
Copyright © 2003-2005, Peter Seibel

29. Practical: An MP3 Browser
The final step in building the MP3 streaming application is to provide a Web interface that
allows a user to find the songs they want to listen to and add them to a playlist that the Shoutcast
server will draw upon when the user's MP3 client requests the stream URL. For this component
of the application, you'll pull together several bits of code from the previous few chapters: the
MP3 database, the define-url-function macro from Chapter 26, and, of course, the
Shoutcast server itself.

Playlists
The basic idea behind the interface will be that each MP3 client that connects to the Shoutcast
server gets its own playlist, which serves as the source of songs for the Shoutcast server. A
playlist will also provide facilities beyond those needed by the Shoutcast server: through the
Web interface the user will be able to add songs to the playlist, delete songs already in the
playlist, and reorder the playlist by sorting and shuffling.

You can define a class to represent playlists like this:

(defclass playlist ()
 ((id :accessor id :initarg :id)
 (songs-table :accessor songs-table :initform (make-playlist-table))
 (current-song :accessor current-song :initform *empty-playlist-song*)
 (current-idx :accessor current-idx :initform 0)
 (ordering :accessor ordering :initform :album)
 (shuffle :accessor shuffle :initform :none)
 (repeat :accessor repeat :initform :none)
 (user-agent :accessor user-agent :initform "Unknown")
 (lock :reader lock :initform (make-process-lock))))

The id of a playlist is the key you extract from the request object passed to
find-song-source when looking up a playlist. You don't actually need to store it in the
playlist object, but it makes debugging a bit easier if you can find out from an arbitrary
playlist object what its id is.

The heart of the playlist is the songs-table slot, which will hold a table object. The
schema for this table will be the same as for the main MP3 database. The function
make-playlist-table, which you use to initialize songs-table, is simply this:

(defun make-playlist-table ()
 (make-instance 'table :schema *mp3-schema*))

The Package

You can define the package for the code in this chapter with the following DEFPACKAGE:

(defpackage :com.gigamonkeys.mp3-browser
 (:use :common-lisp
 :net.aserve
 :com.gigamonkeys.html
 :com.gigamonkeys.shoutcast
 :com.gigamonkeys.url-function
 :com.gigamonkeys.mp3-database
 :com.gigamonkeys.id3v2)
 (:import-from :acl-socket
 :ipaddr-to-dotted
 :remote-host)
 (:import-from :multiprocessing
 :make-process-lock
 :with-process-lock)
 (:export :start-mp3-browser))

Because this is a high-level application, it uses a lot of lower-level packages. It also imports three symbols
from the ACL-SOCKET package and two more from MULTIPROCESSING since it just needs those five and
not the other 139 symbols those two packages export.

By storing the list of songs as a table, you can use the database functions from Chapter 27 to
manipulate the playlist: you can add to the playlist with insert-row, delete songs with
delete-rows, and reorder the playlist with sort-rows and shuffle-table.

The current-song and current-idx slots keep track of which song is playing:
current-song is an actual song object, while current-idx is the index into the
songs-table of the row representing the current song. You'll see in the section "Manipulating
the Playlist" how to make sure current-song is updated whenever current-idx changes.

The ordering and shuffle slots hold information about how the songs in songs-table
are to be ordered. The ordering slot holds a keyword that tells how the songs-table
should be sorted when it's not shuffled. The legal values are :genre, :artist, :album, and
:song. The shuffle slot holds one of the keywords :none, :song, or :album, which
specifies how songs-table should be shuffled, if at all.

The repeat slot also holds a keyword, one of :none, :song, or :all, which specifies the
repeat mode for the playlist. If repeat is :none, after the last song in the songs-table has
been played, the current-song goes back to a default MP3. When :repeat is :song, the
playlist keeps returning the same current-song forever. And if it's :all, after the last song,
current-song goes back to the first song.

The user-agent slot holds the value of the User-Agent header sent by the MP3 client in its
request for the stream. You need to hold onto this value purely for use in the Web interface--the
User-Agent header identifies the program that made the request, so you can display the value on
the page that lists all the playlists to make it easier to tell which playlist goes with which
connection when multiple clients connect.

Finally, the lock slot holds a process lock created with the function make-process-lock,
which is part of Allegro's MULTIPROCESSING package. You'll need to use that lock in certain
functions that manipulate playlist objects to ensure that only one thread at a time
manipulates a given playlist object. You can define the following macro, built upon the

with-process-lock macro from MULTIPROCESSING, to give an easy way to wrap a
body of code that should be performed while holding a playlist's lock:

(defmacro with-playlist-locked ((playlist) &body body)
 `(with-process-lock ((lock ,playlist))
 ,@body))

The with-process-lock macro acquires exclusive access to the process lock given and
then executes the body forms, releasing the lock afterward. By default, with-process-lock
allows recursive locks, meaning the same thread can safely acquire the same lock multiple times.

Playlists As Song Sources

To use playlists as a source of songs for the Shoutcast server, you'll need to implement a
method on the generic function find-song-source from Chapter 28. Since you're going to
have multiple playlists, you need a way to find the right one for each client that connects to the
server. The mapping part is easy--you can define a variable that holds an EQUAL hash table that
you can use to map from some identifier to the playlist object.

(defvar *playlists* (make-hash-table :test #'equal))

You'll also need to define a process lock to protect access to this hash table like this:

(defparameter *playlists-lock* (make-process-lock :name "playlists-lock"))

Then define a function that looks up a playlist given an ID, creating a new playlist object if
necessary and using with-process-lock to ensure that only one thread at a time
manipulates the hash table.1

(defun lookup-playlist (id)
 (with-process-lock (*playlists-lock*)
 (or (gethash id *playlists*)
 (setf (gethash id *playlists*) (make-instance 'playlist :id id)))))

Then you can implement find-song-source on top of that function and another,
playlist-id, that takes an AllegroServe request object and returns the appropriate playlist
identifier. The find-song-source function is also where you grab the User-Agent string out
of the request object and stash it in the playlist object.

(defmethod find-song-source ((type (eql 'playlist)) request)
 (let ((playlist (lookup-playlist (playlist-id request))))
 (with-playlist-locked (playlist)
 (let ((user-agent (header-slot-value request :user-agent)))
 (when user-agent (setf (user-agent playlist) user-agent))))
 playlist))

The trick, then, is how you implement playlist-id, the function that extracts the identifier
from the request object. You have a couple options, each with different implications for the user
interface. You can pull whatever information you want out of the request object, but however
you decide to identify the client, you need some way for the user of the Web interface to get
hooked up to the right playlist.

For now you can take an approach that "just works" as long as there's only one MP3 client per
machine connecting to the server and as long as the user is browsing the Web interface from the
machine running the MP3 client: you'll use the IP address of the client machine as the identifier.
This way you can find the right playlist for a request regardless of whether the request is from
the MP3 client or a Web browser. You will, however, provide a way in the Web interface to
select a different playlist from the browser, so the only real constraint this choice puts on the
application is that there can be only one connected MP3 client per client IP address.2 The
implementation of playlist-id looks like this:

(defun playlist-id (request)
 (ipaddr-to-dotted (remote-host (request-socket request))))

The function request-socket is part of AllegroServe, while remote-host and
ipaddr-to-dotted are part of Allegro's socket library.

To make a playlist usable as a song source by the Shoutcast server, you need to define methods
on current-song, still-current-p, and maybe-move-to-next-song that
specialize their source parameter on playlist. The current-song method is already
taken care of: by defining the accessor current-song on the eponymous slot, you
automatically got a current-song method specialized on playlist that returns the value
of that slot. However, to make accesses to the playlist thread safe, you need to lock the
playlist before accessing the current-song slot. In this case, the easiest way is to define
an :around method like the following:

(defmethod current-song :around ((playlist playlist))
 (with-playlist-locked (playlist) (call-next-method)))

Implementing still-current-p is also quite simple, assuming you can be sure that
current-song gets updated with a new song object only when the current song actually
changes. Again, you need to acquire the process lock to ensure you get a consistent view of the
playlist's state.

(defmethod still-current-p (song (playlist playlist))
 (with-playlist-locked (playlist)
 (eql song (current-song playlist))))

The trick, then, is to make sure the current-song slot gets updated at the right times.
However, the current song can change in a number of ways. The obvious one is when the
Shoutcast server calls maybe-move-to-next-song. But it can also change when songs are
added to the playlist, when the Shoutcast server has run out of songs, or even if the playlist's
repeat mode is changed.

Rather than trying to write code specific to every situation to determine whether to update
current-song, you can define a function, update-current-if-necessary, that
updates current-song if the song object in current-song no longer matches the file
that the current-idx slot says should be playing. Then, if you call this function after any
manipulation of the playlist that could possibly put those two slots out of sync, you're sure to

keep current-song set properly. Here are update-current-if-necessary and its
helper functions:

(defun update-current-if-necessary (playlist)
 (unless (equal (file (current-song playlist))
 (file-for-current-idx playlist))
 (reset-current-song playlist)))

(defun file-for-current-idx (playlist)
 (if (at-end-p playlist)
 nil
 (column-value (nth-row (current-idx playlist) (songs-table playlist)) :file)))

(defun at-end-p (playlist)
 (>= (current-idx playlist) (table-size (songs-table playlist))))

You don't need to add locking to these functions since they'll be called only from functions that
will take care of locking the playlist first.

The function reset-current-song introduces one more wrinkle: because you want the
playlist to provide an endless stream of MP3s to the client, you don't want to ever set
current-song to NIL. Instead, when a playlist runs out of songs to play--when
songs-table is empty or after the last song has been played and repeat is set to :none--
then you need to set current-song to a special song whose file is an MP3 of silence3 and
whose title explains why no music is playing. Here's some code to define two parameters,
empty-playlist-song and *end-of-playlist-song*, each set to a song with the
file named by *silence-mp3* as their file and an appropriate title:

(defparameter *silence-mp3* ...)

(defun make-silent-song (title &optional (file *silence-mp3*))
 (make-instance
 'song
 :file file
 :title title
 :id3-size (if (id3-p file) (size (read-id3 file)) 0)))

(defparameter *empty-playlist-song* (make-silent-song "Playlist empty."))

(defparameter *end-of-playlist-song* (make-silent-song "At end of playlist."))

reset-current-song uses these parameters when the current-idx doesn't point to a
row in songs-table. Otherwise, it sets current-song to a song object representing the
current row.

(defun reset-current-song (playlist)
 (setf
 (current-song playlist)
 (cond
 ((empty-p playlist) *empty-playlist-song*)
 ((at-end-p playlist) *end-of-playlist-song*)
 (t (row->song (nth-row (current-idx playlist) (songs-table playlist)))))))

(defun row->song (song-db-entry)
 (with-column-values (file song artist album id3-size) song-db-entry
 (make-instance
 'song
 :file file
 :title (format nil "~a by ~a from ~a" song artist album)
 :id3-size id3-size)))

(defun empty-p (playlist)
 (zerop (table-size (songs-table playlist))))

Now, at last, you can implement the method on maybe-move-to-next-song that moves
current-idx to its next value, based on the playlist's repeat mode, and then calls
update-current-if-necessary. You don't change current-idx when it's already at
the end of the playlist because you want it to keep its current value, so it'll point at the next song
you add to the playlist. This function must lock the playlist before manipulating it since it's
called by the Shoutcast server code, which doesn't do any locking.

(defmethod maybe-move-to-next-song (song (playlist playlist))
 (with-playlist-locked (playlist)
 (when (still-current-p song playlist)
 (unless (at-end-p playlist)
 (ecase (repeat playlist)
 (:song) ; nothing changes
 (:none (incf (current-idx playlist)))
 (:all (setf (current-idx playlist)
 (mod (1+ (current-idx playlist))
 (table-size (songs-table playlist)))))))
 (update-current-if-necessary playlist))))

Manipulating the Playlist

The rest of the playlist code is functions used by the Web interface to manipulate playlist
objects, including adding and deleting songs, sorting and shuffling, and setting the repeat mode.
As in the helper functions in the previous section, you don't need to worry about locking in these
functions because, as you'll see, the lock will be acquired in the Web interface function that calls
these.

Adding and deleting is mostly a question of manipulating the songs-table. The only extra
work you have to do is to keep the current-song and current-idx in sync. For instance,
whenever the playlist is empty, its current-idx will be zero, and the current-song will
be the *empty-playlist-song*. If you add a song to an empty playlist, then the index of
zero is now in bounds, and you should change the current-song to the newly added song.
By the same token, when you've played all the songs in a playlist and current-song is
end-of-playlist-song, adding a song should cause current-song to be reset. All
this really means, though, is that you need to call update-current-if-necessary at the
appropriate points.

Adding songs to a playlist is a bit involved because of the way the Web interface communicates
which songs to add. For reasons I'll discuss in the next section, the Web interface code can't just
give you a simple set of criteria to use in selecting songs from the database. Instead, it gives you
the name of a column and a list of values, and you're supposed to add all the songs from the
main database where the given column has a value in the list of values. Thus, to add the right
songs, you need to first build a table object containing the desired values, which you can then
use with an in query against the song database. So, add-songs looks like this:

(defun add-songs (playlist column-name values)
 (let ((table (make-instance
 'table
 :schema (extract-schema (list column-name) (schema *mp3s*)))))

 (dolist (v values) (insert-row (list column-name v) table))
 (do-rows (row (select :from *mp3s* :where (in column-name table)))
 (insert-row row (songs-table playlist))))
 (update-current-if-necessary playlist))

Deleting songs is a bit simpler; you just need to be able to delete songs from the songs-table
that match particular criteria--either a particular song or all songs in a particular genre, by a
particular artist, or from a particular album. So, you can provide a delete-songs function
that takes keyword/value pairs, which are used to construct a matching :where clause you
can pass to the delete-rows database function.

Another complication that arises when deleting songs is that current-idx may need to
change. Assuming the current song isn't one of the ones just deleted, you'd like it to remain the
current song. But if songs before it in songs-table are deleted, it'll be in a different position
in the table after the delete. So after a call to delete-rows, you need to look for the row
containing the current song and reset current-idx. If the current song has itself been deleted,
then, for lack of anything better to do, you can reset current-idx to zero. After updating
current-idx, calling update-current-if-necessary will take care of updating
current-song. And if current-idx changed but still points at the same song,
current-song will be left alone.

(defun delete-songs (playlist &rest names-and-values)
 (delete-rows
 :from (songs-table playlist)
 :where (apply #'matching (songs-table playlist) names-and-values))
 (setf (current-idx playlist) (or (position-of-current playlist) 0))
 (update-current-if-necessary playlist))

(defun position-of-current (playlist)
 (let* ((table (songs-table playlist))
 (matcher (matching table :file (file (current-song playlist))))
 (pos 0))
 (do-rows (row table)
 (when (funcall matcher row)
 (return-from position-of-current pos))
 (incf pos))))

You can also provide a function to completely clear the playlist, which uses
delete-all-rows and doesn't have to worry about finding the current song since it has
obviously been deleted. The call to update-current-if-necessary will take care of
setting current-song to NIL.

(defun clear-playlist (playlist)
 (delete-all-rows (songs-table playlist))
 (setf (current-idx playlist) 0)
 (update-current-if-necessary playlist))

Sorting and shuffling the playlist are related in that the playlist is always either sorted or
shuffled. The shuffle slot says whether the playlist should be shuffled and if so how. If it's set
to :none, then the playlist is ordered according to the value in the ordering slot. When
shuffle is :song, the playlist will be randomly permuted. And when it's set to :album, the
list of albums is randomly permuted, but the songs within each album are listed in track order.
Thus, the sort-playlist function, which will be called by the Web interface code whenever
the user selects a new ordering, needs to set ordering to the desired ordering and set

shuffle to :none before calling order-playlist, which actually does the sort. As in
delete-songs, you need to use position-of-current to reset current-idx to the
new location of the current song. However, this time you don't need to call
update-current-if-necessary since you know the current song is still in the table.

(defun sort-playlist (playlist ordering)
 (setf (ordering playlist) ordering)
 (setf (shuffle playlist) :none)
 (order-playlist playlist)
 (setf (current-idx playlist) (position-of-current playlist)))

In order-playlist, you can use the database function sort-rows to actually perform the
sort, passing a list of columns to sort by based on the value of ordering.

(defun order-playlist (playlist)
 (apply #'sort-rows (songs-table playlist)
 (case (ordering playlist)
 (:genre '(:genre :album :track))
 (:artist '(:artist :album :track))
 (:album '(:album :track))
 (:song '(:song)))))

The function shuffle-playlist, called by the Web interface code when the user selects a
new shuffle mode, works in a similar fashion except it doesn't need to change the value of
ordering. Thus, when shuffle-playlist is called with a shuffle of :none, the
playlist goes back to being sorted according to the most recent ordering. Shuffling by songs is
simple--just call shuffle-table on songs-table. Shuffling by albums is a bit more
involved but still not rocket science.

(defun shuffle-playlist (playlist shuffle)
 (setf (shuffle playlist) shuffle)
 (case shuffle
 (:none (order-playlist playlist))
 (:song (shuffle-by-song playlist))
 (:album (shuffle-by-album playlist)))
 (setf (current-idx playlist) (position-of-current playlist)))

(defun shuffle-by-song (playlist)
 (shuffle-table (songs-table playlist)))

(defun shuffle-by-album (playlist)
 (let ((new-table (make-playlist-table)))
 (do-rows (album-row (shuffled-album-names playlist))
 (do-rows (song (songs-for-album playlist (column-value album-row :album)))
 (insert-row song new-table)))
 (setf (songs-table playlist) new-table)))

(defun shuffled-album-names (playlist)
 (shuffle-table
 (select
 :columns :album
 :from (songs-table playlist)
 :distinct t)))

(defun songs-for-album (playlist album)
 (select
 :from (songs-table playlist)
 :where (matching (songs-table playlist) :album album)
 :order-by :track))

The last manipulation you need to support is setting the playlist's repeat mode. Most of the time
you don't need to take any extra action when setting repeat--its value comes into play only in

maybe-move-to-next-song. However, you need to update the current-song as a
result of changing repeat in one situation, namely, if current-idx is at the end of a
nonempty playlist and repeat is being changed to :song or :all. In that case, you want to
continue playing, either repeating the last song or starting at the beginning of the playlist. So,
you should define an :after method on the generic function (setf repeat).

(defmethod (setf repeat) :after (value (playlist playlist))
 (if (and (at-end-p playlist) (not (empty-p playlist)))
 (ecase value
 (:song (setf (current-idx playlist) (1- (table-size (songs-table playlist)))))
 (:none)
 (:all (setf (current-idx playlist) 0)))
 (update-current-if-necessary playlist)))

Now you have all the underlying bits you need. All that remains is the code that will provide a
Web-based user interface for browsing the MP3 database and manipulating playlists. The
interface will consist of three main functions defined with define-url-function: one for
browsing the song database, one for viewing and manipulating a single playlist, and one for
listing all the available playlists.

But before you get to writing these three functions, you need to start with some helper functions
and HTML macros that they'll use.

Query Parameter Types

Since you'll be using define-url-function, you need to define a few methods on the
string->type generic function from Chapter 28 that define-url-function uses to
convert string query parameters into Lisp objects. In this application, you'll need methods to
convert strings to integers, keyword symbols, and a list of values.

The first two are quite simple.

(defmethod string->type ((type (eql 'integer)) value)
 (parse-integer (or value "") :junk-allowed t))

(defmethod string->type ((type (eql 'keyword)) value)
 (and (plusp (length value)) (intern (string-upcase value) :keyword)))

The last string->type method is slightly more complex. For reasons I'll get to in a moment,
you'll need to generate pages that display a form that contains a hidden field whose value is a list
of strings. Since you're responsible for generating the value in the hidden field and for parsing it
when it comes back, you can use whatever encoding is convenient. You could use the functions
WRITE-TO-STRING and READ-FROM-STRING, which use the Lisp printer and reader to
write and read data to and from strings, except the printed representation of strings can contain
quotation marks and other characters that may cause problems when embedded in the value
attribute of an INPUT element. So, you'll need to escape those characters somehow. Rather than
trying to come up with your own escaping scheme, you can just use base 64, an encoding
commonly used to protect binary data sent through e-mail. AllegroServe comes with two
functions, base64-encode and base64-decode, that do the encoding and decoding for
you, so all you have to do is write a pair of functions: one that encodes a Lisp object by

converting it to a readable string with WRITE-TO-STRING and then base 64 encoding it and,
conversely, another to decode such a string by base 64 decoding it and passing the result to
READ-FROM-STRING. You'll want to wrap the calls to WRITE-TO-STRING and
READ-FROM-STRING in WITH-STANDARD-IO-SYNTAX to make sure all the variables that
affect the printer and reader are set to their standard values. However, because you're going to be
reading data that's coming in from the network, you'll definitely want to turn off one feature of
the reader--the ability to evaluate arbitrary Lisp code while reading!4 You can define your own
macro with-safe-io-syntax, which wraps its body forms in
WITH-STANDARD-IO-SYNTAX wrapped around a LET that binds *READ-EVAL* to NIL.

(defmacro with-safe-io-syntax (&body body)
 `(with-standard-io-syntax
 (let ((*read-eval* nil))
 ,@body)))

Then the encoding and decoding functions are trivial.

(defun obj->base64 (obj)
 (base64-encode (with-safe-io-syntax (write-to-string obj))))

(defun base64->obj (string)
 (ignore-errors
 (with-safe-io-syntax (read-from-string (base64-decode string)))))

Finally, you can use these functions to define a method on string->type that defines the
conversion for the query parameter type base64-list.

(defmethod string->type ((type (eql 'base-64-list)) value)
 (let ((obj (base64->obj value)))
 (if (listp obj) obj nil)))

Boilerplate HTML

Next you need to define some HTML macros and helper functions to make it easy to give the
different pages in the application a consistent look and feel. You can start with an HTML macro
that defines the basic structure of a page in the application.

(define-html-macro :mp3-browser-page ((&key title (header title)) &body body)
 `(:html
 (:head
 (:title ,title)
 (:link :rel "stylesheet" :type "text/css" :href "mp3-browser.css"))
 (:body
 (standard-header)
 (when ,header (html (:h1 :class "title" ,header)))
 ,@body
 (standard-footer))))

You should define standard-header and standard-footer as separate functions for
two reasons. First, during development you can redefine those functions and see the effect
immediately without having to recompile functions that use the :mp3-browser-page macro.
Second, it turns out that one of the pages you'll write later won't be defined with
:mp3-browser-page but will still need the standard header and footers. They look like this:

(defparameter *r* 25)

(defun standard-header ()

 (html
 ((:p :class "toolbar")
 "[" (:a :href (link "/browse" :what "genre") "All genres") "] "
 "[" (:a :href (link "/browse" :what "genre" :random *r*) "Random genres") "] "
 "[" (:a :href (link "/browse" :what "artist") "All artists") "] "
 "[" (:a :href (link "/browse" :what "artist" :random *r*) "Random artists") "] "
 "[" (:a :href (link "/browse" :what "album") "All albums") "] "
 "[" (:a :href (link "/browse" :what "album" :random *r*) "Random albums") "] "
 "[" (:a :href (link "/browse" :what "song" :random *r*) "Random songs") "] "
 "[" (:a :href (link "/playlist") "Playlist") "] "
 "[" (:a :href (link "/all-playlists") "All playlists") "]")))

(defun standard-footer ()
 (html (:hr) ((:p :class "footer") "MP3 Browser v" *major-version* "." *minor-version*))

A couple of smaller HTML macros and helper functions automate other common patterns. The
:table-row HTML macro makes it easier to generate the HTML for a single row of a table. It
uses a feature of FOO that I'll discuss in Chapter 31, an &attributes parameter, which
causes uses of the macro to be parsed just like normal s-expression HTML forms, with any
attributes gathered into a list that will be bound to the &attributes parameter. It looks like
this:

(define-html-macro :table-row (&attributes attrs &rest values)
 `(:tr ,@attrs ,@(loop for v in values collect `(:td ,v))))

And the link function generates a URL back into the application to be used as the HREF
attribute with an A element, building a query string out of a set of keyword/value pairs and
making sure all special characters are properly escaped. For instance, instead of writing this:

(:a :href "browse?what=artist&genre=Rhythm+%26+Blues" "Artists")

you can write the following:

(:a :href (link "browse" :what "artist" :genre "Rhythm & Blues") "Artists")

It looks like this:

(defun link (target &rest attributes)
 (html
 (:attribute
 (:format "~a~@[?~{~(~a~)=~a~^&~}~]" target (mapcar #'urlencode attributes)))))

To URL encode the keys and values, you use the helper function urlencode, which is a
wrapper around the function encode-form-urlencoded, which is a nonpublic function
from AllegroServe. This is--on one hand--bad form; since the name
encode-form-urlencoded isn't exported from NET.ASERVE, it's possible that
encode-form-urlencoded may go away or get renamed out from under you. On the other
hand, using this unexported symbol for the time being lets you get work done for the moment;
by wrapping encode-form-urlencoded in your own function, you isolate the crufty code
to one function, which you could rewrite if you had to.

(defun urlencode (string)
 (net.aserve::encode-form-urlencoded string))

Finally, you need the CSS style sheet mp3-browser.css used by :mp3-browser-page.
Since there's nothing dynamic about it, it's probably easiest to just publish a static file with
publish-file.

(publish-file :path "/mp3-browser.css" :file filename :content-type "text/css")

A sample style sheet is included with the source code for this chapter on the book's Web site.
You'll define a function, at the end of this chapter, that starts the MP3 browser application. It'll
take care of, among other things, publishing this file.

The Browse Page

The first URL function will generate a page for browsing the MP3 database. Its query
parameters will tell it what kind of thing the user is browsing and provide the criteria of what
elements of the database they're interested in. It'll give them a way to select database entries that
match a specific genre, artist, or album. In the interest of serendipity, you can also provide a way
to select a random subset of matching items. When the user is browsing at the level of individual
songs, the title of the song will be a link that causes that song to be added to the playlist.
Otherwise, each item will be presented with links that let the user browse the listed item by some
other category. For example, if the user is browsing genres, the entry "Blues" will contain links
to browse all albums, artists, and songs in the genre Blues. Additionally, the browse page will
feature an "Add all" button that adds every song matching the page's criteria to the user's
playlist. The function looks like this:

(define-url-function browse
 (request (what keyword :genre) genre artist album (random integer))

 (let* ((values (values-for-page what genre artist album random))
 (title (browse-page-title what random genre artist album))
 (single-column (if (eql what :song) :file what))
 (values-string (values->base-64 single-column values)))
 (html
 (:mp3-browser-page
 (:title title)
 ((:form :method "POST" :action "playlist")
 (:input :name "values" :type "hidden" :value values-string)
 (:input :name "what" :type "hidden" :value single-column)
 (:input :name "action" :type "hidden" :value :add-songs)
 (:input :name "submit" :type "submit" :value "Add all"))
 (:ul (do-rows (row values) (list-item-for-page what row)))))))

This function starts by using the function values-for-page to get a table containing the
values it needs to present. When the user is browsing by song--when the what parameter is
:song--you want to select complete rows from the database. But when they're browsing by
genre, artist, or album, you want to select only the distinct values for the given category. The
database function select does most of the heavy lifting, with values-for-page mostly
responsible for passing the right arguments depending on the value of what. This is also where
you select a random subset of the matching rows if necessary.

(defun values-for-page (what genre artist album random)
 (let ((values
 (select
 :from *mp3s*
 :columns (if (eql what :song) t what)
 :where (matching *mp3s* :genre genre :artist artist :album album)
 :distinct (not (eql what :song))
 :order-by (if (eql what :song) '(:album :track) what))))
 (if random (random-selection values random) values)))

To generate the title for the browse page, you pass the browsing criteria to the following
function, browse-page-title:

(defun browse-page-title (what random genre artist album)
 (with-output-to-string (s)
 (when random (format s "~:(~r~) Random " random))
 (format s "~:(~a~p~)" what random)
 (when (or genre artist album)
 (when (not (eql what :song)) (princ " with songs" s))
 (when genre (format s " in genre ~a" genre))
 (when artist (format s " by artist ~a " artist))
 (when album (format s " on album ~a" album)))))

Once you have the values you want to present, you need to do two things with them. The main
task, of course, is to present them, which happens in the do-rows loop, leaving the rendering
of each row to the function list-item-for-page. That function renders :song rows one
way and all other kinds another way.

(defun list-item-for-page (what row)
 (if (eql what :song)
 (with-column-values (song file album artist genre) row
 (html
 (:li
 (:a :href (link "playlist" :file file :action "add-songs") (:b song)) " from "
 (:a :href (link "browse" :what :song :album album) album) " by "
 (:a :href (link "browse" :what :song :artist artist) artist) " in genre "
 (:a :href (link "browse" :what :song :genre genre) genre))))
 (let ((value (column-value row what)))
 (html
 (:li value " - "
 (browse-link :genre what value)
 (browse-link :artist what value)
 (browse-link :album what value)
 (browse-link :song what value))))))

(defun browse-link (new-what what value)
 (unless (eql new-what what)
 (html
 "["
 (:a :href (link "browse" :what new-what what value) (:format "~(~as~)" new-what))
 "] ")))

The other thing on the browse page is a form with several hidden INPUT fields and an "Add
all" submit button. You need to use an HTML form instead of a regular link to keep the
application stateless--to make sure all the information needed to respond to a request comes in
the request itself. Because the browse page results can be partially random, you need to submit a
fair bit of data for the server to be able to reconstitute the list of songs to add to the playlist. If
you didn't allow the browse page to return randomly generated results, you wouldn't need much
data--you could just submit a request to add songs with whatever search criteria the browse page
used. But if you added songs that way, with criteria that included a random argument, then
you'd end up adding a different set of random songs than the user was looking at on the page
when they hit the "Add all" button.

The solution you'll use is to send back a form that has enough information stashed away in a
hidden INPUT element to allow the server to reconstitute the list of songs matching the browse
page criteria. That information is the list of values returned by values-for-page and the
value of the what parameter. This is where you use the base64-list parameter type; the
function values->base64 extracts the values of a specified column from the table returned

by values-for-page into a list and then makes a base 64-encoded string out of that list to
embed in the form.

(defun values->base-64 (column values-table)
 (flet ((value (r) (column-value r column)))
 (obj->base64 (map-rows #'value values-table))))

When that parameter comes back as the value of the values query parameter to a URL
function that declares values to be of type base-64-list, it'll be automatically converted
back to a list. As you'll see in a moment, that list can then be used to construct a query that'll
return the correct list of songs.5 When you're browsing by :song, you use the values from the
:file column since they uniquely identify the actual songs while the song names may not.

The Playlist

This brings me to the next URL function, playlist. This is the most complex page of the
three--it's responsible for displaying the current contents of the user's playlist as well as for
providing the interface to manipulate the playlist. But with most of the tedious bookkeeping
handled by define-url-function, it's not too hard to see how playlist works. Here's
the beginning of the definition, with just the parameter list:

(define-url-function playlist
 (request
 (playlist-id string (playlist-id request) :package)
 (action keyword) ; Playlist manipulation action
 (what keyword :file) ; for :add-songs action
 (values base-64-list) ; "
 file ; for :add-songs and :delete-songs actions
 genre ; for :delete-songs action
 artist ; "
 album ; "
 (order-by keyword) ; for :sort action
 (shuffle keyword) ; for :shuffle action
 (repeat keyword)) ; for :set-repeat action

In addition to the obligatory request parameter, playlist takes a number of query
parameters. The most important in some ways is playlist-id, which identifies which
playlist object the page should display and manipulate. For this parameter, you can take
advantage of define-url-function's "sticky parameter" feature. Normally, the
playlist-id won't be supplied explicitly, defaulting to the value returned by the
playlist-id function, namely, the IP address of the client machine on which the browser is
running. However, users can also manipulate their playlists from different machines than the
ones running their MP3 clients by allowing this value to be explicitly specified. And if it's
specified once, define-url-function will arrange for it to "stick" by setting a cookie in
the browser. Later you'll define a URL function that generates a list of all existing playlists,
which users can use to pick a playlist other than the one for the machines they're browsing from.

The action parameter specifies some action to take on the user's playlist object. The value of
this parameter, which will be converted to a keyword symbol for you, can be :add-songs,
:delete-songs, :clear, :sort, :shuffle, or :set-repeat. The :add-songs

action is used by the "Add all" button in the browse page and also by the links used to add
individual songs. The other actions are used by the links on the playlist page itself.

The file, what, and values parameters are used with the :add-songs action. By
declaring values to be of type base-64-list, the define-url-function
infrastructure will take care of decoding the value submitted by the "Add all" form. The other
parameters are used with other actions as noted in the comments.

Now let's look at the body of playlist. The first thing you need to do is use the
playlist-id to look up the queue object and then acquire the playlist's lock with the
following two lines:

(let ((playlist (lookup-playlist playlist-id)))
 (with-playlist-locked (playlist)

Since lookup-playlist will create a new playlist if necessary, this will always return a
playlist object. Then you take care of any necessary queue manipulation, dispatching on the
value of the action parameter in order to call one of the playlist functions.

(case action
 (:add-songs (add-songs playlist what (or values (list file))))
 (:delete-songs (delete-songs
 playlist
 :file file :genre genre
 :artist artist :album album))
 (:clear (clear-playlist playlist))
 (:sort (sort-playlist playlist order-by))
 (:shuffle (shuffle-playlist playlist shuffle))
 (:set-repeat (setf (repeat playlist) repeat)))

All that's left of the playlist function is the actual HTML generation. Again, you can use the
:mp3-browser-page HTML macro to make sure the basic form of the page matches the
other pages in the application, though this time you pass NIL to the :header argument in
order to leave out the H1 header. Here's the rest of the function:

(html
 (:mp3-browser-page
 (:title (:format "Playlist - ~a" (id playlist)) :header nil)
 (playlist-toolbar playlist)
 (if (empty-p playlist)
 (html (:p (:i "Empty.")))
 (html
 ((:table :class "playlist")
 (:table-row "#" "Song" "Album" "Artist" "Genre")
 (let ((idx 0)
 (current-idx (current-idx playlist)))
 (do-rows (row (songs-table playlist))
 (with-column-values (track file song album artist genre) row
 (let ((row-style (if (= idx current-idx) "now-playing" "normal")))
 (html
 ((:table-row :class row-style)
 track
 (:progn song (delete-songs-link :file file))
 (:progn album (delete-songs-link :album album))
 (:progn artist (delete-songs-link :artist artist))
 (:progn genre (delete-songs-link :genre genre)))))
 (incf idx))))))))))))

The function playlist-toolbar generates a toolbar containing links to playlist to
perform the various :action manipulations. And delete-songs-link generates a link to

playlist with the :action parameter set to :delete-songs and the appropriate
arguments to delete an individual file, or all files on an album, by a particular artist or in a
specific genre.

(defun playlist-toolbar (playlist)
 (let ((current-repeat (repeat playlist))
 (current-sort (ordering playlist))
 (current-shuffle (shuffle playlist)))
 (html
 (:p :class "playlist-toolbar"
 (:i "Sort by:")
 " ["
 (sort-playlist-button "genre" current-sort) " | "
 (sort-playlist-button "artist" current-sort) " | "
 (sort-playlist-button "album" current-sort) " | "
 (sort-playlist-button "song" current-sort) "] "
 (:i "Shuffle by:")
 " ["
 (playlist-shuffle-button "none" current-shuffle) " | "
 (playlist-shuffle-button "song" current-shuffle) " | "
 (playlist-shuffle-button "album" current-shuffle) "] "
 (:i "Repeat:")
 " ["
 (playlist-repeat-button "none" current-repeat) " | "
 (playlist-repeat-button "song" current-repeat) " | "
 (playlist-repeat-button "all" current-repeat) "] "
 "[" (:a :href (link "playlist" :action "clear") "Clear") "] "))))

(defun playlist-button (action argument new-value current-value)
 (let ((label (string-capitalize new-value)))
 (if (string-equal new-value current-value)
 (html (:b label))
 (html (:a :href (link "playlist" :action action argument new-value) label)))))

(defun sort-playlist-button (order-by current-sort)
 (playlist-button :sort :order-by order-by current-sort))

(defun playlist-shuffle-button (shuffle current-shuffle)
 (playlist-button :shuffle :shuffle shuffle current-shuffle))

(defun playlist-repeat-button (repeat current-repeat)
 (playlist-button :set-repeat :repeat repeat current-repeat))

(defun delete-songs-link (what value)
 (html " [" (:a :href (link "playlist" :action :delete-songs what value) "x") "]"))

Finding a Playlist

The last of the three URL functions is the simplest. It presents a table listing all the playlists that
have been created. Ordinarily users won't need to use this page, but during development it gives
you a useful view into the state of the system. It also provides the mechanism to choose a
different playlist--each playlist ID is a link to the playlist page with an explicit
playlist-id query parameter, which will then be made sticky by the playlist URL
function. Note that you need to acquire the *playlists-lock* to make sure the
playlists hash table doesn't change out from under you while you're iterating over it.

(define-url-function all-playlists (request)
 (:mp3-browser-page
 (:title "All Playlists")
 ((:table :class "all-playlists")
 (:table-row "Playlist" "# Songs" "Most recent user agent")
 (with-process-lock (*playlists-lock*)
 (loop for playlist being the hash-values of *playlists* do
 (html
 (:table-row

 (:a :href (link "playlist" :playlist-id (id playlist)) (:print (id playlist
 (:print (table-size (songs-table playlist)))
 (:print (user-agent playlist)))))))))

Running the App

And that's it. To use this app, you just need to load the MP3 database with the
load-database function from Chapter 27, publish the CSS style sheet, set
song-source-type to playlist so find-song-source uses playlists instead of
the singleton song source defined in the previous chapter, and start AllegroServe. The following
function takes care of all these steps for you, after you fill in appropriate values for the two
parameters *mp3-dir*, which is the root directory of your MP3 collection, and *mp3-css*,
the filename of the CSS style sheet:

(defparameter *mp3-dir* ...)

(defparameter *mp3-css* ...)

(defun start-mp3-browser ()
 (load-database *mp3-dir* *mp3s*)
 (publish-file :path "/mp3-browser.css" :file *mp3-css* :content-type "text/css")
 (setf *song-source-type* 'playlist)
 (net.aserve::debug-on :notrap)
 (net.aserve:start :port 2001))

When you invoke this function, it will print dots while it loads the ID3 information from your
ID3 files. Then you can point your MP3 client at this URL:

http://localhost:2001/stream.mp3

and point your browser at some good starting place, such as this:

http://localhost:2001/browse

which will let you start browsing by the default category, Genre. After you've added some songs
to the playlist, you can press Play on the MP3 client, and it should start playing the first song.

Obviously, you could improve the user interface in any of a number of ways--for instance, if you
have a lot of MP3s in your library, it might be useful to be able to browse artists or albums by
the first letter of their names. Or maybe you could add a "Play whole album" button to the
playlist page that causes the playlist to immediately put all the songs from the same album as the
currently playing song at the top of the playlist. Or you could change the playlist class, so
instead of playing silence when there are no songs queued up, it picks a random song from the
database. But all those ideas fall in the realm of application design, which isn't really the topic of
this book. Instead, the next two chapters will drop back to the level of software infrastructure to
cover how the FOO HTML generation library works.

1The intricacies of concurrent programming are beyond the scope of this book. The basic idea is that if you have multiple threads
of control--as you will in this application with some threads running the shoutcast function and other threads responding to
requests from the browser--then you need to make sure only one thread at a time manipulates an object in order to prevent one
thread from seeing the object in an inconsistent state while another thread is working on it. In this function, for instance, if two
new MP3 clients are connecting at the same time, they'd both try to add an entry to *playlists* and might interfere with each

other. The with-process-lock ensures that each thread gets exclusive access to the hash table for long enough to do the work
it needs to do.

2This approach also assumes that every client machine has a unique IP address. This assumption should hold as long as all the
users are on the same LAN but may not hold if clients are connecting from behind a firewall that does network address translation.
Deploying this application outside a LAN will require some modifications, but if you want to deploy this application to the wider
Internet, you'd better know enough about networking to figure out an appropriate scheme yourself.

3Unfortunately, because of licensing issues around the MP3 format, it's not clear that it's legal for me to provide you with such an
MP3 without paying licensing fees to Fraunhofer IIS. I got mine as part of the software that came with my Slimp3 from Slim
Devices. You can grab it from their Subversion repository via the Web at
http://svn.slimdevices.com/*checkout*/trunk/server/ HTML/EN/html/silentpacket.mp3?rev=2.
Or buy a Squeezebox, the new, wireless version of Slimp3, and you'll get silentpacket.mp3 as part of the software that
comes with it. Or find an MP3 of John Cage's piece 4'33".

4The reader supports a bit of syntax, #., that causes the following s-expression to be evaluated at read time. This is occasionally
useful in source code but obviously opens a big security hole when you read untrusted data. However, you can turn off this syntax
by setting *READ-EVAL* to NIL, which will cause the reader to signal an error if it encounters #..

5This solution has its drawbacks--if a browse page returns a lot of results, a fair bit of data is going back and forth under the
covers. Also, the database queries aren't necessarily the most efficient. But it does keep the application stateless. An alternative
approach is to squirrel away, on the server side, information about the results returned by browse and then, when a request to add
songs come in, find the appropriate bit of information in order to re-create the correct set of songs. For instance, you could just
save the values list instead of sending it back in the form. Or you could copy the RANDOM-STATE object before you generate the
browse results so you can later re-create the same "random" results. But this approach causes its own problems. For instance, you'd
then need to worry about when you can get rid of the squirreled-away information; you never know when the user might hit the
Back button on their browser to return to an old browse page and then hit the "Add all" button. Welcome to the wonderful world of
Web programming.

