
48 May/June 2008 ACM QUEUE rants: feedback@acmqueue.com

Web applications have grown in popularity over the past
decade. Whether you are building an application for end
users or application developers (i.e., services), your hope
is most likely that your application will find broad adop-
tion—and with broad adoption will come transactional
growth. If your application relies upon persistence, then
data storage will probably become your bottleneck.

There are two strategies for scaling any application.
The first, and by far the easiest, is vertical scaling: moving
the application to larger computers. Vertical scaling works

reasonably well for data but has several limitations. The
most obvious limitation is outgrowing the capacity of the
largest system available. Vertical scaling is also expensive,
as adding transactional capacity usually requires purchas-
ing the next larger system. Vertical scaling often creates
vendor lock, further adding to costs.

Horizontal scaling offers more flexibility but is also
considerably more complex. Horizontal data scaling
can be performed along two vectors. Functional scaling
involves grouping data by function and spreading func-

In partitioned databases, trading some consistency for availability
can lead to dramatic improvements in scalability.

DAN PRITCHETT, EBAY

ACM QUEUE May/June 2008 49 more queue: www.acmqueue.com

tional groups across databases. Splitting data within func-
tional areas across multiple databases, or sharding,1 adds
the second dimension to horizontal scaling. The diagram
in figure 1 illustrates horizontal data-scaling strategies.

As figure 1 illustrates, both approaches to horizontal
scaling can be applied at once. Users, products, and trans-
actions can be in separate databases. Additionally, each
functional area can be split across multiple databases for
transactional capacity. As shown in the diagram, func-
tional areas can be scaled independently of one another.

FUNCTIoNAl PARTITIoNINg
Functional partitioning is important for achieving high
degrees of scalability. Any good database architecture will
decompose the schema into tables grouped by function-
ality. Users, products, transactions, and communication
are examples of functional areas. Leveraging database
concepts such as foreign keys is a common approach for
maintaining consistency across these functional areas.

Relying on database constraints to ensure consistency
across functional groups creates a coupling of the schema

AN ACID ALTERNATIVE

50 May/June 2008 ACM QUEUE rants: feedback@acmqueue.com

to a database deployment strategy. For constraints to be
applied, the tables must reside on a single database server,
precluding horizontal scaling as transaction rates grow. In
many cases, the easiest scale-out opportunity is moving
functional groups of data onto discrete database servers.

Schemas that can scale to very high transaction
volumes will place functionally distinct data on different
database servers. This requires moving data constraints
out of the database and into the application. This also
introduces several challenges that are addressed later in
this article.

CAP THEoREM
Eric Brewer, a professor at the University of California,
Berkeley, and cofounder and chief scientist at Inktomi,
made the conjecture that Web services cannot ensure all
three of the following properties at once (signified by the
acronym CAP):2

Consistency. The client perceives that a set of operations
has occurred all at once.

Availability. Every operation must terminate in an
intended response.
Partition tolerance. Operations will complete, even if
individual components are unavailable.

Specifically, a Web application can support, at most,
only two of these properties with any database design.
Obviously, any horizontal scaling strategy is based on
data partitioning; therefore, designers are forced to decide
between consistency and availability.

ACID SolUTIoNS
ACID database transactions greatly simplify the job of the
application developer. As signified by the acronym, ACID
transactions provide the following guarantees:
Atomicity. All of the operations in the transaction will
complete, or none will.
Consistency. The database will be in a consistent state
when the transaction begins and ends.
Isolation. The transaction will behave as if it is the only
operation being performed upon the database.
Durability. Upon completion of the transaction, the
operation will not be reversed.

Database vendors long ago recognized the need for
partitioning databases and introduced a technique known
as 2PC (two-phase commit) for providing ACID guaran-
tees across multiple database instances. The protocol is
broken into two phases:
• First, the transaction coordinator asks each database

involved to precommit the operation and indicate
whether commit is possible. If all databases agree the
commit can proceed, then phase 2 begins.

• The transaction coordinator asks each database to com-
mit the data.

If any database vetoes the commit, then all databases
are asked to roll back their portions of the transaction.

Data Scaling

trans0

trans1

trans2

products

functional scaling

sh
ar

di
ng

users0

users1

FIG 1

Sample Schema

user

id

name

amt_sold

amt_bought

transaction

xid

seller_id

buyer_id

amount

FIG 2

AN ACID ALTERNATIVE

ACM QUEUE May/June 2008 51 more queue: www.acmqueue.com

What is the shortcoming? We are getting consistency
across partitions. If Brewer is correct, then we must be
impacting availability, but how can that be?

The availability of any system is the product of the
availability of the components required for operation.
The last part of that statement is the most important.
Components that may be used by the system but are not
required do not reduce system availability. A transaction
involving two databases in a 2PC commit will have the
availability of the product of the availability of each data-
base. For example, if we assume each database has 99.9
percent availability, then the availability of the transac-
tion becomes 99.8 percent, or an additional downtime of
43 minutes per month.

AN ACID AlTERNATIvE
If ACID provides the consistency choice for partitioned
databases, then how do you achieve availability instead?
One answer is BASE (basically available, soft state, eventu-
ally consistent).

BASE is diametrically opposed to ACID. Where ACID
is pessimistic and forces consistency at the end of every
operation, BASE is optimistic and accepts that the
database consistency will be in a state of flux. Although
this sounds impossible to cope with, in reality it is quite
manageable and leads to levels of scalability that cannot
be obtained with ACID.

The availability of BASE is achieved through support-
ing partial failures without total system failure. Here
is a simple example: if users are partitioned across five
database servers, BASE design encourages crafting opera-
tions in such a way that a user database failure impacts
only the 20 percent of the users on that particular host.
There is no magic involved, but this does lead to higher
perceived availability of the system.

So, now that you have decomposed your data into
functional groups and partitioned the busiest groups
across multiple databases, how do you incorporate BASE
into your application? BASE requires a more in-depth
analysis of the operations
within a logical transaction
than is typically applied to
ACID. What should you be
looking for? The follow-
ing sections provide some
direction.

CoNSISTENCY PATTERNS
Following Brewer’s con-
jecture, if BASE allows for

availability in a partitioned database, then opportunities
to relax consistency have to be identified. This is often
difficult because the tendency of both business stake-
holders and developers is to assert that consistency is
paramount to the success of the application. Temporal
inconsistency cannot be hidden from the end user, so
both engineering and product owners must be involved
in picking the opportunities for relaxing consistency.

Figure 2 is a simple schema that illustrates consis-
tency considerations for BASE. The user table holds user

information including the total amount sold and bought.
These are running totals. The transaction table holds each
transaction, relating the seller and buyer and the amount
of the transaction. These are gross oversimplifications of
real tables but contain the necessary elements for illus-
trating several aspects of consistency.

In general, consistency across functional groups is
easier to relax than within functional groups. The example
schema has two functional groups: users and transac-
tions. Each time an item is sold, a row is added to the
transaction table and the counters for the buyer and seller

FIG 3

The tendency of both business
stakeholders and developers is
to assert that consistency is paramount
to the success of the application.

Begin transaction
 Insert into transaction(xid, seller_id, buyer_id, amount);
 Update user set amt_sold=amt_sold+$amount where id=$seller_id;
 Update user set amt_bought=amount_bought+$amount where id=$buyer_id;
End transaction

52 May/June 2008 ACM QUEUE rants: feedback@acmqueue.com

are updated. Using an ACID-style transaction, the SQL
would be as shown in figure 3.

The total bought and sold columns in the user table
can be considered a cache of the transaction table. It is
present for efficiency of the system. Given this, the con-
straint on consistency could be relaxed. The buyer and
seller expectations can be set so their running balances do
not reflect the result of a transaction immediately. This is

not uncommon, and in fact people encounter this delay
between a transaction and their running balance regularly
(e.g., ATM withdrawals and cellphone calls).

How the SQL statements are modified to relax con-
sistency depends upon how the running balances are
defined. If they are simply estimates, meaning that some
transactions can be missed, the changes are quite simple,
as shown in figure 4.

We’ve now decoupled the updates to the user and
transaction tables. Consistency between the tables is not
guaranteed. In fact, a failure between the first and second
transaction will result in the user table being permanently
inconsistent, but if the contract stipulates that the run-
ning totals are estimates, this may be adequate.

What if estimates are not acceptable, though? How
can you still decouple the user and transaction updates?

Introducing a persistent
message queue solves the
problem. There are several
choices for implement-
ing persistent messages.
The most critical factor in
implementing the queue,
however, is ensuring that
the backing persistence is
on the same resource as the
database. This is necessary
to allow the queue to be
transactionally committed
without involving a 2PC.
Now the SQL operations
look a bit different, as
shown in figure 5.

This example takes
some liberties with syntax
and oversimplifying the
logic to illustrate the
concept. By queuing a
persistent message within
the same transaction as
the insert, the information
needed to update the run-
ning balances on the user
has been captured. The
transaction is contained on
a single database instance
and therefore will not
impact system availability.

A separate message-
processing component will

FIG 5

AN ACID ALTERNATIVE

FIG 4

Begin transaction
 Insert into transaction(id, seller_id, buyer_id, amount);
End transaction
Begin transaction
 Update user set amt_sold=amt_sold+$amount where id=$seller_id;
 Update user set amt_bought=amount_bought+$amount
 where id=$buyer_id;
End transaction

Begin transaction
 Insert into transaction(id, seller_id, buyer_id, amount);
 Queue message “update user(“seller”, seller_id, amount)”;
 Queue message “update user(“buyer”, buyer_id, amount)”;
End transaction
For each message in queue
 Begin transaction
 Dequeue message
 If message.balance == “seller”
 Update user set amt_sold=amt_sold + message.amount
 where id=message.id;
 Else
 Update user set amt_bought=amt_bought + message.amount
 where id=message.id;
 End if
 End transaction
End for

ACM QUEUE May/June 2008 53 more queue: www.acmqueue.com

dequeue each message and apply the information to the
user table. The example appears to solve all of the issues,
but there is a problem. The message persistence is on the
transaction host to avoid a 2PC during queuing. If the
message is dequeued inside a transaction involving the
user host, we still have a 2PC situation.

One solution to the 2PC in the message-processing
component is to do nothing. By decoupling the update

into a separate back-end component, you preserve the
availability of your customer-facing component. The
lower availability of the message processor may be accept-
able for business requirements.

Suppose, however, that 2PC is simply never acceptable
in your system. How can this problem be solved? First,
you need to understand the concept of idempotence. An
operation is considered idempotent if it can be applied
one time or multiple times with the same result. Idem-
potent operations are useful in that they permit partial
failures, as applying them repeatedly does not change the
final state of the system.

The selected example is problematic when looking
for idempotence. Update operations are rarely idempo-
tent. The example increments balance columns in place.
Applying this operation more than once obviously will
result in an incorrect balance. Even update operations
that simply set a value, however, are not idempotent
with regard to order of operations. If the system cannot
guarantee that updates will be applied in the order they
are received, the final state of the system will be incorrect.

More on this later.
In the case of balance

updates, you need a way to
track which updates have
been applied successfully
and which are still out-
standing. One technique is
to use a table that records
the transaction identifiers
that have been applied.

The table shown in
figure 6 tracks the transac-
tion ID, which balance has
been updated, and the user
ID where the balance was
applied. Now our sample
pseudocode is as shown in
figure 7.

This example depends
upon being able to peek a
message in the queue and
remove it once success-
fully processed. This can
be done with two indepen-
dent transactions if neces-
sary: one on the message
queue and one on the user
database. Queue operations
are not committed unless

Update Table
updates_applied

trans_id

balance

user_id

FIG 6

FIG 7

Begin transaction
 Insert into transaction(id, seller_id, buyer_id, amount);
 Queue message “update user(“seller”, seller_id, amount)”;
 Queue message “update user(“buyer”, buyer_id, amount)”;
End transaction
For each message in queue
 Peek message
 Begin transaction
 Select count(*) as processed where trans_id=message.trans_id
 and balance=message.balance and user_id=message.user_id
 If processed == 0
 If message.balance == “seller”
 Update user set amt_sold=amt_sold + message.amount
 where id=message.id;
 Else
 Update user set amt_bought=amt_bought + message.amount
 where id=message.id;
 End if
 Insert into updates_applied
 (message.trans_id, message.balance, message.user_id);
 End if
 End transaction
 If transaction successful
 Remove message from queue
 End if
End for

54 May/June 2008 ACM QUEUE rants: feedback@acmqueue.com

database operations successfully commit. The algorithm
now supports partial failures and still provides transac-
tional guarantees without resorting to 2PC.

There is a simpler technique for assuring idempotent
updates if the only concern is ordering. Let’s change our
sample schema just a bit to illustrate the challenge and
the solution (see figure 8). Suppose you also want to track
the last date of sale and purchase for the user. You can
rely on a similar scheme of updating the date with a mes-
sage, but there is one problem.

Suppose two purchases occur within a short time
window, and our message system doesn’t ensure ordered
operations. You now have a situation where, depending

upon which order the messages are processed in, you will
have an incorrect value for last_purchase. Fortunately,
this kind of update can be handled with a minor modifi-
cation to the SQL, as illustrated in figure 9.

By simply not allowing the last_purchase time to go
backward in time, you have made the update operations
order independent. You can also use this approach to
protect any update from out-of-order updates. As an alter-
native to using time, you can also try a monotonically
increasing transaction ID.

oRDERINg oF MESSAgE QUEUES
A short side note on ordered message delivery is relevant.
Message systems offer the ability to ensure that messages
are delivered in the order they are received. This can be
expensive to support and is often unnecessary, and, in
fact, at times gives a false sense of security.

The examples provided here illustrate how message
ordering can be relaxed and still provide a consistent
view of the database, eventually. The overhead required
to relax the ordering is nominal and in most cases is
significantly less than enforcing ordering in the message
system.

Further, a Web application is semantically an event-
driven system regardless of the style of interaction. The
client requests arrive to the system in arbitrary order.
Processing time required per request varies. Request
scheduling throughout the components of the systems is
nondeterministic, resulting in nondeterministic queuing
of messages. Requiring the order to be preserved gives a
false sense of security. The simple reality is that nondeter-
ministic inputs will lead to nondeterministic outputs.

SoFT STATE/EvENTUAllY CoNSISTENT
Up to this point, the focus has been on trading con-
sistency for availability. The other side of the coin is
understanding the influence that soft state and eventual
consistency has on application design.

As software engineers we tend to look at our systems

Alternate Schema

user

id

name

amt_sold

amt_bought

last_sale

last_purchase

transaction

xid

seller_id

buyer_id

amount

FIG 8

FIG 9

For each message in queue:
 Peek message
 Begin transaction
 Update user set last_purchase=message.trans_date where id=message.buyer_id and last_purchase<message.trans_date;
 End transaction
 If transaction successful
 Remove message from queue
End for

AN ACID ALTERNATIVE

ACM QUEUE May/June 2008 55 more queue: www.acmqueue.com

as closed loops. We think about the predictability of their
behavior in terms of predictable inputs producing predict-
able outputs. This is a necessity for creating correct soft-
ware systems. The good news in many cases is that using
BASE doesn’t change the predictability of a system as a
closed loop, but it does require looking at the behavior in
total.

A simple example can help illustrate the point. Con-
sider a system where users can transfer assets to other
users. The type of asset is irrelevant—it could be money
or objects in a game. For this example, we will assume
that we have decoupled the two operations of taking the
asset from one user and giving it to the other with a mes-
sage queue used to provide the decoupling.

Immediately, this system feels nondeterministic and
problematic. There is a period of time where the asset has

left one user and has not arrived at the other. The size of
this time window can be determined by the messaging
system design. Regardless, there is a lag between the begin
and end states where neither user appears to have the
asset.

If we consider this from the user’s perspective, how-
ever, this lag may not be relevant or even known. Neither
the receiving user nor the sending user may know when
the asset arrived. If the lag between sending and receiving
is a few seconds, it will be invisible or certainly tolerable
to users who are directly communicating about the asset
transfer. In this situation the system behavior is consid-
ered consistent and acceptable to the users, even though

we are relying upon soft state and eventual consistency in
the implementation.

EvENT-DRIvEN ARCHITECTURE
What if you do need to know when state has become
consistent? You may have algorithms that need to be
applied to the state but only when it has reached a con-
sistent state relevant to an incoming request. The simple
approach is to rely on events that are generated as state
becomes consistent.

Continuing with the previous example, what if you
need to notify the user that the asset has arrived? Creat-
ing an event within the transaction that commits the
asset to the receiving user provides a mechanism for per-
forming further processing once a known state has been
reached. EDA (event-driven architecture) can provide
dramatic improvements in scalability and architectural
decoupling. Further discussion about the application of
EDA is beyond the scope of this article.

CoNClUSIoN
Scaling systems to dramatic transaction rates requires a
new way of thinking about managing resources. The tra-
ditional transactional models are problematic when loads
need to be spread across a large number of components.
Decoupling the operations and performing them in turn
provides for improved availability and scale at the cost of
consistency. BASE provides a model for thinking about
this decoupling. Q

RefeRences
1. http://highscalability.com/unorthodox-approach-

database-design-coming-shard.
2. http://citeseer.ist.psu.edu/544596.html.

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

DAN PRITCHETT is a Technical fellow at eBay where he has
been a member of the architecture team for the past four
years. In this role, he interfaces with the strategy, business,
product, and technology teams across eBay marketplaces,
PayPal, and skype. With more than 20 years of experience at
technology companies such as sun Microsystems, Hewlett-
Packard, and silicon Graphics, Pritchett has a depth of
technical experience, ranging from network-level protocols
and operating systems to systems design and software pat-
terns. He has a B.s. in computer science from the University
of Missouri, Rolla.
© 2008 AcM 1542-7730/08/0500 $5.00

The good news is that
using BASE doesn’t change
the predictability of a system as
a closed loop, but it does require
looking at the behavior in total.

