
Copyright © 2003-2005, Peter Seibel

29. Practical: An MP3 Browser
The final step in building the MP3 streaming application is to provide
a Web interface that
allows a user to find the songs they want to
listen to and add them to a playlist that the Shoutcast
server will
draw upon when the user's MP3 client requests the stream URL. For this
component
of the application, you'll pull together several bits of
code from the previous few chapters: the
MP3 database, the
define-url-function macro from Chapter 26, and, of course, the
Shoutcast server itself.

Playlists
The basic idea behind the interface will be that each MP3 client that
connects to the Shoutcast
server gets its own playlist, which
serves as the source of songs for the Shoutcast server. A
playlist
will also provide facilities beyond those needed by the Shoutcast
server: through the
Web interface the user will be able to add songs
to the playlist, delete songs already in the
playlist, and reorder
the playlist by sorting and shuffling.

You can define a class to represent playlists like this:

(defclass playlist ()

 ((id :accessor id :initarg :id)

 (songs-table :accessor songs-table :initform (make-playlist-table))

 (current-song :accessor current-song :initform *empty-playlist-song*)

 (current-idx :accessor current-idx :initform 0)

 (ordering :accessor ordering :initform :album)

 (shuffle :accessor shuffle :initform :none)

 (repeat :accessor repeat :initform :none)

 (user-agent :accessor user-agent :initform "Unknown")

 (lock :reader lock :initform (make-process-lock))))

The id of a playlist is the key you extract from the request
object passed to
find-song-source when looking up a playlist.
You don't actually need to store it in the
playlist object,
but it makes debugging a bit easier if you can find out from an
arbitrary
playlist object what its id is.

The heart of the playlist is the songs-table slot, which will
hold a table object. The
schema for this table will be the
same as for the main MP3 database. The function
make-playlist-table, which you use to initialize
songs-table, is simply this:

(defun make-playlist-table ()

 (make-instance 'table :schema *mp3-schema*))

The Package

You can define the package for the code in this chapter with
the following DEFPACKAGE:

(defpackage :com.gigamonkeys.mp3-browser

 (:use :common-lisp

 :net.aserve

 :com.gigamonkeys.html

 :com.gigamonkeys.shoutcast

 :com.gigamonkeys.url-function

 :com.gigamonkeys.mp3-database

 :com.gigamonkeys.id3v2)

 (:import-from :acl-socket

 :ipaddr-to-dotted

 :remote-host)

 (:import-from :multiprocessing

 :make-process-lock

 :with-process-lock)

 (:export :start-mp3-browser))

Because this is a high-level application, it uses a lot of lower-level
packages. It also imports three symbols
from the ACL-SOCKET
package and two more from MULTIPROCESSING since it just needs
those five and
not the other 139 symbols those two packages export.

By storing the list of songs as a table, you can use the database
functions from Chapter 27 to
manipulate the playlist: you can add to
the playlist with insert-row, delete songs with
delete-rows, and reorder the playlist with sort-rows
and shuffle-table.

The current-song and current-idx slots keep track of
which song is playing:
current-song is an actual song
object, while current-idx is the index into the
songs-table of the row representing the current song. You'll
see in the section "Manipulating
the Playlist" how to make sure
current-song is updated whenever current-idx changes.

The ordering and shuffle slots hold information about
how the songs in songs-table
are to be ordered. The
ordering slot holds a keyword that tells how the
songs-table
should be sorted when it's not shuffled. The legal
values are :genre, :artist, :album, and
:song. The shuffle slot holds one of the keywords
:none, :song, or :album, which
specifies how
songs-table should be shuffled, if at all.

The repeat slot also holds a keyword, one of :none,
:song, or :all, which specifies the
repeat mode for the
playlist. If repeat is :none, after the last song in
the songs-table has
been played, the current-song goes
back to a default MP3. When :repeat is :song, the
playlist keeps returning the same current-song forever. And if
it's :all, after the last song,
current-song goes back
to the first song.

The user-agent slot holds the value of the User-Agent header
sent by the MP3 client in its
request for the stream. You need to
hold onto this value purely for use in the Web interface--the
User-Agent header identifies the program that made the request, so
you can display the value on
the page that lists all the playlists to
make it easier to tell which playlist goes with which
connection when
multiple clients connect.

Finally, the lock slot holds a process lock created with
the function make-process-lock,
which is part of Allegro's
MULTIPROCESSING package. You'll need to use that lock in
certain
functions that manipulate playlist objects to ensure
that only one thread at a time
manipulates a given playlist object.
You can define the following macro, built upon the

with-process-lock macro from MULTIPROCESSING, to give
an easy way to wrap a
body of code that should be performed while
holding a playlist's lock:

(defmacro with-playlist-locked ((playlist) &body body)

 `(with-process-lock ((lock ,playlist))

 ,@body))

The with-process-lock macro acquires exclusive access to the
process lock given and
then executes the body forms, releasing the
lock afterward. By default, with-process-lock
allows recursive
locks, meaning the same thread can safely acquire the same lock
multiple times.

Playlists As Song Sources

To use playlists as a source of songs for the Shoutcast server,
you'll need to implement a
method on the generic function
find-song-source from Chapter 28. Since you're going to
have
multiple playlists, you need a way to find the right one for each
client that connects to the
server. The mapping part is easy--you can
define a variable that holds an EQUAL hash table that
you can
use to map from some identifier to the playlist object.

(defvar *playlists* (make-hash-table :test #'equal))

You'll also need to define a process lock to protect access to this
hash table like this:

(defparameter *playlists-lock* (make-process-lock :name "playlists-lock"))

Then define a function that looks up a playlist given an ID, creating
a new playlist object if
necessary and using
with-process-lock to ensure that only one thread at a time
manipulates the hash table.1

(defun lookup-playlist (id)

 (with-process-lock (*playlists-lock*)

 (or (gethash id *playlists*)

 (setf (gethash id *playlists*) (make-instance 'playlist :id id)))))

Then you can implement find-song-source on top of that
function and another,
playlist-id, that takes an AllegroServe
request object and returns the appropriate playlist
identifier. The
find-song-source function is also where you grab the
User-Agent string out
of the request object and stash it in the
playlist object.

(defmethod find-song-source ((type (eql 'playlist)) request)

 (let ((playlist (lookup-playlist (playlist-id request))))

 (with-playlist-locked (playlist)

 (let ((user-agent (header-slot-value request :user-agent)))

 (when user-agent (setf (user-agent playlist) user-agent))))

 playlist))

The trick, then, is how you implement playlist-id, the
function that extracts the identifier
from the request object. You
have a couple options, each with different implications for the user
interface. You can pull whatever information you want out of the
request object, but however
you decide to identify the client, you
need some way for the user of the Web interface to get
hooked up to
the right playlist.

For now you can take an approach that "just works" as long as there's
only one MP3 client per
machine connecting to the server and as long
as the user is browsing the Web interface from the
machine running
the MP3 client: you'll use the IP address of the client machine as
the identifier.
This way you can find the right playlist for a
request regardless of whether the request is from
the MP3 client or a
Web browser. You will, however, provide a way in the Web interface to
select a different playlist from the browser, so the only real
constraint this choice puts on the
application is that there can be
only one connected MP3 client per client IP address.2 The
implementation of playlist-id looks like this:

(defun playlist-id (request)

 (ipaddr-to-dotted (remote-host (request-socket request))))

The function request-socket is part of AllegroServe, while
remote-host and
ipaddr-to-dotted are part of Allegro's
socket library.

To make a playlist usable as a song source by the Shoutcast server,
you need to define methods
on current-song,
still-current-p, and maybe-move-to-next-song that
specialize their source parameter on playlist. The
current-song method is already
taken care of: by defining the
accessor current-song on the eponymous slot, you
automatically
got a current-song method specialized on playlist that
returns the value
of that slot. However, to make accesses to the
playlist thread safe, you need to lock the
playlist
before accessing the current-song slot. In this case, the
easiest way is to define
an :around method like the following:

(defmethod current-song :around ((playlist playlist))

 (with-playlist-locked (playlist) (call-next-method)))

Implementing still-current-p is also quite simple, assuming
you can be sure that
current-song gets updated with a new
song object only when the current song actually
changes.
Again, you need to acquire the process lock to ensure you get a
consistent view of the
playlist's state.

(defmethod still-current-p (song (playlist playlist))

 (with-playlist-locked (playlist)

 (eql song (current-song playlist))))

The trick, then, is to make sure the current-song slot gets
updated at the right times.
However, the current song can change in a
number of ways. The obvious one is when the
Shoutcast server calls
maybe-move-to-next-song. But it can also change when songs are
added to the playlist, when the Shoutcast server has run out of
songs, or even if the playlist's
repeat mode is changed.

Rather than trying to write code specific to every situation to
determine whether to update
current-song, you can define a
function, update-current-if-necessary, that
updates
current-song if the song object in current-song
no longer matches the file
that the current-idx slot says
should be playing. Then, if you call this function after any
manipulation of the playlist that could possibly put those two slots
out of sync, you're sure to

keep current-song set properly.
Here are update-current-if-necessary and its
helper functions:

(defun update-current-if-necessary (playlist)

 (unless (equal (file (current-song playlist))

 (file-for-current-idx playlist))

 (reset-current-song playlist)))

(defun file-for-current-idx (playlist)

 (if (at-end-p playlist)

 nil

 (column-value (nth-row (current-idx playlist) (songs-table playlist)) :file)))

(defun at-end-p (playlist)

 (>= (current-idx playlist) (table-size (songs-table playlist))))

You don't need to add locking to these functions since they'll be
called only from functions that
will take care of locking the
playlist first.

The function reset-current-song introduces one more wrinkle:
because you want the
playlist to provide an endless stream of MP3s to
the client, you don't want to ever set
current-song to
NIL. Instead, when a playlist runs out of songs to play--when
songs-table is empty or after the last song has been played
and repeat is set to :none--
then you need to set
current-song to a special song whose file is an MP3 of
silence3 and
whose title
explains why no music is playing. Here's some code to define two
parameters,
empty-playlist-song and
end-of-playlist-song, each set to a song with the
file named
by *silence-mp3* as their file and an appropriate title:

(defparameter *silence-mp3* ...)

(defun make-silent-song (title &optional (file *silence-mp3*))

 (make-instance

 'song

 :file file

 :title title

 :id3-size (if (id3-p file) (size (read-id3 file)) 0)))

(defparameter *empty-playlist-song* (make-silent-song "Playlist empty."))

(defparameter *end-of-playlist-song* (make-silent-song "At end of playlist."))

reset-current-song uses these parameters when the
current-idx doesn't point to a
row in songs-table.
Otherwise, it sets current-song to a song object
representing the
current row.

(defun reset-current-song (playlist)

 (setf

 (current-song playlist)

 (cond

 ((empty-p playlist) *empty-playlist-song*)

 ((at-end-p playlist) *end-of-playlist-song*)

 (t (row->song (nth-row (current-idx playlist) (songs-table playlist)))))))

(defun row->song (song-db-entry)

 (with-column-values (file song artist album id3-size) song-db-entry

 (make-instance

 'song

 :file file

 :title (format nil "~a by ~a from ~a" song artist album)

 :id3-size id3-size)))

(defun empty-p (playlist)

 (zerop (table-size (songs-table playlist))))

Now, at last, you can implement the method on
maybe-move-to-next-song that moves
current-idx to its
next value, based on the playlist's repeat mode, and then calls
update-current-if-necessary. You don't change
current-idx when it's already at
the end of the playlist
because you want it to keep its current value, so it'll point at the
next song
you add to the playlist. This function must lock the
playlist before manipulating it since it's
called by the Shoutcast
server code, which doesn't do any locking.

(defmethod maybe-move-to-next-song (song (playlist playlist))

 (with-playlist-locked (playlist)

 (when (still-current-p song playlist)

 (unless (at-end-p playlist)

 (ecase (repeat playlist)

 (:song) ; nothing changes

 (:none (incf (current-idx playlist)))

 (:all (setf (current-idx playlist)

 (mod (1+ (current-idx playlist))

 (table-size (songs-table playlist)))))))

 (update-current-if-necessary playlist))))

Manipulating the Playlist

The rest of the playlist code is functions used by the Web interface
to manipulate playlist
objects, including adding and deleting
songs, sorting and shuffling, and setting the repeat mode.
As in the
helper functions in the previous section, you don't need to worry
about locking in these
functions because, as you'll see, the lock
will be acquired in the Web interface function that calls
these.

Adding and deleting is mostly a question of manipulating the
songs-table. The only extra
work you have to do is to keep the
current-song and current-idx in sync. For instance,
whenever the playlist is empty, its current-idx will be zero,
and the current-song will
be the *empty-playlist-song*.
If you add a song to an empty playlist, then the index of
zero is now
in bounds, and you should change the current-song to the newly
added song.
By the same token, when you've played all the songs in a
playlist and current-song is
end-of-playlist-song,
adding a song should cause current-song to be reset. All
this
really means, though, is that you need to call
update-current-if-necessary at the
appropriate points.

Adding songs to a playlist is a bit involved because of the way the
Web interface communicates
which songs to add. For reasons I'll
discuss in the next section, the Web interface code can't just
give
you a simple set of criteria to use in selecting songs from the
database. Instead, it gives you
the name of a column and a list of
values, and you're supposed to add all the songs from the
main
database where the given column has a value in the list of values.
Thus, to add the right
songs, you need to first build a table object
containing the desired values, which you can then
use with an
in query against the song database. So, add-songs looks
like this:

(defun add-songs (playlist column-name values)

 (let ((table (make-instance

 'table

 :schema (extract-schema (list column-name) (schema *mp3s*)))))

 (dolist (v values) (insert-row (list column-name v) table))

 (do-rows (row (select :from *mp3s* :where (in column-name table)))

 (insert-row row (songs-table playlist))))

 (update-current-if-necessary playlist))

Deleting songs is a bit simpler; you just need to be able to delete
songs from the songs-table
that match particular
criteria--either a particular song or all songs in a particular
genre, by a
particular artist, or from a particular album. So, you
can provide a delete-songs function
that takes keyword/value
pairs, which are used to construct a matching :where
clause you
can pass to the delete-rows database function.

Another complication that arises when deleting songs is that
current-idx may need to
change. Assuming the current song
isn't one of the ones just deleted, you'd like it to remain the
current song. But if songs before it in songs-table are
deleted, it'll be in a different position
in the table after the
delete. So after a call to delete-rows, you need to look for
the row
containing the current song and reset current-idx. If
the current song has itself been deleted,
then, for lack of anything
better to do, you can reset current-idx to zero. After
updating
current-idx, calling
update-current-if-necessary will take care of updating
current-song. And if current-idx changed but still
points at the same song,
current-song will be left alone.

(defun delete-songs (playlist &rest names-and-values)

 (delete-rows

 :from (songs-table playlist)

 :where (apply #'matching (songs-table playlist) names-and-values))

 (setf (current-idx playlist) (or (position-of-current playlist) 0))

 (update-current-if-necessary playlist))

(defun position-of-current (playlist)

 (let* ((table (songs-table playlist))

 (matcher (matching table :file (file (current-song playlist))))

 (pos 0))

 (do-rows (row table)

 (when (funcall matcher row)

 (return-from position-of-current pos))

 (incf pos))))

You can also provide a function to completely clear the playlist,
which uses
delete-all-rows and doesn't have to worry about
finding the current song since it has
obviously been deleted. The
call to update-current-if-necessary will take care of
setting
current-song to NIL.

(defun clear-playlist (playlist)

 (delete-all-rows (songs-table playlist))

 (setf (current-idx playlist) 0)

 (update-current-if-necessary playlist))

Sorting and shuffling the playlist are related in that the playlist is
always either sorted or
shuffled. The shuffle slot says
whether the playlist should be shuffled and if so how. If it's set
to
:none, then the playlist is ordered according to the value in
the ordering slot. When
shuffle is :song, the
playlist will be randomly permuted. And when it's set to
:album, the
list of albums is randomly permuted, but the songs
within each album are listed in track order.
Thus, the
sort-playlist function, which will be called by the Web
interface code whenever
the user selects a new ordering, needs to set
ordering to the desired ordering and set

shuffle to
:none before calling order-playlist, which actually
does the sort. As in
delete-songs, you need to use
position-of-current to reset current-idx to the
new
location of the current song. However, this time you don't need to
call
update-current-if-necessary since you know the current
song is still in the table.

(defun sort-playlist (playlist ordering)

 (setf (ordering playlist) ordering)

 (setf (shuffle playlist) :none)

 (order-playlist playlist)

 (setf (current-idx playlist) (position-of-current playlist)))

In order-playlist, you can use the database function
sort-rows to actually perform the
sort, passing a list of
columns to sort by based on the value of ordering.

(defun order-playlist (playlist)

 (apply #'sort-rows (songs-table playlist)

 (case (ordering playlist)

 (:genre '(:genre :album :track))

 (:artist '(:artist :album :track))

 (:album '(:album :track))

 (:song '(:song)))))

The function shuffle-playlist, called by the Web interface
code when the user selects a
new shuffle mode, works in a similar
fashion except it doesn't need to change the value of
ordering. Thus, when shuffle-playlist is called with a
shuffle of :none, the
playlist goes back to being
sorted according to the most recent ordering. Shuffling by songs is
simple--just call shuffle-table on songs-table.
Shuffling by albums is a bit more
involved but still not rocket
science.

(defun shuffle-playlist (playlist shuffle)

 (setf (shuffle playlist) shuffle)

 (case shuffle

 (:none (order-playlist playlist))

 (:song (shuffle-by-song playlist))

 (:album (shuffle-by-album playlist)))

 (setf (current-idx playlist) (position-of-current playlist)))

(defun shuffle-by-song (playlist)

 (shuffle-table (songs-table playlist)))

(defun shuffle-by-album (playlist)

 (let ((new-table (make-playlist-table)))

 (do-rows (album-row (shuffled-album-names playlist))

 (do-rows (song (songs-for-album playlist (column-value album-row :album)))

 (insert-row song new-table)))

 (setf (songs-table playlist) new-table)))

(defun shuffled-album-names (playlist)

 (shuffle-table

 (select

 :columns :album

 :from (songs-table playlist)

 :distinct t)))

(defun songs-for-album (playlist album)

 (select

 :from (songs-table playlist)

 :where (matching (songs-table playlist) :album album)

 :order-by :track))

The last manipulation you need to support is setting the playlist's
repeat mode. Most of the time
you don't need to take any extra action
when setting repeat--its value comes into play only in

maybe-move-to-next-song. However, you need to update the
current-song as a
result of changing repeat in one
situation, namely, if current-idx is at the end of a
nonempty
playlist and repeat is being changed to :song or
:all. In that case, you want to
continue playing, either
repeating the last song or starting at the beginning of the playlist.
So,
you should define an :after method on the generic function
(setf repeat).

(defmethod (setf repeat) :after (value (playlist playlist))

 (if (and (at-end-p playlist) (not (empty-p playlist)))

 (ecase value

 (:song (setf (current-idx playlist) (1- (table-size (songs-table playlist)))))

 (:none)

 (:all (setf (current-idx playlist) 0)))

 (update-current-if-necessary playlist)))

Now you have all the underlying bits you need. All that remains is
the code that will provide a
Web-based user interface for browsing
the MP3 database and manipulating playlists. The
interface will
consist of three main functions defined with
define-url-function: one for
browsing the song database, one
for viewing and manipulating a single playlist, and one for
listing
all the available playlists.

But before you get to writing these three functions, you need to
start with some helper functions
and HTML macros that they'll use.

Query Parameter Types

Since you'll be using define-url-function, you need to define
a few methods on the
string->type generic function from
Chapter 28 that define-url-function uses to
convert string
query parameters into Lisp objects. In this application, you'll need
methods to
convert strings to integers, keyword symbols, and a list
of values.

The first two are quite simple.

(defmethod string->type ((type (eql 'integer)) value)

 (parse-integer (or value "") :junk-allowed t))

(defmethod string->type ((type (eql 'keyword)) value)

 (and (plusp (length value)) (intern (string-upcase value) :keyword)))

The last string->type method is slightly more complex. For
reasons I'll get to in a moment,
you'll need to generate pages that
display a form that contains a hidden field whose value is a list
of
strings. Since you're responsible for generating the value in the
hidden field and for parsing it
when it comes back, you can use
whatever encoding is convenient. You could use the functions
WRITE-TO-STRING and READ-FROM-STRING, which use the Lisp
printer and reader to
write and read data to and from strings, except
the printed representation of strings can contain
quotation marks and
other characters that may cause problems when embedded in the value
attribute of an INPUT element. So, you'll need to escape those
characters somehow. Rather than
trying to come up with your own
escaping scheme, you can just use base 64, an encoding
commonly used
to protect binary data sent through e-mail. AllegroServe comes with
two
functions, base64-encode and base64-decode, that do
the encoding and decoding for
you, so all you have to do is write a
pair of functions: one that encodes a Lisp object by

converting it to
a readable string with WRITE-TO-STRING and then base 64 encoding
it and,
conversely, another to decode such a string by base 64
decoding it and passing the result to
READ-FROM-STRING. You'll
want to wrap the calls to WRITE-TO-STRING and
READ-FROM-STRING in WITH-STANDARD-IO-SYNTAX to make sure
all the variables that
affect the printer and reader are set to their
standard values. However, because you're going to be
reading data
that's coming in from the network, you'll definitely want to turn off
one feature of
the reader--the ability to evaluate arbitrary Lisp
code while reading!4 You can define your own
macro with-safe-io-syntax,
which wraps its body forms in
WITH-STANDARD-IO-SYNTAX wrapped
around a LET that binds *READ-EVAL* to NIL.

(defmacro with-safe-io-syntax (&body body)

 `(with-standard-io-syntax

 (let ((*read-eval* nil))

 ,@body)))

Then the encoding and decoding functions are trivial.

(defun obj->base64 (obj)

 (base64-encode (with-safe-io-syntax (write-to-string obj))))

(defun base64->obj (string)

 (ignore-errors

 (with-safe-io-syntax (read-from-string (base64-decode string)))))

Finally, you can use these functions to define a method on
string->type that defines the
conversion for the query
parameter type base64-list.

(defmethod string->type ((type (eql 'base-64-list)) value)

 (let ((obj (base64->obj value)))

 (if (listp obj) obj nil)))

Boilerplate HTML

Next you need to define some HTML macros and helper functions to make
it easy to give the
different pages in the application a consistent
look and feel. You can start with an HTML macro
that defines the
basic structure of a page in the application.

(define-html-macro :mp3-browser-page ((&key title (header title)) &body body)

 `(:html

 (:head

 (:title ,title)

 (:link :rel "stylesheet" :type "text/css" :href "mp3-browser.css"))

 (:body

 (standard-header)

 (when ,header (html (:h1 :class "title" ,header)))

 ,@body

 (standard-footer))))

You should define standard-header and standard-footer
as separate functions for
two reasons. First, during development you
can redefine those functions and see the effect
immediately without
having to recompile functions that use the :mp3-browser-page
macro.
Second, it turns out that one of the pages you'll write later
won't be defined with
:mp3-browser-page but will still need
the standard header and footers. They look like this:

(defparameter *r* 25)

(defun standard-header ()

 (html

 ((:p :class "toolbar")

 "[" (:a :href (link "/browse" :what "genre") "All genres") "] "

 "[" (:a :href (link "/browse" :what "genre" :random *r*) "Random genres") "] "

 "[" (:a :href (link "/browse" :what "artist") "All artists") "] "

 "[" (:a :href (link "/browse" :what "artist" :random *r*) "Random artists") "] "

 "[" (:a :href (link "/browse" :what "album") "All albums") "] "

 "[" (:a :href (link "/browse" :what "album" :random *r*) "Random albums") "] "

 "[" (:a :href (link "/browse" :what "song" :random *r*) "Random songs") "] "

 "[" (:a :href (link "/playlist") "Playlist") "] "

 "[" (:a :href (link "/all-playlists") "All playlists") "]")))

(defun standard-footer ()

 (html (:hr) ((:p :class "footer") "MP3 Browser v" *major-version* "." *minor-version*))

A couple of smaller HTML macros and helper functions automate other
common patterns. The
:table-row HTML macro makes it easier to
generate the HTML for a single row of a table. It
uses a feature of
FOO that I'll discuss in Chapter 31, an &attributes parameter,
which
causes uses of the macro to be parsed just like normal
s-expression HTML forms, with any
attributes gathered into a list
that will be bound to the &attributes parameter. It looks like
this:

(define-html-macro :table-row (&attributes attrs &rest values)

 `(:tr ,@attrs ,@(loop for v in values collect `(:td ,v))))

And the link function generates a URL back into the
application to be used as the HREF
attribute with an A
element, building a query string out of a set of keyword/value pairs
and
making sure all special characters are properly escaped. For
instance, instead of writing this:

(:a :href "browse?what=artist&genre=Rhythm+%26+Blues" "Artists")

you can write the following:

(:a :href (link "browse" :what "artist" :genre "Rhythm & Blues") "Artists")

It looks like this:

(defun link (target &rest attributes)

 (html

 (:attribute

 (:format "~a~@[?~{~(~a~)=~a~^&~}~]" target (mapcar #'urlencode attributes)))))

To URL encode the keys and values, you use the helper function
urlencode, which is a
wrapper around the function
encode-form-urlencoded, which is a nonpublic function
from
AllegroServe. This is--on one hand--bad form; since the name
encode-form-urlencoded isn't exported from NET.ASERVE,
it's possible that
encode-form-urlencoded may go away or get
renamed out from under you. On the other
hand, using this unexported
symbol for the time being lets you get work done for the moment;
by
wrapping encode-form-urlencoded in your own function, you
isolate the crufty code
to one function, which you could rewrite if
you had to.

(defun urlencode (string)

 (net.aserve::encode-form-urlencoded string))

Finally, you need the CSS style sheet mp3-browser.css used by
:mp3-browser-page.
Since there's nothing dynamic about it,
it's probably easiest to just publish a static file with
publish-file.

(publish-file :path "/mp3-browser.css" :file filename :content-type "text/css")

A sample style sheet is included with the source code for this
chapter on the book's Web site.
You'll define a function, at the end
of this chapter, that starts the MP3 browser application. It'll
take
care of, among other things, publishing this file.

The Browse Page

The first URL function will generate a page for browsing the MP3
database. Its query
parameters will tell it what kind of thing the
user is browsing and provide the criteria of what
elements of the
database they're interested in. It'll give them a way to select
database entries that
match a specific genre, artist, or album. In
the interest of serendipity, you can also provide a way
to select a
random subset of matching items. When the user is browsing at the
level of individual
songs, the title of the song will be a link that
causes that song to be added to the playlist.
Otherwise, each item
will be presented with links that let the user browse the listed item
by some
other category. For example, if the user is browsing genres,
the entry "Blues" will contain links
to browse all albums, artists,
and songs in the genre Blues. Additionally, the browse page will
feature an "Add all" button that adds every song matching the page's
criteria to the user's
playlist. The function looks like this:

(define-url-function browse

 (request (what keyword :genre) genre artist album (random integer))

 (let* ((values (values-for-page what genre artist album random))

 (title (browse-page-title what random genre artist album))

 (single-column (if (eql what :song) :file what))

 (values-string (values->base-64 single-column values)))

 (html

 (:mp3-browser-page

 (:title title)

 ((:form :method "POST" :action "playlist")

 (:input :name "values" :type "hidden" :value values-string)

 (:input :name "what" :type "hidden" :value single-column)

 (:input :name "action" :type "hidden" :value :add-songs)

 (:input :name "submit" :type "submit" :value "Add all"))

 (:ul (do-rows (row values) (list-item-for-page what row)))))))

This function starts by using the function values-for-page to
get a table containing the
values it needs to present. When the user
is browsing by song--when the what parameter is
:song--you want to select complete rows from the database. But
when they're browsing by
genre, artist, or album, you want to select
only the distinct values for the given category. The
database
function select does most of the heavy lifting, with
values-for-page mostly
responsible for passing the right
arguments depending on the value of what. This is also where
you select a random subset of the matching rows if necessary.

(defun values-for-page (what genre artist album random)

 (let ((values

 (select

 :from *mp3s*

 :columns (if (eql what :song) t what)

 :where (matching *mp3s* :genre genre :artist artist :album album)

 :distinct (not (eql what :song))

 :order-by (if (eql what :song) '(:album :track) what))))

 (if random (random-selection values random) values)))

To generate the title for the browse page, you pass the browsing
criteria to the following
function, browse-page-title:

(defun browse-page-title (what random genre artist album)

 (with-output-to-string (s)

 (when random (format s "~:(~r~) Random " random))

 (format s "~:(~a~p~)" what random)

 (when (or genre artist album)

 (when (not (eql what :song)) (princ " with songs" s))

 (when genre (format s " in genre ~a" genre))

 (when artist (format s " by artist ~a " artist))

 (when album (format s " on album ~a" album)))))

Once you have the values you want to present, you need to do two
things with them. The main
task, of course, is to present them, which
happens in the do-rows loop, leaving the rendering
of each row
to the function list-item-for-page. That function renders
:song rows one
way and all other kinds another way.

(defun list-item-for-page (what row)

 (if (eql what :song)

 (with-column-values (song file album artist genre) row

 (html

 (:li

 (:a :href (link "playlist" :file file :action "add-songs") (:b song)) " from "

 (:a :href (link "browse" :what :song :album album) album) " by "

 (:a :href (link "browse" :what :song :artist artist) artist) " in genre "

 (:a :href (link "browse" :what :song :genre genre) genre))))

 (let ((value (column-value row what)))

 (html

 (:li value " - "

 (browse-link :genre what value)

 (browse-link :artist what value)

 (browse-link :album what value)

 (browse-link :song what value))))))

(defun browse-link (new-what what value)

 (unless (eql new-what what)

 (html

 "["

 (:a :href (link "browse" :what new-what what value) (:format "~(~as~)" new-what))

 "] ")))

The other thing on the browse page is a form with several
hidden INPUT fields and an "Add
all" submit button. You need
to use an HTML form instead of a regular link to keep the
application
stateless--to make sure all the information needed to respond to a
request comes in
the request itself. Because the browse page results
can be partially random, you need to submit a
fair bit of data for
the server to be able to reconstitute the list of songs to add to the
playlist. If
you didn't allow the browse page to return randomly
generated results, you wouldn't need much
data--you could just submit
a request to add songs with whatever search criteria the browse page
used. But if you added songs that way, with criteria that included a
random argument, then
you'd end up adding a different set of
random songs than the user was looking at on the page
when they hit
the "Add all" button.

The solution you'll use is to send back a form that has enough
information stashed away in a
hidden INPUT element to allow the
server to reconstitute the list of songs matching the browse
page
criteria. That information is the list of values returned by
values-for-page and the
value of the what parameter.
This is where you use the base64-list parameter type; the
function values->base64 extracts the values of a specified
column from the table returned

by values-for-page into a list
and then makes a base 64-encoded string out of that list to
embed in
the form.

(defun values->base-64 (column values-table)

 (flet ((value (r) (column-value r column)))

 (obj->base64 (map-rows #'value values-table))))

When that parameter comes back as the value of the values
query parameter to a URL
function that declares values to be
of type base-64-list, it'll be automatically converted
back to
a list. As you'll see in a moment, that list can then be used to
construct a query that'll
return the correct list of songs.5 When you're
browsing by :song, you use the values from the
:file
column since they uniquely identify the actual songs while the song
names may not.

The Playlist

This brings me to the next URL function, playlist. This is the
most complex page of the
three--it's responsible for displaying the
current contents of the user's playlist as well as for
providing the
interface to manipulate the playlist. But with most of the tedious
bookkeeping
handled by define-url-function, it's not too hard
to see how playlist works. Here's
the beginning of the
definition, with just the parameter list:

(define-url-function playlist

 (request

 (playlist-id string (playlist-id request) :package)

 (action keyword) ; Playlist manipulation action

 (what keyword :file) ; for :add-songs action

 (values base-64-list) ; "

 file ; for :add-songs and :delete-songs actions

 genre ; for :delete-songs action

 artist ; "

 album ; "

 (order-by keyword) ; for :sort action

 (shuffle keyword) ; for :shuffle action

 (repeat keyword)) ; for :set-repeat action

In addition to the obligatory request parameter,
playlist takes a number of query
parameters. The most important
in some ways is playlist-id, which identifies which
playlist object the page should display and manipulate. For
this parameter, you can take
advantage of
define-url-function's "sticky parameter" feature. Normally,
the
playlist-id won't be supplied explicitly, defaulting to
the value returned by the
playlist-id function, namely, the IP
address of the client machine on which the browser is
running.
However, users can also manipulate their playlists from different
machines than the
ones running their MP3 clients by allowing this
value to be explicitly specified. And if it's
specified once,
define-url-function will arrange for it to "stick" by setting
a cookie in
the browser. Later you'll define a URL function that
generates a list of all existing playlists,
which users can use to
pick a playlist other than the one for the machines they're browsing
from.

The action parameter specifies some action to take on the
user's playlist object. The value of
this parameter, which will be
converted to a keyword symbol for you, can be :add-songs,
:delete-songs, :clear, :sort, :shuffle,
or :set-repeat. The :add-songs

action is used by the
"Add all" button in the browse page and also by the links used to add
individual songs. The other actions are used by the links on the
playlist page itself.

The file, what, and values parameters are used
with the :add-songs action. By
declaring values to be
of type base-64-list, the define-url-function
infrastructure will take care of decoding the value submitted by the
"Add all" form. The other
parameters are used with other actions as
noted in the comments.

Now let's look at the body of playlist. The first thing you
need to do is use the
playlist-id to look up the queue object
and then acquire the playlist's lock with the
following two lines:

(let ((playlist (lookup-playlist playlist-id)))

 (with-playlist-locked (playlist)

Since lookup-playlist will create a new playlist if necessary,
this will always return a
playlist object. Then you take care
of any necessary queue manipulation, dispatching on the
value of the
action parameter in order to call one of the playlist
functions.

(case action

 (:add-songs (add-songs playlist what (or values (list file))))

 (:delete-songs (delete-songs

 playlist

 :file file :genre genre

 :artist artist :album album))

 (:clear (clear-playlist playlist))

 (:sort (sort-playlist playlist order-by))

 (:shuffle (shuffle-playlist playlist shuffle))

 (:set-repeat (setf (repeat playlist) repeat)))

All that's left of the playlist function is the actual HTML
generation. Again, you can use the
:mp3-browser-page HTML
macro to make sure the basic form of the page matches the
other pages
in the application, though this time you pass NIL to the
:header argument in
order to leave out the H1 header.
Here's the rest of the function:

(html

 (:mp3-browser-page

 (:title (:format "Playlist - ~a" (id playlist)) :header nil)

 (playlist-toolbar playlist)

 (if (empty-p playlist)

 (html (:p (:i "Empty.")))

 (html

 ((:table :class "playlist")

 (:table-row "#" "Song" "Album" "Artist" "Genre")

 (let ((idx 0)

 (current-idx (current-idx playlist)))

 (do-rows (row (songs-table playlist))

 (with-column-values (track file song album artist genre) row

 (let ((row-style (if (= idx current-idx) "now-playing" "normal")))

 (html

 ((:table-row :class row-style)

 track

 (:progn song (delete-songs-link :file file))

 (:progn album (delete-songs-link :album album))

 (:progn artist (delete-songs-link :artist artist))

 (:progn genre (delete-songs-link :genre genre)))))

 (incf idx))))))))))))

The function playlist-toolbar generates a toolbar containing
links to playlist to
perform the various :action
manipulations. And delete-songs-link generates a link to

playlist with the :action parameter set to
:delete-songs and the appropriate
arguments to delete an
individual file, or all files on an album, by a particular artist or
in a
specific genre.

(defun playlist-toolbar (playlist)

 (let ((current-repeat (repeat playlist))

 (current-sort (ordering playlist))

 (current-shuffle (shuffle playlist)))

 (html

 (:p :class "playlist-toolbar"

 (:i "Sort by:")

 " ["

 (sort-playlist-button "genre" current-sort) " | "

 (sort-playlist-button "artist" current-sort) " | "

 (sort-playlist-button "album" current-sort) " | "

 (sort-playlist-button "song" current-sort) "] "

 (:i "Shuffle by:")

 " ["

 (playlist-shuffle-button "none" current-shuffle) " | "

 (playlist-shuffle-button "song" current-shuffle) " | "

 (playlist-shuffle-button "album" current-shuffle) "] "

 (:i "Repeat:")

 " ["

 (playlist-repeat-button "none" current-repeat) " | "

 (playlist-repeat-button "song" current-repeat) " | "

 (playlist-repeat-button "all" current-repeat) "] "

 "[" (:a :href (link "playlist" :action "clear") "Clear") "] "))))

(defun playlist-button (action argument new-value current-value)

 (let ((label (string-capitalize new-value)))

 (if (string-equal new-value current-value)

 (html (:b label))

 (html (:a :href (link "playlist" :action action argument new-value) label)))))

(defun sort-playlist-button (order-by current-sort)

 (playlist-button :sort :order-by order-by current-sort))

(defun playlist-shuffle-button (shuffle current-shuffle)

 (playlist-button :shuffle :shuffle shuffle current-shuffle))

(defun playlist-repeat-button (repeat current-repeat)

 (playlist-button :set-repeat :repeat repeat current-repeat))

(defun delete-songs-link (what value)

 (html " [" (:a :href (link "playlist" :action :delete-songs what value) "x") "]"))

Finding a Playlist

The last of the three URL functions is the simplest. It presents a
table listing all the playlists that
have been created. Ordinarily
users won't need to use this page, but during development it gives
you a useful view into the state of the system. It also provides the
mechanism to choose a
different playlist--each playlist ID is a link
to the playlist page with an explicit
playlist-id query
parameter, which will then be made sticky by the playlist URL
function. Note that you need to acquire the *playlists-lock*
to make sure the
playlists hash table doesn't change out
from under you while you're iterating over it.

(define-url-function all-playlists (request)

 (:mp3-browser-page

 (:title "All Playlists")

 ((:table :class "all-playlists")

 (:table-row "Playlist" "# Songs" "Most recent user agent")

 (with-process-lock (*playlists-lock*)

 (loop for playlist being the hash-values of *playlists* do

 (html

 (:table-row

 (:a :href (link "playlist" :playlist-id (id playlist)) (:print (id playlist
 (:print (table-size (songs-table playlist)))

 (:print (user-agent playlist)))))))))

Running the App

And that's it. To use this app, you just need to load the MP3
database with the
load-database function from Chapter 27,
publish the CSS style sheet, set
song-source-type to
playlist so find-song-source uses playlists instead of
the singleton song source defined in the previous chapter, and start
AllegroServe. The following
function takes care of all these steps
for you, after you fill in appropriate values for the two
parameters
mp3-dir, which is the root directory of your MP3 collection,
and *mp3-css*,
the filename of the CSS style sheet:

(defparameter *mp3-dir* ...)

(defparameter *mp3-css* ...)

(defun start-mp3-browser ()

 (load-database *mp3-dir* *mp3s*)

 (publish-file :path "/mp3-browser.css" :file *mp3-css* :content-type "text/css")

 (setf *song-source-type* 'playlist)

 (net.aserve::debug-on :notrap)

 (net.aserve:start :port 2001))

When you invoke this function, it will print dots while it loads the
ID3 information from your
ID3 files. Then you can point your MP3
client at this URL:

http://localhost:2001/stream.mp3

and point your browser at some good starting place, such as this:

http://localhost:2001/browse

which will let you start browsing by the default category, Genre.
After you've added some songs
to the playlist, you can press Play on
the MP3 client, and it should start playing the first song.

Obviously, you could improve the user interface in any of a number of
ways--for instance, if you
have a lot of MP3s in your library, it
might be useful to be able to browse artists or albums by
the first
letter of their names. Or maybe you could add a "Play whole album"
button to the
playlist page that causes the playlist to immediately
put all the songs from the same album as the
currently playing song
at the top of the playlist. Or you could change the playlist
class, so
instead of playing silence when there are no songs queued
up, it picks a random song from the
database. But all those ideas
fall in the realm of application design, which isn't really the topic
of
this book. Instead, the next two chapters will drop back to the
level of software infrastructure to
cover how the FOO HTML generation
library works.

1The intricacies of concurrent
programming are beyond the scope of this book. The basic idea is that
if you have multiple threads
of control--as you will in this
application with some threads running the shoutcast function
and other threads responding to
requests from the browser--then you
need to make sure only one thread at a time manipulates an object in
order to prevent one
thread from seeing the object in an inconsistent
state while another thread is working on it. In this function, for
instance, if two
new MP3 clients are connecting at the same time,
they'd both try to add an entry to *playlists* and might
interfere with each

other. The with-process-lock ensures that
each thread gets exclusive access to the hash table for long enough
to do the work
it needs to do.

2This
approach also assumes that every client machine has a unique IP
address. This assumption should hold as long as all the
users are on
the same LAN but may not hold if clients are connecting from behind a
firewall that does network address translation.
Deploying this
application outside a LAN will require some modifications, but if you
want to deploy this application to the wider
Internet, you'd better
know enough about networking to figure out an appropriate scheme
yourself.

3Unfortunately, because of licensing issues around the
MP3 format, it's not clear that it's legal for me to provide you with
such an
MP3 without paying licensing fees to Fraunhofer IIS. I got
mine as part of the software that came with my Slimp3 from Slim
Devices. You can grab it from their Subversion repository via the Web
at
http://svn.slimdevices.com/*checkout*/trunk/server/
HTML/EN/html/silentpacket.mp3?rev=2.
Or buy a Squeezebox, the
new, wireless version of Slimp3, and you'll get
silentpacket.mp3 as part of the software that
comes with it.
Or find an MP3 of John Cage's piece 4'33".

4The reader supports a bit of syntax,
#., that causes the following s-expression to be evaluated at
read time. This is occasionally
useful in source code but obviously
opens a big security hole when you read untrusted data. However, you
can turn off this syntax
by setting *READ-EVAL* to NIL,
which will cause the reader to signal an error if it encounters
#..

5This
solution has its drawbacks--if a browse page returns a lot of
results, a fair bit of data is going back and forth under the
covers.
Also, the database queries aren't necessarily the most efficient. But
it does keep the application stateless. An alternative
approach is to
squirrel away, on the server side, information about the results
returned by browse and then, when a request to add
songs come
in, find the appropriate bit of information in order to re-create the
correct set of songs. For instance, you could just
save the values
list instead of sending it back in the form. Or you could copy the
RANDOM-STATE object before you generate the
browse results so
you can later re-create the same "random" results. But this approach
causes its own problems. For instance, you'd
then need to worry about
when you can get rid of the squirreled-away information; you never
know when the user might hit the
Back button on their browser to
return to an old browse page and then hit the "Add all" button.
Welcome to the wonderful world of
Web programming.

