
Copyright © 2003-2005, Peter Seibel

32. Conclusion: What's Next?
I hope by now you're convinced that the title of this book isn't an
oxymoron. However, it's quite
likely there's some area of programming
that's of great practical importance to you that I haven't
discussed
at all. For instance, I haven't said anything about how to develop
graphical user
interfaces (GUIs), how to connect to relational
databases, how to parse XML, or how to write
programs that act as
clients for various network protocols. Similarly, I haven't discussed
two
topics that will become important when you write real applications
in Common Lisp: optimizing
your Lisp code and packaging your
application for delivery.

I'm obviously not going to cover all these topics in depth in this
final chapter. Instead, I'll give
you a few pointers you can use to
pursue whichever aspect of Lisp programming interests you
most.

Finding Lisp Libraries
While the standard library of functions, data types, and macros that
comes with Common Lisp is
quite large, it provides only
general-purpose programming constructs. Specialized tasks such as
writing GUIs, talking to databases, and parsing XML require libraries
beyond what are provided
by the ANSI standardized language.

The easiest way to obtain a library to do something you need may be
simply to check out your
Lisp implementation. Most implementations
provide at least some facilities not specified in the
language
standard. The commercial Common Lisp vendors tend to work especially
hard at
providing additional libraries for their implementation in
order to justify their prices. Franz's
Allegro Common Lisp,
Enterprise Edition, for instance, comes with libraries for parsing
XML,
speaking SOAP, generating HTML, connecting to relational
databases, and building graphical
interfaces in various ways, among
others. LispWorks, another prominent commercial Lisp,
provides
several similar libraries, including a well-regarded portable GUI
toolkit, CAPI, which
can be used to develop GUI applications that
will run on any operating system LispWorks runs
on.

The free and open-source Common Lisp implementations typically don't
include quite so many
bundled libraries, relying instead on portable
free and open-source libraries. But even those
implementations
usually fill in some of the more important areas not addressed by the
language
standard such as networking and multithreading.

The only disadvantage of using implementation-specific libraries is
that they tie you to the
implementation that provides them. If you're
delivering end-user apps or are deploying a server-
based application
on a server that you control, that may not matter a lot. But if you
want to write
code to share with other Lispers or if you simply don't
want to be tied to a particular
implementation, it's a little more
annoying.

For portable libraries--portable either because they're written
entirely in standard Common Lisp
or because they contain appropriate
read-time conditionalization to work on multiple
implementations1--your best bet
is to go to the Web. With the usual caveats about URLs going
stale as
soon as they're printed on paper, these are three of the best current
starting points:

Common-Lisp.net (http://www.common-lisp.net/) is a site
that hosts free and
open-source Common Lisp projects, providing
version control, mailing lists, and Web
hosting of project pages. In
the first year and a half after the site went live, nearly a
hundred
projects were registered.
The Common Lisp Open Code Collection (CLOCC)
(http://clocc.sourceforge.net/) is a slightly older collection
of free software
libraries, which are intended to be portable between
Common Lisp implementations and
self-contained, not relying on any
libraries not included in CLOCC itself.
Cliki (http://www.cliki.net/) is a wiki devoted to free
software in Common Lisp.
While, like any wiki, it may change at any
time, typically it has quite a few links to
libraries as well to
various open-source Common Lisp implementations. The eponymous
software it runs on is also written in Common Lisp.

Linux users running the Debian or Gentoo distributions can also
easily install an ever-growing
number of Lisp libraries that have
been packaged with those distributions' packing tools,
apt-get
on Debian and emerge on Gentoo.

I won't recommend any specific libraries here since the library
situation is changing every day--
after years of envying the library
collections of Perl, Python, and Java, Common Lispers have, in
the
past couple of years, begun to take up the challenge of giving Common
Lisp the set of
libraries--both open source and commercial--that it
deserves.

One area where there has been a lot of activity recently is on the
GUI front. Unlike Java and C#
but like Perl, Python, and C, there's
no single way to develop GUIs in Common Lisp. Instead, it
depends
both on what Common Lisp implementation you're using and what
operating system or
systems you want to support.

The commercial Common Lisp implementations usually provide some way
to build GUIs for the
platforms they run on. Additionally, LispWorks
provides CAPI, the previously mentioned,
portable GUI API.

On the open-source side, you have a number of options. On Unix, you
can write low-level X
Windows GUIs using CLX, a pure-Common Lisp
implementation of the X Windows protocol,
roughly akin to xlib in C.
Or you can use various bindings to higher-level APIs and toolkits such
as GTK and Tk, much the way you might in Perl or Python.

Or, if you're looking for something completely different, you can
check out Common Lisp
Interface Manager (CLIM). A descendant of the
Symbolics Lisp Machines GUI framework,
CLIM is powerful but complex.
Although many commercial Common Lisp implementations
actually support
it, it doesn't seem to have seen a lot of use. But in the past couple
years, an
open-source implementation of CLIM, McCLIM--now hosted at
Common-Lisp.net--has been
picking up steam lately, so we may be on
the verge of a CLIM renaissance.

Interfacing with Other Languages

While many useful libraries can be written in "pure" Common Lisp
using only the features
specified in the language standard, and many
more can be written in Lisp using nonstandard
facilities provided by
a given implementation, occasionally it's more straightforward to use
an
existing library written in another language, such as C.

The language standard doesn't specify a mechanism for Lisp code to
call code written in another
language or even require that
implementations provide such a mechanism. But these days,
almost all
Common Lisp implementations support what's called a Foreign
Function Interface, or
FFI for short.2 The basic job of an FFI is to allow
you to give Lisp enough information to be able
to link in the foreign
code. Thus, if you're going to call a function from a C library, you
need to
tell Lisp about how to translate the Lisp objects passed to
the function into C types and the value
returned by the function back
into a Lisp object. However, each implementation provides its own
FFI, each with slightly varying capabilities and syntax. Some FFIs
allow callbacks from C to
Lisp, and others don't. The Universal
Foreign Function Interface (UFFI) project provides a
portability
layer over the FFIs of more than a half dozen different Common Lisp
implementations. It works by defining its own macros that expand into
appropriate FFI code for
the implementation it's running in. The UFFI
takes a lowest common denominator approach,
which means it can't take
advantage of all the features of different implementations' FFIs, but
it
does provide a good way to build a simple Lisp wrapper around a
basic C API.3

Make It Work, Make It Right, Make It Fast

As has been said many times, and variously attributed to Donald
Knuth, C.A.R. Hoare, and
Edsger Dijkstra, premature optimization is
the root of all evil.4 Common Lisp is an
excellent
language to program in if you want to heed this wisdom yet
still need high performance. This
may come as a surprise if you've
heard the conventional wisdom that Lisp is slow. In Lisp's
earliest
days, when computers were programmed with punch cards, Lisp's
high-level features
may have doomed it to be slower than the
competition, namely, assembly and FORTRAN. But
that was a long time
ago. In the meantime, Lisp has been used for everything from creating
complex AI systems to writing operating systems, and a lot of work
has gone into figuring out
how to compile Lisp into efficient code.
In this section I'll talk about some of the reasons why
Common Lisp
is an excellent language for writing high-performance code and some
of the
techniques for doing so.

The first reason that Lisp is an excellent language for writing
high-performance code is,
ironically enough, the dynamic nature of
Lisp programming--the very thing that originally made
it hard to bring
Lisp's performance up to the levels achieved by FORTRAN compilers. The
reason Common Lisp's dynamic features make it easier to write
high-performance code is that
the first step to writing efficient code
is to find the right algorithms and data structures.

Common Lisp's dynamic features keep code flexible, which makes it
easier to try different
approaches. Given a finite amount of time to
write a program, you're much more likely to end up
with a
high-performance version if you don't spend a lot of time getting
into and out of dead
ends. In Common Lisp, you can try an idea, see
it's going nowhere, and move on without having
spent a ton of time
convincing the compiler your code is worthy of being run and then
waiting
for it to finish compiling. You can write a straightforward
but inefficient version of a function--a
code sketch--to
determine whether your basic approach is sound and then replace that
function

with a more complex but more efficient implementation if you
determine that it is. And if the
overall approach turns out to be
flawed, then you haven't wasted a bunch of time tuning a
function
that's no longer needed, which means you have more time to find a
better approach.

The next reason Common Lisp is a good language for developing
high-performance software is
that most Common Lisp implementations
come with mature compilers that generate quite
efficient machine
code. I'll talk in a moment about how to help these compilers
generate code
that will be competitive with code generated by C
compilers, but these implementations already
are quite a bit faster
than those of languages whose implementations are less mature and use
simpler compilers or interpreters. Also, since the Lisp compiler is
available at runtime, the Lisp
programmer has some possibilities that
would be hard to emulate in other languages--your
programs can
generate Lisp code at runtime that's then compiled into machine code
and run. If
the generated code is going to run enough times, this can
be a big win. Or, even without using
the compiler at runtime,
closures give you another way to meld machine code with runtime data.
For instance, the CL-PPCRE regular expression library, running in
CMUCL, is faster than Perl's
regular expression engine on some
benchmarks, even though Perl's engine is written in highly
tuned C.
This is presumably because in Perl a regular expression is translated
into what are
essentially bytecodes that are then interpreted by the
regex engine, while CL-PPCRE translates a
regular expression into a
tree of compiled closures that invoke each other via the normal
function-calling machinery.5

However, even with the right algorithm and a high-quality compiler,
you may not get the raw
speed you need. Then it's time to think about
profiling and tuning. The key, in Lisp as in any
language, is to
profile first to find the spots where your program is actually
spending its time and
then worry about speeding up those
parts.6

You have a number of different ways to approach profiling. The
language standard provides a
few rudimentary tools for measuring how
long certain forms take to execute. In particular, the
TIME
macro can be wrapped around any form and will return whatever values
the form returns
after printing a message to *TRACE-OUTPUT*
about how long it took to run and how much
memory it used. The exact
form of the message is implementation defined.

You can use TIME for a bit of quick-and-dirty profiling to
narrow your search for bottlenecks.
For instance, suppose you have a
function that's taking a long time to run and that calls two other
functions--something like this:

(defun foo ()

 (bar)

 (baz))

If you want to see whether bar or baz is taking more
time, you can change the definition of
foo to this:

(defun foo ()

 (time (bar))

 (time (baz)))

Now you can call foo, and Lisp will print two reports, one for
bar and one for baz. The form
is implementation
dependent; here's what it looks like in Allegro Common Lisp:

CL-USER> (foo)

; cpu time (non-gc) 60 msec user, 0 msec system

; cpu time (gc) 0 msec user, 0 msec system

; cpu time (total) 60 msec user, 0 msec system

; real time 105 msec

; space allocation:

; 24,172 cons cells, 1,696 other bytes, 0 static bytes

; cpu time (non-gc) 540 msec user, 10 msec system

; cpu time (gc) 170 msec user, 0 msec system

; cpu time (total) 710 msec user, 10 msec system

; real time 1,046 msec

; space allocation:

; 270,172 cons cells, 1,696 other bytes, 0 static bytes

Of course, that'd be a bit easier to read if the output included a
label. If you use this technique a
lot, it might be worth defining
your own macro like this:

(defmacro labeled-time (form)

 `(progn

 (format *trace-output* "~2&~a" ',form)

 (time ,form)))

If you replace TIME with labeled-time in foo,
you'll get this output:

CL-USER> (foo)

(BAR)

; cpu time (non-gc) 60 msec user, 0 msec system

; cpu time (gc) 0 msec user, 0 msec system

; cpu time (total) 60 msec user, 0 msec system

; real time 131 msec

; space allocation:

; 24,172 cons cells, 1,696 other bytes, 0 static bytes

(BAZ)

; cpu time (non-gc) 490 msec user, 0 msec system

; cpu time (gc) 190 msec user, 10 msec system

; cpu time (total) 680 msec user, 10 msec system

; real time 1,088 msec

; space allocation:

; 270,172 cons cells, 1,696 other bytes, 0 static bytes

From this output, it's clear that most of the time in foo is
spent in baz.

Of course, the output from TIME gets a bit unwieldy if the form
you want to profile is called
repeatedly. You can build your own
measurement tools using the functions
GET-INTERNAL-REAL-TIME and
GET-INTERNAL-RUN-TIME, which return a number
that increases by
the value of the constant INTERNAL-TIME-UNITS-PER-SECOND each
second. GET-INTERNAL-REAL-TIME measures wall time, the
actual amount of time elapsed,
while GET-INTERNAL-RUN-TIME
measures some implementation-defined value such as the
amount of time
Lisp was actually executing or the time Lisp was executing user code
and not
internal bookkeeping such as the garbage collector. Here's a
trivial but useful profiling tool built
with a few macros and
GET-INTERNAL-RUN-TIME:

(defparameter *timing-data* ())

(defmacro with-timing (label &body body)

 (with-gensyms (start)

 `(let ((,start (get-internal-run-time)))

 (unwind-protect (progn ,@body)

 (push (list ',label ,start (get-internal-run-time)) *timing-data*)))))

(defun clear-timing-data ()

 (setf *timing-data* ()))

(defun show-timing-data ()

 (loop for (label time count time-per %-of-total) in (compile-timing-data) do

 (format t "~3d% ~a: ~d ticks over ~d calls for ~d per.~%"

 %-of-total label time count time-per)))

(defun compile-timing-data ()

 (loop with timing-table = (make-hash-table)

 with count-table = (make-hash-table)

 for (label start end) in *timing-data*

 for time = (- end start)

 summing time into total

 do

 (incf (gethash label timing-table 0) time)

 (incf (gethash label count-table 0))

 finally

 (return

 (sort

 (loop for label being the hash-keys in timing-table collect

 (let ((time (gethash label timing-table))

 (count (gethash label count-table)))

 (list label time count (round (/ time count)) (round (* 100 (/ time total)
 #'> :key #'fifth))))

This profiler lets you wrap a with-timing around any form;
each time the form is executed,
the time it starts and the time it
ends are recorded, associating with a label you provide. The
function
show-timing-data dumps out a table showing how much time was
spent in
different labeled sections of code like this:

CL-USER> (show-timing-data)

 84% BAR: 650 ticks over 2 calls for 325 per.

 16% FOO: 120 ticks over 5 calls for 24 per.

NIL

You could obviously make this profiling code more sophisticated in
many ways. Alternatively,
your Lisp implementation most likely
provides its own profiling tools, which, since they have
access to
the internals of the implementation, can get at information not
necessarily available to
user-level code.

Once you've found the bottleneck in your code, you can start tuning.
The first thing you should
try, of course, is to find a more
efficient basic algorithm--that's where the big gains are to be had.
But assuming you're already using an appropriate algorithm, then it's
down to code bumming--
locally optimizing the code so it does
absolutely no more work than necessary.

The main tools for code bumming in Common Lisp are its optional
declarations. The basic idea
behind declarations in Common Lisp is
that they're used to give the compiler information it can
use in a
variety of ways to generate better code.

For a simple example, consider this Common Lisp function:

(defun add (x y) (+ x y))

I mentioned in Chapter 10 that if you compare the performance of this
function Lisp to the
seemingly equivalent C function:

int add (int x, int y) { return x + y; }

you'll likely find the Common Lisp version to be quite a bit slower,
even if your Common Lisp
implementation features a high-quality native
compiler.

That's because the Common Lisp version is doing a lot more--the
Common Lisp compiler
doesn't even know that the values of a
and b are numbers and so has to generate code to check at
runtime. And once it determines they are numbers, it has to
determine what types of numbers--

integers, rationals, floating
point, or complex--and dispatch to the appropriate addition routine
for the actual types. And even if a and b are
integers--the case you care about--then the addition
routine has to
account for the possibility that the result may be too large to
represent as a fixnum,
a number that can be represented in a
single machine word, and thus it may have to allocate a
bignum
object.

In C, on the other hand, because the type of all variables are
declared, the compiler knows
exactly what kind of values a and
b will hold. And because C's arithmetic simply overflows
when
the result of an addition is too large to represent in whatever type
is being returned, there's
no checking for overflow and no allocation
of a bignum object to represent the result when the
mathematical sum
is too large to fit in a machine word.

Thus, while the behavior of the Common Lisp code is much more likely
to be mathematically
correct, the C version can probably be compiled
down to one or two machine instructions. But if
you're willing to give
the Common Lisp compiler the same information the C compiler has about
the types of arguments and return values and to accept certain C-like
compromises in terms of
generality and error checking, the Common
Lisp function can also be compiled down to an
instruction or two.

That's what declarations are for. The main use of declarations is to
tell the compiler about the
types of variables and other expressions.
For instance, you could tell the compiler that the
arguments to
add are both fixnums by writing the function like this:

(defun add (x y)

 (declare (fixnum x y))

 (+ x y))

The DECLARE expression isn't a Lisp form; rather, it's part of
the syntax of the DEFUN and must
appear before any other code in
the function body.7 This declaration declares that the arguments
passed for the parameters x and y will always be
fixnums. In other words, it's a promise to the
compiler, and the
compiler is allowed to generate code on the assumption that whatever
you tell
it is true.

To declare the type of the value returned, you can wrap the form
(+ x y) in the THE special
operator. This operator takes
a type specifier, such as FIXNUM, and a form and tells the
compiler
the form will evaluate to the given type. Thus, to give the
Common Lisp compiler all the
information about add that the C
compiler gets, you can write it like this:

(defun add (x y)

 (declare (fixnum x y))

 (the fixnum (+ x y)))

However, even this version needs one more declaration to give the
Common Lisp compiler the
same license as the C compiler to generate
fast but dangerous code. The OPTIMIZE declaration
is used to
tell the compiler how to balance five qualities: the speed of the
code generated; the
amount of runtime error checking; the memory
usage of the code, both in terms of code size and
runtime memory
usage; the amount of debugging information kept with the code; and
the speed
of the compilation process. An OPTIMIZE declaration
consists of one or more lists, each
containing one of the symbols
SPEED, SAFETY, SPACE, DEBUG, and
COMPILATION-SPEED, and a number from zero to three, inclusive.
The number specifies the

relative weighting the compiler should give
to the corresponding quality, with 3 being the most
important
and 0 meaning not important at all. Thus, to make Common Lisp
compile add more
or less like a C compiler would, you can
write it like this:

(defun add (x y)

 (declare (optimize (speed 3) (safety 0)))

 (declare (fixnum x y))

 (the fixnum (+ x y)))

Of course, now the Lisp version suffers from many of the same
liabilities as the C version--if the
arguments passed aren't fixnums
or if the addition overflows, the result will be mathematically
incorrect or worse. Also, if someone calls add with a wrong
number of arguments, it may not be
pretty. Thus, you should use these
kinds of declarations only after your program is working
correctly.
And you should add them only where profiling shows they'll make a
difference. If
you're getting reasonable performance without them,
leave them out. But when profiling shows
you a real hot spot in your
code and you need to tune it up, go ahead. Because you can use
declarations this way, it's rarely necessary to rewrite code in C
just for performance reasons;
FFIs are used to access existing C
code, but declarations are used when C-like performance is
needed. Of
course, how close you can get the performance of a given piece of
Common Lisp
code to C and C++ depends mostly on how much like C
you're willing to make it.

Another code-tuning tool built into Lisp is the function
DISASSEMBLE. The exact behavior of
this function is
implementation dependent because it depends on how the implementation
compiles code--whether to machine code, bytecodes, or some other form.
But the basic idea is
that it shows you the code generated by the
compiler when it compiled a specific function.

Thus, you can use DISASSEMBLE to see whether your declarations
are having any effect on the
code generated. And if your Lisp
implementation uses a native compiler and you know your
platform's
assembly language, you can get a pretty good sense of what's actually
going on when
you call one of your functions. For instance, you could
use DISASSEMBLE to get a sense of the
difference between the
first version of add, with no declarations, and the final
version. First,
define and compile the original version.

(defun add (x y) (+ x y))

Then, at the REPL, call DISASSEMBLE with the name of the
function. In Allegro, it shows the
following assembly-language-like
dump of the code generated by the compiler:

CL-USER> (disassemble 'add)

;; disassembly of #<Function ADD>

;; formals: X Y

;; code start: #x737496f4:

 0: 55 pushl	 ebp

 1: 8b ec movl	 ebp,esp

 3: 56 pushl	 esi

 4: 83 ec 24 subl	 esp,$36

 7: 83 f9 02 cmpl	 ecx,$2

 10: 74 02 jz	 14

 12: cd 61 int	 $97 ; SYS::TRAP-ARGERR

 14: 80 7f cb 00 cmpb	 [edi-53],$0 ; SYS::C_INTERRUPT-PENDING

 18: 74 02 jz	 22

 20: cd 64 int	 $100 ; SYS::TRAP-SIGNAL-HIT

 22: 8b d8 movl	 ebx,eax

 24: 0b da orl	 ebx,edx

 26: f6 c3 03 testb	 bl,$3

 29: 75 0e jnz	 45

 31: 8b d8 movl	 ebx,eax

 33: 03 da addl	 ebx,edx

 35: 70 08 jo	 45

 37: 8b c3 movl	 eax,ebx

 39: f8 clc

 40: c9 leave

 41: 8b 75 fc movl	 esi,[ebp-4]

 44: c3 ret

 45: 8b 5f 8f movl	 ebx,[edi-113] ; EXCL::+_2OP

 48: ff 57 27 call	 *[edi+39] ; SYS::TRAMP-TWO

 51: eb f3 jmp	 40

 53: 90 nop

; No value

Clearly, there's a bunch of stuff going on here. If you're familiar
with x86 assembly language,
you can probably tell what. Now compile
this version of add with all the declarations.

(defun add (x y)

 (declare (optimize (speed 3) (safety 0)))

 (declare (fixnum x y))

 (the fixnum (+ x y)))

Now disassemble add again, and see if the declarations had any
effect.

CL-USER> (disassemble 'add)

;; disassembly of #<Function ADD>

;; formals: X Y

;; code start: #x7374dc34:

 0: 03 c2 addl	 eax,edx

 2: f8 clc

 3: 8b 75 fc movl	 esi,[ebp-4]

 6: c3 ret

 7: 90 nop

; No value

Looks like they did.

Delivering Applications

Another topic of practical importance, which I didn't talk about
elsewhere in the book, is how to
deliver software written in Lisp.
The main reason I neglected this topic is because there are many
different ways to do it, and which one is best for you depends on
what kind of software you need
to deliver to what kind of user with
what Common Lisp implementation. In this section I'll give
an
overview of some of the different options.

If you've written code you want to share with fellow Lisp
programmers, the most straightforward
way to distribute it is as
source code.8
You can distribute a simple library as a single source file,
which
programmers can LOAD into their Lisp image, possibly after
compiling it with
COMPILE-FILE.

More complex libraries or applications, broken up across multiple
source files, pose an
additional challenge--in order to load and
compile the code, the files need to be loaded and
compiled in the
correct order. For instance, a file containing macro definitions must
be loaded
before you can compile files that use those macros. And a
file containing DEFPACKAGE forms
must be loaded before any files
that use those packages can even be READ. Lispers call this the
system definition problem and typically handle it with tools
called system definition facilities or
system definition
utilities, which are somewhat analogous to build tools such as
make or ant.
As with make and ant, system
definition tools allow you to specify the dependencies between

different files and then take care of loading and compiling the files
in the correct order while
trying to do only work that's
necessary--recompiling only files that have changed, for example.

These days the most widely used system definition tool is ASDF, which
stands for Another
System Definition Facility.9
The basic idea behind ASDF is that you define systems in ASD
files,
and ASDF provides a number of operations on systems such as loading
them or compiling
them. A system can also be defined to depend on
other systems, which will be loaded as
necessary. For instance, the
following shows the contents of html.asd, the ASD file for the
FOO library from Chapters 31 and 32:

(defpackage :com.gigamonkeys.html-system (:use :asdf :cl))

(in-package :com.gigamonkeys.html-system)

(defsystem html

 :name "html"

 :author "Peter Seibel <peter@gigamonkeys.com>"

 :version "0.1"

 :maintainer "Peter Seibel <peter@gigamonkeys.com>"

 :license "BSD"

 :description "HTML and CSS generation from sexps."

 :long-description ""

 :components

 ((:file "packages")

 (:file "html" :depends-on ("packages"))

 (:file "css" :depends-on ("packages" "html")))

 :depends-on (:macro-utilities))

If you add a symbolic link to this file from a directory listed in
asdf:*central-registry*,10 then you can type this:

(asdf:operate 'asdf:load-op :html)

to compile and load the files packages.lisp, html.lisp,
and html-macros.lisp in
the correct order after first making
sure the :macro-utilities system has been compiled
and loaded.
For other examples of ASD files, you can look at this book's source
code--the code
from each practical chapter is defined as a system
with appropriate intersystem dependencies
expressed in the ASD files.

Most free and open-source Common Lisp libraries you'll find will come
with an ASD file. Some
will use other system definition tools such as
the slightly older MK:DEFSYSTEM or even
utilities devised by the
library's author, but the tide seems to be turning in the direction
of
ASDF.11

Of course, while ASDF makes it easy for Lispers to install Lisp
libraries, it's not much help if
you want to package an application
for an end user who doesn't know or care about Lisp. If
you're
delivering a pure end-user application, presumably you want to
provide something the
user can download, install, and run without
having to know anything about Lisp. You can't
expect them to
separately download and install a Lisp implementation. And you want
them to be
able to run your application just like any other
application--by double-clicking an icon on
Windows or OS X or by
typing the name of the program at the command line on Unix.

However, unlike C programs, which can typically rely on certain
shared libraries (DLLs on
Windows) that make up the C "runtime" being
present as part of the operating system, Lisp
programs must include a
Lisp runtime, that is, the same program you run when you start Lisp
though perhaps with certain functionality not needed to run the
application excised.

To further complicate matters, program isn't really well defined
in Lisp. As you've seen
throughout this book, the process of
developing software in Lisp is an incremental process that
involves
making changes to the set of definitions and data living in your Lisp
image. The
"program" is just a particular state of the image arrived
at by loading the .lisp or .fasl files
that contain
code that creates the appropriate definitions and data. You could,
then, distribute a
Lisp application as a Lisp runtime plus a bunch of
FASL files and an executable that starts the
runtime, loads the
FASLs, and somehow invokes the appropriate starting function.
However,
since actually loading the FASLs can take some time,
especially if they have to do any
computation to set up the state of
the world, most Common Lisp implementations provide a way
to dump
an image--to save the state of a running Lisp to a file called an
image file or sometimes
a core. When a Lisp runtime starts,
the first thing it does is load an image file, which it can do in
much less time than it'd take to re-create the state by loading FASL
files.

Normally the image file is a default image containing only the
standard packages defined by the
language and any extras provided by
the implementation. But with most implementations, you
have a way to
specify a different image file. Thus, instead of packaging an app as
a Lisp runtime
plus a bunch of FASLs, you can package it as a Lisp
runtime plus a single image file containing
all the definitions and
data that make up your application. Then all you need is a program
that
launches the Lisp runtime with the appropriate image file and
invokes whatever function serves
as the entry point to the
application.

This is where things get implementation and operating-system
dependent. Some Common Lisp
implementations, in particular the
commercial ones such as Allegro and LispWorks, provide
tools for
building such an executable. For instance, Allegro's Enterprise
Edition provides a
function excl:generate-application that
creates a directory containing the Lisp
runtime as a shared library,
an image file, and an executable that starts the runtime with the
given image. Similarly, the LispWorks Professional Edition "delivery"
mechanism allows you to
build single-file executables of your
programs. On Unix, with the various free and open-source
implementations, you can do essentially the same thing except it's
probably easier to use a shell
script to start everything.

And on OS X things are even better--since all applications on OS X
are packaged as .app
bundles, which are essentially
directories with a certain structure, it's not all that difficult to
package all the parts of a Lisp application as a double-clickable
.app bundle. Mikel Evins's
Bosco tool makes it easy to create
.app bundles for applications running on OpenMCL.

Of course, another popular way to deliver applications these days is
as server-side applications.
This is a niche where Common Lisp can
really excel--you can pick a combination of operating
system and
Common Lisp implementation that works well for you, and you don't
have to worry
about packaging the application to be installed by an
end user. And Common Lisp's interactive
debugging and development
features make it possible to debug and upgrade a live server in ways
that either just aren't possible in a less dynamic language or would
require you to build a lot of
specific infrastructure.

Where to Go Next

So, that's it. Welcome to the wonderful world of Lisp. The best thing
you can do now--if you
haven't already--is to start writing your own
Lisp code. Pick a project that interests you, and do it
in Common
Lisp. Then do another. Lather, rinse, repeat.

However, if you need some further pointers, this section offers some
places to go. For starters,
check out the Practical Common Lisp
Web site at
http://www.gigamonkeys.com/book/, where you can
find the source code from the
practical chapters, errata, and links
to other Lisp resources on the Web.

In addition to the sites I mentioned in the "Finding Lisp Libraries"
section, you may also want
explore the Common Lisp HyperSpec (a.k.a.
the HyperSpec or CLHS), an HTML version of the
ANSI language standard
prepared by Kent Pitman and made available by LispWorks at
http://www.lispworks.com/documentation/HyperSpec/index.html.
The
HyperSpec is by no means a tutorial, but it's as authoritative a
guide to the language as you can
get without buying a printed copy of
the standard from ANSI and much more convenient for
day-to-day
use.12

If you want to get in touch with other Lispers, comp.lang.lisp
on Usenet and the #lisp
IRC channel or the Freenode network
(http://www.freenode.net) are two of the main
online hang-
outs. There are also a number of Lisp-related blogs, most of which
are aggregated
on Planet Lisp at http://planet.lisp.org/.

And keep your eyes peeled in all those forums for announcements of
local Lisp users get-
togethers in your area--in the past few years,
Lispnik gatherings have popped up in cities around
the world, from
New York to Oakland, from Cologne to Munich, and from Geneva to
Helsinki.

If you want to stick to books, here are a few suggestions. For a nice
thick reference book to stick
on your desk, grab The ANSI Common
Lisp Reference Book edited by David Margolies (Apress,
2005).13

For more on Common Lisp's object system, you can start with
Object-Oriented Programming in
Common Lisp: A Programmer's Guide
to CLOS by Sonya E. Keene (Addison-Wesley, 1989).
Then if you really
want to become an object wizard or just to stretch your mind in
interesting
ways, read The Art of the Metaobject Protocol by
Gregor Kiczales, Jim des Rivi�res, and
Daniel G. Bobrow (MIT Press,
1991). This book, also known as AMOP, is both an explanation
of what
a metaobject protocol is and why you want one and the de facto
standard for the
metaobject protocol supported by many Common Lisp
implementations.

Two books that cover general Common Lisp technique are Paradigms
of Artificial Intelligence
Programming: Case Studies in Common Lisp
by Peter Norvig (Morgan Kaufmann, 1992) and
On Lisp: Advanced
Techniques for Common Lisp by Paul Graham (Prentice Hall, 1994). The
former provides a solid introduction to artificial intelligence
techniques while teaching quite a
bit about how to write good Common
Lisp code, and the latter is especially good in its treatment
of
macros.

If you're the kind of person who likes to know how things work down
to the bits, Lisp in Small
Pieces by Christian Queinnec
(Cambridge University Press, 1996) provides a nice blend of

programming language theory and practical Lisp implementation
techniques. While it's primarily
focused on Scheme rather than Common
Lisp, the same principles apply.

For folks who want a little more theoretical look at things--or who
just want to know what it's
like to be a freshman comp sci student at
M.I.T.--Structure and Interpretation of Computer
Programs, Second
Edition, by Harold Abelson, Gerald Jay Sussman, and Julie Sussman
(M.I.T.
Press, 1996) is a classic computer science text that uses
Scheme to teach important
programming concepts. Any programmer can
learn a lot from this book--just remember that
there are important
differences between Scheme and Common Lisp.

Once you've wrapped your mind around Lisp, you may want to place it
in a bit of context. Since
no one can claim to really understand
object orientation who doesn't know something about
Smalltalk, you
might want to start with Smalltalk-80: The Language by Adele
Goldberg and
David Robson (Addison Wesley, 1989), the standard
introduction to the core of Smalltalk. After
that, Smalltalk Best
Practice Patterns by Kent Beck (Prentice Hall, 1997) is full of good
advice
aimed at Smalltalkers, much of which is applicable to any
object-oriented language.

And at the other end of the spectrum, Object-Oriented Software
Construction by Bertrand Meyer
(Prentice Hall, 1997) is an excellent
exposition of the static language mind-set from the inventor
of
Eiffel, an oft-overlooked descendant of Simula and Algol. It contains
much food for thought,
even for programmers working with dynamic
languages such as Common Lisp. In particular,
Meyer's ideas about
Design By Contract can shed a lot of light on how one ought to use
Common Lisp's condition system.

Though not about computers per se, The Wisdom of Crowds: Why the
Many Are Smarter Than
the Few and How Collective Wisdom Shapes
Business, Economies, Societies, and Nations by
James Surowiecki
(Doubleday, 2004) contains an excellent answer to the question, "If
Lisp's so
great how come everybody isn't using it?" See the section
on "Plank-Road Fever" starting on
page 53.

And finally, for some fun, and to learn about the influence Lisp and
Lispers have had on hacker
culture, dip into (or read from cover to
cover) The New Hacker's Dictionary, Third Edition,
compiled by
Eric S. Raymond (MIT Press, 1996) and based on the original The
Hacker's
Dictionary edited by Guy Steele (Harper & Row, 1983).

But don't let all these suggestions interfere with your
programming--the only way to really learn
a language is to use it. If
you've made it this far, you're certainly ready to do that. Happy
hacking!

1The combination of Common Lisp's read-time
conditionalization and macros makes it quite feasible to develop
portability
libraries that do nothing but provide a common API
layered over whatever API different implementations provide for
facilities not
specified in the language standard. The portable
pathname library from Chapter 15 is an example of this kind of
library, albeit to
smooth over differences in interpretation of the
standard rather than implementation-dependent APIs.

2A Foreign Function
Interface is basically equivalent to JNI in Java, XS in Perl, or the
extension module API in Python.

3As of this writing, the two main drawbacks of UFFI
are the lack of support for callbacks from C into Lisp, which many
but not all
implementations' FFIs support, and the lack of support
for CLISP, whose FFI is quite good but different enough from the
others as
to not fit easily into the UFFI model.

4Knuth has used the saying several times in
publications, including in his 1974 ACM Turing Award paper, "Computer
Programming as an Art," and in his paper "Structured Programs with
goto Statements." In his paper "The Errors of TeX," he
attributes the
saying to C.A.R. Hoare. And Hoare, in an 2004 e-mail to Hans Genwitz
of phobia.com, said he didn't remember the
origin of the saying but
that he might have attributed it to Dijkstra.

5CL-PPCRE also takes advantage of
another Common Lisp feature I haven't discussed, compiler macros.
A compiler macro is a
special kind of macro that's given a chance to
optimize calls to a specific function by transforming calls to that
function into more
efficient code. CL-PPCRE defines compiler macros
for its functions that take regular expression arguments. The
compiler macros
optimize calls to those functions in which the
regular expression is a constant value by parsing the regular
expression at compile
time rather than leaving it to be done at
runtime. Look up DEFINE-COMPILER-MACRO in your favorite Common
Lisp reference
for more information about compiler macros.

6The word premature in "premature optimization" can
pretty much be defined as "before profiling." Remember that even if
you
can speed up a piece of code to the point where it takes
literally no time to run, you'll still speed up your program only by
whatever
percentage of time it spent in that piece of code.

7Declarations can appear in most forms that
introduce new variables, such as LET, LET*, and the DO
family of looping macros.
LOOP has its own syntax for declaring
the types of loop variables. The special operator LOCALLY,
mentioned in Chapter 20, does
nothing but create a scope in which you
can make declarations.

8The FASL files produced by COMPILE-FILE are
implementation dependent and may or may not be compatible between
different versions of the same Common Lisp implementation. Thus,
they're not a very good way to distribute Lisp code. The one
time
they can be handy is as a way of providing patches to be applied to
an application running in a known version of a particular
implementation. Applying the patch simply entails LOADing the
FASL, and because a FASL can contain arbitrary code, it can be
used
to upgrade existing data as well as to provide new code definitions.

9ASDF was
originally written by Daniel Barlow, one of the SBCL developers, and
has been included as part of SBCL for a long
time and also
distributed as a stand-alone library. It has recently been adopted
and included in other implementations such as
OpenMCL and Allegro.

10On Windows, where there are no
symbolic links, it works a little bit differently but roughly the
same.

11Another tool, ASDF-INSTALL, builds on top of ASDF and
MK:DEFSYSTEM, providing an easy way to automatically
download and
install libraries from the network. The best starting point for
learning about ASDF-INSTALL is Edi Weitz's "A
tutorial for
ASDF-INSTALL" (http:// www.weitz.de/asdf-install/).

12SLIME incorporates an Elisp library that allows you to
automatically jump to the HyperSpec entry for any name defined in the
standard. You can also download a complete copy of the HyperSpec to
keep locally for offline browsing.

13Another classic reference is Common Lisp: The
Language by Guy Steele (Digital Press, 1984 and 1990). The first
edition, a.k.a.
CLtL1, was the de facto standard for the language for
a number of years. While waiting for the official ANSI standard to be
finished, Guy Steele--who was on the ANSI committee--decided to
release a second edition to bridge the gap between CLtL1 and
the
eventual standard. The second edition, now known as CLtL2, is
essentially a snapshot of the work of the standardization
committee
taken at a particular moment in time near to, but not quite at, the
end of the standardization process. Consequently,
CLtL2 differs from
the standard in ways that make it not a very good day-to-day
reference. It is, however, a useful historical
document, particularly
because it includes documentation of some features that were dropped
from the standard before it was
finished as well as commentary that
isn't part of the standard about why certain features are the way
they are.

