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Web applications have grown in popularity over the past 
decade. Whether you are building an application for end 
users or application developers (i.e., services), your hope 
is most likely that your application will find broad adop-
tion—and with broad adoption will come transactional 
growth. If your application relies upon persistence, then 
data storage will probably become your bottleneck.

There are two strategies for scaling any application. 
The first, and by far the easiest, is vertical scaling: moving 
the application to larger computers. Vertical scaling works 

reasonably well for data but has several limitations. The 
most obvious limitation is outgrowing the capacity of the 
largest system available. Vertical scaling is also expensive, 
as adding transactional capacity usually requires purchas-
ing the next larger system. Vertical scaling often creates 
vendor lock, further adding to costs.

Horizontal scaling offers more flexibility but is also 
considerably more complex. Horizontal data scaling 
can be performed along two vectors. Functional scaling 
involves grouping data by function and spreading func-

In partitioned databases, trading some consistency for availability  
can lead to dramatic improvements in scalability.
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tional groups across databases. Splitting data within func-
tional areas across multiple databases, or sharding,1 adds 
the second dimension to horizontal scaling. The diagram 
in figure 1 illustrates horizontal data-scaling strategies.

As figure 1 illustrates, both approaches to horizontal 
scaling can be applied at once. Users, products, and trans-
actions can be in separate databases. Additionally, each 
functional area can be split across multiple databases for 
transactional capacity. As shown in the diagram, func-
tional areas can be scaled independently of one another.

FUNCTIoNAl PARTITIoNINg
Functional partitioning is important for achieving high 
degrees of scalability. Any good database architecture will 
decompose the schema into tables grouped by function-
ality. Users, products, transactions, and communication 
are examples of functional areas. Leveraging database 
concepts such as foreign keys is a common approach for 
maintaining consistency across these functional areas.

Relying on database constraints to ensure consistency 
across functional groups creates a coupling of the schema 
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to a database deployment strategy. For constraints to be 
applied, the tables must reside on a single database server, 
precluding horizontal scaling as transaction rates grow. In 
many cases, the easiest scale-out opportunity is moving 
functional groups of data onto discrete database servers.

Schemas that can scale to very high transaction 
volumes will place functionally distinct data on different 
database servers. This requires moving data constraints 
out of the database and into the application. This also 
introduces several challenges that are addressed later in 
this article.

CAP THEoREM
Eric Brewer, a professor at the University of California, 
Berkeley, and cofounder and chief scientist at Inktomi, 
made the conjecture that Web services cannot ensure all 
three of the following properties at once (signified by the 
acronym CAP):2

Consistency. The client perceives that a set of operations 
has occurred all at once.

Availability. Every operation must terminate in an 
intended response.
Partition tolerance. Operations will complete, even if 
individual components are unavailable.

Specifically, a Web application can support, at most, 
only two of these properties with any database design. 
Obviously, any horizontal scaling strategy is based on 
data partitioning; therefore, designers are forced to decide 
between consistency and availability.

ACID SolUTIoNS
ACID database transactions greatly simplify the job of the 
application developer. As signified by the acronym, ACID 
transactions provide the following guarantees:
Atomicity. All of the operations in the transaction will 
complete, or none will.
Consistency. The database will be in a consistent state 
when the transaction begins and ends.
Isolation. The transaction will behave as if it is the only 
operation being performed upon the database.
Durability. Upon completion of the transaction, the 
operation will not be reversed.

Database vendors long ago recognized the need for 
partitioning databases and introduced a technique known 
as 2PC (two-phase commit) for providing ACID guaran-
tees across multiple database instances. The protocol is 
broken into two phases:
•  First, the transaction coordinator asks each database 

involved to precommit the operation and indicate 
whether commit is possible. If all databases agree the 
commit can proceed, then phase 2 begins.

•  The transaction coordinator asks each database to com-
mit the data.

If any database vetoes the commit, then all databases 
are asked to roll back their portions of the transaction. 
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What is the shortcoming? We are getting consistency 
across partitions. If Brewer is correct, then we must be 
impacting availability, but how can that be?

The availability of any system is the product of the 
availability of the components required for operation. 
The last part of that statement is the most important. 
Components that may be used by the system but are not 
required do not reduce system availability. A transaction 
involving two databases in a 2PC commit will have the 
availability of the product of the availability of each data-
base. For example, if we assume each database has 99.9 
percent availability, then the availability of the transac-
tion becomes 99.8 percent, or an additional downtime of 
43 minutes per month.

AN ACID AlTERNATIvE
If ACID provides the consistency choice for partitioned 
databases, then how do you achieve availability instead? 
One answer is BASE (basically available, soft state, eventu-
ally consistent).

BASE is diametrically opposed to ACID. Where ACID 
is pessimistic and forces consistency at the end of every 
operation, BASE is optimistic and accepts that the 
database consistency will be in a state of flux. Although 
this sounds impossible to cope with, in reality it is quite 
manageable and leads to levels of scalability that cannot 
be obtained with ACID.

The availability of BASE is achieved through support-
ing partial failures without total system failure. Here 
is a simple example: if users are partitioned across five 
database servers, BASE design encourages crafting opera-
tions in such a way that a user database failure impacts 
only the 20 percent of the users on that particular host. 
There is no magic involved, but this does lead to higher 
perceived availability of the system.

So, now that you have decomposed your data into 
functional groups and partitioned the busiest groups 
across multiple databases, how do you incorporate BASE 
into your application? BASE requires a more in-depth 
analysis of the operations 
within a logical transaction 
than is typically applied to 
ACID. What should you be 
looking for? The follow-
ing sections provide some 
direction.

CoNSISTENCY PATTERNS
Following Brewer’s con-
jecture, if BASE allows for 

availability in a partitioned database, then opportunities 
to relax consistency have to be identified. This is often 
difficult because the tendency of both business stake-
holders and developers is to assert that consistency is 
paramount to the success of the application. Temporal 
inconsistency cannot be hidden from the end user, so 
both engineering and product owners must be involved 
in picking the opportunities for relaxing consistency.

Figure 2 is a simple schema that illustrates consis-
tency considerations for BASE. The user table holds user 

information including the total amount sold and bought. 
These are running totals. The transaction table holds each 
transaction, relating the seller and buyer and the amount 
of the transaction. These are gross oversimplifications of 
real tables but contain the necessary elements for illus-
trating several aspects of consistency.

In general, consistency across functional groups is 
easier to relax than within functional groups. The example 
schema has two functional groups: users and transac-
tions. Each time an item is sold, a row is added to the 
transaction table and the counters for the buyer and seller 

FIG 3 

The tendency of both business 
stakeholders and developers is  
to assert that consistency is paramount  
to the success of the application. 

Begin transaction
  Insert into transaction(xid, seller_id, buyer_id, amount);
  Update user set amt_sold=amt_sold+$amount where id=$seller_id;
  Update user set amt_bought=amount_bought+$amount where id=$buyer_id;
End transaction
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are updated. Using an ACID-style transaction, the SQL 
would be as shown in figure 3.

The total bought and sold columns in the user table 
can be considered a cache of the transaction table. It is 
present for efficiency of the system. Given this, the con-
straint on consistency could be relaxed. The buyer and 
seller expectations can be set so their running balances do 
not reflect the result of a transaction immediately. This is 

not uncommon, and in fact people encounter this delay 
between a transaction and their running balance regularly 
(e.g., ATM withdrawals and cellphone calls).

How the SQL statements are modified to relax con-
sistency depends upon how the running balances are 
defined. If they are simply estimates, meaning that some 
transactions can be missed, the changes are quite simple, 
as shown in figure 4.

We’ve now decoupled the updates to the user and 
transaction tables. Consistency between the tables is not 
guaranteed. In fact, a failure between the first and second 
transaction will result in the user table being permanently 
inconsistent, but if the contract stipulates that the run-
ning totals are estimates, this may be adequate.

What if estimates are not acceptable, though? How 
can you still decouple the user and transaction updates? 

Introducing a persistent 
message queue solves the 
problem. There are several 
choices for implement-
ing persistent messages.  
The most critical factor in 
implementing the queue, 
however,  is ensuring that 
the backing persistence is 
on the same resource as the 
database. This is necessary 
to allow the queue to be 
transactionally committed 
without involving a 2PC. 
Now the SQL operations 
look a bit different, as 
shown in figure 5.

This example takes 
some liberties with syntax 
and oversimplifying the 
logic to illustrate the 
concept. By queuing a 
persistent message within 
the same transaction as 
the insert, the information 
needed to update the run-
ning balances on the user 
has been captured. The 
transaction is contained on 
a single database instance 
and therefore will not 
impact system availability.

A separate message-
processing component will 
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Begin transaction
  Insert into transaction(id, seller_id, buyer_id, amount);
End transaction
Begin transaction
  Update user set amt_sold=amt_sold+$amount where id=$seller_id;
  Update user set amt_bought=amount_bought+$amount
 where id=$buyer_id;
End transaction

Begin transaction
  Insert into transaction(id, seller_id, buyer_id, amount);
  Queue message “update user(“seller”, seller_id, amount)”;
  Queue message “update user(“buyer”, buyer_id, amount)”;
End transaction
For each message in queue
  Begin transaction
    Dequeue message
    If message.balance == “seller”
       Update user set amt_sold=amt_sold + message.amount 
               where id=message.id;
    Else
       Update user set amt_bought=amt_bought + message.amount 
               where id=message.id;
    End if
  End transaction
End for
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dequeue each message and apply the information to the 
user table. The example appears to solve all of the issues, 
but there is a problem. The message persistence is on the 
transaction host to avoid a 2PC during queuing. If the 
message is dequeued inside a transaction involving the 
user host, we still have a 2PC situation.

One solution to the 2PC in the message-processing 
component is to do nothing. By decoupling the update 

into a separate back-end component, you preserve the 
availability of your customer-facing component. The 
lower availability of the message processor may be accept-
able for business requirements.

Suppose, however, that 2PC is simply never acceptable 
in your system. How can this problem be solved? First, 
you need to understand the concept of idempotence. An 
operation is considered idempotent if it can be applied 
one time or multiple times with the same result. Idem-
potent operations are useful in that they permit partial 
failures, as applying them repeatedly does not change the 
final state of the system.

The selected example is problematic when looking 
for idempotence. Update operations are rarely idempo-
tent. The example increments balance columns in place. 
Applying this operation more than once obviously will 
result in an incorrect balance. Even update operations 
that simply set a value, however, are not idempotent 
with regard to order of operations. If the system cannot 
guarantee that updates will be applied in the order they 
are received, the final state of the system will be incorrect. 

More on this later.
In the case of balance 

updates, you need a way to 
track which updates have 
been applied successfully 
and which are still out-
standing. One technique is 
to use a table that records 
the transaction identifiers 
that have been applied.

The table shown in 
figure 6 tracks the transac-
tion ID, which balance has 
been updated, and the user 
ID where the balance was 
applied. Now our sample 
pseudocode is as shown in 
figure 7.

This example depends 
upon being able to peek a 
message in the queue and 
remove it once success-
fully processed. This can 
be done with two indepen-
dent transactions if neces-
sary: one on the message 
queue and one on the user 
database. Queue operations 
are not committed unless 
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Begin transaction
  Insert into transaction(id, seller_id, buyer_id, amount);
  Queue message “update user(“seller”, seller_id, amount)”;
  Queue message “update user(“buyer”, buyer_id, amount)”;
End transaction
For each message in queue
  Peek message
  Begin transaction
    Select count(*) as processed where trans_id=message.trans_id 
       and balance=message.balance and user_id=message.user_id
    If processed == 0
      If message.balance == “seller”
         Update user set amt_sold=amt_sold + message.amount 
                 where id=message.id;
      Else
         Update user set amt_bought=amt_bought + message.amount
                 where id=message.id;
      End if
      Insert into updates_applied
         (message.trans_id, message.balance, message.user_id);
    End if
  End transaction
  If transaction successful
    Remove message from queue
  End if
End for
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database operations successfully commit. The algorithm 
now supports partial failures and still provides transac-
tional guarantees without resorting to 2PC.

There is a simpler technique for assuring idempotent 
updates if the only concern is ordering. Let’s change our 
sample schema just a bit to illustrate the challenge and 
the solution (see figure 8). Suppose you also want to track 
the last date of sale and purchase for the user. You can 
rely on a similar scheme of updating the date with a mes-
sage, but there is one problem.

Suppose two purchases occur within a short time 
window, and our message system doesn’t ensure ordered 
operations. You now have a situation where, depending 

upon which order the messages are processed in, you will 
have an incorrect value for last_purchase. Fortunately, 
this kind of update can be handled with a minor modifi-
cation to the SQL, as illustrated in figure 9.

By simply not allowing the last_purchase time to go 
backward in time, you have made the update operations 
order independent. You can also use this approach to 
protect any update from out-of-order updates. As an alter-
native to using time, you can also try a monotonically 
increasing transaction ID.

oRDERINg oF MESSAgE QUEUES
A short side note on ordered message delivery is relevant. 
Message systems offer the ability to ensure that messages 
are delivered in the order they are received. This can be 
expensive to support and is often unnecessary, and, in 
fact, at times gives a false sense of security.

The examples provided here illustrate how message 
ordering can be relaxed and still provide a consistent 
view of the database, eventually. The overhead required 
to relax the ordering is nominal and in most cases is 
significantly less than enforcing ordering in the message 
system.

Further, a Web application is semantically an event-
driven system regardless of the style of interaction. The 
client requests arrive to the system in arbitrary order. 
Processing time required per request varies. Request 
scheduling throughout the components of the systems is 
nondeterministic, resulting in nondeterministic queuing 
of messages. Requiring the order to be preserved gives a 
false sense of security. The simple reality is that nondeter-
ministic inputs will lead to nondeterministic outputs.

SoFT STATE/EvENTUAllY CoNSISTENT
Up to this point, the focus has been on trading con-
sistency for availability. The other side of the coin is 
understanding the influence that soft state and eventual 
consistency has on application design.

As software engineers we tend to look at our systems 
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For each message in queue:
  Peek message
  Begin transaction
    Update user set last_purchase=message.trans_date where id=message.buyer_id and last_purchase<message.trans_date;
  End transaction
  If transaction successful
    Remove message from queue
End for
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as closed loops. We think about the predictability of their 
behavior in terms of predictable inputs producing predict-
able outputs. This is a necessity for creating correct soft-
ware systems. The good news in many cases is that using 
BASE doesn’t change the predictability of a system as a 
closed loop, but it does require looking at the behavior in 
total.

A simple example can help illustrate the point. Con-
sider a system where users can transfer assets to other 
users. The type of asset is irrelevant—it could be money 
or objects in a game. For this example, we will assume 
that we have decoupled the two operations of taking the 
asset from one user and giving it to the other with a mes-
sage queue used to provide the decoupling.

Immediately, this system feels nondeterministic and 
problematic. There is a period of time where the asset has 

left one user and has not arrived at the other. The size of 
this time window can be determined by the messaging 
system design. Regardless, there is a lag between the begin 
and end states where neither user appears to have the 
asset.

If we consider this from the user’s perspective, how-
ever, this lag may not be relevant or even known. Neither 
the receiving user nor the sending user may know when 
the asset arrived. If the lag between sending and receiving 
is a few seconds, it will be invisible or certainly tolerable 
to users who are directly communicating about the asset 
transfer. In this situation the system behavior is consid-
ered consistent and acceptable to the users, even though 

we are relying upon soft state and eventual consistency in 
the implementation.

EvENT-DRIvEN ARCHITECTURE
What if you do need to know when state has become 
consistent? You may have algorithms that need to be 
applied to the state but only when it has reached a con-
sistent state relevant to an incoming request. The simple 
approach is to rely on events that are generated as state 
becomes consistent.

Continuing with the previous example, what if you 
need to notify the user that the asset has arrived? Creat-
ing an event within the transaction that commits the 
asset to the receiving user provides a mechanism for per-
forming further processing once a known state has been 
reached. EDA (event-driven architecture) can provide 
dramatic improvements in scalability and architectural 
decoupling. Further discussion about the application of 
EDA is beyond the scope of this article.

CoNClUSIoN
Scaling systems to dramatic transaction rates requires a 
new way of thinking about managing resources. The tra-
ditional transactional models are problematic when loads 
need to be spread across a large number of components. 
Decoupling the operations and performing them in turn 
provides for improved availability and scale at the cost of 
consistency. BASE provides a model for thinking about 
this decoupling. Q
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The good news is that  
using BASE doesn’t change  
the predictability of a system as  
a closed loop, but it does require  
looking at the behavior in total. 


