
Copyright © 2003-2005, Peter Seibel

21. Programming in the Large: Packages
and Symbols
In Chapter 4 I discussed how the Lisp reader translates textual names
into objects to be passed to
the evaluator, representing them with a
kind of object called a symbol. It turns out that having a
built-in data type specifically for representing names is quite handy
for a lot of kinds of
programming.1
That, however, isn't the topic of this chapter. In this chapter I'll
discuss one of the
more immediate and practical aspects of dealing
with names: how to avoid name conflicts
between independently
developed pieces of code.

Suppose, for instance, you're writing a program and decide to use a
third-party library. You don't
want to have to know the name of every
function, variable, class, or macro used in the internals
of that
library in order to avoid conflicts between those names and the names
you use in your
program. You'd like for most of the names in the
library and the names in your program to be
considered distinct even
if they happen to have the same textual representation. At the same
time, you'd like certain names defined in the library to be readily
accessible--the names that
make up its public API, which you'll want
to use in your program.

In Common Lisp, this namespace problem boils down to a question of
controlling how the
reader translates textual names into symbols: if
you want two occurrences of the same name to
be considered the same
by the evaluator, you need to make sure the reader uses the same
symbol
to represent each name. Conversely, if you want two names to
be considered distinct, even if
they happen to have the same textual
name, you need the reader to create different symbols to
represent
each name.

How the Reader Uses Packages
In Chapter 4 I discussed briefly how the Lisp reader translates names
into symbols, but I glossed
over most of the details--now it's time
to take a closer look at what actually happens.

I'll start by describing the syntax of names understood by the reader
and how that syntax relates
to packages. For the moment you can think
of a package as a table that maps strings to symbols.
As you'll see
in the next section, the actual mapping is slightly more flexible
than a simple
lookup table but not in ways that matter much to the
reader. Each package also has a name,
which can be used to find the
package using the function FIND-PACKAGE.

The two key functions that the reader uses to access the
name-to-symbol mappings in a package
are FIND-SYMBOL and
INTERN. Both these functions take a string and, optionally, a
package.
If not supplied, the package argument defaults to the value
of the global variable *PACKAGE*,
also called the current
package.

FIND-SYMBOL looks in the package for a symbol with the given
string for a name and returns
it, or NIL if no symbol is found.
INTERN also will return an existing symbol; otherwise it
creates
a new symbol with the string as its name and adds it to the package.

Most names you use are unqualified, names that contain no colons.
When the reader reads such a
name, it translates it to a symbol by
converting any unescaped letters to uppercase and passing
the
resulting string to INTERN. Thus, each time the reader reads the
same name in the same
package, it'll get the same symbol object. This
is important because the evaluator uses the object
identity of
symbols to determine which function, variable, or other program
element a given
symbol refers to. Thus, the reason an expression such
as (hello-world) results in calling a
particular
hello-world function is because the reader returns the same
symbol when it reads
the function call as it did when it read the
DEFUN form that defined the function.

A name containing either a single colon or a double colon is a
package-qualified name. When
the reader reads a package-qualified
name, it splits the name on the colon(s) and uses the first
part as
the name of a package and the second part as the name of the symbol.
The reader looks
up the appropriate package and uses it to translate
the symbol name to a symbol object.

A name containing only a single colon must refer to an external
symbol--one the package
exports for public use. If the named
package doesn't contain a symbol with a given name, or if it
does but
it hasn't been exported, the reader signals an error. A double-colon
name can refer to
any symbol from the named package, though it's
usually a bad idea--the set of exported symbols
defines a package's
public interface, and if you don't respect the package author's
decision about
what names to make public and which ones to keep
private, you're asking for trouble down the
road. On the other hand,
sometimes a package author will neglect to export a symbol that
really
ought to be public. In that case, a double-colon name lets you
get work done without having to
wait for the next version of the
package to be released.

Two other bits of symbol syntax the reader understands are those for
keyword symbols and
uninterned symbols. Keyword symbols are written
with names starting with a colon. Such
symbols are interned in the
package named KEYWORD and automatically exported. Additionally,
when the reader interns a symbol in the KEYWORD, it also defines
a constant variable with the
symbol as both its name and value. This
is why you can use keywords in argument lists without
quoting
them--when they appear in a value position, they evaluate to
themselves. Thus:

(eql ':foo :foo) ==> T

The names of keyword symbols, like all symbols, are converted to all
uppercase by the reader
before they're interned. The name doesn't
include the leading colon.

(symbol-name :foo) ==> "FOO"

Uninterned symbols are written with a leading #:. These names
(minus the #:) are converted to
uppercase as normal and then
translated into symbols, but the symbols aren't interned in any
package; each time the reader reads a #: name, it creates a
new symbol. Thus:

(eql '#:foo '#:foo) ==> NIL

You'll rarely, if ever, write this syntax yourself, but will
sometimes see it when you print an s-
expression containing symbols
returned by the function GENSYM.

(gensym) ==> #:G3128

A Bit of Package and Symbol Vocabulary

As I mentioned previously, the mapping from names to symbols
implemented by a package is
slightly more flexible than a simple
lookup table. At its core, every package contains a name-to-
symbol
lookup table, but a symbol can be made accessible via an unqualified
name in a given
package in other ways. To talk sensibly about these
other mechanisms, you'll need a little bit of
vocabulary.

To start with, all the symbols that can be found in a given package
using FIND-SYMBOL are
said to be accessible in that package.
In other words, the accessible symbols in a package are
those that
can be referred to with unqualified names when the package is
current.

A symbol can be accessible in two ways. The first is for the
package's name-to-symbol table to
contain an entry for the symbol, in
which case the symbol is said to be present in the package.
When
the reader interns a new symbol in a package, it's added to the
package's name-to-symbol
table. The package in which a symbol is
first interned is called the symbol's home package.

The other way a symbol can be accessible in a package is if the
package inherits it. A package
inherits symbols from other
packages by using the other packages. Only external symbols
in the
used packages are inherited. A symbol is made external in a
package by exporting it. In addition
to causing it to be
inherited by using packages, exporting a symbol also--as you saw in
the
previous section--makes it possible to refer to the symbol using
a single-colon qualified name.

To keep the mappings from names to symbols deterministic, the package
system allows only one
symbol to be accessible in a given package for
each name. That is, a package can't have a present
symbol and an
inherited symbol with the same name or inherit two different symbols,
from
different packages, with the same name. However, you can resolve
conflicts by making one of
the accessible symbols a shadowing
symbol, which makes the other symbols of the same name

inaccessible.
In addition to its name-to-symbol table, each package maintains a
list of shadowing
symbols.

An existing symbol can be imported into another package by adding
it to the package's name-to-
symbol table. Thus, the same symbol can
be present in multiple packages. Sometimes you'll
import symbols
simply because you want them to be accessible in the importing
package without
using their home package. Other times you'll import a
symbol because only present symbols can
be exported or be shadowing
symbols. For instance, if a package needs to use two packages that
have external symbols of the same name, one of the symbols must be
imported into the using
package in order to be added to its shadowing
list and make the other symbol inaccessible.

Finally, a present symbol can be uninterned from a package, which
causes it to be removed from
the name-to-symbol table and, if it's a
shadowing symbol, from the shadowing list. You might
unintern a
symbol from a package to resolve a conflict between the symbol and an
external
symbol from a package you want to use. A symbol that isn't
present in any package is called an
uninterned symbol, can no
longer be read by the reader, and will be printed using the
#:foo
syntax.

Three Standard Packages

In the next section I'll show you how to define your own packages,
including how to make one
package use another and how to export,
shadow, and import symbols. But first let's look at a few
packages
you've been using already. When you first start Lisp, the value of
PACKAGE is
typically the COMMON-LISP-USER package, also
known as CL-USER.2
CL-USER uses the
package COMMON-LISP, which exports all
the names defined by the language standard. Thus,
when you type an
expression at the REPL, all the names of standard functions, macros,
variables, and so on, will be translated to the symbols exported from
COMMON-LISP, and all
other names will be interned in the
COMMON-LISP-USER package. For example, the name
PACKAGE
is exported from COMMON-LISP--if you want to see the value of
PACKAGE,
you can type this:

CL-USER> *package*

#<The COMMON-LISP-USER package>

because COMMON-LISP-USER uses COMMON-LISP. Or you can
use a package-qualified
name.

CL-USER> common-lisp:*package*

#<The COMMON-LISP-USER package>

You can even use COMMON-LISP's nickname, CL.

CL-USER> cl:*package*

#<The COMMON-LISP-USER package>

But *X* isn't a symbol in COMMON-LISP, so you if type
this:

CL-USER> (defvar *x* 10)

X

the reader reads DEFVAR as the symbol from the
COMMON-LISP package and *X* as a symbol
in
COMMON-LISP-USER.

The REPL can't start in the COMMON-LISP package because you're
not allowed to intern new
symbols in it; COMMON-LISP-USER
serves as a "scratch" package where you can create your
own names
while still having easy access to all the symbols in
COMMON-LISP.3 Typically, all
packages you'll define will also use
COMMON-LISP, so you don't have to write things like this:

(cl:defun (x) (cl:+ x 2))

The third standard package is the KEYWORD package, the package
the Lisp reader uses to intern
names starting with colon. Thus, you
can also refer to any keyword symbol with an explicit
package
qualification of keyword like this:

CL-USER> :a

:A

CL-USER> keyword:a

:A

CL-USER> (eql :a keyword:a)

T

Defining Your Own Packages

Working in COMMON-LISP-USER is fine for experiments at the
REPL, but once you start
writing actual programs you'll want to
define new packages so different programs loaded into the
same Lisp
environment don't stomp on each other's names. And when you write
libraries that
you intend to use in different contexts, you'll want
to define separate packages and then export
the symbols that make up
the libraries' public APIs.

However, before you start defining packages, it's important to
understand one thing about what
packages do not do. Packages
don't provide direct control over who can call what function or
access what variable. They provide you with basic control over
namespaces by controlling how
the reader translates textual names
into symbol objects, but it isn't until later, in the evaluator,
that
the symbol is interpreted as the name of a function or variable or
whatever else. Thus, it
doesn't make sense to talk about exporting a
function or a variable from a package. You can
export symbols to make
certain names easier to refer to, but the package system doesn't
allow
you to restrict how those names are used.4

With that in mind, you can start looking at how to define packages
and tie them together. You
define new packages with the macro
DEFPACKAGE, which allows you to not only create the
package but
to specify what packages it uses, what symbols it exports, and what
symbols it
imports from other packages and to resolve conflicts by
creating shadowing symbols.5

I'll describe the various options in terms of how you might use
packages while writing a program
that organizes e-mail messages into
a searchable database. The program is purely hypothetical,
as are the
libraries I'll refer to--the point is to look at how the packages
used in such a program
might be structured.

The first package you'd need is one to provide a namespace for the
application--you want to be
able to name your functions, variables,
and so on, without having to worry about name collisions
with
unrelated code. So you'd define a new package with DEFPACKAGE.

If the application is simple enough to be written with no libraries
beyond the facilities provided
by the language itself, you could
define a simple package like this:

(defpackage :com.gigamonkeys.email-db

 (:use :common-lisp))

This defines a package, named COM.GIGAMONKEYS.EMAIL-DB, that
inherits all the symbols
exported by the COMMON-LISP
package.6

You actually have several choices of how to represent the names of
packages and, as you'll see,
the names of symbols in a
DEFPACKAGE. Packages and symbols are named with strings.
However,
in a DEFPACKAGE form, you can specify the names of packages and
symbols with
string designators. A string designator is either a
string, which designates itself; a symbol, which
designates its name;
or a character, which designates a one-character string containing
just the
character. Using keyword symbols, as in the previous
DEFPACKAGE, is a common style that
allows you to write the names
in lowercase--the reader will convert the names to uppercase for
you.
You could also write the DEFPACKAGE with strings, but then you
have to write them in all
uppercase, because the true names of most
symbols and packages are in fact uppercase because
of the case
conversion performed by the reader.7

(defpackage "COM.GIGAMONKEYS.EMAIL-DB"

 (:use "COMMON-LISP"))

You could also use nonkeyword symbols--the names in DEFPACKAGE
aren't evaluated--but then
the very act of reading the
DEFPACKAGE form would cause those symbols to be interned in the
current package, which at the very least will pollute that namespace
and may also cause
problems later if you try to use the
package.8

To read code in this package, you need to make it the current package
with the IN-PACKAGE
macro:

(in-package :com.gigamonkeys.email-db)

If you type this expression at the REPL, it will change the value of
PACKAGE, affecting how
the REPL reads subsequent expressions,
until you change it with another call to IN-PACKAGE.
Similarly,
if you include an IN-PACKAGE in a file that's loaded with
LOAD or compiled with

COMPILE-FILE, it will change the
package, affecting the way subsequent expressions in the
file are
read.9

With the current package set to the COM.GIGAMONKEYS.EMAIL-DB
package, other than
names inherited from the COMMON-LISP
package, you can use any name you want for
whatever purpose you want.
Thus, you could define a new hello-world function that could
coexist with the hello-world function previously defined in
COMMON-LISP-USER. Here's
the behavior of the existing
function:

CL-USER> (hello-world)

hello, world

NIL

Now you can switch to the new package using IN-PACKAGE.10 Notice how the prompt
changes--the exact
form is determined by the development environment, but in SLIME the
default prompt consists of an abbreviated version of the package
name.

CL-USER> (in-package :com.gigamonkeys.email-db)

#<The COM.GIGAMONKEYS.EMAIL-DB package>

EMAIL-DB>

You can define a new hello-world in this package:

EMAIL-DB> (defun hello-world () (format t "hello from EMAIL-DB package~%"))

HELLO-WORLD

And test it, like this:

EMAIL-DB> (hello-world)

hello from EMAIL-DB package

NIL

Now switch back to CL-USER.

EMAIL-DB> (in-package :cl-user)

#<The COMMON-LISP-USER package>

CL-USER>

And the old function is undisturbed.

CL-USER> (hello-world)

hello, world

NIL

Packaging Reusable Libraries

While working on the e-mail database, you might write several
functions related to storing and
retrieving text that don't have
anything in particular to do with e-mail. You might realize that
those functions could be useful in other programs and decide to
repackage them as a library. You
should define a new package, but
this time you'll export certain names to make them available to
other
packages.

(defpackage :com.gigamonkeys.text-db

 (:use :common-lisp)

 (:export :open-db

 :save

 :store))

Again, you use the COMMON-LISP package, because you'll need
access to standard functions
within COM.GIGAMONKEYS.TEXT-DB.
The :export clause specifies names that will be
external in
COM.GIGAMONKEYS.TEXT-DB and thus accessible in packages that
:use it.
Therefore, after you've defined this package, you can
change the definition of the main
application package to the
following:

(defpackage :com.gigamonkeys.email-db

 (:use :common-lisp :com.gigamonkeys.text-db))

Now code written in COM.GIGAMONKEYS.EMAIL-DB can use
unqualified names to refer to
the exported symbols from both
COMMON-LISP and COM.GIGAMONKEYS.TEXT-DB. All
other names
will continue to be interned directly in the
COM.GIGAMONKEYS.EMAIL-DB
package.

Importing Individual Names

Now suppose you find a third-party library of functions for
manipulating e-mail messages. The
names used in the library's API are
exported from the package COM.ACME.EMAIL, so you
could
:use that package to get easy access to those names. But
suppose you need to use only
one function from this library, and
other exported symbols conflict with names you already use
(or plan
to use) in our own code.11 In this case, you can import the one
symbol you need with an
:import-from clause in the
DEFPACKAGE. For instance, if the name of the function you
want
to use is parse-email-address, you can change the
DEFPACKAGE to this:

(defpackage :com.gigamonkeys.email-db

 (:use :common-lisp :com.gigamonkeys.text-db)

 (:import-from :com.acme.email :parse-email-address))

Now anywhere the name parse-email-address appears in code read
in the
COM.GIGAMONKEYS.EMAIL-DB package, it will be read as
the symbol from
COM.ACME.EMAIL. If you need to import more
than one symbol from a single package, you
can include multiple names
after the package name in a single :import-from clause. A
DEFPACKAGE can also include multiple :import-from clauses
in order to import symbols
from different packages.

Occasionally you'll run into the opposite situation--a package may
export a bunch of names you
want to use and a few you don't. Rather
than listing all the symbols you do want to use in an
:import-from clause, you can instead :use the package
and then list the names you don't
want to inherit in a
:shadow clause. For instance, suppose the COM.ACME.TEXT
package
exports a bunch of names of functions and classes used in
text processing. Further suppose that
most of these functions and
classes are ones you'll want to use in your code, but one of the

names, build-index, conflicts with a name you've already used.
You can make the
build-index from COM.ACME.TEXT
inaccessible by shadowing it.

(defpackage :com.gigamonkeys.email-db

 (:use

 :common-lisp

 :com.gigamonkeys.text-db

 :com.acme.text)

 (:import-from :com.acme.email :parse-email-address)

 (:shadow :build-index))

The :shadow clause causes a new symbol named
BUILD-INDEX to be created and added
directly to
COM.GIGAMONKEYS.EMAIL-DB's name-to-symbol map. Now if the
reader reads
the name BUILD-INDEX, it will translate it to the
symbol in
COM.GIGAMONKEYS.EMAIL-DB's map, rather than the one
that would otherwise be inherited
from COM.ACME.TEXT. The new
symbol is also added to a shadowing symbols list that's part
of
the COM.GIGAMONKEYS.EMAIL-DB package, so if you later use
another package that also
exports a BUILD-INDEX symbol, the
package system will know there's no conflict--that you
want the
symbol from COM.GIGAMONKEYS.EMAIL-DB to be used rather than
any other
symbols with the same name inherited from other packages.

A similar situation can arise if you want to use two packages that
export the same name. In this
case the reader won't know which
inherited name to use when it reads the textual name. In such
situations you must resolve the ambiguity by shadowing the
conflicting names. If you don't need
to use the name from either
package, you could shadow the name with a :shadow clause,
creating a new symbol with the same name in your package. But if you
actually want to use one
of the inherited symbols, then you need to
resolve the ambiguity with a
:shadowing-import-from clause.
Like an :import-from clause, a
:shadowing-import-from
clause consists of a package name followed by the names to
import
from that package. For instance, if COM.ACME.TEXT exports a
name SAVE that
conflicts with the name exported from
COM.GIGAMONKEYS.TEXT-DB, you could resolve the
ambiguity with
the following DEFPACKAGE:

(defpackage :com.gigamonkeys.email-db

 (:use

 :common-lisp

 :com.gigamonkeys.text-db

 :com.acme.text)

 (:import-from :com.acme.email :parse-email-address)

 (:shadow :build-index)

 (:shadowing-import-from :com.gigamonkeys.text-db :save))

Packaging Mechanics

That covers the basics of how to use packages to manage namespaces in
several common
situations. However, another level of how to use
packages is worth discussing--the raw
mechanics of how to organize
code that uses different packages. In this section I'll discuss a few

rules of thumb about how to organize code--where to put your
DEFPACKAGE forms relative to
the code that uses your packages
via IN-PACKAGE.

Because packages are used by the reader, a package must be defined
before you can LOAD or
COMPILE-FILE a file that contains an
IN-PACKAGE expression switching to that package.
Packages also
must be defined before other DEFPACKAGE forms can refer to them.
For instance,
if you're going to :use
COM.GIGAMONKEYS.TEXT-DB in
COM.GIGAMONKEYS.EMAIL-DB,
then COM.GIGAMONKEYS.TEXT-DB's DEFPACKAGE
must be
evaluated before the DEFPACKAGE of
COM.GIGAMONKEYS.EMAIL-DB.

The best first step toward making sure packages exist when they need
to is to put all your
DEFPACKAGEs in files separate from the
code that needs to be read in those packages. Some
folks like to
create a foo-package.lisp file for each individual package,
and others create a
single packages.lisp that contains all the
DEFPACKAGE forms for a group of related
packages. Either
approach is reasonable, though the one-file-per-package approach also
requires
that you arrange to load the individual files in the right
order according to the interpackage
dependencies.

Either way, once all the DEFPACKAGE forms have been separated
from the code that will be
read in the packages they define, you can
arrange to LOAD the files containing the
DEFPACKAGEs before
you compile or load any of the other files. For simple programs you
can
do this by hand: simply LOAD the file or files containing
the DEFPACKAGE forms, possibly
compiling them with
COMPILE-FILE first. Then LOAD the files that use those
packages, again
optionally compiling them first with
COMPILE-FILE. Note, however, that the packages don't
exist until
you LOAD the package definitions, either the source or the files
produced by
COMPILE-FILE. Thus, if you're compiling everything,
you must still LOAD all the package
definitions before you can
COMPILE-FILE any files to be read in the packages.

Doing these steps by hand will get tedious after a while. For simple
programs you can automate
the steps by writing a file,
load.lisp, that contains the appropriate LOAD and
COMPILE-FILE calls in the right order. Then you can just
LOAD that file. For more complex
programs you'll want to use a
system definition facility to manage loading and compiling files
in
the right order.12

The other key rule of thumb is that each file should contain exactly
one IN-PACKAGE form,
and it should be the first form in the file
other than comments. Files containing DEFPACKAGE
forms should
start with (in-package "COMMON-LISP-USER"), and all other
files should
contain an IN-PACKAGE of one of your packages.

If you violate this rule and switch packages in the middle of a file,
you'll confuse human readers
who don't notice the second
IN-PACKAGE. Also, many Lisp development environments,
particularly Emacs-based ones such as SLIME, look for an
IN-PACKAGE to determine the

package they should use when
communicating with Common Lisp. Multiple IN-PACKAGE
forms per
file may confuse these tools as well.

On the other hand, it's fine to have multiple files read in the same
package, each with an identical
IN-PACKAGE form. It's just a
matter of how you like to organize your code.

The other bit of packaging mechanics has to do with how to name
packages. Package names live
in a flat namespace--package names are
just strings, and different packages must have textually
distinct
names. Thus, you have to consider the possibility of conflicts
between package names. If
you're using only packages you developed
yourself, then you can probably get away with using
short names for
your packages. But if you're planning to use third-party libraries or
to publish
your code for use by other programmers, then you need to
follow a naming convention that will
minimize the possibility of name
collisions between different packages. Many Lispers these days
are
adopting Java-style names, like the ones used in this chapter,
consisting of a reversed Internet
domain name followed by a dot and a
descriptive string.

Package Gotchas

Once you're familiar with packages, you won't spend a bunch of time
thinking about them.
There's just not that much to them. However, a
couple of gotchas that bite most new Lisp
programmers make the
package system seem more complicated and unfriendly than it really
is.

The number-one gotcha arises most commonly when playing around at the
REPL. You'll be
looking at some library that defines certain
interesting functions. You'll try to call one of the
functions like
this:

CL-USER> (foo)

and get dropped into the debugger with this error:

attempt to call `FOO' which is an undefined function.

 [Condition of type UNDEFINED-FUNCTION]

Restarts:

 0: [TRY-AGAIN] Try calling FOO again.

 1: [RETURN-VALUE] Return a value instead of calling FOO.

 2: [USE-VALUE] Try calling a function other than FOO.

 3: [STORE-VALUE] Setf the symbol-function of FOO and call it again.

 4: [ABORT] Abort handling SLIME request.

 5: [ABORT] Abort entirely from this (lisp) process.

Ah, of course--you forgot to use the library's package. So you quit
the debugger and try to
USE-PACKAGE the library's package in
order to get access to the name FOO so you can call the
function.

CL-USER> (use-package :foolib)

But that drops you back into the debugger with this error message:

Using package `FOOLIB' results in name conflicts for these symbols: FOO

 [Condition of type PACKAGE-ERROR]

Restarts:

 0: [CONTINUE] Unintern the conflicting symbols from the `COMMON-LISP-USER' package.

 1: [ABORT] Abort handling SLIME request.

 2: [ABORT] Abort entirely from this (lisp) process.

Huh? The problem is the first time you called foo, the reader
read the name foo and interned it
in CL-USER before the
evaluator got hold of it and discovered that this newly interned
symbol
isn't the name of a function. This new symbol then conflicts
with the symbol of the same name
exported from the FOOLIB
package. If you had remembered to USE-PACKAGE FOOLIB
before you tried to call foo, the reader would have read
foo as the inherited symbol and not
interned a foo
symbol in CL-USER.

However, all isn't lost, because the first restart offered by the
debugger will patch things up in
just the right way: it will unintern
the foo symbol from COMMON-LISP-USER, putting the
CL-USER package back to the state it was in before you called
foo, allowing the
USE-PACKAGE to proceed and allowing for
the inherited foo to be available in CL-USER.

This kind of problem can also occur when loading and compiling files.
For instance, if you
defined a package, MY-APP, for code that
was going to use functions with names from the
FOOLIB package,
but forgot to :use FOOLIB, when you compile the files
with an
(in-package :my-app) in them, the reader will intern
new symbols in MY-APP for the
names that were supposed to be
read as symbols from FOOLIB. When you try to run the
compiled
code, you'll get undefined function errors. If you then try to
redefine the MY-APP
package to :use FOOLIB,
you'll get the conflicting symbols error. The solution is the same:
select the restart to unintern the conflicting symbols from
MY-APP. You'll then need to
recompile the code in the
MY-APP package so it will refer to the inherited names.

The next gotcha is essentially the reverse of the first gotcha. In
this case, you'd have defined a
package--again, let's say it's
MY-APP--that uses another package, say, FOOLIB. Now you
start
writing code in the MY-APP package. Although you used
FOOLIB in order to be able to refer to
the foo
function, FOOLIB may export other symbols as well. If you use
one of those exported
symbols--say, bar--as the name of a
function in your own code, Lisp won't complain. Instead,
the name of
your function will be the symbol exported by FOOLIB, which
will clobber the
definition of bar from FOOLIB.

This gotcha is more insidious because it doesn't cause an error--from
the evaluator's point of
view it's just being asked to associate a
new function with an old name, something that's
perfectly legal. It's
suspect only because the code doing the redefining was read with a
different
value for *PACKAGE* than the name's package. But the
evaluator doesn't necessarily know that.
However, in most Lisps
you'll get an warning about
"redefining BAR, originally defined
in?". You should heed those warnings. If

you clobber a definition
from a library, you can restore it by reloading the library code with
LOAD.13

The last package-related gotcha is, by comparison, quite trivial, but
it bites most Lisp
programmers at least a few times: you define a
package that uses COMMON-LISP and maybe a
few libraries. Then
at the REPL you change to that package to play around. Then you decide
to
quit Lisp altogether and try to call (quit). However,
quit isn't a name from the
COMMON-LISP package--it's
defined by the implementation in some implementation-specific
package
that happens to be used by COMMON-LISP-USER. The solution is
simple--change
packages back to CL-USER to quit. Or use the
SLIME REPL shortcut quit, which will also
save you from having
to remember that in certain Common Lisp implementations the function
to
quit is exit, not quit.

You're almost done with your tour of Common Lisp. In the next chapter
I'll discuss the details of
the extended LOOP macro. After that,
the rest of the book is devoted to "practicals": a spam
filter, a
library for parsing binary files, and various parts of a streaming
MP3 server with a Web
interface.

1The kind of programming that
relies on a symbol data type is called, appropriately enough,
symbolic computation. It's typically
contrasted to numeric
programming. An example of a primarily symbolic program that all
programmers should be familiar with is
a compiler--it treats the text
of a program as symbolic data and translates it into a new form.

2Every package has one official name and
zero or more nicknames that can be used anywhere you need to use
the package name,
such as in package-qualified names or to refer to
the package in a DEFPACKAGE or IN-PACKAGE form.

3COMMON-LISP-USER is also allowed to
provide access to symbols exported by other implementation-defined
packages. While
this is intended as a convenience for the user--it
makes implementation-specific functionality readily accessible--it
can also cause
confusion for new Lispers: Lisp will complain about an
attempt to redefine some name that isn't listed in the language
standard. To
see what packages COMMON-LISP-USER inherits
symbols from in a particular implementation, evaluate this expression
at the
REPL:

(mapcar #'package-name (package-use-list :cl-user))

And to find out what package a symbol came from originally, evaluate
this:

(package-name (symbol-package 'some-symbol))

with some-symbol replaced by the symbol in question. For instance:

(package-name (symbol-package 'car)) ==> "COMMON-LISP"

(package-name (symbol-package 'foo)) ==> "COMMON-LISP-USER"

Symbols inherited from implementation-defined packages will return
some other value.

4This is
different from the Java package system, which provides a namespace
for classes but is also involved in Java's access
control mechanism.
The non-Lisp language with a package system most like Common Lisp's
packages is Perl.

5All the manipulations performed by
DEFPACKAGE can also be performed with functions that man-
ipulate package objects.
However, since a package generally needs to
be fully defined before it can be used, those functions are rarely
used. Also,
DEFPACKAGE takes care of performing all the package
manipulations in the right order--for instance, DEFPACKAGE adds
symbols to the shadowing list before it tries to use the used
packages.

6In many Lisp implementations the :use clause is
optional if you want only to :use COMMON-LISP--if it's
omitted, the
package will automatically inherit names from an
implementation-defined list of packages that will usually include
COMMON-LISP. However, your code will be more portable if you
always explicitly specify the packages you want to :use.
Those
who are averse to typing can use the package's nickname and write
(:use :cl).

7Using keywords instead of
strings has another advantage--Allegro provides a "modern mode" Lisp
in which the reader does no
case conversion of names and in which,
instead of a COMMON-LISP package with uppercase names, provides a
common-lisp
package with lowercase names. Strictly speaking,
this Lisp isn't a conforming Common Lisp since all the names in the
standard are
defined to be uppercase. But if you write your
DEFPACKAGE forms using keyword symbols, they will work both in
Common Lisp
and in this near relative.

8Some folks, instead of keywords, use uninterned
symbols, using the #: syntax.

(defpackage #:com.gigamonkeys.email-db

 (:use #:common-lisp))

This saves a tiny bit of memory by not interning any symbols in the
keyword package--the symbol can become garbage after
DEFPACKAGE
(or the code it expands into) is done with it. However, the difference
is so slight that it really boils down to a matter
of aesthetics.

9The reason to use IN-PACKAGE instead of just
SETFing *PACKAGE* is that IN-PACKAGE expands into code
that will run
when the file is compiled by COMPILE-FILE as well
as when the file is loaded, changing the way the reader reads the
rest of the
file during compilation.

10In
the REPL buffer in SLIME you can also change packages with a REPL
shortcut. Type a comma, and then enter
change-package at the
Command: prompt.

11During development, if you try to
:use a package that exports a symbol with the same name as a
symbol already interned in the
using package, Lisp will signal an
error and typically offer you a restart that will unintern the
offending symbol from the using
package. For more on this, see the
section "Package Gotchas."

12The code for the "Practical" chapters,
available from this book's Web site, uses the ASDF system definition
library. ASDF stands
for Another System Definition Facility.

13Some Common Lisp implementations, such as Allegro and
SBCL, provide a facility for "locking" the symbols in a particular
package so they can be used in defining forms such as DEFUN,
DEFVAR, and DEFCLASS only when their home package is the
current package.

