
Copyright © 2003-2005, Peter Seibel

18. A Few FORMAT Recipes
Common Lisp's FORMAT function is--along with the extended
LOOP macro--one of the two
Common Lisp features that inspires a
strong emotional response in a lot of Common Lisp users.
Some love it;
others hate it.1

FORMAT's fans love it for its great power and concision, while
its detractors hate it because of
the potential for misuse and its
opacity. Complex FORMAT control strings sometimes bear a
suspicious resemblance to line noise, but FORMAT remains popular
with Common Lispers who
like to be able to generate little bits of
human-readable output without having to clutter their
code with lots
of output-generating code. While FORMAT's control strings can be
cryptic, at least
a single FORMAT expression doesn't clutter
things up too badly. For instance, suppose you want
to print the
values in a list delimited with commas. You could write this:

(loop for cons on list

 do (format t "~a" (car cons))

 when (cdr cons) do (format t ", "))

That's not too bad, but anyone reading this code has to mentally
parse it just to figure out that all
it's doing is printing the
contents of list to standard output. On the other hand, you
can tell at a
glance that the following expression is printing
list, in some form, to standard output:

(format t "~{~a~^, ~}" list)

If you care exactly what form the output will take, then you'll have
to examine the control string,
but if all you want is a first-order
approximation of what this line of code is doing, that's
immediately
available.

At any rate, you should have at least a reading knowledge of
FORMAT, and it's worth getting a
sense of what it can do before
you affiliate yourself with the pro- or anti-FORMAT camp. It's
also
important to understand at least the basics of FORMAT
because other standard functions, such as
the condition-signaling
functions discussed in the next chapter, use FORMAT-style
control strings
to generate output.

To further complicate matters, FORMAT supports three quite
different kinds of formatting:
printing tables of data,
pretty-printing s-expressions, and generating human-readable
messages
with interpolated values. Printing tables of data as text is
a bit pass� these days; it's one of those
reminders that Lisp is
nearly as old as FORTRAN. In fact, several of the directives you can
use
to print floating-point values in fixed-width fields were based
quite directly on FORTRAN edit
descriptors, which are used in
FORTRAN to read and print columns of data arranged in fixed-

width
fields. However, using Common Lisp as a FORTRAN replacement is beyond
the scope of
this book, so I won't discuss those aspects of
FORMAT.

Pretty-printing is likewise beyond the scope of this book--not
because it's pass� but just
because it's too big a topic. Briefly,
the Common Lisp pretty printer is a customizable system for
printing
block-structured data such as--but not limited to--s-expressions
while varying
indentation and dynamically adding line breaks as
needed. It's a great thing when you need it,
but it's not often
needed in day-to-day programming.2

Instead, I'll focus on the parts of FORMAT you can use to
generate human-readable strings with
interpolated values. Even
limiting the scope in that way, there's still a fair bit to cover.
You
shouldn't feel obliged to remember every detail described in this
chapter. You can get quite far
with just a few FORMAT idioms.
I'll describe the most important features of FORMAT first; it's
up
to you how much of a FORMAT wizard you want to become.

The FORMAT Function

As you've seen in previous chapters, the FORMAT function takes
two required arguments: a
destination for its output and a control
string that contains literal text and embedded directives.
Any
additional arguments provide the values used by the directives in the
control string that
interpolate values into the output. I'll refer to
these arguments as format arguments.

The first argument to FORMAT, the destination for the output,
can be T, NIL, a stream, or a
string with a fill pointer.
T is shorthand for the stream *STANDARD-OUTPUT*, while
NIL
causes FORMAT to generate its output to a string, which
it then returns.3 If the destination is a
stream, the output is written to the stream. And if the destination
is a string with a fill pointer, the
formatted output is added to the
end of the string and the fill pointer is adjusted appropriately.
Except when the destination is NIL and it returns a string,
FORMAT returns NIL.

The second argument, the control string, is, in essence, a program in
the FORMAT language. The
FORMAT language isn't Lispy at
all--its basic syntax is based on characters, not s-expressions,
and
it's optimized for compactness rather than easy comprehension. This
is why a complex
FORMAT control string can end up looking like
line noise.

Most of FORMAT's directives simply interpolate an argument into
the output in one form or
another. Some directives, such as
~%, which causes FORMAT to emit a newline, don't consume
any arguments. And others, as you'll see, can consume more than one
argument. One directive
even allows you to jump around in the list of
arguments in order to process the same argument
more than once or to
skip certain arguments in certain situations. But before I discuss
specific
directives, let's look at the general syntax of a directive.

FORMAT Directives

All directives start with a tilde (~) and end with a single
character that identifies the directive.
You can write the character
in either upper- or lowercase. Some directives take prefix
parameters, which are written immediately following the tilde,
separated by commas, and used
to control things such as how many
digits to print after the decimal point when printing a
floating-point number. For example, the ~$ directive, one of
the directives used to print floating-
point values, by default prints
two digits following the decimal point.

CL-USER> (format t "~$" pi)

3.14

NIL

However, with a prefix parameter, you can specify that it should
print its argument to, say, five
decimal places like this:

CL-USER> (format t "~5$" pi)

3.14159

NIL

The values of prefix parameters are either numbers, written in
decimal, or characters, written as
a single quote followed by the
desired character. The value of a prefix parameter can also be
derived from the format arguments in two ways: A prefix parameter of
v causes FORMAT to
consume one format argument and use
its value for the prefix parameter. And a prefix parameter
of
will be evaluated as the number of remaining format
arguments. For example:

CL-USER> (format t "~v$" 3 pi)

3.142

NIL

CL-USER> (format t "~#$" pi)

3.1

NIL

I'll give some more realistic examples of how you can use the
argument in the section
"Conditional Formatting."

You can also omit prefix parameters altogether. However, if you want
to specify one parameter
but not the ones before it, you must include
a comma for each unspecified parameter. For
instance, the ~F
directive, another directive for printing floating-point values, also
takes a
parameter to control the number of decimal places to print,
but it's the second parameter rather
than the first. If you want to
use ~F to print a number to five decimal places, you can write
this:

CL-USER> (format t "~,5f" pi)

3.14159

NIL

You can also modify the behavior of some directives with colon and
at-sign modifiers, which are
placed after any prefix parameters
and before the directive's identifying character. These
modifiers
change the behavior of the directive in small ways. For instance,
with a colon
modifier, the ~D directive used to output
integers in decimal emits the number with commas
separating every
three digits, while the at-sign modifier causes ~D to include
a plus sign when
the number is positive.

CL-USER> (format t "~d" 1000000)

1000000

NIL

CL-USER> (format t "~:d" 1000000)

1,000,000

NIL

CL-USER> (format t "~@d" 1000000)

+1000000

NIL

When it makes sense, you can combine the colon and at-sign modifiers
to get both
modifications.

CL-USER> (format t "~:@d" 1000000)

+1,000,000

NIL

In directives where the two modified behaviors can't be meaningfully
combined, using both
modifiers is either undefined or given a third
meaning.

Basic Formatting

Now you're ready to look at specific directives. I'll start with
several of the most commonly used
directives, including some you've
seen in previous chapters.

The most general-purpose directive is ~A, which consumes one
format argument of any type and
outputs it in aesthetic
(human-readable) form. For example, strings are output without
quotation
marks or escape characters, and numbers are output in a
natural way for the type of number. If
you just want to emit a value
for human consumption, this directive is your best bet.

(format nil "The value is: ~a" 10) ==> "The value is: 10"

(format nil "The value is: ~a" "foo") ==> "The value is: foo"

(format nil "The value is: ~a" (list 1 2 3)) ==> "The value is: (1 2 3)"

A closely related directive, ~S, likewise consumes one format
argument of any type and outputs
it. However, ~S tries to
generate output that can be read back in with READ. Thus,
strings will be
enclosed in quotation marks, symbols will be
package-qualified when necessary, and so on.
Objects that don't have
a READable representation are printed with the unreadable object
syntax,
#<>. With a colon modifier, both the ~A and
~S directives emit NIL as () rather than NIL.
Both the ~A and ~S directives also take up to four
prefix parameters, which can be used to
control whether padding is
added after (or before with the at-sign modifier) the value, but
those
parameters are only really useful for generating tabular data.

The other two most frequently used directives are ~%, which
emits a newline, and ~&, which
emits a fresh line. The
difference between the two is that ~% always emits a newline,
while ~&
emits one only if it's not already at the beginning
of a line. This is handy when writing loosely
coupled functions that
each generate a piece of output and that need to be combined in
different
ways. For instance, if one function generates output that
ends with a newline (~%) and another
function generates some
output that starts with a fresh line (~&), you don't have to
worry about

getting an extra blank line if you call them one after
the other. Both of these directives can take a
single prefix
parameter that specifies the number of newlines to emit. The
~% directive will
simply emit that many newline characters,
while the ~& directive will emit either n - 1 or n
newlines, depending on whether it starts at the beginning of a line.

Less frequently used is the related ~~ directive, which causes
FORMAT to emit a literal tilde.
Like the ~% and ~&
directives, it can be parameterized with a number that controls how
many
tildes to emit.

Character and Integer Directives

In addition to the general-purpose directives, ~A and
~S, FORMAT supports several directives
that can be used
to emit values of specific types in particular ways. One of the
simplest of these
is the ~C directive, which is used to emit
characters. It takes no prefix arguments but can be
modified with the
colon and at-sign modifiers. Unmodified, its behavior is no different
from ~A
except that it works only with characters. The
modified versions are more useful. With a colon
modifier, ~:C
outputs nonprinting characters such as space, tab, and newline by
name. This is
useful if you want to emit a message to the user about
some character. For instance, the
following:

(format t "Syntax error. Unexpected character: ~:c" char)

can emit messages like this:

Syntax error. Unexpected character: a

but also like the following:

Syntax error. Unexpected character: Space

With the at-sign modifier, ~@C will emit the character in
Lisp's literal character syntax.

CL-USER> (format t "~@c~%" #\a)

#\a

NIL

With both the colon and at-sign modifiers, the ~C directive
can print extra information about
how to enter the character at the
keyboard if it requires special key combinations. For instance,
on
the Macintosh, in certain applications you can enter a null character
(character code 0 in
ASCII or in any ASCII superset such as
ISO-8859-1 or Unicode) by pressing the Control key
and typing @. In
OpenMCL, if you print the null character with the ~:C
directive, it tells you
this:

(format nil "~:@c" (code-char 0)) ==> "^@ (Control @)"

However, not all Lisps implement this aspect of the ~C
directive. And even if they do, it may or
may not be accurate--for
instance, if you're running OpenMCL in SLIME, the C-@ key
chord is

intercepted by Emacs, invoking
set-mark-command.4

Format directives dedicated to emitting numbers are another important
category. While you can
use the ~A and ~S directives to
emit numbers, if you want fine control over how they're printed,
you
need to use one of the number-specific directives. The numeric
directives can be divided
into two subcategories: directives for
formatting integer values and directives for formatting
floating-point values.

Five closely related directives format integer values: ~D,
~X, ~O, ~B, and ~R. The most
frequently
used is the ~D directive, which outputs integers in base 10.

(format nil "~d" 1000000) ==> "1000000"

As I mentioned previously, with a colon modifier it adds commas.

(format nil "~:d" 1000000) ==> "1,000,000"

And with an at-sign modifier, it always prints a sign.

(format nil "~@d" 1000000) ==> "+1000000"

And the two modifiers can be combined.

(format nil "~:@d" 1000000) ==> "+1,000,000"

The first prefix parameter can specify a minimum width for the
output, and the second parameter
can specify a padding character to
use. The default padding character is space, and padding is
always
inserted before the number itself.

(format nil "~12d" 1000000) ==> " 1000000"

(format nil "~12,'0d" 1000000) ==> "000001000000"

These parameters are handy for formatting things such as dates in a
fixed-width format.

(format nil "~4,'0d-~2,'0d-~2,'0d" 2005 6 10) ==> "2005-06-10"

The third and fourth parameters are used in conjunction with the
colon modifier: the third
parameter specifies the character to use as
the separator between groups and digits, and the
fourth parameter
specifies the number of digits per group. These parameters default to
a comma
and the number 3. Thus, you can use the directive ~:D
without parameters to output large
integers in standard format for
the United States but can change the comma to a period and the
grouping from 3 to 4 with ~,,'.,4D.

(format nil "~:d" 100000000) ==> "100,000,000"

(format nil "~,,'.,4:d" 100000000) ==> "1.0000.0000"

Note that you must use commas to hold the places of the unspecified
width and padding
character parameters, allowing them to keep their
default values.

The ~X, ~O, and ~B directives work just like the
~D directive except they emit numbers in
hexadecimal (base
16), octal (base 8), and binary (base 2).

(format nil "~x" 1000000) ==> "f4240"

(format nil "~o" 1000000) ==> "3641100"

(format nil "~b" 1000000) ==> "11110100001001000000"

Finally, the ~R directive is the general radix directive.
Its first parameter is a number between 2
and 36 (inclusive) that
indicates what base to use. The remaining parameters are the same as
the
four parameters accepted by the ~D, ~X, ~O,
and ~B directives, and the colon and at-sign
modifiers modify
its behavior in the same way. The ~R directive also has some
special behavior
when used with no prefix parameters, which I'll
discuss in the section "English-Language
Directives."

Floating-Point Directives

Four directives format floating-point values: ~F, ~E,
~G, and ~$. The first three of these are the
directives
based on FORTRAN's edit descriptors. I'll skip most of the details of
those directives
since they mostly have to do with formatting
floating-point values for use in tabular form.
However, you can use
the ~F, ~E, and ~$ directives to interpolate
floating-point values into
text. The ~G, or general,
floating-point directive, on the other hand, combines aspects of the
~F
and ~E directives in a way that only really makes
sense for generating tabular output.

The ~F directive emits its argument, which should be a
number,5 in
decimal format, possibly
controlling the number of digits after the
decimal point. The ~F directive is, however, allowed to
use
computerized scientific notation if the number is sufficiently large
or small. The ~E
directive, on the other hand, always emits
numbers in computerized scientific notation. Both of
these directives
take a number of prefix parameters, but you need to worry only about
the
second, which controls the number of digits to print after the
decimal point.

(format nil "~f" pi) ==> "3.141592653589793d0"

(format nil "~,4f" pi) ==> "3.1416"

(format nil "~e" pi) ==> "3.141592653589793d+0"

(format nil "~,4e" pi) ==> "3.1416d+0"

The ~$, or monetary, directive is similar to ~F but a
bit simpler. As its name suggests, it's
intended for emitting
monetary units. With no parameters, it's basically equivalent to
~,2F. To
modify the number of digits printed after the decimal
point, you use the first parameter, while
the second parameter
controls the minimum number of digits to print before the decimal
point.

(format nil "~$" pi) ==> "3.14"

(format nil "~2,4$" pi) ==> "0003.14"

All three directives, ~F, ~E, and ~$, can be
made to always print a sign, plus or minus, with the
at-sign
modifier.6

English-Language Directives

Some of the handiest FORMAT directives for generating
human-readable messages are the ones
for emitting English text. These
directives allow you to emit numbers as English words, to emit
plural
markers based on the value of a format argument, and to apply case
conversions to
sections of FORMAT's output.

The ~R directive, which I discussed in "Character and Integer
Directives," when used with no
base specified, prints numbers as
English words or Roman numerals. When used with no prefix
parameter
and no modifiers, it emits the number in words as a cardinal number.

(format nil "~r" 1234) ==> "one thousand two hundred thirty-four"

With the colon modifier, it emits the number as an ordinal.

(format nil "~:r" 1234) ==> "one thousand two hundred thirty-fourth"

And with an at-sign modifier, it emits the number as a Roman numeral;
with both an at-sign and
a colon, it emits "old-style" Roman
numerals in which fours and nines are written as IIII and
VIIII
instead of IV and IX.

(format nil "~@r" 1234) ==> "MCCXXXIV"

(format nil "~:@r" 1234) ==> "MCCXXXIIII"

For numbers too large to be represented in the given form, ~R
behaves like ~D.

To help you generate messages with words properly pluralized,
FORMAT provides the ~P
directive, which simply emits an
s unless the corresponding argument is 1.

(format nil "file~p" 1) ==> "file"

(format nil "file~p" 10) ==> "files"

(format nil "file~p" 0) ==> "files"

Typically, however, you'll use ~P with the colon modifier,
which causes it to reprocess the
previous format argument.

(format nil "~r file~:p" 1) ==> "one file"

(format nil "~r file~:p" 10) ==> "ten files"

(format nil "~r file~:p" 0) ==> "zero files"

With the at-sign modifier, which can be combined with the colon
modifier, ~P emits either y or
ies.

(format nil "~r famil~:@p" 1) ==> "one family"

(format nil "~r famil~:@p" 10) ==> "ten families"

(format nil "~r famil~:@p" 0) ==> "zero families"

Obviously, ~P can't solve all pluralization problems and is no
help for generating messages in
other languages, but it's handy for
the cases it does handle. And the ~[directive, which I'll
discuss in a moment, gives you a more flexible way to conditionalize
parts of FORMAT's output.

The last directive for dealing with emitting English text is
~(, which allows you to control the
case of text in the
output. Each ~(is paired with a ~), and all the output
generated by the

portion of the control string between the two
markers will be converted to all lowercase.

(format nil "~(~a~)" "FOO") ==> "foo"

(format nil "~(~@r~)" 124) ==> "cxxiv"

You can modify ~(with an at sign to make it capitalize the
first word in a section of text, with a
colon to make it to
capitalize all words, and with both modifiers to convert all text to
uppercase.
(A word for the purpose of this directive is a
sequence of alphanumeric characters delimited by
nonalphanumeric
characters or the ends of the text.)

(format nil "~(~a~)" "tHe Quick BROWN foX") ==> "the quick brown fox"

(format nil "~@(~a~)" "tHe Quick BROWN foX") ==> "The quick brown fox"

(format nil "~:(~a~)" "tHe Quick BROWN foX") ==> "The Quick Brown Fox"

(format nil "~:@(~a~)" "tHe Quick BROWN foX") ==> "THE QUICK BROWN FOX"

Conditional Formatting

In addition to directives that interpolate arguments and modify other
output, FORMAT provides
several directives that implement simple
control constructs within the control string. One of
these, which you
used in Chapter 9, is the conditional directive ~[. This
directive is closed by a
corresponding ~], and in between are
a number of clauses separated by ~;. The job of the ~[
directive is to pick one of the clauses, which is then processed by
FORMAT. With no modifiers or
parameters, the clause is selected
by numeric index; the ~[directive consumes a format
argument,
which should be a number, and takes the nth (zero-based) clause
where N is the value
of the argument.

(format nil "~[cero~;uno~;dos~]" 0) ==> "cero"

(format nil "~[cero~;uno~;dos~]" 1) ==> "uno"

(format nil "~[cero~;uno~;dos~]" 2) ==> "dos"

If the value of the argument is greater than the number of clauses,
nothing is printed.

(format nil "~[cero~;uno~;dos~]" 3) ==> ""

However, if the last clause separator is ~:; instead of
~;, then the last clause serves as a default
clause.

(format nil "~[cero~;uno~;dos~:;mucho~]" 3) ==> "mucho"

(format nil "~[cero~;uno~;dos~:;mucho~]" 100) ==> "mucho"

It's also possible to specify the clause to be selected using a
prefix parameter. While it'd be silly
to use a literal value in the
control string, recall that # used as a prefix parameter means
the
number of arguments remaining to be processed. Thus, you can
define a format string such as
the following:

(defparameter *list-etc*

 "~#[NONE~;~a~;~a and ~a~:;~a, ~a~]~#[~; and ~a~:;, ~a, etc~].")

and then use it like this:

(format nil *list-etc*) ==> "NONE."

(format nil *list-etc* 'a) ==> "A."

(format nil *list-etc* 'a 'b) ==> "A and B."

(format nil *list-etc* 'a 'b 'c) ==> "A, B and C."

(format nil *list-etc* 'a 'b 'c 'd) ==> "A, B, C, etc."

(format nil *list-etc* 'a 'b 'c 'd 'e) ==> "A, B, C, etc."

Note that the control string actually contains two ~[~]
directives--both of which use # to select
the clause to use.
The first consumes between zero and two arguments, while the second
consumes one more, if available. FORMAT will silently ignore any
arguments not consumed
while processing the control string.

With a colon modifier, the ~[can contain only two clauses;
the directive consumes a single
argument and processes the first
clause if the argument is NIL and the second clause is
otherwise. You used this variant of ~[in Chapter 9 to
generate pass/fail messages, like this:

(format t "~:[FAIL~;pass~]" test-result)

Note that either clause can be empty, but the directive must contain
a ~;.

Finally, with an at-sign modifier, the ~[directive can have
only one clause. The directive
consumes one argument and, if it's
non-NIL, processes the clause after backing up to make the
argument available to be consumed again.

(format nil "~@[x = ~a ~]~@[y = ~a~]" 10 20) ==> "x = 10 y = 20"

(format nil "~@[x = ~a ~]~@[y = ~a~]" 10 nil) ==> "x = 10 "

(format nil "~@[x = ~a ~]~@[y = ~a~]" nil 20) ==> "y = 20"

(format nil "~@[x = ~a ~]~@[y = ~a~]" nil nil) ==> ""

Iteration

Another FORMAT directive that you've seen already, in passing,
is the iteration directive ~{. This
directive tells
FORMAT to iterate over the elements of a list or over the
implicit list of the format
arguments.

With no modifiers, ~{ consumes one format argument, which must
be a list. Like the ~[
directive, which is always paired with
a ~] directive, the ~{ directive is always paired with
a
closing ~}. The text between the two markers is processed as
a control string, which draws its
arguments from the list consumed by
the ~{ directive. FORMAT will repeatedly process this
control string for as long as the list being iterated over has
elements left. In the following
example, the ~{ consumes the
single format argument, the list (1 2 3), and then processes
the control string "~a, ", repeating until all the elements of
the list have been consumed.

(format nil "~{~a, ~}" (list 1 2 3)) ==> "1, 2, 3, "

However, it's annoying that in the output the last element of the
list is followed by a comma and
a space. You can fix that with the
~^ directive; within the body of a ~{ directive, the
~^ causes
the iteration to stop immediately, without
processing the rest of the control string, when no

elements remain in
the list. Thus, to avoid printing the comma and space after the last
element of
a list, you can precede them with a ~^.

(format nil "~{~a~^, ~}" (list 1 2 3)) ==> "1, 2, 3"

The first two times through the iteration, there are still
unprocessed elements in the list when the
~^ is processed. The
third time through, however, after the ~a directive consumes
the 3, the ~^
will cause FORMAT to break out of
the iteration without printing the comma and space.

With an at-sign modifier, ~{ processes the remaining format
arguments as a list.

(format nil "~@{~a~^, ~}" 1 2 3) ==> "1, 2, 3"

Within the body of a ~{...~}, the special prefix parameter
refers to the number of items
remaining to be processed in
the list rather than the number of remaining format arguments. You
can use that, along with the ~[directive, to print a
comma-separated list with an "and" before
the last item like this:

(format nil "~{~a~#[~;, and ~:;, ~]~}" (list 1 2 3)) ==> "1, 2, and 3"

However, that doesn't really work right if the list is two items long
because it adds an extra
comma.

(format nil "~{~a~#[~;, and ~:;, ~]~}" (list 1 2)) ==> "1, and 2"

You could fix that in a bunch of ways. The following takes advantage
of the behavior of ~@{
when nested inside another ~{ or
~@{ directive--it iterates over whatever items remain in the
list being iterated over by the outer ~{. You can combine that
with a ~#[directive to make the
following control string for
formatting lists according to English grammar:

(defparameter *english-list*

 "~{~#[~;~a~;~a and ~a~:;~@{~a~#[~;, and ~:;, ~]~}~]~}")

(format nil *english-list* '()) ==> ""

(format nil *english-list* '(1)) ==> "1"

(format nil *english-list* '(1 2)) ==> "1 and 2"

(format nil *english-list* '(1 2 3)) ==> "1, 2, and 3"

(format nil *english-list* '(1 2 3 4)) ==> "1, 2, 3, and 4"

While that control string verges on being "write-only" code, it's not
too hard to understand if you
take it a bit at a time. The outer
~{...~} will consume and iterate over a list. The whole body
of the iteration then consists of a ~#[...~]; the output
generated each time through the
iteration will thus depend on the
number of items left to be processed from the list. Splitting
apart
the ~#[...~] directive on the ~; clause separators, you
can see that it's made up of four
clauses, the last of which is a
default clause because it's preceded by a ~:; rather than a
plain
~;. The first clause, for when there are zero elements
to be processed, is empty, which makes
sense--if there are no more
elements to be processed, the iteration would've stopped already. The
second clause handles the case of one element with a simple ~a
directive. Two elements are
handled with "~a and ~a". And the
default clause, which handles three or more elements,

consists of
another iteration directive, this time using ~@{ to iterate
over the remaining elements
of the list being processed by the outer
~{. And the body of that iteration is the control string
that
can handle a list of three or more elements correctly, which is fine
in this context. Because
the ~@{ loop consumes all the
remaining list items, the outer loop iterates only once.

If you wanted to print something special such as "<empty>" when the
list was empty, you have a
couple ways to do it. Perhaps the easiest
is to put the text you want into the first (zeroth) clause
of the
outer ~#[and then add a colon modifier to the closing
~} of the outer iteration--the colon
forces the iteration to
be run at least once, even if the list is empty, at which point
FORMAT
processes the zeroth clause of the conditional directive.

(defparameter *english-list*

 "~{~#[<empty>~;~a~;~a and ~a~:;~@{~a~#[~;, and ~:;, ~]~}~]~:}")

(format nil *english-list* '()) ==> "<empty>"

Amazingly, the ~{ directive provides even more variations with
different combinations of prefix
parameters and modifiers. I won't
discuss them other than to say you can use an integer prefix
parameter to limit the maximum number of iterations and that, with a
colon modifier, each
element of the list (either an actual list or
the list constructed by the ~@{ directive) must itself be
a
list whose elements will then be used as arguments to the control
string in the ~:{...~}
directive.

Hop, Skip, Jump

A much simpler directive is the ~* directive, which allows you
to jump around in the list of
format arguments. In its basic form,
without modifiers, it simply skips the next argument,
consuming it
without emitting anything. More often, however, it's used with a
colon modifier,
which causes it to move backward, allowing the same
argument to be used a second time. For
instance, you can use
~:* to print a numeric argument once as a word and once in
numerals like
this:

(format nil "~r ~:*(~d)" 1) ==> "one (1)"

Or you could implement a directive similar to ~:P for an
irregular plural by combing ~:* with
~[.

(format nil "I saw ~r el~:*~[ves~;f~:;ves~]." 0) ==> "I saw zero elves."

(format nil "I saw ~r el~:*~[ves~;f~:;ves~]." 1) ==> "I saw one elf."

(format nil "I saw ~r el~:*~[ves~;f~:;ves~]." 2) ==> "I saw two elves."

In this control string, the ~R prints the format argument as a
cardinal number. Then the ~:*
directive backs up so the number
is also used as the argument to the ~[directive, selecting
between the clauses for when the number is zero, one, or anything
else.7

Within an ~{ directive, ~* skips or backs up over the
items in the list. For instance, you could
print only the keys of a
plist like this:

(format nil "~{~s~*~^ ~}" '(:a 10 :b 20)) ==> ":A :B"

The ~* directive can also be given a prefix parameter. With no
modifiers or with the colon
modifier, this parameter specifies the
number of arguments to move forward or backward and
defaults to one.
With an at-sign modifier, the prefix parameter specifies an absolute,
zero-based
index of the argument to jump to, defaulting to zero. The
at-sign variant of ~* can be useful if
you want to use
different control strings to generate different messages for the same
arguments
and if different messages need to use the arguments in
different orders.8

And More . . .

And there's more--I haven't mentioned the ~? directive, which
can take snippets of control
strings from the format arguments or the
~/ directive, which allows you to call an arbitrary
function
to handle the next format argument. And then there are all the
directives for generating
tabular and pretty-printed output. But the
directives discussed in this chapter should be plenty for
the time
being.

In the next chapter, you'll move onto Common Lisp's condition system,
the Common Lisp
analog to other languages' exception and error
handling systems.

1Of course, most folks realize it's not worth
getting that worked up over anything in a programming language and
use it or not
without a lot of angst. On the other hand, it's
interesting that these two features are the two features in Common
Lisp that
implement what are essentially domain-specific languages
using a syntax not based on s-expressions. The syntax of FORMAT's
control strings is character based, while the extended LOOP macro
can be understood only in terms of the grammar of the LOOP
keywords. That one of the common knocks on both FORMAT and
LOOP is that they "aren't Lispy enough" is evidence that Lispers
really do like the s-expression syntax.

2Readers interested in the
pretty printer may want to read the paper "XP: A Common Lisp Pretty
Printing System" by Richard
Waters. It's a description of the pretty
printer that was eventually incorporated into Common Lisp. You can
download it from
ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-1102a.pdf.

3To slightly confuse matters, most other I/O
functions also accept T and NIL as stream designators
but with a different meaning:
as a stream designator, T
designates the bidirectional stream *TERMINAL-IO*, while
NIL designates *STANDARD-OUTPUT*
as an output stream and
STANDARD-INPUT as an input stream.

4This variant on the ~C directive
makes more sense on platforms like the Lisp Machines where key press
events were represented
by Lisp characters.

5Technically, if the argument isn't a real number,
~F is supposed to format it as if by the ~D directive,
which in turn behaves like
the ~A directive if the argument
isn't a number, but not all implementations get this right.

6Well, that's what the language standard says. For some
reason, perhaps rooted in a common ancestral code base, several
Common
Lisp implementations don't implement this aspect of the
~F directive correctly.

7If you find "I saw zero elves" to be a bit clunky, you
could use a slightly more elaborate format string that makes another
use of
~:* like this:

(format nil "I saw ~[no~:;~:*~r~] el~:*~[ves~;f~:;ves~]." 0) ==> "I saw no elves."

(format nil "I saw ~[no~:;~:*~r~] el~:*~[ves~;f~:;ves~]." 1) ==> "I saw one elf."
(format nil "I saw ~[no~:;~:*~r~] el~:*~[ves~;f~:;ves~]." 2) ==> "I saw two elves."

8This kind of problem can arise when trying to
localize an application and translate human-readable messages into
different
languages. FORMAT can help with some of these problems
but is by no means a full-blown localization system.

