
Copyright © 2003-2005, Peter Seibel

5. Functions
After the rules of syntax and semantics, the three most basic
components of all Lisp programs
are functions, variables and macros.
You used all three while building the database in Chapter 3,
but I
glossed over a lot of the details of how they work and how to best
use them. I'll devote the
next few chapters to these three topics,
starting with functions, which--like their counterparts in
other
languages--provide the basic mechanism for abstracting, well,
functionality.

The bulk of Lisp itself consists of functions. More than three
quarters of the names defined in the
language standard name
functions. All the built-in data types are defined purely in terms of
what
functions operate on them. Even Lisp's powerful object system is
built upon a conceptual
extension to functions, generic functions,
which I'll cover in Chapter 16.

And, despite the importance of macros to The Lisp Way, in the end all
real functionality is
provided by functions. Macros run at compile
time, so the code they generate--the code that will
actually make up
the program after all the macros are expanded--will consist entirely
of calls to
functions and special operators. Not to mention, macros
themselves are also functions, albeit
functions that are used to
generate code rather than to perform the actions of the
program.1

Defining New Functions
Normally functions are defined using the DEFUN macro. The basic
skeleton of a DEFUN looks
like this:

(defun name (parameter*)

 "Optional documentation string."

 body-form*)

Any symbol can be used as a function name.2 Usually function names contain only
alphabetic
characters and hyphens, but other characters are allowed
and are used in certain naming
conventions. For instance, functions
that convert one kind of value to another sometimes use ->
in
the name. For example, a function to convert strings to widgets might
be called
string->widget. The most important naming convention
is the one mentioned in Chapter 2,
which is that you construct
compound names with hyphens rather than underscores or inner
caps.
Thus, frob-widget is better Lisp style than either
frob_widget or frobWidget.

A function's parameter list defines the variables that will be used
to hold the arguments passed to
the function when it's
called.3 If the function takes no
arguments, the list is empty, written as ().

Different flavors
of parameters handle required, optional, multiple, and keyword
arguments. I'll
discuss the details in the next section.

If a string literal follows the parameter list, it's a documentation
string that should describe the
purpose of the function. When the
function is defined, the documentation string will be
associated with
the name of the function and can later be obtained using the
DOCUMENTATION
function.4

Finally, the body of a DEFUN consists of any number of Lisp
expressions. They will be
evaluated in order when the function is
called and the value of the last expression is returned as
the value
of the function. Or the RETURN-FROM special operator can be used
to return
immediately from anywhere in a function, as I'll discuss in
a moment.

In Chapter 2 we wrote a hello-world function, which looked
like this:

(defun hello-world () (format t "hello, world"))

You can now analyze the parts of this function. Its name is
hello-world, its parameter list is
empty so it takes no
arguments, it has no documentation string, and its body consists of
one
expression.

(format t "hello, world")

The following is a slightly more complex function:

(defun verbose-sum (x y)

 "Sum any two numbers after printing a message."

 (format t "Summing ~d and ~d.~%" x y)

 (+ x y))

This function is named verbose-sum, takes two arguments that
will be bound to the
parameters x and y, has a
documentation string, and has a body consisting of two expressions.
The value returned by the call to + becomes the return value of
verbose-sum.

Function Parameter Lists

There's not a lot more to say about function names or documentation
strings, and it will take a
good portion of the rest of this book to
describe all the things you can do in the body of a
function, which
leaves us with the parameter list.

The basic purpose of a parameter list is, of course, to declare the
variables that will receive the
arguments passed to the function.
When a parameter list is a simple list of variable names--as in
verbose-sum--the parameters are called required
parameters. When a function is called, it
must be supplied with one
argument for every required parameter. Each parameter is bound to
the
corresponding argument. If a function is called with too few or too
many arguments, Lisp
will signal an error.

However, Common Lisp's parameter lists also give you more flexible
ways of mapping the
arguments in a function call to the function's
parameters. In addition to required parameters, a
function can have
optional parameters. Or a function can have a single parameter that's
bound to
a list containing any extra arguments. And, finally,
arguments can be mapped to parameters
using keywords rather than
position. Thus, Common Lisp's parameter lists provide a convenient
solution to several common coding problems.

Optional Parameters

While many functions, like verbose-sum, need only required
parameters, not all functions are
quite so simple. Sometimes a
function will have a parameter that only certain callers will care
about, perhaps because there's a reasonable default value. An example
is a function that creates a
data structure that can grow as needed.
Since the data structure can grow, it doesn't matter--from
a
correctness point of view--what the initial size is. But callers who
have a good idea how many
items they're going to put into the data
structure may be able to improve performance by
specifying a specific
initial size. Most callers, though, would probably rather let the
code that
implements the data structure pick a good general-purpose
value. In Common Lisp you can
accommodate both kinds of callers by
using an optional parameter; callers who don't care will
get a
reasonable default, and other callers can provide a specific
value.5

To define a function with optional parameters, after the names of any
required parameters, place
the symbol &optional followed by the
names of the optional parameters. A simple example
looks like this:

(defun foo (a b &optional c d) (list a b c d))

When the function is called, arguments are first bound to the
required parameters. After all the
required parameters have been
given values, if there are any arguments left, their values are
assigned to the optional parameters. If the arguments run out before
the optional parameters do,
the remaining optional parameters are
bound to the value NIL. Thus, the function defined
previously
gives the following results:

(foo 1 2) ==> (1 2 NIL NIL)

(foo 1 2 3) ==> (1 2 3 NIL)

(foo 1 2 3 4) ==> (1 2 3 4)

Lisp will still check that an appropriate number of arguments are
passed to the function--in this
case between two and four,
inclusive--and will signal an error if the function is called with
too
few or too many.

Of course, you'll often want a different default value than NIL.
You can specify the default value
by replacing the parameter name
with a list containing a name and an expression. The expression
will
be evaluated only if the caller doesn't pass enough arguments to
provide a value for the
optional parameter. The common case is simply
to provide a value as the expression.

(defun foo (a &optional (b 10)) (list a b))

This function requires one argument that will be bound to the
parameter a. The second
parameter, b, will take either
the value of the second argument, if there is one, or 10.

(foo 1 2) ==> (1 2)

(foo 1) ==> (1 10)

Sometimes, however, you may need more flexibility in choosing the
default value. You may
want to compute a default value based on other
parameters. And you can--the default-value
expression can refer to
parameters that occur earlier in the parameter list. If you were
writing a
function that returned some sort of representation of a
rectangle and you wanted to make it
especially convenient to make
squares, you might use an argument list like this:

(defun make-rectangle (width &optional (height width)) ...)

which would cause the height parameter to take the same value
as the width parameter
unless explicitly specified.

Occasionally, it's useful to know whether the value of an optional
argument was supplied by the
caller or is the default value. Rather
than writing code to check whether the value of the
parameter is the
default (which doesn't work anyway, if the caller happens to
explicitly pass the
default value), you can add another variable name
to the parameter specifier after the default-
value expression. This
variable will be bound to true if the caller actually supplied an
argument
for this parameter and NIL otherwise. By convention,
these variables are usually named the
same as the actual parameter
with a "-supplied-p" on the end. For example:

(defun foo (a b &optional (c 3 c-supplied-p))

 (list a b c c-supplied-p))

This gives results like this:

(foo 1 2) ==> (1 2 3 NIL)

(foo 1 2 3) ==> (1 2 3 T)

(foo 1 2 4) ==> (1 2 4 T)

Rest Parameters

Optional parameters are just the thing when you have discrete
parameters for which the caller
may or may not want to provide
values. But some functions need to take a variable number of
arguments. Several of the built-in functions you've seen already work
this way. FORMAT has two
required arguments, the stream and the
control string. But after that it needs a variable number of
arguments depending on how many values need to be interpolated into
the control string. The +
function also takes a variable number
of arguments--there's no particular reason to limit it to
summing
just two numbers; it will sum any number of values. (It even works
with zero
arguments, returning 0, the identity under addition.) The
following are all legal calls of those two
functions:

(format t "hello, world")

(format t "hello, ~a" name)

(format t "x: ~d y: ~d" x y)

(+)

(+ 1)

(+ 1 2)

(+ 1 2 3)

Obviously, you could write functions taking a variable number of
arguments by simply giving
them a lot of optional parameters. But
that would be incredibly painful--just writing the
parameter list
would be bad enough, and that doesn't get into dealing with all the
parameters in
the body of the function. To do it properly, you'd have
to have as many optional parameters as
the number of arguments that
can legally be passed in a function call. This number is
implementation dependent but guaranteed to be at least 50. And in
current implementations it
ranges from 4,096 to 536,870,911.6 Blech. That kind of mind-bending
tedium is definitely not
The Lisp Way.

Instead, Lisp lets you include a catchall parameter after the symbol
&rest. If a function
includes a &rest parameter, any
arguments remaining after values have been doled out to all
the
required and optional parameters are gathered up into a list that
becomes the value of the
&rest parameter. Thus, the parameter
lists for FORMAT and + probably look something like
this:

(defun format (stream string &rest values) ...)

(defun + (&rest numbers) ...)

Keyword Parameters

Optional and rest parameters give you quite a bit of flexibility, but
neither is going to help you
out much in the following situation:
Suppose you have a function that takes four optional
parameters. Now
suppose that most of the places the function is called, the caller
wants to
provide a value for only one of the four parameters and,
further, that the callers are evenly
divided as to which parameter
they will use.

The callers who want to provide a value for the first parameter are
fine--they just pass the one
optional argument and leave off the
rest. But all the other callers have to pass some value for
between
one and three arguments they don't care about. Isn't that exactly the
problem optional
parameters were designed to solve?

Of course it is. The problem is that optional parameters are still
positional--if the caller wants to
pass an explicit value for the
fourth optional parameter, it turns the first three optional
parameters into required parameters for that caller. Luckily, another
parameter flavor, keyword
parameters, allow the caller to specify
which values go with which parameters.

To give a function keyword parameters, after any required,
&optional, and &rest
parameters you include the symbol
&key and then any number of keyword parameter specifiers,

which
work like optional parameter specifiers. Here's a function that has
only keyword
parameters:

(defun foo (&key a b c) (list a b c))

When this function is called, each keyword parameters is bound to the
value immediately
following a keyword of the same name. Recall from
Chapter 4 that keywords are names that
start with a colon and that
they're automatically defined as self-evaluating constants.

If a given keyword doesn't appear in the argument list, then the
corresponding parameter is
assigned its default value, just like an
optional parameter. Because the keyword arguments are
labeled, they
can be passed in any order as long as they follow any required
arguments. For
instance, foo can be invoked as follows:

(foo) ==> (NIL NIL NIL)

(foo :a 1) ==> (1 NIL NIL)

(foo :b 1) ==> (NIL 1 NIL)

(foo :c 1) ==> (NIL NIL 1)

(foo :a 1 :c 3) ==> (1 NIL 3)

(foo :a 1 :b 2 :c 3) ==> (1 2 3)

(foo :a 1 :c 3 :b 2) ==> (1 2 3)

As with optional parameters, keyword parameters can provide a default
value form and the name
of a supplied-p variable. In both keyword and
optional parameters, the default value form can
refer to parameters
that appear earlier in the parameter list.

(defun foo (&key (a 0) (b 0 b-supplied-p) (c (+ a b)))

 (list a b c b-supplied-p))

(foo :a 1) ==> (1 0 1 NIL)

(foo :b 1) ==> (0 1 1 T)

(foo :b 1 :c 4) ==> (0 1 4 T)

(foo :a 2 :b 1 :c 4) ==> (2 1 4 T)

Also, if for some reason you want the keyword the caller uses to
specify the parameter to be
different from the name of the actual
parameter, you can replace the parameter name with
another list
containing the keyword to use when calling the function and the name
to be used for
the parameter. The following definition of foo:

(defun foo (&key ((:apple a)) ((:box b) 0) ((:charlie c) 0 c-supplied-p))

 (list a b c c-supplied-p))

lets the caller call it like this:

(foo :apple 10 :box 20 :charlie 30) ==> (10 20 30 T)

This style is mostly useful if you want to completely decouple the
public API of the function
from the internal details, usually because
you want to use short variable names internally but
descriptive
keywords in the API. It's not, however, very frequently used.

Mixing Different Parameter Types

It's possible, but rare, to use all four flavors of parameters in a
single function. Whenever more
than one flavor of parameter is used,
they must be declared in the order I've discussed them: first
the
names of the required parameters, then the optional parameters, then
the rest parameter, and
finally the keyword parameters. Typically,
however, in functions that use multiple flavors of
parameters, you'll
combine required parameters with one other flavor or possibly combine
&optional and &rest parameters. The other two combinations,
either &optional or
&rest parameters combined with
&key parameters, can lead to somewhat surprising behavior.

Combining &optional and &key parameters yields surprising
enough results that you should
probably avoid it altogether. The
problem is that if a caller doesn't supply values for all the
optional parameters, then those parameters will eat up the keywords
and values intended for the
keyword parameters. For instance, this
function unwisely mixes &optional and &key
parameters:

(defun foo (x &optional y &key z) (list x y z))

If called like this, it works fine:

(foo 1 2 :z 3) ==> (1 2 3)

And this is also fine:

(foo 1) ==> (1 nil nil)

But this will signal an error:

(foo 1 :z 3) ==> ERROR

This is because the keyword :z is taken as a value to fill the
optional y parameter, leaving only
the argument 3 to be
processed. At that point, Lisp will be expecting either a
keyword/value pair
or nothing and will complain. Perhaps even worse,
if the function had had two &optional
parameters, this last call
would have resulted in the values :z and 3 being bound to the
two
&optional parameters and the &key parameter z
getting the default value NIL with no
indication that anything
was amiss.

In general, if you find yourself writing a function that uses both
&optional and &key
parameters, you should probably just
change it to use all &key parameters--they're more
flexible, and
you can always add new keyword parameters without disturbing existing
callers of
the function. You can also remove keyword parameters, as
long as no one is using them.7 In
general, using keyword parameters helps make code much easier to
maintain and evolve--if you
need to add some new behavior to a
function that requires new parameters, you can add keyword
parameters
without having to touch, or even recompile, any existing code that
calls the function.

You can safely combine &rest and &key parameters, but the
behavior may be a bit surprising
initially. Normally the presence of
either &rest or &key in a parameter list causes all the
values remaining after the required and &optional parameters
have been filled in to be

processed in a particular way--either
gathered into a list for a &rest parameter or assigned to
the
appropriate &key parameters based on the keywords. If both
&rest and &key appear in a
parameter list, then both things
happen--all the remaining values, which include the keywords
themselves, are gathered into a list that's bound to the &rest
parameter, and the appropriate
values are also bound to the &key
parameters. So, given this function:

(defun foo (&rest rest &key a b c) (list rest a b c))

you get this result:

(foo :a 1 :b 2 :c 3) ==> ((:A 1 :B 2 :C 3) 1 2 3)

Function Return Values

All the functions you've written so far have used the default
behavior of returning the value of
the last expression evaluated as
their own return value. This is the most common way to return a
value
from a function.

However, sometimes it's convenient to be able to return from the
middle of a function such as
when you want to break out of nested
control constructs. In such cases you can use the
RETURN-FROM
special operator to immediately return any value from the function.

You'll see in Chapter 20 that RETURN-FROM is actually not tied
to functions at all; it's used to
return from a block of code defined
with the BLOCK special operator. However, DEFUN
automatically wraps the whole function body in a block with the same
name as the function. So,
evaluating a RETURN-FROM with the name
of the function and the value you want to return will
cause the
function to immediately exit with that value. RETURN-FROM is a
special operator
whose first "argument" is the name of the block from
which to return. This name isn't evaluated
and thus isn't quoted.

The following function uses nested loops to find the first pair of
numbers, each less than 10,
whose product is greater than the
argument, and it uses RETURN-FROM to return the pair as
soon as
it finds it:

(defun foo (n)

 (dotimes (i 10)

 (dotimes (j 10)

 (when (> (* i j) n)

 (return-from foo (list i j))))))

Admittedly, having to specify the name of the function you're
returning from is a bit of a pain--
for one thing, if you change the
function's name, you'll need to change the name used in the
RETURN-FROM as well.8 But
it's also the case that explicit RETURN-FROMs are used much less
frequently in Lisp than return statements in C-derived
languages, because all Lisp
expressions, including control
constructs such as loops and conditionals, evaluate to a value. So
it's not much of a problem in practice.

Functions As Data, a.k.a. Higher-Order Functions
While the main way you use functions is to call them by name, a
number of situations exist
where it's useful to be able treat
functions as data. For instance, if you can pass one function as
an
argument to another, you can write a general-purpose sorting function
while allowing the
caller to provide a function that's responsible
for comparing any two elements. Then the same
underlying algorithm
can be used with many different comparison functions. Similarly,
callbacks
and hooks depend on being able to store references to code
in order to run it later. Since
functions are already the standard
way to abstract bits of code, it makes sense to allow functions
to be
treated as data.9

In Lisp, functions are just another kind of object. When you define a
function with DEFUN,
you're really doing two things: creating a
new function object and giving it a name. It's also
possible, as you
saw in Chapter 3, to use LAMBDA expressions to create a function
without
giving it a name. The actual representation of a function
object, whether named or anonymous, is
opaque--in a native-compiling
Lisp, it probably consists mostly of machine code. The only
things
you need to know are how to get hold of it and how to invoke it once
you've got it.

The special operator FUNCTION provides the mechanism for getting
at a function object. It
takes a single argument and returns the
function with that name. The name isn't quoted. Thus, if
you've
defined a function foo, like so:

CL-USER> (defun foo (x) (* 2 x))

FOO

you can get the function object like this:10

CL-USER> (function foo)

#<Interpreted Function FOO>

In fact, you've already used FUNCTION, but it was in disguise.
The syntax #', which you used
in Chapter 3, is syntactic sugar
for FUNCTION, just the way ' is syntactic sugar for
QUOTE.11

Thus, you can also get
the function object for foo like this:

CL-USER> #'foo

#<Interpreted Function FOO>

Once you've got the function object, there's really only one thing
you can do with it--invoke it.
Common Lisp provides two functions
for invoking a function through a function object:
FUNCALL and
APPLY.12 They differ
only in how they obtain the arguments to pass to the
function.

FUNCALL is the one to use when you know the number of arguments
you're going to pass to the
function at the time you write the code.
The first argument to FUNCALL is the function object to
be
invoked, and the rest of the arguments are passed onto that function.
Thus, the following two
expressions are equivalent:

(foo 1 2 3) === (funcall #'foo 1 2 3)

However, there's little point in using FUNCALL to call a
function whose name you know when
you write the code. In fact, the
previous two expressions will quite likely compile to exactly the
same machine instructions.

The following function demonstrates a more apt use of FUNCALL.
It accepts a function object as
an argument and plots a simple
ASCII-art histogram of the values returned by the argument
function
when it's invoked on the values from min to max,
stepping by step.

(defun plot (fn min max step)

 (loop for i from min to max by step do

 (loop repeat (funcall fn i) do (format t "*"))

 (format t "~%")))

The FUNCALL expression computes the value of the function for
each value of i. The inner
LOOP uses that computed value
to determine how many times to print an asterisk to standard
output.

Note that you don't use FUNCTION or #' to get the
function value of fn; you want it to be
interpreted as a
variable because it's the variable's value that will be the function
object. You can
call plot with any function that takes a
single numeric argument, such as the built-in function
EXP that
returns the value of e raised to the power of its argument.

CL-USER> (plot #'exp 0 4 1/2)

*

*

**

**

NIL

FUNCALL, however, doesn't do you any good when the argument list
is known only at runtime.
For instance, to stick with the plot
function for another moment, suppose you've obtained a list
containing a function object, a minimum and maximum value, and a step
value. In other words,
the list contains the values you want to pass
as arguments to plot. Suppose this list is in the
variable
plot-data. You could invoke plot on the values in that
list like this:

(plot (first plot-data) (second plot-data) (third plot-data) (fourth plot-data))

This works fine, but it's pretty annoying to have to explicitly
unpack the arguments just so you
can pass them to plot.

That's where APPLY comes in. Like FUNCALL, the first
argument to APPLY is a function
object. But after the function
object, instead of individual arguments, it expects a list. It then
applies the function to the values in the list. This allows you to
write the following instead:

(apply #'plot plot-data)

As a further convenience, APPLY can also accept "loose"
arguments as long as the last argument
is a list. Thus, if
plot-data contained just the min, max, and step values, you
could still use
APPLY like this to plot the EXP function
over that range:

(apply #'plot #'exp plot-data)

APPLY doesn't care about whether the function being applied
takes &optional, &rest, or
&key arguments--the
argument list produced by combining any loose arguments with the
final
list must be a legal argument list for the function with enough
arguments for all the required
parameters and only appropriate
keyword parameters.

Anonymous Functions

Once you start writing, or even simply using, functions that accept
other functions as arguments,
you're bound to discover that sometimes
it's annoying to have to define and name a whole
separate function
that's used in only one place, especially when you never call it by
name.

When it seems like overkill to define a new function with DEFUN,
you can create an
"anonymous" function using a LAMBDA
expression. As discussed in Chapter 3, a LAMBDA
expression looks
like this:

(lambda (parameters) body)

One way to think of LAMBDA expressions is as a special kind of
function name where the name
itself directly describes what the
function does. This explains why you can use a LAMBDA
expression
in the place of a function name with #'.

(funcall #'(lambda (x y) (+ x y)) 2 3) ==> 5

You can even use a LAMBDA expression as the "name" of a function
in a function call
expression. If you wanted, you could write the
previous FUNCALL expression more concisely.

((lambda (x y) (+ x y)) 2 3) ==> 5

But this is almost never done; it's merely worth noting that it's
legal in order to emphasize that
LAMBDA expressions can be used
anywhere a normal function name can be.13

Anonymous functions can be useful when you need to pass a function as
an argument to another
function and the function you need to pass is
simple enough to express inline. For instance,
suppose you wanted to
plot the function 2x. You could define the following
function:

(defun double (x) (* 2 x))

which you could then pass to plot.

CL-USER> (plot #'double 0 10 1)

**

NIL

But it's easier, and arguably clearer, to write this:

CL-USER> (plot #'(lambda (x) (* 2 x)) 0 10 1)

**

NIL

The other important use of LAMBDA expressions is in making
closures, functions that capture
part of the environment where
they're created. You used closures a bit in Chapter 3, but the
details of how closures work and what they're used for is really more
about how variables work
than functions, so I'll save that discussion
for the next chapter.

1Despite the importance of functions in Common Lisp, it
isn't really accurate to describe it as a functional language.
It's true some
of Common Lisp's features, such as its list
manipulation functions, are designed to be used in a body-form* style
and that Lisp has
a prominent place in the history of functional
programming--McCarthy introduced many ideas that are now considered
important
in functional programming--but Common Lisp was
intentionally designed to support many different styles of
programming. In the
Lisp family, Scheme is the nearest thing to a
"pure" functional language, and even it has several features that
disqualify it from
absolute purity compared to languages such as
Haskell and ML.

2Well, almost any
symbol. It's undefined what happens if you use any of the names
defined in the language standard as a name for
one of your own
functions. However, as you'll see in Chapter 21, the Lisp package
system allows you to create names in different
namespaces, so this
isn't really an issue.

3Parameter lists are sometimes also called lambda
lists because of the historical relationship between Lisp's notion
of functions
and the lambda calculus.

4For example, the following:

(documentation 'foo 'function)

returns the documentation string for the function foo. Note,
however, that documentation strings are intended for human
consumption, not programmatic access. A Lisp implementation isn't
required to store them and is allowed to discard them at any
time,
so portable programs shouldn't depend on their presence. In some
implementations an implementation-defined variable needs
to be set
before it will store documentation strings.

5In languages that don't support optional parameters
directly, programmers typically find ways to simulate them. One
technique is
to use distinguished "no-value" values that the caller
can pass to indicate they want the default value of a given
parameter. In C, for
example, it's common to use NULL as such
a distinguished value. However, such a protocol between the function
and its callers is
ad hoc--in some functions or for some arguments
NULL may be the distinguished value while in other functions
or for other
arguments the magic value may be -1 or some
#defined constant.

6The
constant CALL-ARGUMENTS-LIMIT tells you the
implementation-specific value.

7Four standard functions take
both &optional and &key arguments--READ-FROM-STRING,
PARSE-NAMESTRING,
WRITE-LINE, and WRITE-STRING. They
were left that way during standardization for backward compatibility
with earlier
Lisp dialects. READ-FROM-STRING tends to be the one
that catches new Lisp programmers most frequently--a call such as
(read-from-string s :start 10) seems to ignore the
:start keyword argument, reading from index 0 instead of 10.
That's because READ-FROM-STRING also has two &optional
parameters that swallowed up the arguments :start and 10.

8Another macro, RETURN, doesn't
require a name. However, you can't use it instead of RETURN-FROM
to avoid having to specify
the function name; it's syntactic sugar
for returning from a block named NIL. I'll cover it, along with
the details of BLOCK and
RETURN-FROM, in Chapter 20.

9Lisp, of course, isn't the only language to
treat functions as data. C uses function pointers, Perl uses
subroutine references, Python
uses a scheme similar to Lisp, and C#
introduces delegates, essentially typed function pointers, as an
improvement over Java's
rather clunky reflection and anonymous class
mechanisms.

10The exact printed
representation of a function object will differ from implementation
to implementation.

11The best way to think of FUNCTION is as a
special kind of quotation. QUOTEing a symbol prevents it from
being evaluated at
all, resulting in the symbol itself rather than
the value of the variable named by that symbol. FUNCTION also
circumvents the
normal evaluation rule but, instead of preventing the
symbol from being evaluated at all, causes it to be evaluated as the
name of a
function, just the way it would if it were used as the
function name in a function call expression.

12There's actually a third, the special operator
MULTIPLE-VALUE-CALL, but I'll save that for when I discuss
expressions that
return multiple values in Chapter 20.

13In Common Lisp it's also
possible to use a LAMBDA expression as an argument to
FUNCALL (or some other function that takes a
function argument
such as SORT or MAPCAR) with no #' before it, like
this:

(funcall (lambda (x y) (+ x y)) 2 3)

This is legal and is equivalent to the version with the #' but
for a tricky reason. Historically LAMBDA expressions by
themselves
weren't expressions that could be evaluated. That is
LAMBDA wasn't the name of a function, macro, or special operator.
Rather, a
list starting with the symbol LAMBDA was a special
syntactic construct that Lisp recognized as a kind of function name.

But if that were still true, then (funcall (lambda (...) ...))
would be illegal because FUNCALL is a function and the
normal
evaluation rule for a function call would require that the LAMBDA
expression be evaluated. However, late in the ANSI
standardization
process, in order to make it possible to implement ISLISP, another
Lisp dialect being standardized at the same
time, strictly as a
user-level compatibility layer on top of Common Lisp, a LAMBDA
macro was defined that expands into a call to
FUNCTION wrapped
around the LAMBDA expression. In other words, the following
LAMBDA expression:

(lambda () 42)

exands into the following when it occurs in a context where it evaluated:

(function (lambda () 42)) ; or #'(lambda () 42)

This makes its use in a value position, such as an argument to
FUNCALL, legal. In other words, it's pure syntactic sugar. Most
folks
either always use #' before LAMBDA expressions in
value positions or never do. In this book, I always use #'.

