
Copyright © 2003-2005, Peter Seibel

32. Conclusion: What's Next?
I hope by now you're convinced that the title of this book isn't an oxymoron. However, it's quite
likely there's some area of programming that's of great practical importance to you that I haven't
discussed at all. For instance, I haven't said anything about how to develop graphical user
interfaces (GUIs), how to connect to relational databases, how to parse XML, or how to write
programs that act as clients for various network protocols. Similarly, I haven't discussed two
topics that will become important when you write real applications in Common Lisp: optimizing
your Lisp code and packaging your application for delivery.

I'm obviously not going to cover all these topics in depth in this final chapter. Instead, I'll give
you a few pointers you can use to pursue whichever aspect of Lisp programming interests you
most.

Finding Lisp Libraries
While the standard library of functions, data types, and macros that comes with Common Lisp is
quite large, it provides only general-purpose programming constructs. Specialized tasks such as
writing GUIs, talking to databases, and parsing XML require libraries beyond what are provided
by the ANSI standardized language.

The easiest way to obtain a library to do something you need may be simply to check out your
Lisp implementation. Most implementations provide at least some facilities not specified in the
language standard. The commercial Common Lisp vendors tend to work especially hard at
providing additional libraries for their implementation in order to justify their prices. Franz's
Allegro Common Lisp, Enterprise Edition, for instance, comes with libraries for parsing XML,
speaking SOAP, generating HTML, connecting to relational databases, and building graphical
interfaces in various ways, among others. LispWorks, another prominent commercial Lisp,
provides several similar libraries, including a well-regarded portable GUI toolkit, CAPI, which
can be used to develop GUI applications that will run on any operating system LispWorks runs
on.

The free and open-source Common Lisp implementations typically don't include quite so many
bundled libraries, relying instead on portable free and open-source libraries. But even those
implementations usually fill in some of the more important areas not addressed by the language
standard such as networking and multithreading.

The only disadvantage of using implementation-specific libraries is that they tie you to the
implementation that provides them. If you're delivering end-user apps or are deploying a server-
based application on a server that you control, that may not matter a lot. But if you want to write
code to share with other Lispers or if you simply don't want to be tied to a particular
implementation, it's a little more annoying.

For portable libraries--portable either because they're written entirely in standard Common Lisp
or because they contain appropriate read-time conditionalization to work on multiple
implementations1--your best bet is to go to the Web. With the usual caveats about URLs going
stale as soon as they're printed on paper, these are three of the best current starting points:

Common-Lisp.net (http://www.common-lisp.net/) is a site that hosts free and
open-source Common Lisp projects, providing version control, mailing lists, and Web
hosting of project pages. In the first year and a half after the site went live, nearly a
hundred projects were registered.
The Common Lisp Open Code Collection (CLOCC)
(http://clocc.sourceforge.net/) is a slightly older collection of free software
libraries, which are intended to be portable between Common Lisp implementations and
self-contained, not relying on any libraries not included in CLOCC itself.
Cliki (http://www.cliki.net/) is a wiki devoted to free software in Common Lisp.
While, like any wiki, it may change at any time, typically it has quite a few links to
libraries as well to various open-source Common Lisp implementations. The eponymous
software it runs on is also written in Common Lisp.

Linux users running the Debian or Gentoo distributions can also easily install an ever-growing
number of Lisp libraries that have been packaged with those distributions' packing tools,
apt-get on Debian and emerge on Gentoo.

I won't recommend any specific libraries here since the library situation is changing every day--
after years of envying the library collections of Perl, Python, and Java, Common Lispers have, in
the past couple of years, begun to take up the challenge of giving Common Lisp the set of
libraries--both open source and commercial--that it deserves.

One area where there has been a lot of activity recently is on the GUI front. Unlike Java and C#
but like Perl, Python, and C, there's no single way to develop GUIs in Common Lisp. Instead, it
depends both on what Common Lisp implementation you're using and what operating system or
systems you want to support.

The commercial Common Lisp implementations usually provide some way to build GUIs for the
platforms they run on. Additionally, LispWorks provides CAPI, the previously mentioned,
portable GUI API.

On the open-source side, you have a number of options. On Unix, you can write low-level X
Windows GUIs using CLX, a pure-Common Lisp implementation of the X Windows protocol,
roughly akin to xlib in C. Or you can use various bindings to higher-level APIs and toolkits such
as GTK and Tk, much the way you might in Perl or Python.

Or, if you're looking for something completely different, you can check out Common Lisp
Interface Manager (CLIM). A descendant of the Symbolics Lisp Machines GUI framework,
CLIM is powerful but complex. Although many commercial Common Lisp implementations
actually support it, it doesn't seem to have seen a lot of use. But in the past couple years, an
open-source implementation of CLIM, McCLIM--now hosted at Common-Lisp.net--has been
picking up steam lately, so we may be on the verge of a CLIM renaissance.

Interfacing with Other Languages

While many useful libraries can be written in "pure" Common Lisp using only the features
specified in the language standard, and many more can be written in Lisp using nonstandard
facilities provided by a given implementation, occasionally it's more straightforward to use an
existing library written in another language, such as C.

The language standard doesn't specify a mechanism for Lisp code to call code written in another
language or even require that implementations provide such a mechanism. But these days,
almost all Common Lisp implementations support what's called a Foreign Function Interface, or
FFI for short.2 The basic job of an FFI is to allow you to give Lisp enough information to be able
to link in the foreign code. Thus, if you're going to call a function from a C library, you need to
tell Lisp about how to translate the Lisp objects passed to the function into C types and the value
returned by the function back into a Lisp object. However, each implementation provides its own
FFI, each with slightly varying capabilities and syntax. Some FFIs allow callbacks from C to
Lisp, and others don't. The Universal Foreign Function Interface (UFFI) project provides a
portability layer over the FFIs of more than a half dozen different Common Lisp
implementations. It works by defining its own macros that expand into appropriate FFI code for
the implementation it's running in. The UFFI takes a lowest common denominator approach,
which means it can't take advantage of all the features of different implementations' FFIs, but it
does provide a good way to build a simple Lisp wrapper around a basic C API.3

Make It Work, Make It Right, Make It Fast

As has been said many times, and variously attributed to Donald Knuth, C.A.R. Hoare, and
Edsger Dijkstra, premature optimization is the root of all evil.4 Common Lisp is an excellent
language to program in if you want to heed this wisdom yet still need high performance. This
may come as a surprise if you've heard the conventional wisdom that Lisp is slow. In Lisp's
earliest days, when computers were programmed with punch cards, Lisp's high-level features
may have doomed it to be slower than the competition, namely, assembly and FORTRAN. But
that was a long time ago. In the meantime, Lisp has been used for everything from creating
complex AI systems to writing operating systems, and a lot of work has gone into figuring out
how to compile Lisp into efficient code. In this section I'll talk about some of the reasons why
Common Lisp is an excellent language for writing high-performance code and some of the
techniques for doing so.

The first reason that Lisp is an excellent language for writing high-performance code is,
ironically enough, the dynamic nature of Lisp programming--the very thing that originally made
it hard to bring Lisp's performance up to the levels achieved by FORTRAN compilers. The
reason Common Lisp's dynamic features make it easier to write high-performance code is that
the first step to writing efficient code is to find the right algorithms and data structures.

Common Lisp's dynamic features keep code flexible, which makes it easier to try different
approaches. Given a finite amount of time to write a program, you're much more likely to end up
with a high-performance version if you don't spend a lot of time getting into and out of dead
ends. In Common Lisp, you can try an idea, see it's going nowhere, and move on without having
spent a ton of time convincing the compiler your code is worthy of being run and then waiting
for it to finish compiling. You can write a straightforward but inefficient version of a function--a
code sketch--to determine whether your basic approach is sound and then replace that function

with a more complex but more efficient implementation if you determine that it is. And if the
overall approach turns out to be flawed, then you haven't wasted a bunch of time tuning a
function that's no longer needed, which means you have more time to find a better approach.

The next reason Common Lisp is a good language for developing high-performance software is
that most Common Lisp implementations come with mature compilers that generate quite
efficient machine code. I'll talk in a moment about how to help these compilers generate code
that will be competitive with code generated by C compilers, but these implementations already
are quite a bit faster than those of languages whose implementations are less mature and use
simpler compilers or interpreters. Also, since the Lisp compiler is available at runtime, the Lisp
programmer has some possibilities that would be hard to emulate in other languages--your
programs can generate Lisp code at runtime that's then compiled into machine code and run. If
the generated code is going to run enough times, this can be a big win. Or, even without using
the compiler at runtime, closures give you another way to meld machine code with runtime data.
For instance, the CL-PPCRE regular expression library, running in CMUCL, is faster than Perl's
regular expression engine on some benchmarks, even though Perl's engine is written in highly
tuned C. This is presumably because in Perl a regular expression is translated into what are
essentially bytecodes that are then interpreted by the regex engine, while CL-PPCRE translates a
regular expression into a tree of compiled closures that invoke each other via the normal
function-calling machinery.5

However, even with the right algorithm and a high-quality compiler, you may not get the raw
speed you need. Then it's time to think about profiling and tuning. The key, in Lisp as in any
language, is to profile first to find the spots where your program is actually spending its time and
then worry about speeding up those parts.6

You have a number of different ways to approach profiling. The language standard provides a
few rudimentary tools for measuring how long certain forms take to execute. In particular, the
TIME macro can be wrapped around any form and will return whatever values the form returns
after printing a message to *TRACE-OUTPUT* about how long it took to run and how much
memory it used. The exact form of the message is implementation defined.

You can use TIME for a bit of quick-and-dirty profiling to narrow your search for bottlenecks.
For instance, suppose you have a function that's taking a long time to run and that calls two other
functions--something like this:

(defun foo ()
 (bar)
 (baz))

If you want to see whether bar or baz is taking more time, you can change the definition of
foo to this:

(defun foo ()
 (time (bar))
 (time (baz)))

Now you can call foo, and Lisp will print two reports, one for bar and one for baz. The form
is implementation dependent; here's what it looks like in Allegro Common Lisp:

CL-USER> (foo)
; cpu time (non-gc) 60 msec user, 0 msec system
; cpu time (gc) 0 msec user, 0 msec system
; cpu time (total) 60 msec user, 0 msec system
; real time 105 msec
; space allocation:
; 24,172 cons cells, 1,696 other bytes, 0 static bytes
; cpu time (non-gc) 540 msec user, 10 msec system
; cpu time (gc) 170 msec user, 0 msec system
; cpu time (total) 710 msec user, 10 msec system
; real time 1,046 msec
; space allocation:
; 270,172 cons cells, 1,696 other bytes, 0 static bytes

Of course, that'd be a bit easier to read if the output included a label. If you use this technique a
lot, it might be worth defining your own macro like this:

(defmacro labeled-time (form)
 `(progn
 (format *trace-output* "~2&~a" ',form)
 (time ,form)))

If you replace TIME with labeled-time in foo, you'll get this output:

CL-USER> (foo)

(BAR)
; cpu time (non-gc) 60 msec user, 0 msec system
; cpu time (gc) 0 msec user, 0 msec system
; cpu time (total) 60 msec user, 0 msec system
; real time 131 msec
; space allocation:
; 24,172 cons cells, 1,696 other bytes, 0 static bytes

(BAZ)
; cpu time (non-gc) 490 msec user, 0 msec system
; cpu time (gc) 190 msec user, 10 msec system
; cpu time (total) 680 msec user, 10 msec system
; real time 1,088 msec
; space allocation:
; 270,172 cons cells, 1,696 other bytes, 0 static bytes

From this output, it's clear that most of the time in foo is spent in baz.

Of course, the output from TIME gets a bit unwieldy if the form you want to profile is called
repeatedly. You can build your own measurement tools using the functions
GET-INTERNAL-REAL-TIME and GET-INTERNAL-RUN-TIME, which return a number
that increases by the value of the constant INTERNAL-TIME-UNITS-PER-SECOND each
second. GET-INTERNAL-REAL-TIME measures wall time, the actual amount of time elapsed,
while GET-INTERNAL-RUN-TIME measures some implementation-defined value such as the
amount of time Lisp was actually executing or the time Lisp was executing user code and not
internal bookkeeping such as the garbage collector. Here's a trivial but useful profiling tool built
with a few macros and GET-INTERNAL-RUN-TIME:

(defparameter *timing-data* ())

(defmacro with-timing (label &body body)
 (with-gensyms (start)
 `(let ((,start (get-internal-run-time)))
 (unwind-protect (progn ,@body)
 (push (list ',label ,start (get-internal-run-time)) *timing-data*)))))

(defun clear-timing-data ()
 (setf *timing-data* ()))

(defun show-timing-data ()
 (loop for (label time count time-per %-of-total) in (compile-timing-data) do

 (format t "~3d% ~a: ~d ticks over ~d calls for ~d per.~%"
 %-of-total label time count time-per)))

(defun compile-timing-data ()
 (loop with timing-table = (make-hash-table)
 with count-table = (make-hash-table)
 for (label start end) in *timing-data*
 for time = (- end start)
 summing time into total
 do
 (incf (gethash label timing-table 0) time)
 (incf (gethash label count-table 0))
 finally
 (return
 (sort
 (loop for label being the hash-keys in timing-table collect
 (let ((time (gethash label timing-table))
 (count (gethash label count-table)))
 (list label time count (round (/ time count)) (round (* 100 (/ time total)
 #'> :key #'fifth))))

This profiler lets you wrap a with-timing around any form; each time the form is executed,
the time it starts and the time it ends are recorded, associating with a label you provide. The
function show-timing-data dumps out a table showing how much time was spent in
different labeled sections of code like this:

CL-USER> (show-timing-data)
 84% BAR: 650 ticks over 2 calls for 325 per.
 16% FOO: 120 ticks over 5 calls for 24 per.
NIL

You could obviously make this profiling code more sophisticated in many ways. Alternatively,
your Lisp implementation most likely provides its own profiling tools, which, since they have
access to the internals of the implementation, can get at information not necessarily available to
user-level code.

Once you've found the bottleneck in your code, you can start tuning. The first thing you should
try, of course, is to find a more efficient basic algorithm--that's where the big gains are to be had.
But assuming you're already using an appropriate algorithm, then it's down to code bumming--
locally optimizing the code so it does absolutely no more work than necessary.

The main tools for code bumming in Common Lisp are its optional declarations. The basic idea
behind declarations in Common Lisp is that they're used to give the compiler information it can
use in a variety of ways to generate better code.

For a simple example, consider this Common Lisp function:

(defun add (x y) (+ x y))

I mentioned in Chapter 10 that if you compare the performance of this function Lisp to the
seemingly equivalent C function:

int add (int x, int y) { return x + y; }

you'll likely find the Common Lisp version to be quite a bit slower, even if your Common Lisp
implementation features a high-quality native compiler.

That's because the Common Lisp version is doing a lot more--the Common Lisp compiler
doesn't even know that the values of a and b are numbers and so has to generate code to check at
runtime. And once it determines they are numbers, it has to determine what types of numbers--

integers, rationals, floating point, or complex--and dispatch to the appropriate addition routine
for the actual types. And even if a and b are integers--the case you care about--then the addition
routine has to account for the possibility that the result may be too large to represent as a fixnum,
a number that can be represented in a single machine word, and thus it may have to allocate a
bignum object.

In C, on the other hand, because the type of all variables are declared, the compiler knows
exactly what kind of values a and b will hold. And because C's arithmetic simply overflows
when the result of an addition is too large to represent in whatever type is being returned, there's
no checking for overflow and no allocation of a bignum object to represent the result when the
mathematical sum is too large to fit in a machine word.

Thus, while the behavior of the Common Lisp code is much more likely to be mathematically
correct, the C version can probably be compiled down to one or two machine instructions. But if
you're willing to give the Common Lisp compiler the same information the C compiler has about
the types of arguments and return values and to accept certain C-like compromises in terms of
generality and error checking, the Common Lisp function can also be compiled down to an
instruction or two.

That's what declarations are for. The main use of declarations is to tell the compiler about the
types of variables and other expressions. For instance, you could tell the compiler that the
arguments to add are both fixnums by writing the function like this:

(defun add (x y)
 (declare (fixnum x y))
 (+ x y))

The DECLARE expression isn't a Lisp form; rather, it's part of the syntax of the DEFUN and must
appear before any other code in the function body.7 This declaration declares that the arguments
passed for the parameters x and y will always be fixnums. In other words, it's a promise to the
compiler, and the compiler is allowed to generate code on the assumption that whatever you tell
it is true.

To declare the type of the value returned, you can wrap the form (+ x y) in the THE special
operator. This operator takes a type specifier, such as FIXNUM, and a form and tells the compiler
the form will evaluate to the given type. Thus, to give the Common Lisp compiler all the
information about add that the C compiler gets, you can write it like this:

(defun add (x y)
 (declare (fixnum x y))
 (the fixnum (+ x y)))

However, even this version needs one more declaration to give the Common Lisp compiler the
same license as the C compiler to generate fast but dangerous code. The OPTIMIZE declaration
is used to tell the compiler how to balance five qualities: the speed of the code generated; the
amount of runtime error checking; the memory usage of the code, both in terms of code size and
runtime memory usage; the amount of debugging information kept with the code; and the speed
of the compilation process. An OPTIMIZE declaration consists of one or more lists, each
containing one of the symbols SPEED, SAFETY, SPACE, DEBUG, and
COMPILATION-SPEED, and a number from zero to three, inclusive. The number specifies the

relative weighting the compiler should give to the corresponding quality, with 3 being the most
important and 0 meaning not important at all. Thus, to make Common Lisp compile add more
or less like a C compiler would, you can write it like this:

(defun add (x y)
 (declare (optimize (speed 3) (safety 0)))
 (declare (fixnum x y))
 (the fixnum (+ x y)))

Of course, now the Lisp version suffers from many of the same liabilities as the C version--if the
arguments passed aren't fixnums or if the addition overflows, the result will be mathematically
incorrect or worse. Also, if someone calls add with a wrong number of arguments, it may not be
pretty. Thus, you should use these kinds of declarations only after your program is working
correctly. And you should add them only where profiling shows they'll make a difference. If
you're getting reasonable performance without them, leave them out. But when profiling shows
you a real hot spot in your code and you need to tune it up, go ahead. Because you can use
declarations this way, it's rarely necessary to rewrite code in C just for performance reasons;
FFIs are used to access existing C code, but declarations are used when C-like performance is
needed. Of course, how close you can get the performance of a given piece of Common Lisp
code to C and C++ depends mostly on how much like C you're willing to make it.

Another code-tuning tool built into Lisp is the function DISASSEMBLE. The exact behavior of
this function is implementation dependent because it depends on how the implementation
compiles code--whether to machine code, bytecodes, or some other form. But the basic idea is
that it shows you the code generated by the compiler when it compiled a specific function.

Thus, you can use DISASSEMBLE to see whether your declarations are having any effect on the
code generated. And if your Lisp implementation uses a native compiler and you know your
platform's assembly language, you can get a pretty good sense of what's actually going on when
you call one of your functions. For instance, you could use DISASSEMBLE to get a sense of the
difference between the first version of add, with no declarations, and the final version. First,
define and compile the original version.

(defun add (x y) (+ x y))

Then, at the REPL, call DISASSEMBLE with the name of the function. In Allegro, it shows the
following assembly-language-like dump of the code generated by the compiler:

CL-USER> (disassemble 'add)
;; disassembly of #<Function ADD>
;; formals: X Y

;; code start: #x737496f4:
 0: 55 pushl ebp
 1: 8b ec movl ebp,esp
 3: 56 pushl esi
 4: 83 ec 24 subl esp,$36
 7: 83 f9 02 cmpl ecx,$2
 10: 74 02 jz 14
 12: cd 61 int $97 ; SYS::TRAP-ARGERR
 14: 80 7f cb 00 cmpb [edi-53],$0 ; SYS::C_INTERRUPT-PENDING
 18: 74 02 jz 22
 20: cd 64 int $100 ; SYS::TRAP-SIGNAL-HIT
 22: 8b d8 movl ebx,eax
 24: 0b da orl ebx,edx
 26: f6 c3 03 testb bl,$3
 29: 75 0e jnz 45
 31: 8b d8 movl ebx,eax

 33: 03 da addl ebx,edx
 35: 70 08 jo 45
 37: 8b c3 movl eax,ebx
 39: f8 clc
 40: c9 leave
 41: 8b 75 fc movl esi,[ebp-4]
 44: c3 ret
 45: 8b 5f 8f movl ebx,[edi-113] ; EXCL::+_2OP
 48: ff 57 27 call *[edi+39] ; SYS::TRAMP-TWO
 51: eb f3 jmp 40
 53: 90 nop
; No value

Clearly, there's a bunch of stuff going on here. If you're familiar with x86 assembly language,
you can probably tell what. Now compile this version of add with all the declarations.

(defun add (x y)
 (declare (optimize (speed 3) (safety 0)))
 (declare (fixnum x y))
 (the fixnum (+ x y)))

Now disassemble add again, and see if the declarations had any effect.

CL-USER> (disassemble 'add)
;; disassembly of #<Function ADD>
;; formals: X Y

;; code start: #x7374dc34:
 0: 03 c2 addl eax,edx
 2: f8 clc
 3: 8b 75 fc movl esi,[ebp-4]
 6: c3 ret
 7: 90 nop
; No value

Looks like they did.

Delivering Applications

Another topic of practical importance, which I didn't talk about elsewhere in the book, is how to
deliver software written in Lisp. The main reason I neglected this topic is because there are many
different ways to do it, and which one is best for you depends on what kind of software you need
to deliver to what kind of user with what Common Lisp implementation. In this section I'll give
an overview of some of the different options.

If you've written code you want to share with fellow Lisp programmers, the most straightforward
way to distribute it is as source code.8 You can distribute a simple library as a single source file,
which programmers can LOAD into their Lisp image, possibly after compiling it with
COMPILE-FILE.

More complex libraries or applications, broken up across multiple source files, pose an
additional challenge--in order to load and compile the code, the files need to be loaded and
compiled in the correct order. For instance, a file containing macro definitions must be loaded
before you can compile files that use those macros. And a file containing DEFPACKAGE forms
must be loaded before any files that use those packages can even be READ. Lispers call this the
system definition problem and typically handle it with tools called system definition facilities or
system definition utilities, which are somewhat analogous to build tools such as make or ant.
As with make and ant, system definition tools allow you to specify the dependencies between

different files and then take care of loading and compiling the files in the correct order while
trying to do only work that's necessary--recompiling only files that have changed, for example.

These days the most widely used system definition tool is ASDF, which stands for Another
System Definition Facility.9 The basic idea behind ASDF is that you define systems in ASD
files, and ASDF provides a number of operations on systems such as loading them or compiling
them. A system can also be defined to depend on other systems, which will be loaded as
necessary. For instance, the following shows the contents of html.asd, the ASD file for the
FOO library from Chapters 31 and 32:

(defpackage :com.gigamonkeys.html-system (:use :asdf :cl))
(in-package :com.gigamonkeys.html-system)

(defsystem html
 :name "html"
 :author "Peter Seibel <peter@gigamonkeys.com>"
 :version "0.1"
 :maintainer "Peter Seibel <peter@gigamonkeys.com>"
 :license "BSD"
 :description "HTML and CSS generation from sexps."
 :long-description ""
 :components
 ((:file "packages")
 (:file "html" :depends-on ("packages"))
 (:file "css" :depends-on ("packages" "html")))
 :depends-on (:macro-utilities))

If you add a symbolic link to this file from a directory listed in
asdf:*central-registry*,10 then you can type this:

(asdf:operate 'asdf:load-op :html)

to compile and load the files packages.lisp, html.lisp, and html-macros.lisp in
the correct order after first making sure the :macro-utilities system has been compiled
and loaded. For other examples of ASD files, you can look at this book's source code--the code
from each practical chapter is defined as a system with appropriate intersystem dependencies
expressed in the ASD files.

Most free and open-source Common Lisp libraries you'll find will come with an ASD file. Some
will use other system definition tools such as the slightly older MK:DEFSYSTEM or even
utilities devised by the library's author, but the tide seems to be turning in the direction of
ASDF.11

Of course, while ASDF makes it easy for Lispers to install Lisp libraries, it's not much help if
you want to package an application for an end user who doesn't know or care about Lisp. If
you're delivering a pure end-user application, presumably you want to provide something the
user can download, install, and run without having to know anything about Lisp. You can't
expect them to separately download and install a Lisp implementation. And you want them to be
able to run your application just like any other application--by double-clicking an icon on
Windows or OS X or by typing the name of the program at the command line on Unix.

However, unlike C programs, which can typically rely on certain shared libraries (DLLs on
Windows) that make up the C "runtime" being present as part of the operating system, Lisp
programs must include a Lisp runtime, that is, the same program you run when you start Lisp
though perhaps with certain functionality not needed to run the application excised.

To further complicate matters, program isn't really well defined in Lisp. As you've seen
throughout this book, the process of developing software in Lisp is an incremental process that
involves making changes to the set of definitions and data living in your Lisp image. The
"program" is just a particular state of the image arrived at by loading the .lisp or .fasl files
that contain code that creates the appropriate definitions and data. You could, then, distribute a
Lisp application as a Lisp runtime plus a bunch of FASL files and an executable that starts the
runtime, loads the FASLs, and somehow invokes the appropriate starting function. However,
since actually loading the FASLs can take some time, especially if they have to do any
computation to set up the state of the world, most Common Lisp implementations provide a way
to dump an image--to save the state of a running Lisp to a file called an image file or sometimes
a core. When a Lisp runtime starts, the first thing it does is load an image file, which it can do in
much less time than it'd take to re-create the state by loading FASL files.

Normally the image file is a default image containing only the standard packages defined by the
language and any extras provided by the implementation. But with most implementations, you
have a way to specify a different image file. Thus, instead of packaging an app as a Lisp runtime
plus a bunch of FASLs, you can package it as a Lisp runtime plus a single image file containing
all the definitions and data that make up your application. Then all you need is a program that
launches the Lisp runtime with the appropriate image file and invokes whatever function serves
as the entry point to the application.

This is where things get implementation and operating-system dependent. Some Common Lisp
implementations, in particular the commercial ones such as Allegro and LispWorks, provide
tools for building such an executable. For instance, Allegro's Enterprise Edition provides a
function excl:generate-application that creates a directory containing the Lisp
runtime as a shared library, an image file, and an executable that starts the runtime with the
given image. Similarly, the LispWorks Professional Edition "delivery" mechanism allows you to
build single-file executables of your programs. On Unix, with the various free and open-source
implementations, you can do essentially the same thing except it's probably easier to use a shell
script to start everything.

And on OS X things are even better--since all applications on OS X are packaged as .app
bundles, which are essentially directories with a certain structure, it's not all that difficult to
package all the parts of a Lisp application as a double-clickable .app bundle. Mikel Evins's
Bosco tool makes it easy to create .app bundles for applications running on OpenMCL.

Of course, another popular way to deliver applications these days is as server-side applications.
This is a niche where Common Lisp can really excel--you can pick a combination of operating
system and Common Lisp implementation that works well for you, and you don't have to worry
about packaging the application to be installed by an end user. And Common Lisp's interactive
debugging and development features make it possible to debug and upgrade a live server in ways
that either just aren't possible in a less dynamic language or would require you to build a lot of
specific infrastructure.

Where to Go Next

So, that's it. Welcome to the wonderful world of Lisp. The best thing you can do now--if you
haven't already--is to start writing your own Lisp code. Pick a project that interests you, and do it
in Common Lisp. Then do another. Lather, rinse, repeat.

However, if you need some further pointers, this section offers some places to go. For starters,
check out the Practical Common Lisp Web site at
http://www.gigamonkeys.com/book/, where you can find the source code from the
practical chapters, errata, and links to other Lisp resources on the Web.

In addition to the sites I mentioned in the "Finding Lisp Libraries" section, you may also want
explore the Common Lisp HyperSpec (a.k.a. the HyperSpec or CLHS), an HTML version of the
ANSI language standard prepared by Kent Pitman and made available by LispWorks at
http://www.lispworks.com/documentation/HyperSpec/index.html. The
HyperSpec is by no means a tutorial, but it's as authoritative a guide to the language as you can
get without buying a printed copy of the standard from ANSI and much more convenient for
day-to-day use.12

If you want to get in touch with other Lispers, comp.lang.lisp on Usenet and the #lisp
IRC channel or the Freenode network (http://www.freenode.net) are two of the main
online hang- outs. There are also a number of Lisp-related blogs, most of which are aggregated
on Planet Lisp at http://planet.lisp.org/.

And keep your eyes peeled in all those forums for announcements of local Lisp users get-
togethers in your area--in the past few years, Lispnik gatherings have popped up in cities around
the world, from New York to Oakland, from Cologne to Munich, and from Geneva to Helsinki.

If you want to stick to books, here are a few suggestions. For a nice thick reference book to stick
on your desk, grab The ANSI Common Lisp Reference Book edited by David Margolies (Apress,
2005).13

For more on Common Lisp's object system, you can start with Object-Oriented Programming in
Common Lisp: A Programmer's Guide to CLOS by Sonya E. Keene (Addison-Wesley, 1989).
Then if you really want to become an object wizard or just to stretch your mind in interesting
ways, read The Art of the Metaobject Protocol by Gregor Kiczales, Jim des Rivi�res, and
Daniel G. Bobrow (MIT Press, 1991). This book, also known as AMOP, is both an explanation
of what a metaobject protocol is and why you want one and the de facto standard for the
metaobject protocol supported by many Common Lisp implementations.

Two books that cover general Common Lisp technique are Paradigms of Artificial Intelligence
Programming: Case Studies in Common Lisp by Peter Norvig (Morgan Kaufmann, 1992) and
On Lisp: Advanced Techniques for Common Lisp by Paul Graham (Prentice Hall, 1994). The
former provides a solid introduction to artificial intelligence techniques while teaching quite a
bit about how to write good Common Lisp code, and the latter is especially good in its treatment
of macros.

If you're the kind of person who likes to know how things work down to the bits, Lisp in Small
Pieces by Christian Queinnec (Cambridge University Press, 1996) provides a nice blend of

programming language theory and practical Lisp implementation techniques. While it's primarily
focused on Scheme rather than Common Lisp, the same principles apply.

For folks who want a little more theoretical look at things--or who just want to know what it's
like to be a freshman comp sci student at M.I.T.--Structure and Interpretation of Computer
Programs, Second Edition, by Harold Abelson, Gerald Jay Sussman, and Julie Sussman (M.I.T.
Press, 1996) is a classic computer science text that uses Scheme to teach important
programming concepts. Any programmer can learn a lot from this book--just remember that
there are important differences between Scheme and Common Lisp.

Once you've wrapped your mind around Lisp, you may want to place it in a bit of context. Since
no one can claim to really understand object orientation who doesn't know something about
Smalltalk, you might want to start with Smalltalk-80: The Language by Adele Goldberg and
David Robson (Addison Wesley, 1989), the standard introduction to the core of Smalltalk. After
that, Smalltalk Best Practice Patterns by Kent Beck (Prentice Hall, 1997) is full of good advice
aimed at Smalltalkers, much of which is applicable to any object-oriented language.

And at the other end of the spectrum, Object-Oriented Software Construction by Bertrand Meyer
(Prentice Hall, 1997) is an excellent exposition of the static language mind-set from the inventor
of Eiffel, an oft-overlooked descendant of Simula and Algol. It contains much food for thought,
even for programmers working with dynamic languages such as Common Lisp. In particular,
Meyer's ideas about Design By Contract can shed a lot of light on how one ought to use
Common Lisp's condition system.

Though not about computers per se, The Wisdom of Crowds: Why the Many Are Smarter Than
the Few and How Collective Wisdom Shapes Business, Economies, Societies, and Nations by
James Surowiecki (Doubleday, 2004) contains an excellent answer to the question, "If Lisp's so
great how come everybody isn't using it?" See the section on "Plank-Road Fever" starting on
page 53.

And finally, for some fun, and to learn about the influence Lisp and Lispers have had on hacker
culture, dip into (or read from cover to cover) The New Hacker's Dictionary, Third Edition,
compiled by Eric S. Raymond (MIT Press, 1996) and based on the original The Hacker's
Dictionary edited by Guy Steele (Harper & Row, 1983).

But don't let all these suggestions interfere with your programming--the only way to really learn
a language is to use it. If you've made it this far, you're certainly ready to do that. Happy
hacking!

1The combination of Common Lisp's read-time conditionalization and macros makes it quite feasible to develop portability
libraries that do nothing but provide a common API layered over whatever API different implementations provide for facilities not
specified in the language standard. The portable pathname library from Chapter 15 is an example of this kind of library, albeit to
smooth over differences in interpretation of the standard rather than implementation-dependent APIs.

2A Foreign Function Interface is basically equivalent to JNI in Java, XS in Perl, or the extension module API in Python.

3As of this writing, the two main drawbacks of UFFI are the lack of support for callbacks from C into Lisp, which many but not all
implementations' FFIs support, and the lack of support for CLISP, whose FFI is quite good but different enough from the others as
to not fit easily into the UFFI model.

4Knuth has used the saying several times in publications, including in his 1974 ACM Turing Award paper, "Computer
Programming as an Art," and in his paper "Structured Programs with goto Statements." In his paper "The Errors of TeX," he
attributes the saying to C.A.R. Hoare. And Hoare, in an 2004 e-mail to Hans Genwitz of phobia.com, said he didn't remember the
origin of the saying but that he might have attributed it to Dijkstra.

5CL-PPCRE also takes advantage of another Common Lisp feature I haven't discussed, compiler macros. A compiler macro is a
special kind of macro that's given a chance to optimize calls to a specific function by transforming calls to that function into more
efficient code. CL-PPCRE defines compiler macros for its functions that take regular expression arguments. The compiler macros
optimize calls to those functions in which the regular expression is a constant value by parsing the regular expression at compile
time rather than leaving it to be done at runtime. Look up DEFINE-COMPILER-MACRO in your favorite Common Lisp reference
for more information about compiler macros.

6The word premature in "premature optimization" can pretty much be defined as "before profiling." Remember that even if you
can speed up a piece of code to the point where it takes literally no time to run, you'll still speed up your program only by whatever
percentage of time it spent in that piece of code.

7Declarations can appear in most forms that introduce new variables, such as LET, LET*, and the DO family of looping macros.
LOOP has its own syntax for declaring the types of loop variables. The special operator LOCALLY, mentioned in Chapter 20, does
nothing but create a scope in which you can make declarations.

8The FASL files produced by COMPILE-FILE are implementation dependent and may or may not be compatible between
different versions of the same Common Lisp implementation. Thus, they're not a very good way to distribute Lisp code. The one
time they can be handy is as a way of providing patches to be applied to an application running in a known version of a particular
implementation. Applying the patch simply entails LOADing the FASL, and because a FASL can contain arbitrary code, it can be
used to upgrade existing data as well as to provide new code definitions.

9ASDF was originally written by Daniel Barlow, one of the SBCL developers, and has been included as part of SBCL for a long
time and also distributed as a stand-alone library. It has recently been adopted and included in other implementations such as
OpenMCL and Allegro.

10On Windows, where there are no symbolic links, it works a little bit differently but roughly the same.

11Another tool, ASDF-INSTALL, builds on top of ASDF and MK:DEFSYSTEM, providing an easy way to automatically
download and install libraries from the network. The best starting point for learning about ASDF-INSTALL is Edi Weitz's "A
tutorial for ASDF-INSTALL" (http:// www.weitz.de/asdf-install/).

12SLIME incorporates an Elisp library that allows you to automatically jump to the HyperSpec entry for any name defined in the
standard. You can also download a complete copy of the HyperSpec to keep locally for offline browsing.

13Another classic reference is Common Lisp: The Language by Guy Steele (Digital Press, 1984 and 1990). The first edition, a.k.a.
CLtL1, was the de facto standard for the language for a number of years. While waiting for the official ANSI standard to be
finished, Guy Steele--who was on the ANSI committee--decided to release a second edition to bridge the gap between CLtL1 and
the eventual standard. The second edition, now known as CLtL2, is essentially a snapshot of the work of the standardization
committee taken at a particular moment in time near to, but not quite at, the end of the standardization process. Consequently,
CLtL2 differs from the standard in ways that make it not a very good day-to-day reference. It is, however, a useful historical
document, particularly because it includes documentation of some features that were dropped from the standard before it was
finished as well as commentary that isn't part of the standard about why certain features are the way they are.

