
Copyright © 2003-2005, Peter Seibel

7. Macros: Standard Control Constructs
While many of the ideas that originated in Lisp, from the conditional
expression to garbage
collection, have been incorporated into other
languages, the one language feature that continues
to set Common Lisp
apart is its macro system. Unfortunately, the word macro describes
a lot of
things in computing to which Common Lisp's macros bear only a
vague and metaphorical
similarity. This causes no end of
misunderstanding when Lispers try to explain to non-Lispers
what a
great feature macros are.1 To understand
Lisp's macros, you really need to come at them
fresh, without
preconceptions based on other things that also happen to be called
macros. So let's
start our discussion of Lisp's macros by taking a
step back and looking at various ways
languages support extensibility.

All programmers should be used to the idea that the definition of a
language can include a
standard library of functionality that's
implemented in terms of the "core" language--
functionality that could
have been implemented by any programmer on top of the language if it
hadn't been defined as part of the standard library. C's standard
library, for instance, can be
implemented almost entirely in portable
C. Similarly, most of the ever-growing set of classes and
interfaces
that ship with Java's standard Java Development Kit (JDK) are written
in "pure" Java.

One advantage of defining languages in terms of a core plus a
standard library is it makes them
easier to understand and implement.
But the real benefit is in terms of expressiveness--since
much of
what you think of as "the language" is really just a library--the
language is easy to
extend. If C doesn't have a function to do some
thing or another that you need, you can write that
function, and now
you have a slightly richer version of C. Similarly, in a language
such as Java
or Smalltalk where almost all the interesting parts of
the "language" are defined in terms of
classes, by defining new
classes you extend the language, making it more suited for writing
programs to do whatever it is you're trying to do.

While Common Lisp supports both these methods of extending the
language, macros give
Common Lisp yet another way. As I discussed
briefly in Chapter 4, each macro defines its own
syntax, determining
how the s-expressions it's passed are turned into Lisp forms. With
macros as
part of the core language it's possible to build new
syntax--control constructs such as WHEN,
DOLIST, and
LOOP as well as definitional forms such as DEFUN and
DEFPARAMETER--as part
of the "standard library" rather than
having to hardwire them into the core. This has implications
for how
the language itself is implemented, but as a Lisp programmer you'll
care more that it
gives you another way to extend the language,
making it a better language for expressing
solutions to your
particular programming problems.

Now, it may seem that the benefits of having another way to extend
the language would be easy
to recognize. But for some reason a lot of
folks who haven't actually used Lisp macros--folks
who think nothing
of spending their days creating new functional abstractions or
defining
hierarchies of classes to solve their programming
problems--get spooked by the idea of being
able to define new
syntactic abstractions. The most common cause of macrophobia seems to
be
bad experiences with other "macro" systems. Simple fear of the
unknown no doubt plays a role,
too. To avoid triggering any
macrophobic reactions, I'll ease into the subject by discussing
several of the standard control-construct macros defined by Common
Lisp. These are some of
the things that, if Lisp didn't have macros,
would have to be built into the language core. When
you use them, you
don't have to care that they're implemented as macros, but they
provide a
good example of some of the things you can do with
macros.2 In the
next chapter, I'll show you
how you can define your own macros.

WHEN and UNLESS

As you've already seen, the most basic form of conditional
execution--if x, do y; otherwise do z--
is provided by the
IF special operator, which has this basic form:

(if condition then-form [else-form])

The condition is evaluated and, if its value is non-NIL, the
then-form is evaluated and the
resulting value returned.
Otherwise, the else-form, if any, is evaluated and its value
returned. If
condition is NIL and there's no else-form,
then the IF returns NIL.

(if (> 2 3) "Yup" "Nope") ==> "Nope"

(if (> 2 3) "Yup") ==> NIL

(if (> 3 2) "Yup" "Nope") ==> "Yup"

However, IF isn't actually such a great syntactic construct
because the then-form and else-form
are each restricted to
being a single Lisp form. This means if you want to perform a
sequence of
actions in either clause, you need to wrap them in some
other syntax. For instance, suppose in
the middle of a spam-filtering
program you wanted to both file a message as spam and update
the spam
database when a message is spam. You can't write this:

(if (spam-p current-message)

 (file-in-spam-folder current-message)

 (update-spam-database current-message))

because the call to update-spam-database will be treated as
the else clause, not as part of
the then clause. Another special
operator, PROGN, executes any number of forms in order and
returns the value of the last form. So you could get the desired
behavior by writing the
following:

(if (spam-p current-message)

 (progn

 (file-in-spam-folder current-message)

 (update-spam-database current-message)))

That's not too horrible. But given the number of times you'll likely
have to use this idiom, it's not
hard to imagine that you'd get tired
of it after a while. "Why," you might ask yourself, "doesn't
Lisp
provide a way to say what I really want, namely, 'When x is true,
do this, that, and the other
thing'?" In other words, after a while
you'd notice the pattern of an IF plus a PROGN and wish
for
a way to abstract away the details rather than writing them out every
time.

This is exactly what macros provide. In this case, Common Lisp comes
with a standard macro,
WHEN, which lets you write this:

(when (spam-p current-message)

 (file-in-spam-folder current-message)

 (update-spam-database current-message))

But if it wasn't built into the standard library, you could define
WHEN yourself with a macro such
as this, using the backquote
notation I discussed in Chapter 3:3

(defmacro when (condition &rest body)

 `(if ,condition (progn ,@body)))

A counterpart to the WHEN macro is UNLESS, which reverses
the condition, evaluating its body
forms only if the condition is
false. In other words:

(defmacro unless (condition &rest body)

 `(if (not ,condition) (progn ,@body)))

Admittedly, these are pretty trivial macros. There's no deep black
magic here; they just abstract
away a few language-level bookkeeping
details, allowing you to express your true intent a bit
more clearly.
But their very triviality makes an important point: because the macro
system is
built right into the language, you can write trivial macros
like WHEN and UNLESS that give you
small but real gains in
clarity that are then multiplied by the thousands of times you use
them. In
Chapters 24, 26, and 31 you'll see how macros can also be
used on a larger scale, creating whole
domain-specific embedded
languages. But first let's finish our discussion of the standard
control-
construct macros.

COND

Another time raw IF expressions can get ugly is when you have a
multibranch conditional: if a
do x, else if b do y;
else do z. There's no logical problem writing such a chain of
conditional
expressions with just IF, but it's not pretty.

(if a

 (do-x)

 (if b

 (do-y)

 (do-z)))

And it would be even worse if you needed to include multiple forms in
the then clauses,
requiring PROGNs. So, not surprisingly, Common
Lisp provides a macro for expressing
multibranch conditionals:
COND. This is the basic skeleton:

(cond

 (test-1 form*)

 .

 .

 .

 (test-N form*))

Each element of the body represents one branch of the conditional and
consists of a list
containing a condition form and zero or more forms
to be evaluated if that branch is chosen. The
conditions are
evaluated in the order the branches appear in the body until one of
them evaluates
to true. At that point, the remaining forms in that
branch are evaluated, and the value of the last
form in the branch is
returned as the value of the COND as a whole. If the branch
contains no
forms after the condition, the value of the condition is
returned instead. By convention, the
branch representing the final
else clause in an if/else-if chain is written with a condition of
T.
Any non-NIL value will work, but a T serves as a
useful landmark when reading the code. Thus,
you can write the
previous nested IF expression using COND like this:

(cond (a (do-x))

 (b (do-y))

 (t (do-z)))

AND, OR, and NOT

When writing the conditions in IF, WHEN, UNLESS, and
COND forms, three operators that will
come in handy are the
boolean logic operators, AND, OR, and NOT.

NOT is a function so strictly speaking doesn't belong in this
chapter, but it's closely tied to AND
and OR. It takes a
single argument and inverts its truth value, returning T if the
argument is NIL
and NIL otherwise.

AND and OR, however, are macros. They implement logical
conjunction and disjunction of any
number of subforms and are defined
as macros so they can short-circuit. That is, they evaluate
only
as many of their subforms--in left-to-right order--as necessary to
determine the overall truth
value. Thus, AND stops and returns
NIL as soon as one of its subforms evaluates to NIL. If all
the subforms evaluate to non-NIL, it returns the value of the
last subform. OR, on the other hand,
stops as soon as one of its
subforms evaluates to non-NIL and returns the resulting value. If
none of the subforms evaluate to true, OR returns NIL. Here
are some examples:

(not nil) ==> T

(not (= 1 1)) ==> NIL

(and (= 1 2) (= 3 3)) ==> NIL

(or (= 1 2) (= 3 3)) ==> T

Looping

Control constructs are the other main kind of looping constructs.
Common Lisp's looping
facilities are--in addition to being quite
powerful and flexible--an interesting lesson in the
have-
your-cake-and-eat-it-too style of programming that macros
provide.

As it turns out, none of Lisp's 25 special operators directly support
structured looping. All of
Lisp's looping control constructs are
macros built on top of a pair of special operators that
provide a
primitive goto facility.4 Like many good abstractions,
syntactic or otherwise, Lisp's
looping macros are built as a set of
layered abstractions starting from the base provided by those
two
special operators.

At the bottom (leaving aside the special operators) is a very general
looping construct, DO. While
very powerful, DO suffers, as
do many general-purpose abstractions, from being overkill for
simple
situations. So Lisp also provides two other macros, DOLIST and
DOTIMES, that are less
flexible than DO but provide
convenient support for the common cases of looping over the
elements
of a list and counting loops. While an implementation can implement
these macros
however it wants, they're typically implemented as
macros that expand into an equivalent DO
loop. Thus, DO
provides a basic structured looping construct on top of the
underlying primitives
provided by Common Lisp's special operators,
and DOLIST and DOTIMES provide two easier-
to-use, if less
general, constructs. And, as you'll see in the next chapter, you can
build your own
looping constructs on top of DO for situations
where DOLIST and DOTIMES don't meet your
needs.

Finally, the LOOP macro provides a full-blown mini-language for
expressing looping constructs
in a non-Lispy, English-like (or at
least Algol-like) language. Some Lisp hackers love LOOP;
others
hate it. LOOP's fans like it because it provides a concise way
to express certain commonly
needed looping constructs. Its detractors
dislike it because it's not Lispy enough. But whichever
side one
comes down on, it's a remarkable example of the power of macros to
add new
constructs to the language.

DOLIST and DOTIMES

I'll start with the easy-to-use DOLIST and DOTIMES macros.

DOLIST loops across the items of a list, executing the loop body
with a variable holding the
successive items of the
list.5 This is the
basic skeleton (leaving out some of the more esoteric
options):

(dolist (var list-form)

 body-form*)

When the loop starts, the list-form is evaluated once to produce
a list. Then the body of the loop
is evaluated once for each item in
the list with the variable var holding the value of the item. For
instance:

CL-USER> (dolist (x '(1 2 3)) (print x))

1

2

3

NIL

Used this way, the DOLIST form as a whole evaluates to NIL.

If you want to break out of a DOLIST loop before the end of the
list, you can use RETURN.

CL-USER> (dolist (x '(1 2 3)) (print x) (if (evenp x) (return)))

1

2

NIL

DOTIMES is the high-level looping construct for counting loops.
The basic template is much the
same as DOLIST's.

(dotimes (var count-form)

 body-form*)

The count-form must evaluate to an integer. Each time through the
loop var holds successive
integers from 0 to one less than that
number. For instance:

CL-USER> (dotimes (i 4) (print i))

0

1

2

3

NIL

As with DOLIST, you can use RETURN to break out of the loop
early.

Because the body of both DOLIST and DOTIMES loops can
contain any kind of expressions,
you can also nest loops. For
example, to print out the times tables from 1 � 1 = 1 to
20 � 20 = 400, you can write this pair of nested DOTIMES
loops:

(dotimes (x 20)

 (dotimes (y 20)

 (format t "~3d " (* (1+ x) (1+ y))))

 (format t "~%"))

DO

While DOLIST and DOTIMES are convenient and easy to use,
they aren't flexible enough to use
for all loops. For instance, what
if you want to step multiple variables in parallel? Or use an
arbitrary expression to test for the end of the loop? If neither
DOLIST nor DOTIMES meet your
needs, you still have access
to the more general DO loop.

Where DOLIST and DOTIMES provide only one loop variable,
DO lets you bind any number of
variables and gives you complete
control over how they change on each step through the loop.
You also
get to define the test that determines when to end the loop and can
provide a form to
evaluate at the end of the loop to generate a
return value for the DO expression as a whole. The
basic
template looks like this:

(do (variable-definition*)

 (end-test-form result-form*)

 statement*)

Each variable-definition introduces a variable that will be in
scope in the body of the loop. The
full form of a single variable
definition is a list containing three elements.

(var init-form step-form)

The init-form will be evaluated at the beginning of the loop and
the resulting values bound to the
variable var. Before each
subsequent iteration of the loop, the step-form will be evaluated
and
the new value assigned to var. The step-form is optional;
if it's left out, the variable will keep its
value from iteration to
iteration unless you explicitly assign it a new value in the loop
body. As
with the variable definitions in a LET, if the
init-form is left out, the variable is bound to NIL.
Also as
with LET, you can use a plain variable name as shorthand for a
list containing just the
name.

At the beginning of each iteration, after all the loop variables have
been given their new values,
the end-test-form is evaluated. As
long as it evaluates to NIL, the iteration proceeds, evaluating
the statements in order.

When the end-test-form evaluates to true, the result-forms
are evaluated, and the value of the last
result form is returned as
the value of the DO expression.

At each step of the iteration the step forms for all the variables
are evaluated before assigning
any of the values to the variables.
This means you can refer to any of the other loop variables in
the
step forms.6 That is, in a loop like this:

(do ((n 0 (1+ n))

 (cur 0 next)

 (next 1 (+ cur next)))

 ((= 10 n) cur))

the step forms (1+ n), next, and (+ cur next)
are all evaluated using the old values of
n, cur, and
next. Only after all the step forms have been evaluated are
the variables given
their new values. (Mathematically inclined
readers may notice that this is a particularly efficient
way of
computing the eleventh Fibonacci number.)

This example also illustrates another characteristic of
DO--because you can step multiple
variables, you often don't
need a body at all. Other times, you may leave out the result form,
particularly if you're just using the loop as a control construct.
This flexibility, however, is the
reason that DO expressions can
be a bit cryptic. Where exactly do all the parentheses go? The
best
way to understand a DO expression is to keep in mind the basic
template.

(do (variable-definition*)

 (end-test-form result-form*)

 statement*)

The six parentheses in that template are the only ones required by
the DO itself. You need one
pair to enclose the variable
declarations, one pair to enclose the end test and result forms, and
one pair to enclose the whole expression. Other forms within the
DO may require their own

parentheses--variable definitions are
usually lists, for instance. And the test form is often a
function
call. But the skeleton of a DO loop will always be the same.
Here are some example DO
loops with the skeleton in bold:

(do ((i 0 (1+ i)))

 ((>= i 4))

 (print i))

Notice that the result form has been omitted. This is, however, not a
particularly idiomatic use of
DO, as this loop is much more
simply written using DOTIMES.7

(dotimes (i 4) (print i))

As another example, here's the bodiless Fibonacci-computing loop:

(do ((n 0 (1+ n))

 (cur 0 next)

 (next 1 (+ cur next)))

 ((= 10 n) cur))

Finally, the next loop demonstrates a DO loop that binds no
variables. It loops while the current
time is less than the value of
a global variable, printing "Waiting" once a minute. Note that even
with no loop variables, you still need the empty variables list.

(do ()

 ((> (get-universal-time) *some-future-date*))

 (format t "Waiting~%")

 (sleep 60))

The Mighty LOOP

For the simple cases you have DOLIST and DOTIMES. And if
they don't suit your needs, you
can fall back on the completely
general DO. What more could you want?

Well, it turns out a handful of looping idioms come up over and over
again, such as looping over
various data structures: lists, vectors,
hash tables, and packages. Or accumulating values in
various ways
while looping: collecting, counting, summing, minimizing, or
maximizing. If you
need a loop to do one of these things (or several
at the same time), the LOOP macro may give
you an easier way to
express it.

The LOOP macro actually comes in two flavors--simple and
extended. The simple version is as
simple as can be--an infinite
loop that doesn't bind any variables. The skeleton looks like this:

(loop

 body-form*)

The forms in body are evaluated each time through the loop, which
will iterate forever unless
you use RETURN to break out. For
example, you could write the previous DO loop with a simple
LOOP.

(loop

 (when (> (get-universal-time) *some-future-date*)

 (return))

 (format t "Waiting~%")

 (sleep 60))

The extended LOOP is quite a different beast. It's distinguished
by the use of certain loop
keywords that implement a
special-purpose language for expressing looping idioms. It's worth
noting that not all Lispers love the extended LOOP language. At
least one of Common Lisp's
original designers hated it. LOOP's
detractors complain that its syntax is totally un-Lispy (in
other
words, not enough parentheses). LOOP's fans counter that that's
the point: complicated
looping constructs are hard enough to
understand without wrapping them up in DO's cryptic
syntax. It's
better, they say, to have a slightly more verbose syntax that gives
you some clues
what the heck is going on.

For instance, here's an idiomatic DO loop that collects the
numbers from 1 to 10 into a list:

(do ((nums nil) (i 1 (1+ i)))

 ((> i 10) (nreverse nums))

 (push i nums)) ==> (1 2 3 4 5 6 7 8 9 10)

A seasoned Lisper won't have any trouble understanding that
code--it's just a matter of
understanding the basic form of a DO
loop and recognizing the PUSH/NREVERSE idiom for
building
up a list. But it's not exactly transparent. The LOOP version,
on the other hand, is almost
understandable as an English sentence.

(loop for i from 1 to 10 collecting i) ==> (1 2 3 4 5 6 7 8 9 10)

The following are some more examples of simple uses of LOOP.
This sums the first ten squares:

(loop for x from 1 to 10 summing (expt x 2)) ==> 385

This counts the number of vowels in a string:

(loop for x across "the quick brown fox jumps over the lazy dog"

 counting (find x "aeiou")) ==> 11

This computes the eleventh Fibonacci number, similar to the DO
loop used earlier:

(loop for i below 10

 and a = 0 then b

 and b = 1 then (+ b a)

 finally (return a))

The symbols across, and, below,
collecting, counting, finally, for,
from,
summing, then, and to are some of
the loop keywords whose presence identifies these as
instances of the
extended LOOP. 8

I'll save the details of LOOP for Chapter 22, but it's worth
noting here as another example of the
way macros can be used to
extend the base language. While LOOP provides its own language
for

expressing looping constructs, it doesn't cut you off from the
rest of Lisp. The loop keywords are
parsed according to loop's
grammar, but the rest of the code in a LOOP is regular Lisp
code.

And it's worth pointing out one more time that while the LOOP
macro is quite a bit more
complicated than macros such as WHEN
or UNLESS, it is just another macro. If it hadn't been
included in the standard library, you could implement it yourself or
get a third-party library that
does.

With that I'll conclude our tour of the basic control-construct
macros. Now you're ready to take a
closer look at how to define your
own macros.

1To see what this misunderstanding looks
like, find any longish Usenet thread cross-posted between
comp.lang.lisp and any other
comp.lang.* group with macro in the
subject. A rough paraphrase goes like this:

Lispnik: "Lisp is the best because of its macros!";

Othernik: "You think Lisp is good because of macros?! But macros
are horrible and evil; Lisp must be horrible and evil."

2Another important class of language constructs that are
defined using macros are all the definitional constructs such as
DEFUN,
DEFPARAMETER, DEFVAR, and others. In Chapter 24
you'll define your own definitional macros that will allow you to
concisely
write code for reading and writing binary data.

3You can't actually feed this
definition to Lisp because it's illegal to redefine names in the
COMMON-LISP package where WHEN
comes from. If you really
want to try writing such a macro, you'd need to change the name to
something else, such as my-when.

4The special operators, if you must
know, are TAGBODY and GO. There's no need to discuss them
now, but I'll cover them in
Chapter 20.

5DOLIST is similar to Perl's foreach or
Python's for. Java added a similar kind of loop construct with
the "enhanced" for
loop in Java 1.5, as part of JSR-201.
Notice what a difference macros make. A Lisp programmer who notices a
common pattern in
their code can write a macro to give themselves a
source-level abstraction of that pattern. A Java programmer who
notices the
same pattern has to convince Sun that this particular
abstraction is worth adding to the language. Then Sun has to publish
a JSR
and convene an industry-wide "expert group" to hash everything
out. That process--according to Sun--takes an average of 18
months.
After that, the compiler writers all have to go upgrade their
compilers to support the new feature. And even once the Java
programmer's favorite compiler supports the new version of Java, they
probably still can't use the new feature until they're allowed
to
break source compatibility with older versions of Java. So an
annoyance that Common Lisp programmers can resolve for
themselves
within five minutes plagues Java programmers for years.

6A variant of DO, DO*, assigns each
variable its value before evaluating the step form for subsequent
variables. For more details,
consult your favorite Common Lisp
reference.

7The DOTIMES is also
preferred because the macro expansion will likely include
declarations that allow the compiler to generate
more efficient
code.

8Loop keywords is a bit of a misnomer
since they aren't keyword symbols. In fact, LOOP doesn't care
what package the symbols
are from. When the LOOP macro parses
its body, it considers any appropriately named symbols equivalent.
You could even use
true keywords if you wanted--:for,
:across, and so on--because they also have the correct name.
But most folks just use plain
symbols. Because the loop keywords are
used only as syntactic markers, it doesn't matter if they're used for
other purposes--as
function or variable names.

