemented naively. For example, if object updates were
to be implemented by simply sending the object to all af-
fected servers, there would be no guarantees associated with
subsequent operations on that object. Such a scheme would
at best provide eventual consistency because servers may
receive updates out-of-order, with no sensible means of re-
solving concurrent updates.

HyperDex orders updates by arranging an object’s repli-
cas into a value-dependent chain whose members are deter-
ministically chosen based upon an object’s hyperspace coor-
dinate. The head of the chain is called the point leader, and
is determined by hashing the object in the key subspace.
Subsequent servers in the chain are determined by hashing
attribute values for each of the remaining subspaces.

This construction of value-dependent chains enables ef-
ficient, deterministic propagation of updates. The point
leader for an object is in a position to dictate the total order
on all updates to that object. Each update flows from the
point leader through the chain, and remains pending un-
til an acknowledgement of that update is received from the
next server in the chain. When an update reaches the tail,
the tail sends an acknowledgement back through the chain
in reverse so that all other servers may commit the pending
update and clean up transient state. When the acknowl-
edgement reaches the point leader, the client is notified that
the operation is complete. In Figure 3, the update wu, illus-
trates an object insertion which passes through hi, hs, hs,
where hi is the point leader.

Updates to preexisting objects are more complicated be-
cause a change in an attribute value might require relocating
an object to a different region of the hyperspace. Value-
dependent chains address this by incorporating the servers
assigned to regions for both the old and new versions of
the object. Chains are constructed such that servers are or-
dered by subspace and the servers corresponding to the old
version of the object immediately precede the servers corre-
sponding to the new version. This guarantees that there is
no instant during an update where the object may disappear
from the data store. For example, in Figure 3, the update
uz modifies the object in a way that changes its mapping
in Subspace 0 such that the object no longer maps to he
and instead maps to hs. The value-dependent chain for up-
date w2 is hi, ha, hs, hs. The update will result in the object
being stored at hs, and subsequently removed from h2, as
acknowledgments propagate in reverse.

Successive updates to an object will construct chains which
overlap in each subspace. Consequently, concurrent updates
may arrive out of order at each of these points of overlap.
For example, consider the update usz in Figure 3. The value-
dependent chain for this update is h1, hs, hs. Notice that it



hy hy hs
update U1 = - #— -~ - - B -~ - - -
update ug —f - #-----F - P- - r»—--
update uz — - #- - / -
\ / ////
\ / s
\ L /!
\ / s
\ / /
\ / au
\ - *_ - J/
A _’_ -
ha h5 hg
key
subspace subspace 0 @ subspace 1

Figure 3: HyperDex’s replication protocol propa-
gates along value-dependent chains. Each update
has a value-dependent chain that is determined
solely by objects’ current and previous values and
the hyperspace mapping.

is possible for us to arrive at hs before us. If handled im-
properly, such races could lead to inconsistent, out-of-order
updates. Value-dependent chains efficiently handle this case
by dictating that the point leader embed, in each update,
dependency information which specifies the order in which
updates are applied. Specifically, the point leader embeds
a version number for the update, and the version number,
hash and type of the previous update. For instance, us will
have a version number of 3 and depend upon update us with
version number 2 and type put. Servers which receive us be-
fore ue will know to delay processing of us until us is also
processed.

By design, HyperDex supports destructive operations that
remove all state pertaining to deleted objects. Examples of
destructive operations include delete and the cleanup as-
sociated with object relocation. Such operations must be
carefully managed to ensure that subsequent operations get
applied correctly. For instance, consider a del followed by a
put. Since we would like a del to remove all state, the put
must be applied on servers with no state. Yet, if another
del/put pair were processed concurrently, servers which had
processed either del would not be able to properly order
the put operations. Value-dependent chains ensure that
concurrently issued destructive operations are correctly or-
dered on all servers. Each server independently delays op-
erations which depend upon a destructive operation until
the destructive operation, and all that came before it, are
acknowledged. This ensures that at most one destructive
operation may be in-flight at any one time and guarantees
that they will be ordered correctly. The delay for each mes-
sage is bounded by the length of chains, and the number of
concurrent operations.

4.2 Fault Tolerance

To guard against server failures, HyperDex provides ad-
ditional replication within each region. The replicas acquire
and maintain their state by being incorporated into value-
dependent chains. In particular, each region has f 4 1 repli-
cas which appear as a block in the value-dependent chain.
For example, we can extend the layout of Figure 3 to toler-
ate one failure by introducing additional hosts h} through

hg. As with regular chain replication [57], new replicas are
introduced at the tail of the region’s chain, and servers are
bumped forward in the chain as other servers fail. For ex-
ample, the first update in Figure 3 has the value-dependent
chain hi1,hl, he, hb, hs, hs. If he were to fail, the resulting
chain would be hi, h}, hb, h%, hs, h%. This transition will be
performed without compromising strong consistency.

Point leader failures do not allow clients to observe an in-
consistency. For instance, if h1, the point leader, were to fail
in our previous example, h} will take over the role of point
leader. When a client detects a point leader failure, it will
notify the application and preserve at-most-once semantics.
Further, because all client acknowledgments are generated
by the point leader, the client will only see a response after
an object is fully fault-tolerant.

In our implementation, HyperDex uses TCP to transmit
data which ensures that messages need only be retrans-
mitted when servers fail and are removed from the value-
dependent chain. In response to failures, HyperDex servers
retransmit messages along the chains to make progress. Upon
chain reconfiguration, servers will no longer accept messages
from failed servers, ensuring that all future messages traverse
the new, valid chain.

4.3 Server and Configuration Management

HyperDex utilizes a logically centralized coordinator to
manage system-wide global state. The coordinator encap-
sulates the global state in the form of a configuration which
consists of the hyperspace mapping between servers and re-
gions and information about server failures. The coordinator
assigns to each configuration an epoch identifier, a strictly
increasing number that identifies the configuration. The co-
ordinator distributes configurations to servers in order by
epoch, and updates the configuration as necessary. Hyper-
Dex’s coordinator holds no state pertaining to the objects
themselves; only the mapping and servers.

HyperDex ensures that no server processes late-arriving
messages from failed or out-of-date servers. Each HyperDex
server process (an instance) is uniquely identified by its IP
address, port and instance id. Instance ids are assigned by
the coordinator and are globally unique, such that servers
can distinguish between two instances (e.g. a failed process
and a new one) that reuse the same IP and port number.
HyperDex embeds into messages the instance ids, the regions
of the hyperspace and indices into the chain for both the
sender and recipient. A recipient acting upon a message
can validate the sender and recipient against its most recent
configuration. If the message contains a stale mapping, it
will not be acted upon. If, instead, the mapping is valid, the
host processes the message accordingly.

Each host changes its configuration in an all-or-nothing
fashion which appears instantaneous to threads handling
network communication. This is accomplished on each host
by creating state relevant to the new configuration, pausing
network traffic, swapping pointers to make the new state
visible, and unpausing network traffic. This operation com-
pletes in sub-millisecond time on each host.

The logically centralized coordinator does not impose a
bottleneck. Configurations are small in practice, and pro-
portional to the size of the cluster and number of tables ac-
tive on the cluster. Furthermore, in cases where bandwidth
from the coordinator becomes a bottleneck, the coordina-
tor need only distribute deltas to the configuration. Clients



maintain a complete copy of the configuration in memory
and perform local computation on the hyperspace mapping.

4.4 Consistency Guarantees

Overall, the preceding protocol ensures that HyperDex
provides strong guarantees for applications. The specific
guarantees made by HyperDex are:

Key Consistency All actions which operate on a specific
key (e.g., get and put) are linearizable [26] with all opera-
tions on all keys. This guarantees that all clients of Hyper-
Dex will observe updates in the same order.

Search Consistency HyperDex guarantees that a search
will return all objects that were committed at the time of
search. An application whose put succeeds is guaranteed to
see the object in a future search. In the presence of con-
current updates, a search may return both the committed
version, and the newly updated version of an object match-
ing the search.

HyperDex provides the strongest form of consistency for
key operations, and a conservative and predictable consis-
tency guarantees for search operations.

S. IMPLEMENTATION

HyperDex is fully implemented to support all the features
described in this paper. The implementation is nearly 44,000
lines of code. The HyperDex software distribution contains
an embeddable storage layer called HyperDisk, a hyperspace
hashing library, the HyperDex server, the client library and
the HyperDex coordinator, as well as full client bindings for
C, C++, and Python, and partial bindings for Java, Node.JS
and Ruby.

This section describes key aspects of the HyperDex im-
plementation.

5.1 HyperDex Server

High throughput and low latency access are essential for
any key-value store. The HyperDex server achieves high per-
formance through three techniques; namely, edge-triggered,
event-driven I/O; pervasive use of lock-free datastructures
and sharded locks to maximize concurrency; and careful
attention to constant overheads. The HyperDex server is
structured around a concurrent, edge-triggered event loop
wherein multiple worker threads receive network messages
and directly process client requests. Whereas common de-
sign patterns would distinguish between I/O threads and
worker threads, HyperDex combines these two functions to
avoid internal queuing and communication delays. Because
the event-loop is edge-triggered, unnecessary interaction with
the kernel is minimized. Socket buffer management ensures
that threads never block in the kernel when sending a mes-
sage and consumes a constant amount of memory per client.

HyperDex makes extensive use of lock-sharding and lock-
free datastructures to reduce the probability of contention
whenever possible. Per-key datastructures are protected by
an array of locks. Although nothing prevents two threads
from contending for the same lock to protect different keys,
the ratio of locks to threads is high enough to reduce this oc-
currence to 1 in 10°. Global datastructures, such as lookup
tables for the per-key datastructures, are concurrent through
the use of lock-free hash tables. Our implementation ensures
that background threads may safely iterate over global state
while worker threads insert and remove pointers to per-key
state.

Finally, the use of cache-conscious, constant-time data
structures reduces the overheads associated with common
operations such as linked-list and hash-table management.

5.2 HyperDisk: On-Disk Data Storage

A key component of server performance for any key-value
store is the storage back end used to organize data on disk.
Since hyperspace hashing is agnostic to the choice of the
back end, a number of design options are available. At one
extreme, we could have used a traditional database to store
all the objects of a server in a single, large, undifferentiated
pool. While this approach would have been the simplest
from an implementation perspective, it would make Hyper-
Dex dependent on the performance of a traditional database
engine, require manual tuning of numerous parameters, and
subject the system to the vagaries of a query optimizer.

Instead, HyperDex recursively leverages the hyperspace
hashing technique to organize the data stored internally on
a server. Called HyperDisk, this approach partitions the
region associated with a server into smaller non-overlapping
sub-regions, where a sub-region represents a file on disk, and
objects are located in the file that contains their coordinate.
Each file is arranged as a log, where insertions and deletions
operate on the tail, and where a search operation linearly
scans through the whole file.

HyperDisk’s hashing scheme differs from the standard hy-
perspace hashing in two ways: first, HyperDisk partitions
only the region assigned to a HyperDex server; and second,
HyperDisk may alter the mapping dynamically to accommo-
date the number of objects stored within a region. Overall,
recursive application of hyperspace hashing enables Hyper-
Dex to take advantage of the geometric structure of the data
space at every system layer.

5.3 Distributed Coordination

In HyperDex, the hyperspace mapping is created and man-
aged by a logically centralized coordinator. Since a physi-
cally centralized coordinator would limit scalability and pose
a single point of failure, the HyperDex coordinator is imple-
mented as a replicated state machine. It relies on a co-
ordination service [2,9,27] to replicate the coordinator on
multiple physical servers. The coordinator implementation
ensures that servers may migrate between coordinators so
that no coordinator failure leads to correlated failures in the
system. The coordinator directs all failure recovery actions.
Servers may report observed failures to the coordinator, or
the coordinator may directly observe failures through peri-
odic failure detection pings to servers.

Overall, the replicated state machine implementation en-
sures that the coordinator acts as a single, coherent com-
ponent with well-defined state transitions, even though it is
comprised of fault-tolerant, distributed components.

6. EVALUATION

We deployed HyperDex on both a small and medium-
size computational cluster and evaluated the performance
of each deployment using the Yahoo! Cloud Serving Bench-
mark (YCSB) [15], an industry-standard benchmark for cloud
storage performance. Our evaluation also examines the per-
formance of HyperDex’s basic operations, specifically, get,
put, and search, using targeted micro-benchmarks. These
micro-benchmarks isolate specific components and help ex-
pose the performance impact of design decisions. For both



>
[en)

Load === N
Workload A =0 M
Workload B z====
- Workload C E
Workload D <<
Workload F ——

Workload E msm

Oﬁ%wm :

Cassandra MongoDB HyperDex

w
o

—_
o

Throughput (thousand op/s)
o S

Figure 4: Average throughput for a variety of real-
world workloads specified by the Yahoo! Cloud
Serving Benchmark. HyperDex is 3-13 times faster
than Cassandra and 2-12 times faster than Mon-
goDB. Workload E is a search-heavy workload,
where HyperDex outperforms other systems by
more than an order of magnitude.

YCSB and the micro-benchmarks, we compare HyperDex
with Cassandra [32], a popular key-value store for Web 2.0
applications, and MongoDB [37], a distributed document
database.

The performance benchmarks are executed on our small,
dedicated lab-size cluster in order to avoid confounding is-
sues arising from sharing a virtualized platform, while the
scalability benchmarks are executed on the VICCI [42] test-
bed. Our dedicated cluster consists of fourteen nodes, each
of which is equipped with two Intel Xeon 2.5 GHz E5420
processors, 16 GB of RAM, and a 500 GB SATA 3.0 Gbit/s
hard disk operating at 7200 RPM. All nodes are running
64-bit Debian 6 with the Linux 2.6.32 kernel. A single gi-
gabit Ethernet switch connects all fourteen machines. On
each of the machines, we deployed Cassandra version 0.7.3,
MongoDB version 2.0.0, and HyperDex.

For all tests, the storage systems are configured to pro-
vide sufficient replication to tolerate one node failure. Each
system was configured to use its default consistency set-
tings. Specifically, both Cassandra and MongoDB provide
weak consistency and fault-tolerance guarantees; because ac-
knowledgments are generated without full replication, small
numbers of failures can lead to data loss. In contrast, Hy-
perDex utilizes value-depending chaining and, as a result,
always provides clients with strong consistency and fault-
tolerance, even in the presence of failures. Since MongoDB
allocates replicas in pairs, we allocate twelve machines for
the storage nodes, one machine for the clients, and, where
applicable, one node for the coordinator. HyperDex is con-
figured with two subspaces in addition to the key subspace
to accommodate all ten attributes in the YCSB dataset.

6.1 Get/Put Performance

High get/put performance is paramount to any cloud-
based storage system. YCSB provides six different work-
loads that exercise the storage system with a mixture of
request types and object distributions resembling real-world
applications (Table 1). In all YCSB experiments, the data-
base is preloaded with 10,000,000 objects and each opera-
tion selects the object and operation type in accordance with
the workload specification. Figure 4 shows the throughput
achieved by each system across the YCSB workloads. Hy-

80
5260
o3
840 - Cassandra (R
Cassandra (U) —=—
MongoDB (R
20 MongoDB (U
] HyperDex (R) —e—
0 1 1 111 |I|—I|yperD|ex |IJ L1
1 10 50

Latency (ms)

Figure 5: GET/PUT performance. Latency distribu-
tion for Workload A (50% reads, 50% updates, Zipf
distribution).

100
80
5260
=
840 Cassandra (R
Cassandra (U) —=—
MongoDB (R,
20 MongoDB (U
HyperDex (R) —e—
0 1 1 L1 |||I|—I|yperD|eX |IJ| 1
1 10 50

Latency (ms)

Figure 6: GET/PUT performance. Latency distribu-
tion for Workload B (95% reads, 5% updates, Zipf
distribution). HyperDex maintains low latency for
reads and writes.

perDex provides throughput that is between a factor of two
to thirteen higher than the other systems. The largest per-
formance gains come from improvements in search perfor-
mance. Significant improvements in get/put performance
is attributable mostly to the efficient handling of get op-
erations in HyperDex. Our implementation demonstrates
that the hyperspace construction and maintenance can be
realized efficiently.

In order to gain insight into the performance of the system,
we examine the request latency distributions of the different
systems under all read/write workloads. HyperDex’s perfor-
mance is predictable: all reads complete in under 1 ms, while
a majority of writes complete in under 3 ms. Cassandra’s
latency distributions follow a similar trend for workloads B,
C, D and F and show a slightly different trend for workload
A. MongoDB, on the other hand, exhibits lower latency than
Cassandra for all operations. For all workloads, HyperDex
completes 99% of operations sooner than either Cassandra
and MongoDB. Figures 5 and 6 show the latency distribu-
tions for workloads A and B respectively.

For completeness, we present the performance of all three
systems on a write-heavy workload. Figure 7 shows the la-
tency distribution for inserting 10,000,000 objects to set up
the YCSB tests. Consistency guarantees have a significant
effect on the put latency. MongoDB’s default behavior con-
siders a put complete when the request has been queued in



Name Workload Key Distribution Sample Application

A 50% Read/50% Update Zipf Session Store

B 95% Read/5% Update Zipf Photo Tagging

C 100% Read Zipf User Profile Cache

D 95% Read/5% Insert Temporal User Status Updates

E 95% Scan/5% Insert Zipf Threaded Conversations
F 50% Read/50% Read-Modify-Write Zipf User Database

Table 1: The six workloads specified by the Yahoo! Cloud Serving Benchmark. These workloads model
several applications found at Yahoo! Each workload was tested using the same YCSB driver program and

system-specific Java bindings. Each object has ten attributes which total 1 kB in size.

100 —o—poetes

80
560 |
a
oS40 F

20 Cassandra —+—

MongoDB
0 HyperDex —e—
1 10 50

Latency (ms)

Figure 7: PUT performance. Latency distribution for
10,000,000 operations consisting of 100% insertions.
Each operation created a new object under a unique,
previously unused key. Although fast, HyperDex’s
minimum latency is bounded by the length of the
value-dependent chains.

a client’s send buffer, even before it has been seen by any
server. Cassandra’s default behavior considers a put com-
plete when it is queued in the filesystem cache of just one
replica. Unlike these systems, the latency of a HyperDex
put operation includes the time taken to fully replicate the
object on f + 1 servers. Because MongoDB does not wait
for full fault tolerance, it is able to complete a majority of
operations in less than 1 ms; however, it exhibits a long-
tail (Figure 7) that adversely impacts average throughput.
Similarly, Cassandra completes most operations in less than
2 ms. Despite its stronger fault-tolerance guarantees, Hy-
perDex completes 99% of its operations in less than 2 ms.

6.2 Search vs. Scan

Unlike existing key-value stores, HyperDex is architected
from the ground-up to perform search operations efficiently.
Current applications that rely on existing key-value stores
emulate search functionality by embedding additional infor-
mation about other attributes in the key itself. For exam-
ple, applications typically group logically related objects by
using a shared prefix in the key of each object, and then
rely upon the key-value store to locate keys with the com-
mon prefix. In Cassandra, this operation is efficient be-
cause keys are stored in sorted order, and returning all log-
ically grouped keys is an efficient linear scan. Fittingly, the
YCSB benchmark calls this a scan operation. HyperDex’s
search functionality is a strict superset of the scan opera-
tion. Rather than using a shared prefix to support scans,
HyperDex stores, for each object, the prefix and suffix of
the key as two secondary attributes. Scans are then imple-

100

80 /
5260
&
) 40

20 Cassandra —+—

MongoDB
0 ‘ ! HyperDex —e—

1 10 100
Latency (ms)

1000

Figure 8: SEARCH performance. Latency distribution
for 10,000 operations consisting of 95% range queries
and 5% inserts with keys selected from a Zipf distri-
bution. HyperDex is able to offer significantly lower
latency for non-primary key range queries than the
other systems are able to offer for primary-key range
queries.

mented as a multi-attribute search that exactly matches a
provided prefix value and a provided range of suffix values.
Thus, all YCSB benchmarks involving a scan operation op-
erate on secondary attributes in HyperDex, but operate on
the key for other systems.

Despite operating on secondary attributes instead of the
key, HyperDex outperforms the other systems by an or-
der of magnitude for scan operations (Figure 8). Seventy
five percent of search operations complete in less than 2 ms,
and nearly all complete in less than 6 ms. Cassandra sorts
data according to the primary key and is therefore able to
retrieve matching items relatively quickly. Although one
could alter YCSB to use Cassandra’s secondary indexing
schemes instead of key-based operations, the result would
be strictly worse than what is reported for primary key op-
erations. MongoDB’s sharding maintains an index; conse-
quently, scan operations in MongoDB are relatively fast.
The search performance of HyperDex is not attributable
to our efficient implementation as search is more than an
order of magnitude faster in HyperDex, which eclipses the
2-4x performance advantage observed for get/put through-
put. Hyperspace hashing in HyperDex ensures that search
results are located on a small number of servers; this en-
ables effective pruning of the search space and allows each
search to complete by contacting exactly one host in our
experiments.

An additional benefit of HyperDex’s aggressive search prun-
ing is the relatively low latency overhead associated with
search operations. Figure 9 shows the average latency of a



1000 T T T T T TTT T T T
o o e TRRess -
100 £ 3
)
g
~ Cassandra +———
2 10 | MongoDB E
g HyperDex +—e—
3
1 | -
o000 — o o3
0.1 1 1 1 1 ) N I | 1 1 1
1 10 50

Percent scan/search

Figure 9: The effect of an increasing scan workload
on latency. HyperDex performs significantly better
than the other systems even as the scan workload
begins to approach 50%.

Y

Latenc
(ms)

HyperDex —e— |

—_ ==
NEOOOONEREOOFNDWERE OO
T

Throughput
(thousand ops/s)

0 2 4 6 8 10
Number of Subspaces

Figure 10: Latency and throughput for put oper-
ations as a function of non-key subspaces The er-
ror bars indicate standard deviation from 10 exper-
iments. Latency increases linearly in the length of
the chain, while throughput decreases proportion-
ally. In applications we have built with HyperDex,
all tables have three or fewer subspaces.

single scan operation as the total number of scan operations
performed increases. In this test, searches were constructed
by choosing the lower bound of the range uniformly at ran-
dom from the set of possible values, as opposed to workload
E which uses a Zipf distribution to select objects. Using a
uniform distribution ensures random access, and mitigates
the effects of object caching. HyperDex consistently offers
low latency for search-heavy workloads.

A critical parameter that affects HyperDex’s search per-
formance is the number of subspaces in a HyperDex table.
Increasing the number of subspaces leads to additional op-
portunities for pruning the search space for search opera-
tions, but simultaneously requires longer value-dependent
chains that result in higher put latencies. In Figure 10,
we explore the tradeoff using between zero and ten addi-
tional subspaces beyond the mandatory key subspace. Note
that adding ten additional subspaces increases the value-
dependent chain to be at least 22 nodes long. As expected,
HyperDex’s put latency increases linearly with each addi-
tional subspace.

>

o "4 Ciients e I I I I
% 8 Clients —a— g
2, 16 Clients —a—
© 3} 32 Clients -
.5 48 Clients
gt ]
-
= L i
2,
1
o L i
! . |
= ” -

0 1 1 1 1 1 1 1 1

4 8 12 16 20 24 28 32

Nodes

Figure 11: HyperDex scales horizontally. As more
servers are added, aggregate throughput increases
linearly. Each point represents the average through-
put of the system in steady state over 30 second
windows. The error bars show the 5** and 95*" per-
centiles.

6.3 Scalability

We have deployed HyperDex on the VICCI [42] testbed to
evaluate its performance in an environment representative of
the cloud. Each VICCI cluster has 70 Dell R410 PowerEdge
servers, each of which has 2 Intel Xeon X5650 CPUs, 48 GB
of RAM, three 1 TB hard drives, and two 1 Gbit ethernet
ports. Users are provided with an isolated virtual machine
for conducting experiments. Each virtual machine comes
preinstalled with Fedora 12 and runs the 2.6.32 Linux kernel.

We examined the performance of a HyperDex cluster as
the cluster increases in size. Increasing the number of servers
in the cluster provides HyperDex with additional resources
and leads to a proportional increase in throughput. In Fig-
ure 11, we explore the change in system throughput as re-
sources are added to the cluster. As expected, HyperDex
scales linearly as resources are added to the cluster. Each
point in the graph represents the average throughput ob-
served over a 30 second window and the error bars show
the 5" and 95" percentiles observed over any 1-second win-
dow. At its peak, HyperDex is able to average 3.2 million
operations per second.

The workload for Figure 11 is a 95% read, 5% write work-
load operating on 8 B keys and 64 B values. The measure-
ments reported are taken in steady state, with clients ran-
domly generating requests according to the workload. This
workload and measurement style reflects the workload likely
to be encountered in a web application. The reported mea-
surements exclude the warm-up time for the system. In
all experiments, 15 seconds was sufficient to achieve steady
state. Clients operate in parallel, and are run on separate
machines from the servers in all but the largest configura-
tions. Clients issue requests in parallel, and each client main-
tains an average of 1,000 outstanding requests per server.
Increasing the number of clients does not significantly im-
pact the achievable average throughput.

This experiment shows that a medium-sized HyperDex
cluster is able to achieve high throughput for realistically
sized deployments [3]. Additional resources allow the cluster
to provide proportionally better throughput.



7. RELATED WORK

Database system Storage systems that organize their data
in high-dimensional spaces were pioneered by the database
community more than thirty years ago [5,7,24,31,39,41,51].
These systems, collectively known as Multi-Dimensional Da-
tabases (MDB), leverage multi-dimensional data structures
to improve the performance of data warehousing and on-
line analytical processing applications. However, unlike hy-
perspaces in HyperDex, the data structures in MDBs are
designed for organizing data on a single machine and are
not directly applicable to large-scale distributed storage sys-
tems. Alternatively, more recent database systems [1,17]
have begun exploring efficient mechanisms for building and
maintaining large-scale, tree-based distributed indices. In
contrast, the mapping HyperDex constructs is not an index.
Indices must be maintained and updated on object inser-
tion. Hyperspace hashing, on other hand, is a mapping that
does not change as objects are inserted and removed.

Peer-to-peer systems Past work in peer-to-peer systems
has explored multi-dimensional network overlays to facili-
tate decentralized data storage and retrieval. CAN [47] is a
distributed hash-table that, much like HyperDex, organizes
peers in a multi-dimensional space. However, CAN only pro-
vides key inserts and lookups; the purpose of CAN’s multi-
dimensional peer configuration is to limit a CAN node’s
peer-set size to provide efficient overlay routing. HyperDex
provides search, and does not do routing in the space.

MURK [21], SkipIndex [58], and SWAM-V [30] dynam-
ically partition the multi-dimensional space into kd-trees,
skip graphs, and Voronoi diagrams respectively to provide
multi-dimensional range lookups. Although conceptually
similar to HyperDex, providing coordination and manage-
ment of nodes for these dynamic space partitioning schemes
is significantly more complex and error-prone than for Hy-
perDex’s static space partitioning and require additional op-
erational overhead. These systems also do not address sev-
eral critical and inherent problems associated with mapping
structured data into a multi-dimensional space and provid-
ing reliable data storage. Specifically, they are not efficient
for high dimensional data due to the curse-of-dimensionality,
and they either lack data replication or provide only even-
tually consistent operations on replicated data. Addressing
these problems by augmenting dynamic space partitioning
schemes with subspaces and value-dependent chaining would
further increase the complexity and overhead of node coor-
dination and management. Mercury [8] builds on top of a
Chord [55] ring, and uses consistent hashing [29] on each
attribute as secondary indexes. Although Mercury’s imple-
mentation is unavailable, Cassandra uses a similar design
and its performance illustrates how a multi-ring-based sys-
tem would perform. Arpeggio [13] provides search over mul-
tiple attributes by enumerating and creating an index of all
(2) fixed-size subsets of attributes using a Chord ring. Both
of these approaches insert redundant pointers into rings with-
out concern for consistency.

Space-filling curves A common approach to providing
multi-attribute search uses space-filling curves to partition
multi-dimensional data across the storage nodes. This ap-
proach uses the space filling curve to map the multi-di-
mensional data into a single dimension, which then enables
the use of traditional peer-to-peer techniques for perform-
ing searches. SCRAP [21], Squid [52] and ZNet [53] are

examples of this approach with each node responsible for
data in a contiguous range of values. Similarly, MAAN [10]
performs the same mapping, but uses uniform locality pre-
serving hashing. Space-filling curves do not scale well when
the dimensionality is high, because a single search query
may be partitioned into many one-dimensional ranges of
considerably varying size. Furthermore, unlike in Hyper-
Dex, fully-qualified searches, where values for all attributes
are specified, may involve contacting more than one node in
space-filling curve-based systems.

NoSQL Storage A new class of scalable storage systems,
collectively dubbed “NoSQL”, have recently emerged with
the defining characteristic that they depart from the tradi-
tional architecture and SQL interface of relational databases.
It is common practice for NoSQL systems to make explicit
tradeoffs with respect to desirable properties. For instance,
many NoSQL systems explicitly sacrifice consistency — even
in the common case without failures — to achieve availabil-
ity under extreme failure scenarios. NoSQL systems in-
clude document databases [16,37] that offer a schema-free
data model, in-memory cache solutions [36, 43, 48] that ac-
celerate application performance, and graph databases [38]
which model interconnected elements and key-value stores
which offer predictable performance. Still, some systems do
not fit neatly into these categories. For example, Yahoo!’s
PNUTS [14] system supports the traditional SQL selection
and projection, functions but does not support joins.

HyperDex explores a new point in the NoSQL design space.
The rich HyperDex API provides qualitatively new function-
ality not offered by other NoSQL systems, HyperDex sets a
new bar for future NoSQL systems by combining strong con-
sistency properties with fault-tolerance guarantees, a rich
API and high performance.

Key-Value Stores Modern key-value stores have roots in
work on Distributed Data Structures [23,36] and distributed
hash tables [29,47,50,55]. Most open source key-value stores
draw heavily from the ring-based architecture of Dynamo [19]
and the tablet-based architecture of BigTable [11]. For in-
stance, Voldemort [45] and Riak [49] are heavily influenced
by Dynamo’s design. Other systems like HBase [25] and Hy-
perTable [28] are open source implementations of BigTable.
Cassandra [32] is unique in that it is influenced by BigTable’s
API and Dynamo’s ring structure. Like HyperDex, all of
these systems are designed to run in a datacenter environ-
ment on many machines.

Recent work on key-value stores largely focuses on improv-
ing performance by exploiting underlying hardware or ma-
nipulating consistency guarantees for a performance advan-
tage. Fawn KV [4] builds a key-value store on underpowered
hardware to improve the throughput-to-power-draw ratio.
SILT [33] eliminates read amplification to maximize read
bandwidth in a datastore backed by solid-state disk. RAM-
Cloud [40] stores data in RAM and utilizes fast network con-
nections to rapidly restore failed replicas. TSSL [54] utilizes
a multi-tier storage hierarchy to exploit cache-oblivious algo-
rithms in the storage layer. Masstree [35] uses concatenated
B trees to service millions of queries per second. COPS [34]
provides a high-performance geo-replicated key-value store
that provides causal+ consistency. Other systems [12, 19]
trade consistency for other desirable properties, such as per-
formance. Spanner [18] uses Paxos in the wide area to pro-
vide strong consistency. Spinnaker [46] uses Paxos to build



a strongly consistent store that performs nearly as well as
those that are only eventually consistent [19,44, 56].

Each of these existing systems improves the performance,
availability or consistency of key value stores while retain-
ing the same basic structure: a hash table. In HyperDex,
we take a complementary approach which expands the key-
value interface to support, among other operations, search
over secondary attributes.

8. DISCUSSION

Surprisingly, the open-source release of the HyperDex sys-
tem [20] uncovered various misunderstandings surrounding
the CAP Theorem [22]. The popular CAP refrain (“C, A, P:
pick any two”) causes the subtleties in the definitions of C, A
and P to be lost, even on otherwise savvy developers. There
exists no conflict between claims in our paper and the CAP
Theorem. The failure model used in the CAP Theorem is
unconstrained; the system can be subject to partitions and
node failures that affect any number of servers and network
links. No system, including HyperDex, can simultaneously
offer consistency and availability guarantees using such weak
assumptions. HyperDex makes a stronger assumption that
limits failures to affect at most a threshold of servers and is
thus able to provide seemingly impossible guarantees.

9. CONCLUSIONS

This paper described HyperDex, a second-generation No-
SQL storage system that combines strong consistency guar-
antees with high availability in the presence of failures and
partitions affecting up to a threshold of servers. In addition,
HyperDex provides an efficient search primitive for retriev-
ing objects through their secondary attributes. It achieves
this extended functionality through hyperspace hashing, in
which multi-attribute objects are deterministically mapped
to coordinates in a low dimension Euclidean space. This
mapping leads to efficient implementations for key-based re-
trieval, partially-specified searches and range-queries. Hy-
perDex’s novel replication protocol enables the system to
provide strong consistency without sacrificing performance.
Industry-standard benchmarks show that the system is prac-
tical and efficient.

The recent trend toward NoSQL data stores has been fu-
eled by scalability and performance concerns at the cost of
functionality. HyperDex bridges this gap by providing ad-
ditional functionality without sacrificing scalability or per-
formance.

10. ACKNOWLEDGMENTS

We would like to thank Pawel Loj for his contributions
on cluster stop/restart, Deniz Altinbiiken for her ConCo-
ord Paxos implementation, and members of the HyperDex
open source community for their code contributions, and
the VICCI team for granting us time on their cluster. This
material is based upon work supported by National Sci-
ence Foundation under Grants No. CNS-1111698 and CCF-
0424422 and by the National Science and Engineering Re-
search Council of Canada.

11. REFERENCES
[1] M. K. Aguilera, W. M. Golab, and M. A. Shah. A
Practical Scalable Distributed B-Tree. In PVLDB,
1(1), 2008.

[2] D. Altinbiiken and E. G. Sirer. Commodifying
Replicated State Machines with OpenReplica.
Computing and Information Science, Cornell
University, Technical Report 1813-29009, 2012.

[3] S. Anand. http:
//www.infoq.com/presentations/NoSQL-Netflix/.

[4] D. G. Andersen, J. Franklin, M. Kaminsky, A.
Phanishayee, L. Tan, and V. Vasudevan. FAWN: A
Fast Array of Wimpy Nodes. In Proc. of SOSP, Big
Sky, MT, Oct. 2009.

[5] R. Bayer. The Universal B-Tree for Multidimensional
Indexing: General Concepts. In Proc. of WWCA,
Tsukuba, Japan, Mar. 1997.

[6] R. E. Bellman. Dynamic Programming. Princeton
University Press, 1957.

[7] J. L. Bentley. Multidimensional Binary Search Trees
Used for Associative Searching. In CACM, 18(9), 1975.

[8] A. R. Bharambe, M. Agrawal, and S. Seshan. Mercury:
Supporting Scalable Multi-Attribute Range Queries.
In Proc. of SIGCOMM, Portland, OR, Aug. 2004.

[9] M. Burrows. The Chubby Lock Service for
Loosely-Coupled Distributed Systems. In Proc. of
OSDI, Seattle, WA, Nov. 2006.

[10] M. Cai, M. R. Frank, J. Chen, and P. A. Szekely.
MAAN: A Multi-Attribute Addressable Network for
Grid Information Services. In Proc. of GRID
Workshop, Phoenix, AZ, Nov. 2003.

[11] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R.
Gruber. BigTable: A Distributed Storage System for
Structured Data. In Proc. of OSDI, Seattle, WA, Nov.
2006.

[12] J. Cipar, G. R. Ganger, K. Keeton, C. B. M. III,

C. A. N. Soules, and A. C. Veitch. LazyBase: Trading
Freshness for Performance in a Scalable Database. In
Proc. of EuroSys, Bern, Switzerland, Apr. 2012.

[13] A. T. Clements, D. R. K. Ports, and D. R. Karger.
Arpeggio: Metadata Searching and Content Sharing
with Chord. In Proc. of IPTPS Workshop, La Jolla,
CA, Feb. 2005.

[14] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A.
Silberstein, P. Bohannon, H.-A. Jacobsen, N. Puz, D.
Weaver, and R. Yerneni. PNUTS: Yahoo!’s Hosted
Data Serving Platform. In PVLDB, 1(2), 2008.

[15] B. F. Cooper, A. Silberstein, E. Tam, R.
Ramakrishnan, and R. Sears. Benchmarking Cloud
Serving Systems with YCSB. In Proc. of SoCC,
Indianapolis, IN, June 2010.

[16] CouchDB. http://couchdb.apache.org/.

[17] A. Crainiceanu, P. Linga, J. Gehrke, and J.
Shanmugasundaram. Querying Peer-to-Peer Networks
Using P-Trees. In Proc. of WebDB Workshop, Paris,
France, June 2004.

[18] J. Dean. Designs, Lessons, and Advice from Building
Large Distributed Systems. Keynote. In Proc. of
LADIS, Big Sky, MT, Oct. 2009.

[19] G. DeCandia, D. Hastorun, M. Jampani, G.
Kakulapati, A. Lakshman, A. Pilchin, S.
Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: Amazon’s Highly Available Key-Value
Store. In Proc. of SOSP, Stevenson, WA, Oct. 2007.



[20]

[21]

[22]

31]

[32]

[33]

R. Escriva, B. Wong, and E. G. Sirer. Hyperdex.
http://hyperdex.org/.

P. Ganesan, B. Yang, and H. Garcia-Molina. One
Torus to Rule Them All: Multidimensional Queries in
P2P Systems. In Proc. of WebDB Workshop, Paris,
France, June 2004.

S. Gilbert and N. A. Lynch. Brewer’s Conjecture and
the Feasibility of Consistent, Available,
Partition-Tolerant Web Services. In SIGACT News,
33(2), 2002.

S. D. Gribble. A Design Framework and a Scalable
Storage Platform to Simplify Internet Service
Construction. U.C. Berkeley, 2000.

A. Guttman. R-Trees: A Dynamic Index Structure for
Spatial Searching. In Proc. of SIGMOD, 1984.
HBase. http://hbase.apache.org/.

M. Herlihy and J. M. Wing. Linearizability: A
Correctness Condition for Concurrent Objects. In
ACM ToPLaS, 12(3), 1990.

P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
ZooKeeper: Wait-Free Coordination for Internet-Scale
Systems. In Proc. of USENIX, Boston, MA, June
2010.

Hypertable. http://http://hypertable.org/.

D. R. Karger, E. Lehman, F. T. Leighton, R.
Panigrahy, M. S. Levine, and D. Lewin. Consistent
Hashing and Random Trees: Distributed Caching
Protocols for Relieving Hot Spots on the World Wide
Web. In Proc. of STOC, El Paso, TX, May 1997.

F. B. Kashani and C. Shahabi. SWAM: A Family of
Access Methods for Similarity-Search in Peer-to-Peer
Data Networks. In Proc. of CIKM, Washington, D.C.,
Nov. 2004.

A. Klinger. Patterns and Search Statistics. In
Optimizing Methods in Statistics, Academic Press,
1971.

A. Lakshman and P. Malik. Cassandra: A
Decentralized Structured Storage System. In Proc. of
LADIS, Big Sky, MT, Oct. 2009.

H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky.
SILT: A Memory-Efficient, High-Performance
Key-Value Store. In Proc. of SOSP, Cascais, Portugal,
Oct. 2011.

W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.
Andersen. Don’t Settle for Eventual: Scalable Causal
Consistency for Wide-Area Storage with COPS. In
Proc. of SOSP, Cascais, Portugal, Oct. 2011.

Y. Mao, E. Kohler, and R. T. Morris. Cache
Craftiness for Fast Multicore Key-Value Storage. In
Proc. of EuroSys, Bern, Switzerland, Apr. 2012.
Memcached. http://memcached.org/.

MongoDB. http://www.mongodb.org/.

Neo4j. http://neo4dj.org/.

J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The
Grid File: An Adaptable, Symmetric Multikey File
Structure. In ACM ToDS, 9(1), 1984.

D. Ongaro, S. M. Rumble, R. Stutsman, J. K.
Ousterhout, and M. Rosenblum. Fast Crash Recovery
in RAMCloud. In Proc. of SOSP, Cascais, Portugal,
Oct. 2011.

[41]

42]

(43]

(44]
(45]

[46]

(47]

(48]
[49]
(50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

J. A. Orenstein and T. H. Merrett. A Class of Data
Structures for Associative Searching. In Proc. of
PODS, 1984.

L. Peterson, A. Bavier, and S. Bhatia. VICCI: A
Programmable Cloud-Computing Research Testbed.
Princeton, Technical Report TR-912-11, 2011.

D. R. K. Ports, A. T. Clements, I. Zhang, S. Madden,
and B. Liskov. Transactional Consistency and
Automatic Management in an Application Data
Cache. In Proc. of OSDI, Vancouver, Canada, Oct.
2010.

D. Pritchett. BASE: An ACID Alternative. In ACM
Queue, 6(3), 2008.

Project Voldemort.
http://project-voldemort.com/.

J. Rao, E. J. Shekita, and S. Tata. Using Paxos to
Build a Scalable, Consistent, and Highly Available
Datastore. In PVLDB, 4(4), 2011.

S. Ratnasamy, P. Francis, M. Handley, R. M. Karp,
and S. Shenker. A Scalable Content-Addressable
Network. In Proc. of SIGCOMM, San Diego, CA,
Aug. 2001.

Redis. http://redis.io/.

Riak. http://basho.com/.

A. 1. T. Rowstron and P. Druschel. Pastry: Scalable,
Decentralized Object Location, and Routing for
Large-Scale Peer-to-Peer Systems. In Proc. of ICDSP,
volume 2218, 2001.

H. Samet. Spatial Data Structures. In Modern
Database Systems: The Object Model, Interoperability,
and Beyond, Addison Wesley/ACM Press, 1995.

C. Schmidt and M. Parashar. Enabling Flexible
Queries with Guarantees in P2P Systems. In Internet
Computing Journal, 2004.

Y. Shu, B. C. Ooi, K.-L. Tan, and A. Zhou.
Supporting Multi-Dimensional Range Queries in
Peer-to-Peer Systems. In Proc. of IEEE International
Conference on Peer-to-Peer Computing, Konstanz,
Germany, Aug. 2005.

R. P. Spillane, P. J. Shetty, E. Zadok, S. Dixit, and S.
Archak. An Efficient Multi-Tier Tablet Server Storage
Architecture. In Proc. of SoCC, 2011.

I. Stoica, R. Morris, D. R. Karger, M. F. Kaashoek,
and H. Balakrishnan. Chord: A Scalable Peer-to-Peer
Lookup Service for Internet Applications. In Proc. of
SIGCOMM, San Diego, CA, Aug. 2001.

D. B. Terry, M. Theimer, K. Petersen, A. J. Demers,
M. Spreitzer, and C. Hauser. Managing Update
Conflicts in Bayou, a Weakly Connected Replicated
Storage System. In Proc. of SOSP, Copper Mountain,
CO, Dec. 1995.

R. van Renesse and F. B. Schneider. Chain Replication
for Supporting High Throughput and Availability. In
Proc. of OSDI, San Francisco, CA, Dec. 2004.

C. Zhang, A. Krishnamurthy, and R. Y. Wang.
SkipIndex: Towards a Scalable Peer-to-Peer Index
Service for High Dimensional Data. Princeton,
Technical Report TR-703-04, 2004.



