
Copyright © 2003-2005, Peter Seibel

7. Macros: Standard Control Constructs
While many of the ideas that originated in Lisp, from the conditional expression to garbage
collection, have been incorporated into other languages, the one language feature that continues
to set Common Lisp apart is its macro system. Unfortunately, the word macro describes a lot of
things in computing to which Common Lisp's macros bear only a vague and metaphorical
similarity. This causes no end of misunderstanding when Lispers try to explain to non-Lispers
what a great feature macros are.1 To understand Lisp's macros, you really need to come at them
fresh, without preconceptions based on other things that also happen to be called macros. So let's
start our discussion of Lisp's macros by taking a step back and looking at various ways
languages support extensibility.

All programmers should be used to the idea that the definition of a language can include a
standard library of functionality that's implemented in terms of the "core" language--
functionality that could have been implemented by any programmer on top of the language if it
hadn't been defined as part of the standard library. C's standard library, for instance, can be
implemented almost entirely in portable C. Similarly, most of the ever-growing set of classes and
interfaces that ship with Java's standard Java Development Kit (JDK) are written in "pure" Java.

One advantage of defining languages in terms of a core plus a standard library is it makes them
easier to understand and implement. But the real benefit is in terms of expressiveness--since
much of what you think of as "the language" is really just a library--the language is easy to
extend. If C doesn't have a function to do some thing or another that you need, you can write that
function, and now you have a slightly richer version of C. Similarly, in a language such as Java
or Smalltalk where almost all the interesting parts of the "language" are defined in terms of
classes, by defining new classes you extend the language, making it more suited for writing
programs to do whatever it is you're trying to do.

While Common Lisp supports both these methods of extending the language, macros give
Common Lisp yet another way. As I discussed briefly in Chapter 4, each macro defines its own
syntax, determining how the s-expressions it's passed are turned into Lisp forms. With macros as
part of the core language it's possible to build new syntax--control constructs such as WHEN,
DOLIST, and LOOP as well as definitional forms such as DEFUN and DEFPARAMETER--as part
of the "standard library" rather than having to hardwire them into the core. This has implications
for how the language itself is implemented, but as a Lisp programmer you'll care more that it
gives you another way to extend the language, making it a better language for expressing
solutions to your particular programming problems.

Now, it may seem that the benefits of having another way to extend the language would be easy
to recognize. But for some reason a lot of folks who haven't actually used Lisp macros--folks
who think nothing of spending their days creating new functional abstractions or defining
hierarchies of classes to solve their programming problems--get spooked by the idea of being
able to define new syntactic abstractions. The most common cause of macrophobia seems to be
bad experiences with other "macro" systems. Simple fear of the unknown no doubt plays a role,
too. To avoid triggering any macrophobic reactions, I'll ease into the subject by discussing
several of the standard control-construct macros defined by Common Lisp. These are some of
the things that, if Lisp didn't have macros, would have to be built into the language core. When
you use them, you don't have to care that they're implemented as macros, but they provide a
good example of some of the things you can do with macros.2 In the next chapter, I'll show you
how you can define your own macros.

WHEN and UNLESS

As you've already seen, the most basic form of conditional execution--if x, do y; otherwise do z--
is provided by the IF special operator, which has this basic form:

(if condition then-form [else-form])

The condition is evaluated and, if its value is non-NIL, the then-form is evaluated and the
resulting value returned. Otherwise, the else-form, if any, is evaluated and its value returned. If
condition is NIL and there's no else-form, then the IF returns NIL.

(if (> 2 3) "Yup" "Nope") ==> "Nope"
(if (> 2 3) "Yup") ==> NIL
(if (> 3 2) "Yup" "Nope") ==> "Yup"

However, IF isn't actually such a great syntactic construct because the then-form and else-form
are each restricted to being a single Lisp form. This means if you want to perform a sequence of
actions in either clause, you need to wrap them in some other syntax. For instance, suppose in
the middle of a spam-filtering program you wanted to both file a message as spam and update
the spam database when a message is spam. You can't write this:

(if (spam-p current-message)
 (file-in-spam-folder current-message)
 (update-spam-database current-message))

because the call to update-spam-database will be treated as the else clause, not as part of
the then clause. Another special operator, PROGN, executes any number of forms in order and
returns the value of the last form. So you could get the desired behavior by writing the
following:

(if (spam-p current-message)
 (progn
 (file-in-spam-folder current-message)
 (update-spam-database current-message)))

That's not too horrible. But given the number of times you'll likely have to use this idiom, it's not
hard to imagine that you'd get tired of it after a while. "Why," you might ask yourself, "doesn't
Lisp provide a way to say what I really want, namely, 'When x is true, do this, that, and the other
thing'?" In other words, after a while you'd notice the pattern of an IF plus a PROGN and wish
for a way to abstract away the details rather than writing them out every time.

This is exactly what macros provide. In this case, Common Lisp comes with a standard macro,
WHEN, which lets you write this:

(when (spam-p current-message)
 (file-in-spam-folder current-message)
 (update-spam-database current-message))

But if it wasn't built into the standard library, you could define WHEN yourself with a macro such
as this, using the backquote notation I discussed in Chapter 3:3

(defmacro when (condition &rest body)
 `(if ,condition (progn ,@body)))

A counterpart to the WHEN macro is UNLESS, which reverses the condition, evaluating its body
forms only if the condition is false. In other words:

(defmacro unless (condition &rest body)
 `(if (not ,condition) (progn ,@body)))

Admittedly, these are pretty trivial macros. There's no deep black magic here; they just abstract
away a few language-level bookkeeping details, allowing you to express your true intent a bit
more clearly. But their very triviality makes an important point: because the macro system is
built right into the language, you can write trivial macros like WHEN and UNLESS that give you
small but real gains in clarity that are then multiplied by the thousands of times you use them. In
Chapters 24, 26, and 31 you'll see how macros can also be used on a larger scale, creating whole
domain-specific embedded languages. But first let's finish our discussion of the standard control-
construct macros.

COND

Another time raw IF expressions can get ugly is when you have a multibranch conditional: if a
do x, else if b do y; else do z. There's no logical problem writing such a chain of conditional
expressions with just IF, but it's not pretty.

(if a
 (do-x)
 (if b
 (do-y)
 (do-z)))

And it would be even worse if you needed to include multiple forms in the then clauses,
requiring PROGNs. So, not surprisingly, Common Lisp provides a macro for expressing
multibranch conditionals: COND. This is the basic skeleton:

(cond
 (test-1 form*)
 .
 .
 .
 (test-N form*))

Each element of the body represents one branch of the conditional and consists of a list
containing a condition form and zero or more forms to be evaluated if that branch is chosen. The
conditions are evaluated in the order the branches appear in the body until one of them evaluates
to true. At that point, the remaining forms in that branch are evaluated, and the value of the last
form in the branch is returned as the value of the COND as a whole. If the branch contains no
forms after the condition, the value of the condition is returned instead. By convention, the
branch representing the final else clause in an if/else-if chain is written with a condition of T.
Any non-NIL value will work, but a T serves as a useful landmark when reading the code. Thus,
you can write the previous nested IF expression using COND like this:

(cond (a (do-x))
 (b (do-y))
 (t (do-z)))

AND, OR, and NOT

When writing the conditions in IF, WHEN, UNLESS, and COND forms, three operators that will
come in handy are the boolean logic operators, AND, OR, and NOT.

NOT is a function so strictly speaking doesn't belong in this chapter, but it's closely tied to AND
and OR. It takes a single argument and inverts its truth value, returning T if the argument is NIL
and NIL otherwise.

AND and OR, however, are macros. They implement logical conjunction and disjunction of any
number of subforms and are defined as macros so they can short-circuit. That is, they evaluate
only as many of their subforms--in left-to-right order--as necessary to determine the overall truth
value. Thus, AND stops and returns NIL as soon as one of its subforms evaluates to NIL. If all
the subforms evaluate to non-NIL, it returns the value of the last subform. OR, on the other hand,
stops as soon as one of its subforms evaluates to non-NIL and returns the resulting value. If
none of the subforms evaluate to true, OR returns NIL. Here are some examples:

(not nil) ==> T
(not (= 1 1)) ==> NIL
(and (= 1 2) (= 3 3)) ==> NIL
(or (= 1 2) (= 3 3)) ==> T

Looping

Control constructs are the other main kind of looping constructs. Common Lisp's looping
facilities are--in addition to being quite powerful and flexible--an interesting lesson in the have-
your-cake-and-eat-it-too style of programming that macros provide.

As it turns out, none of Lisp's 25 special operators directly support structured looping. All of
Lisp's looping control constructs are macros built on top of a pair of special operators that
provide a primitive goto facility.4 Like many good abstractions, syntactic or otherwise, Lisp's
looping macros are built as a set of layered abstractions starting from the base provided by those
two special operators.

At the bottom (leaving aside the special operators) is a very general looping construct, DO. While
very powerful, DO suffers, as do many general-purpose abstractions, from being overkill for
simple situations. So Lisp also provides two other macros, DOLIST and DOTIMES, that are less
flexible than DO but provide convenient support for the common cases of looping over the
elements of a list and counting loops. While an implementation can implement these macros
however it wants, they're typically implemented as macros that expand into an equivalent DO
loop. Thus, DO provides a basic structured looping construct on top of the underlying primitives
provided by Common Lisp's special operators, and DOLIST and DOTIMES provide two easier-
to-use, if less general, constructs. And, as you'll see in the next chapter, you can build your own
looping constructs on top of DO for situations where DOLIST and DOTIMES don't meet your
needs.

Finally, the LOOP macro provides a full-blown mini-language for expressing looping constructs
in a non-Lispy, English-like (or at least Algol-like) language. Some Lisp hackers love LOOP;
others hate it. LOOP's fans like it because it provides a concise way to express certain commonly
needed looping constructs. Its detractors dislike it because it's not Lispy enough. But whichever
side one comes down on, it's a remarkable example of the power of macros to add new
constructs to the language.

DOLIST and DOTIMES

I'll start with the easy-to-use DOLIST and DOTIMES macros.

DOLIST loops across the items of a list, executing the loop body with a variable holding the
successive items of the list.5 This is the basic skeleton (leaving out some of the more esoteric
options):

(dolist (var list-form)
 body-form*)

When the loop starts, the list-form is evaluated once to produce a list. Then the body of the loop
is evaluated once for each item in the list with the variable var holding the value of the item. For
instance:

CL-USER> (dolist (x '(1 2 3)) (print x))
1
2
3
NIL

Used this way, the DOLIST form as a whole evaluates to NIL.

If you want to break out of a DOLIST loop before the end of the list, you can use RETURN.

CL-USER> (dolist (x '(1 2 3)) (print x) (if (evenp x) (return)))
1
2
NIL

DOTIMES is the high-level looping construct for counting loops. The basic template is much the
same as DOLIST's.

(dotimes (var count-form)
 body-form*)

The count-form must evaluate to an integer. Each time through the loop var holds successive
integers from 0 to one less than that number. For instance:

CL-USER> (dotimes (i 4) (print i))
0
1
2
3
NIL

As with DOLIST, you can use RETURN to break out of the loop early.

Because the body of both DOLIST and DOTIMES loops can contain any kind of expressions,
you can also nest loops. For example, to print out the times tables from 1 � 1 = 1 to
20 � 20 = 400, you can write this pair of nested DOTIMES loops:

(dotimes (x 20)
 (dotimes (y 20)
 (format t "~3d " (* (1+ x) (1+ y))))
 (format t "~%"))

DO

While DOLIST and DOTIMES are convenient and easy to use, they aren't flexible enough to use
for all loops. For instance, what if you want to step multiple variables in parallel? Or use an
arbitrary expression to test for the end of the loop? If neither DOLIST nor DOTIMES meet your
needs, you still have access to the more general DO loop.

Where DOLIST and DOTIMES provide only one loop variable, DO lets you bind any number of
variables and gives you complete control over how they change on each step through the loop.
You also get to define the test that determines when to end the loop and can provide a form to
evaluate at the end of the loop to generate a return value for the DO expression as a whole. The
basic template looks like this:

(do (variable-definition*)
 (end-test-form result-form*)
 statement*)

Each variable-definition introduces a variable that will be in scope in the body of the loop. The
full form of a single variable definition is a list containing three elements.

(var init-form step-form)

The init-form will be evaluated at the beginning of the loop and the resulting values bound to the
variable var. Before each subsequent iteration of the loop, the step-form will be evaluated and
the new value assigned to var. The step-form is optional; if it's left out, the variable will keep its
value from iteration to iteration unless you explicitly assign it a new value in the loop body. As
with the variable definitions in a LET, if the init-form is left out, the variable is bound to NIL.
Also as with LET, you can use a plain variable name as shorthand for a list containing just the
name.

At the beginning of each iteration, after all the loop variables have been given their new values,
the end-test-form is evaluated. As long as it evaluates to NIL, the iteration proceeds, evaluating
the statements in order.

When the end-test-form evaluates to true, the result-forms are evaluated, and the value of the last
result form is returned as the value of the DO expression.

At each step of the iteration the step forms for all the variables are evaluated before assigning
any of the values to the variables. This means you can refer to any of the other loop variables in
the step forms.6 That is, in a loop like this:

(do ((n 0 (1+ n))
 (cur 0 next)
 (next 1 (+ cur next)))
 ((= 10 n) cur))

the step forms (1+ n), next, and (+ cur next) are all evaluated using the old values of
n, cur, and next. Only after all the step forms have been evaluated are the variables given
their new values. (Mathematically inclined readers may notice that this is a particularly efficient
way of computing the eleventh Fibonacci number.)

This example also illustrates another characteristic of DO--because you can step multiple
variables, you often don't need a body at all. Other times, you may leave out the result form,
particularly if you're just using the loop as a control construct. This flexibility, however, is the
reason that DO expressions can be a bit cryptic. Where exactly do all the parentheses go? The
best way to understand a DO expression is to keep in mind the basic template.

(do (variable-definition*)
 (end-test-form result-form*)
 statement*)

The six parentheses in that template are the only ones required by the DO itself. You need one
pair to enclose the variable declarations, one pair to enclose the end test and result forms, and
one pair to enclose the whole expression. Other forms within the DO may require their own

parentheses--variable definitions are usually lists, for instance. And the test form is often a
function call. But the skeleton of a DO loop will always be the same. Here are some example DO
loops with the skeleton in bold:

(do ((i 0 (1+ i)))
 ((>= i 4))
 (print i))

Notice that the result form has been omitted. This is, however, not a particularly idiomatic use of
DO, as this loop is much more simply written using DOTIMES.7

(dotimes (i 4) (print i))

As another example, here's the bodiless Fibonacci-computing loop:

(do ((n 0 (1+ n))
 (cur 0 next)
 (next 1 (+ cur next)))
 ((= 10 n) cur))

Finally, the next loop demonstrates a DO loop that binds no variables. It loops while the current
time is less than the value of a global variable, printing "Waiting" once a minute. Note that even
with no loop variables, you still need the empty variables list.

(do ()
 ((> (get-universal-time) *some-future-date*))
 (format t "Waiting~%")
 (sleep 60))

The Mighty LOOP

For the simple cases you have DOLIST and DOTIMES. And if they don't suit your needs, you
can fall back on the completely general DO. What more could you want?

Well, it turns out a handful of looping idioms come up over and over again, such as looping over
various data structures: lists, vectors, hash tables, and packages. Or accumulating values in
various ways while looping: collecting, counting, summing, minimizing, or maximizing. If you
need a loop to do one of these things (or several at the same time), the LOOP macro may give
you an easier way to express it.

The LOOP macro actually comes in two flavors--simple and extended. The simple version is as
simple as can be--an infinite loop that doesn't bind any variables. The skeleton looks like this:

(loop
 body-form*)

The forms in body are evaluated each time through the loop, which will iterate forever unless
you use RETURN to break out. For example, you could write the previous DO loop with a simple
LOOP.

(loop
 (when (> (get-universal-time) *some-future-date*)
 (return))
 (format t "Waiting~%")
 (sleep 60))

The extended LOOP is quite a different beast. It's distinguished by the use of certain loop
keywords that implement a special-purpose language for expressing looping idioms. It's worth
noting that not all Lispers love the extended LOOP language. At least one of Common Lisp's
original designers hated it. LOOP's detractors complain that its syntax is totally un-Lispy (in
other words, not enough parentheses). LOOP's fans counter that that's the point: complicated
looping constructs are hard enough to understand without wrapping them up in DO's cryptic
syntax. It's better, they say, to have a slightly more verbose syntax that gives you some clues
what the heck is going on.

For instance, here's an idiomatic DO loop that collects the numbers from 1 to 10 into a list:

(do ((nums nil) (i 1 (1+ i)))
 ((> i 10) (nreverse nums))
 (push i nums)) ==> (1 2 3 4 5 6 7 8 9 10)

A seasoned Lisper won't have any trouble understanding that code--it's just a matter of
understanding the basic form of a DO loop and recognizing the PUSH/NREVERSE idiom for
building up a list. But it's not exactly transparent. The LOOP version, on the other hand, is almost
understandable as an English sentence.

(loop for i from 1 to 10 collecting i) ==> (1 2 3 4 5 6 7 8 9 10)

The following are some more examples of simple uses of LOOP. This sums the first ten squares:

(loop for x from 1 to 10 summing (expt x 2)) ==> 385

This counts the number of vowels in a string:

(loop for x across "the quick brown fox jumps over the lazy dog"
 counting (find x "aeiou")) ==> 11

This computes the eleventh Fibonacci number, similar to the DO loop used earlier:

(loop for i below 10
 and a = 0 then b
 and b = 1 then (+ b a)
 finally (return a))

The symbols across, and, below, collecting, counting, finally, for, from,
summing, then, and to are some of the loop keywords whose presence identifies these as
instances of the extended LOOP. 8

I'll save the details of LOOP for Chapter 22, but it's worth noting here as another example of the
way macros can be used to extend the base language. While LOOP provides its own language for

expressing looping constructs, it doesn't cut you off from the rest of Lisp. The loop keywords are
parsed according to loop's grammar, but the rest of the code in a LOOP is regular Lisp code.

And it's worth pointing out one more time that while the LOOP macro is quite a bit more
complicated than macros such as WHEN or UNLESS, it is just another macro. If it hadn't been
included in the standard library, you could implement it yourself or get a third-party library that
does.

With that I'll conclude our tour of the basic control-construct macros. Now you're ready to take a
closer look at how to define your own macros.

1To see what this misunderstanding looks like, find any longish Usenet thread cross-posted between comp.lang.lisp and any other
comp.lang.* group with macro in the subject. A rough paraphrase goes like this:

Lispnik: "Lisp is the best because of its macros!";

Othernik: "You think Lisp is good because of macros?! But macros are horrible and evil; Lisp must be horrible and evil."

2Another important class of language constructs that are defined using macros are all the definitional constructs such as DEFUN,
DEFPARAMETER, DEFVAR, and others. In Chapter 24 you'll define your own definitional macros that will allow you to concisely
write code for reading and writing binary data.

3You can't actually feed this definition to Lisp because it's illegal to redefine names in the COMMON-LISP package where WHEN
comes from. If you really want to try writing such a macro, you'd need to change the name to something else, such as my-when.

4The special operators, if you must know, are TAGBODY and GO. There's no need to discuss them now, but I'll cover them in
Chapter 20.

5DOLIST is similar to Perl's foreach or Python's for. Java added a similar kind of loop construct with the "enhanced" for
loop in Java 1.5, as part of JSR-201. Notice what a difference macros make. A Lisp programmer who notices a common pattern in
their code can write a macro to give themselves a source-level abstraction of that pattern. A Java programmer who notices the
same pattern has to convince Sun that this particular abstraction is worth adding to the language. Then Sun has to publish a JSR
and convene an industry-wide "expert group" to hash everything out. That process--according to Sun--takes an average of 18
months. After that, the compiler writers all have to go upgrade their compilers to support the new feature. And even once the Java
programmer's favorite compiler supports the new version of Java, they probably still can't use the new feature until they're allowed
to break source compatibility with older versions of Java. So an annoyance that Common Lisp programmers can resolve for
themselves within five minutes plagues Java programmers for years.

6A variant of DO, DO*, assigns each variable its value before evaluating the step form for subsequent variables. For more details,
consult your favorite Common Lisp reference.

7The DOTIMES is also preferred because the macro expansion will likely include declarations that allow the compiler to generate
more efficient code.

8Loop keywords is a bit of a misnomer since they aren't keyword symbols. In fact, LOOP doesn't care what package the symbols
are from. When the LOOP macro parses its body, it considers any appropriately named symbols equivalent. You could even use
true keywords if you wanted--:for, :across, and so on--because they also have the correct name. But most folks just use plain
symbols. Because the loop keywords are used only as syntactic markers, it doesn't matter if they're used for other purposes--as
function or variable names.

