
Copyright © 2003-2005, Peter Seibel

17. Object Reorientation: Classes
If generic functions are the verbs of the object system, classes are
the nouns. As I mentioned in
the previous chapter, all values in a
Common Lisp program are instances of some class.
Furthermore, all
classes are organized into a single hierarchy rooted at the class
T.

The class hierarchy consists of two major families of classes,
built-in and user-defined classes.
Classes that represent the data
types you've been learning about up until now, classes such as
INTEGER, STRING, and LIST, are all built-in. They live
in their own section of the class
hierarchy, arranged into appropriate
sub- and superclass relationships, and are manipulated by
the
functions I've been discussing for much of the book up until now. You
can't subclass these
classes, but, as you saw in the previous chapter,
you can define methods that specialize on them,
effectively extending
the behavior of those classes.1

But when you want to create new nouns--for instance, the classes used
in the previous chapter
for representing bank accounts--you need to
define your own classes. That's the subject of this
chapter.

DEFCLASS
You create user-defined classes with the DEFCLASS macro. Because
behaviors are associated
with a class by defining generic functions
and methods specialized on the class, DEFCLASS is
responsible
only for defining the class as a data type.

The three facets of the class as a data type are its name, its
relation to other classes, and the
names of the slots that make up
instances of the class.2 The basic form of a DEFCLASS is quite
simple.

(defclass name (direct-superclass-name*)

 (slot-specifier*))

What Are "User-Defined Classes"?

The term user-defined classes isn't a term from the
language standard--technically what I'm talking about
when I say
user-defined classes are classes that subclass
STANDARD-OBJECT and whose metaclass is
STANDARD-CLASS. But
since I'm not going to talk about the ways you can define classes that
don't subclass
STANDARD-OBJECT and whose metaclass isn't
STANDARD-CLASS, you don't really have to worry about that.
User-defined isn't a perfect term for these classes since the
implementation may define certain classes the
same way. However, to
call them standard classes would be even more confusing since the
built-in classes,
such as INTEGER and STRING, are just as
standard, if not more so, because they're defined by the
language
standard but they don't extend STANDARD-OBJECT. To further
complicate matters, it's also

possible for users to define new classes
that don't subclass STANDARD-OBJECT. In particular, the macro
DEFSTRUCT also defines new classes. But that's largely for
backward compatibility--DEFSTRUCT predated
CLOS and was
retrofitted to define classes when CLOS was integrated into the
language. But the classes it
creates are fairly limited compared to
DEFCLASSed classes. So in this chapter I'll be discussing only
classes
defined with DEFCLASS that use the default metaclass of
STANDARD-CLASS, and I'll refer to them as user-
defined for
lack of a better term.

As with functions and variables, you can use any symbol as the name
of a new class.3 Class
names are in a separate
namespace from both functions and variables, so you can have a class,
function, and variable all with the same name. You'll use the class
name as the argument to
MAKE-INSTANCE, the function that creates
new instances of user-defined classes.

The direct-superclass-names specify the classes of which the new
class is a subclass. If no
superclasses are listed, the new class
will directly subclass STANDARD-OBJECT. Any classes
listed must
be other user-defined classes, which ensures that each new class is
ultimately
descended from STANDARD-OBJECT. STANDARD-OBJECT
in turn subclasses T, so all user-
defined classes are part of
the single class hierarchy that also contains all the built-in
classes.

Eliding the slot specifiers for a moment, the DEFCLASS forms of
some of the classes you used
in the previous chapter might look like
this:

(defclass bank-account () ...)

(defclass checking-account (bank-account) ...)

(defclass savings-account (bank-account) ...)

I'll discuss in the section "Multiple Inheritance" what it means to
list more than one direct
superclass in direct-superclass-names.

Slot Specifiers

The bulk of a DEFCLASS form consists of the list of slot
specifiers. Each slot specifier defines a
slot that will be part of
each instance of the class. Each slot in an instance is a place that
can hold
a value, which can be accessed using the SLOT-VALUE
function. SLOT-VALUE takes an object
and the name of a slot as
arguments and returns the value of the named slot in the given
object. It
can be used with SETF to set the value of a slot in
an object.

A class also inherits slot specifiers from its superclasses, so the
set of slots actually present in
any object is the union of all the
slots specified in a class's DEFCLASS form and those specified
in all its superclasses.

At the minimum, a slot specifier names the slot, in which case the
slot specifier can be just a
name. For instance, you could define a
bank-account class with two slots,
customer-name and
balance, like this:

(defclass bank-account ()

 (customer-name

 balance))

Each instance of this class will contain two slots, one to hold the
name of the customer the
account belongs to and another to hold the
current balance. With this definition, you can create
new
bank-account objects using MAKE-INSTANCE.

(make-instance 'bank-account) ==> #<BANK-ACCOUNT @ #x724b93ba>

The argument to MAKE-INSTANCE is the name of the class to
instantiate, and the value
returned is the new object.4 The printed representation of an object is
determined by the generic
function PRINT-OBJECT. In this case,
the applicable method will be one provided by the
implementation,
specialized on STANDARD-OBJECT. Since not every object can be
printed so
that it can be read back, the STANDARD-OBJECT print
method uses the #<> syntax, which will
cause the reader to
signal an error if it tries to read it. The rest of the
representation is
implementation-defined but will typically be
something like the output just shown, including the
name of the class
and some distinguishing value such as the address of the object in
memory. In
Chapter 23 you'll see an example of how to define a method
on PRINT-OBJECT to make
objects of a certain class be printed in
a more informative form.

Using the definition of bank-account just given, new objects
will be created with their slots
unbound. Any attempt to get the
value of an unbound slot signals an error, so you must set a slot
before you can read it.

(defparameter *account* (make-instance 'bank-account)) ==> *ACCOUNT*

(setf (slot-value *account* 'customer-name) "John Doe") ==> "John Doe"

(setf (slot-value *account* 'balance) 1000) ==> 1000

Now you can access the value of the slots.

(slot-value *account* 'customer-name) ==> "John Doe"

(slot-value *account* 'balance) ==> 1000

Object Initialization

Since you can't do much with an object with unbound slots, it'd be
nice to be able to create
objects with their slots already
initialized. Common Lisp provides three ways to control the
initial
value of slots. The first two involve adding options to the slot
specifier in the DEFCLASS
form: with the :initarg option,
you can specify a name that can then be used as a keyword
parameter
to MAKE-INSTANCE and whose argument will be stored in the slot.
A second option,
:initform, lets you specify a Lisp expression
that will be used to compute a value for the slot
if no
:initarg argument is passed to MAKE-INSTANCE. Finally,
for complete control over
the initialization, you can define a method
on the generic function INITIALIZE-INSTANCE,
which is called by
MAKE-INSTANCE.5

A slot specifier that includes options such as :initarg or
:initform is written as a list
starting with the name of the
slot followed by the options. For example, if you want to modify
the
definition of bank-account to allow callers of
MAKE-INSTANCE to pass the customer
name and the initial balance
and to provide a default value of zero dollars for the balance, you'd
write this:

(defclass bank-account ()

 ((customer-name

 :initarg :customer-name)

 (balance

 :initarg :balance

 :initform 0)))

Now you can create an account and specify the slot values at the same
time.

(defparameter *account*

 (make-instance 'bank-account :customer-name "John Doe" :balance 1000))

(slot-value *account* 'customer-name) ==> "John Doe"

(slot-value *account* 'balance) ==> 1000

If you don't supply a :balance argument to MAKE-INSTANCE,
the SLOT-VALUE of
balance will be computed by evaluating
the form specified with the :initform option. But
if you don't
supply a :customer-name argument, the customer-name
slot will be
unbound, and an attempt to read it before you set it
will signal an error.

(slot-value (make-instance 'bank-account) 'balance) ==> 0

(slot-value (make-instance 'bank-account) 'customer-name) ==> error

If you want to ensure that the customer name is supplied when the
account is created, you can
signal an error in the initform since it
will be evaluated only if an initarg isn't supplied. You can
also use
initforms that generate a different value each time they're
evaluated--the initform is
evaluated anew for each object. To
experiment with these techniques, you can modify the
customer-name slot specifier and add a new slot,
account-number, that's initialized with
the value of an
ever-increasing counter.

(defvar *account-numbers* 0)

(defclass bank-account ()

 ((customer-name

 :initarg :customer-name

 :initform (error "Must supply a customer name."))

 (balance

 :initarg :balance

 :initform 0)

 (account-number

 :initform (incf *account-numbers*))))

Most of the time the combination of :initarg and
:initform options will be sufficient to
properly initialize an
object. However, while an initform can be any Lisp expression, it has
no
access to the object being initialized, so it can't initialize one
slot based on the value of another.
For that you need to define a
method on the generic function INITIALIZE-INSTANCE.

The primary method on INITIALIZE-INSTANCE specialized on
STANDARD-OBJECT takes
care of initializing slots based on their
:initarg and :initform options. Since you don't
want to
disturb that, the most common way to add custom initialization code
is to define an
:after method specialized on your
class.6
For instance, suppose you want to add a slot
account-type that
needs to be set to one of the values :gold, :silver, or
:bronze
based on the account's initial balance. You might
change your class definition to this, adding the
account-type
slot with no options:

(defclass bank-account ()

 ((customer-name

 :initarg :customer-name

 :initform (error "Must supply a customer name."))

 (balance

 :initarg :balance

 :initform 0)

 (account-number

 :initform (incf *account-numbers*))

 account-type))

Then you can define an :after method on
INITIALIZE-INSTANCE that sets the
account-type slot based
on the value that has been stored in the balance
slot.7

(defmethod initialize-instance :after ((account bank-account) &key)

 (let ((balance (slot-value account 'balance)))

 (setf (slot-value account 'account-type)

 (cond

 ((>= balance 100000) :gold)

 ((>= balance 50000) :silver)

 (t :bronze)))))

The &key in the parameter list is required to keep the method's
parameter list congruent with the
generic function's--the parameter
list specified for the INITIALIZE-INSTANCE generic
function
includes &key in order to allow individual methods to supply
their own keyword
parameters but doesn't require any particular ones.
Thus, every method must specify &key even
if it doesn't specify
any &key parameters.

On the other hand, if an INITIALIZE-INSTANCE method specialized
on a particular class
does specify a &key parameter, that
parameter becomes a legal parameter to MAKE-INSTANCE
when
creating an instance of that class. For instance, if the bank
sometimes pays a percentage of
the initial balance as a bonus when an
account is opened, you could implement that using a
method on
INITIALIZE-INSTANCE that takes a keyword argument to specify the
percentage
of the bonus like this:

(defmethod initialize-instance :after ((account bank-account)

 &key opening-bonus-percentage)

 (when opening-bonus-percentage

 (incf (slot-value account 'balance)

 (* (slot-value account 'balance) (/ opening-bonus-percentage 100)))))

By defining this INITIALIZE-INSTANCE method, you make
:opening-bonus-percentage a legal argument to
MAKE-INSTANCE when creating a
bank-account object.

CL-USER> (defparameter *acct* (make-instance

 'bank-account

 :customer-name "Sally Sue"

 :balance 1000

 :opening-bonus-percentage 5))

ACCT

CL-USER> (slot-value *acct* 'balance)

1050

Accessor Functions

Between MAKE-INSTANCE and SLOT-VALUE, you have all the
tools you need for creating
and manipulating instances of your
classes. Everything else you might want to do can be
implemented in
terms of those two functions. However, as anyone familiar with the
principles of
good object-oriented programming practices knows,
directly accessing the slots (or fields or
member variables) of an
object can lead to fragile code. The problem is that directly
accessing
slots ties your code too tightly to the concrete structure
of your class. For example, suppose you
decide to change the
definition of bank-account so that, instead of storing the
current
balance as a number, you store a list of time-stamped
withdrawals and deposits. Code that
directly accesses the
balance slot will likely break if you change the class
definition to remove
the slot or to store the new list in the old
slot. On the other hand, if you define a function,
balance,
that accesses the slot, you can redefine it later to preserve its
behavior even if the
internal representation changes. And code that
uses such a function will continue to work
without modification.

Another advantage to using accessor functions rather than direct
access to slots via
SLOT-VALUE is that they let you limit the
ways outside code can modify a slot.8 It may be fine
for users of
the bank-account class to get the current balance, but you may
want all
modifications to the balance to go through other functions
you'll provide, such as deposit and
withdraw. If
clients know they're supposed to manipulate objects only through the
published
functional API, you can provide a balance function
but not make it SETFable if you want the
balance to be
read-only.

Finally, using accessor functions makes your code tidier since it
helps you avoid lots of uses of
the rather verbose SLOT-VALUE
function.

It's trivial to define a function that reads the value of the
balance slot.

(defun balance (account)

 (slot-value account 'balance))

However, if you know you're going to define subclasses of
bank-account, it might be a good
idea to define balance
as a generic function. That way, you can provide different methods on
balance for those subclasses or extend its definition with
auxiliary methods. So you might
write this instead:

(defgeneric balance (account))

(defmethod balance ((account bank-account))

 (slot-value account 'balance))

As I just discussed, you don't want callers to be able to directly
set the balance, but for other
slots, such as customer-name,
you may also want to provide a function to set them. The
cleanest way
to define such a function is as a SETF function.

A SETF function is a way to extend SETF, defining a new
kind of place that it knows how to
set. The name of a SETF
function is a two-item list whose first element is the symbol
setf and
whose second element is a symbol, typically the name
of a function used to access the place the
SETF function will
set. A SETF function can take any number of arguments, but the
first
argument is always the value to be assigned to the
place.9 You could, for
instance, define a SETF
function to set the customer-name
slot in a bank-account like this:

(defun (setf customer-name) (name account)

 (setf (slot-value account 'customer-name) name))

After evaluating that definition, an expression like the following
one:

(setf (customer-name my-account) "Sally Sue")

will be compiled as a call to the SETF function you just defined
with "Sally Sue" as the first
argument and the value of
my-account as the second argument.

Of course, as with reader functions, you'll probably want your
SETF function to be generic, so
you'd actually define it like
this:

(defgeneric (setf customer-name) (value account))

(defmethod (setf customer-name) (value (account bank-account))

 (setf (slot-value account 'customer-name) value))

And of course you'll also want to define a reader function for
customer-name.

(defgeneric customer-name (account))

(defmethod customer-name ((account bank-account))

 (slot-value account 'customer-name))

This allows you to write the following:

(setf (customer-name *account*) "Sally Sue") ==> "Sally Sue"

(customer-name *account*) ==> "Sally Sue"

There's nothing hard about writing these accessor functions, but it
wouldn't be in keeping with
The Lisp Way to have to write them all by
hand. Thus, DEFCLASS supports three slot options
that allow you
to automatically create reader and writer functions for a specific
slot.

The :reader option specifies a name to be used as the name of
a generic function that accepts
an object as its single argument.
When the DEFCLASS is evaluated, the generic function is
created,
if it doesn't already exist. Then a method specializing its single
argument on the new

class and returning the value of the slot is
added to the generic function. The name can be
anything, but it's
typical to name it the same as the slot itself. Thus, instead of
explicitly writing
the balance generic function and method as
shown previously, you could change the slot
specifier for the
balance slot in the definition of bank-account to this:

(balance

 :initarg :balance

 :initform 0

 :reader balance)

The :writer option is used to create a generic function and
method for setting the value of a
slot. The function and method
created follow the requirements for a SETF function, taking the
new value as the first argument and returning it as the result, so
you can define a SETF function
by providing a name such as
(setf customer-name). For instance, you could provide
reader
and writer methods for customer-name equivalent to the ones
you just wrote by
changing the slot specifier to this:

(customer-name

 :initarg :customer-name

 :initform (error "Must supply a customer name.")

 :reader customer-name

 :writer (setf customer-name))

Since it's quite common to want both reader and writer functions,
DEFCLASS also provides an
option, :accessor, that creates
both a reader function and the corresponding SETF function.
So
instead of the slot specifier just shown, you'd typically write this:

(customer-name

 :initarg :customer-name

 :initform (error "Must supply a customer name.")

 :accessor customer-name)

Finally, one last slot option you should know about is the
:documentation option, which
you can use to provide a string
that documents the purpose of the slot. Putting it all together and
adding a reader method for the account-number and
account-type slots, the
DEFCLASS form for the
bank-account class would look like this:

(defclass bank-account ()

 ((customer-name

 :initarg :customer-name

 :initform (error "Must supply a customer name.")

 :accessor customer-name

 :documentation "Customer's name")

 (balance

 :initarg :balance

 :initform 0

 :reader balance

 :documentation "Current account balance")

 (account-number

 :initform (incf *account-numbers*)

 :reader account-number

 :documentation "Account number, unique within a bank.")

 (account-type

 :reader account-type

 :documentation "Type of account, one of :gold, :silver, or :bronze.")))

WITH-SLOTS and WITH-ACCESSORS
While using accessor functions will make your code easier to
maintain, they can still be a bit
verbose. And there will be times,
when writing methods that implement the low-level behaviors
of a
class, that you may specifically want to access slots directly to set
a slot that has no writer
function or to get at the slot value
without causing any auxiliary methods defined on the reader
function
to run.

This is what SLOT-VALUE is for; however, it's still quite
verbose. To make matters worse, a
function or method that accesses
the same slot several times can become clogged with calls to
accessor
functions and SLOT-VALUE. For example, even a fairly simple
method such as the
following, which assesses a penalty on a
bank-account if its balance falls below a certain
minimum, is
cluttered with calls to balance and SLOT-VALUE:

(defmethod assess-low-balance-penalty ((account bank-account))

 (when (< (balance account) *minimum-balance*)

 (decf (slot-value account 'balance) (* (balance account) .01))))

And if you decide you want to directly access the slot value in order
to avoid running auxiliary
methods, it gets even more cluttered.

(defmethod assess-low-balance-penalty ((account bank-account))

 (when (< (slot-value account 'balance) *minimum-balance*)

 (decf (slot-value account 'balance) (* (slot-value account 'balance) .01))))

Two standard macros, WITH-SLOTS and WITH-ACCESSORS, can
help tidy up this clutter.
Both macros create a block of code in
which simple variable names can be used to refer to slots
on a
particular object. WITH-SLOTS provides direct access to the
slots, as if by SLOT-VALUE,
while WITH-ACCESSORS provides a
shorthand for accessor methods.

The basic form of WITH-SLOTS is as follows:

(with-slots (slot*) instance-form

 body-form*)

Each element of slots can be either the name of a slot, which is
also used as a variable name, or a
two-item list where the first item
is a name to use as a variable and the second is the name of the
slot. The instance-form is evaluated once to produce the object
whose slots will be accessed.
Within the body, each occurrence of one
of the variable names is translated to a call to
SLOT-VALUE with
the object and the appropriate slot name as arguments.10 Thus, you can write
assess-low-balance-penalty like this:

(defmethod assess-low-balance-penalty ((account bank-account))

 (with-slots (balance) account

 (when (< balance *minimum-balance*)

 (decf balance (* balance .01)))))

or, using the two-item list form, like this:

(defmethod assess-low-balance-penalty ((account bank-account))

 (with-slots ((bal balance)) account

 (when (< bal *minimum-balance*)

 (decf bal (* bal .01)))))

If you had defined balance with an :accessor rather
than just a :reader, then you could
also use
WITH-ACCESSORS. The form of WITH-ACCESSORS is the same as
WITH-SLOTS
except each element of the slot list is a two-item
list containing a variable name and the name of
an accessor function.
Within the body of WITH-ACCESSORS, a reference to one of the
variables
is equivalent to a call to the corresponding accessor
function. If the accessor function is
SETFable, then so is the
variable.

(defmethod assess-low-balance-penalty ((account bank-account))

 (with-accessors ((balance balance)) account

 (when (< balance *minimum-balance*)

 (decf balance (* balance .01)))))

The first balance is the name of the variable, and the second
is the name of the accessor
function; they don't have to be the same.
You could, for instance, write a method to merge two
accounts using
two calls to WITH-ACCESSORS, one for each account.

(defmethod merge-accounts ((account1 bank-account) (account2 bank-account))

 (with-accessors ((balance1 balance)) account1

 (with-accessors ((balance2 balance)) account2

 (incf balance1 balance2)

 (setf balance2 0))))

The choice of whether to use WITH-SLOTS versus
WITH-ACCESSORS is the same as the
choice between SLOT-VALUE
and an accessor function: low-level code that provides the basic
functionality of a class may use SLOT-VALUE or WITH-SLOTS
to directly manipulate slots in
ways not supported by accessor
functions or to explicitly avoid the effects of auxiliary methods
that may have been defined on the accessor functions. But you should
generally use accessor
functions or WITH-ACCESSORS unless you
have a specific reason not to.

Class-Allocated Slots

The last slot option you need to know about is :allocation.
The value of :allocation
can be either :instance or
:class and defaults to :instance if not specified. When
a
slot has :class allocation, the slot has only a single
value, which is stored in the class and
shared by all instances.

However, :class slots are accessed the same as
:instance slots--they're accessed with
SLOT-VALUE or an
accessor function, which means you can access the slot value only
through
an instance of the class even though it isn't actually stored
in the instance. The :initform and
:initarg options
have essentially the same effect except the initform is evaluated
once when
the class is defined rather than each time an instance is
created. On the other hand, passing an
initarg to MAKE-INSTANCE
will set the value, affecting all instances of the class.

Because you can't get at a class-allocated slot without an instance
of the class, class-allocated
slots aren't really equivalent to
static or class fields in languages such as Java, C++, and
Python.11 Rather,
class-allocated slots are used primarily to save space; if you're
going to create
many instances of a class and all instances are going
to have a reference to the same object--say,
a pool of shared
resources--you can save the cost of each instance having its own
reference by
making the slot class-allocated.

Slots and Inheritance

As I discussed in the previous chapter, classes inherit behavior from
their superclasses thanks to
the generic function machinery--a method
specialized on class A is applicable not only to direct
instances of A but also to instances of A's subclasses.
Classes also inherit slots from their
superclasses, but the mechanism
is slightly different.

In Common Lisp a given object can have only one slot with a
particular name. However, it's
possible that more than one class in
the inheritance hierarchy of a given class will specify a slot
with a
particular name. This can happen either because a subclass includes a
slot specifier with
the same name as a slot specified in a superclass
or because multiple superclasses specify slots
with the same name.

Common Lisp resolves these situations by merging all the specifiers
with the same name from
the new class and all its superclasses to
create a single specifier for each unique slot name. When
merging
specifiers, different slot options are treated differently. For
instance, since a slot can
have only a single default value, if
multiple classes specify an :initform, the new class uses
the
one from the most specific class. This allows a subclass to specify a
different default value
than the one it would otherwise inherit.

On the other hand, :initargs needn't be exclusive--each
:initarg option in a slot specifier
creates a keyword
parameter that can be used to initialize the slot; multiple
parameters don't
create a conflict, so the new slot specifier
contains all the :initargs. Callers of
MAKE-INSTANCE can
use any of the :initargs to initialize the slot. If a caller
passes
multiple keyword arguments that initialize the same slot, then
the leftmost argument in the call
to MAKE-INSTANCE is used.

Inherited :reader, :writer, and :accessor
options aren't included in the merged slot
specifier since the
methods created by the superclass's DEFCLASS will already apply
to the new
class. The new class can, however, create its own accessor
functions by supplying its own
:reader, :writer, or
:accessor options.

Finally, the :allocation option is, like :initform,
determined by the most specific class
that specifies the slot. Thus,
it's possible for all instances of one class to share a :class
slot
while instances of a subclass may each have their own
:instance slot of the same name. And

a sub-subclass may then
redefine it back to :class slot, so all instances of that
class will again
share a single slot. In the latter case, the slot
shared by instances of the sub-subclass is different
than the slot
shared by the original superclass.

For instance, suppose you have these classes:

(defclass foo ()

 ((a :initarg :a :initform "A" :accessor a)

 (b :initarg :b :initform "B" :accessor b)))

(defclass bar (foo)

 ((a :initform (error "Must supply a value for a"))

 (b :initarg :the-b :accessor the-b :allocation :class)))

When instantiating the class bar, you can use the inherited
initarg, :a, to specify a value for the
slot a and, in
fact, must do so to avoid an error, since the :initform
supplied by bar
supersedes the one inherited from foo.
To initialize the b slot, you can use either the inherited
initarg :b or the new initarg :the-b. However, because
of the :allocation option on the b
slot in bar,
the value specified will be stored in the slot shared by all
instances of bar. That
same slot can be accessed either with
the method on the generic function b that specializes on
foo or with the new method on the generic function
the-b that specializes directly on bar. To
access the
a slot on either a foo or a bar, you'll continue
to use the generic function a.

Usually merging slot definitions works quite nicely. However, it's
important to be aware when
using multiple inheritance that two
unrelated slots that happen to have the same name can be
merged into
a single slot in the new class. Thus, methods specialized on
different classes could
end up manipulating the same slot when
applied to a class that extends those classes. This isn't
much of a
problem in practice since, as you'll see in Chapter 21, you can use
the package system
to avoid collisions between names in independently
developed pieces of code.

Multiple Inheritance

All the classes you've seen so far have had only a single direct
superclass. Common Lisp also
supports multiple inheritance--a class
can have multiple direct superclasses, inheriting applicable
methods
and slot specifiers from all of them.

Multiple inheritance doesn't dramatically change any of the
mechanisms of inheritance I've
discussed so far--every user-defined
class already has multiple superclasses since they all extend
STANDARD-OBJECT, which extends T, and so have at least two
superclasses. The wrinkle that
multiple inheritance adds is that a
class can have more than one direct superclass. This
complicates
the notion of class specificity that's used both when building the
effective methods
for a generic function and when merging inherited
slot specifiers.

That is, if classes could have only a single direct superclass,
ordering classes by specificity
would be trivial--a class and all its
superclasses could be ordered in a straight line starting from
the
class itself, followed by its single direct superclass, followed by
its direct superclass, all the

way up to T. But when a class
has multiple direct superclasses, those superclasses are typically
not related to each other--indeed, if one was a subclass of another,
you wouldn't need to subclass
both directly. In that case, the rule
that subclasses are more specific than their superclasses isn't
enough to order all the superclasses. So Common Lisp uses a second
rule that sorts unrelated
superclasses according to the order they're
listed in the DEFCLASS's direct superclass list--
classes earlier
in the list are considered more specific than classes later in the
list. This rule is
admittedly somewhat arbitrary but does allow every
class to have a linear class precedence list,
which can be used
to determine which superclasses should be considered more specific
than
others. Note, however, there's no global ordering of
classes--each class has its own class
precedence list, and the same
classes can appear in different orders in different classes' class
precedence lists.

To see how this works, let's add a class to the banking app:
money-market-account. A
money market account combines the
characteristics of a checking account and a savings
account: a
customer can write checks against it, but it also earns interest. You
might define it like
this:

(defclass money-market-account (checking-account savings-account) ())

The class precedence list for money-market-account will be as
follows:

(money-market-account

 checking-account

 savings-account

 bank-account

 standard-object

 t)

Note how this list satisfies both rules: every class appears before
all its superclasses, and
checking-account and
savings-account appear in the order specified in
DEFCLASS.

This class defines no slots of its own but will inherit slots from
both of its direct superclasses,
including the slots they inherit
from their superclasses. Likewise, any method that's applicable to
any class in the class precedence list will be applicable to a
money-market-account object.
Because all slot specifiers for
the same slot are merged, it doesn't matter that
money-market-account inherits the same slot specifiers from
bank-account twice. 12

Multiple inheritance is easiest to understand when the different
superclasses provide completely
independent slots and behaviors. For
instance, money-market-account will inherit slots
and
behaviors for dealing with checks from checking-account and
slots and behaviors for
computing interest from
savings-account. You don't have to worry about the class
precedence list for methods and slots inherited from only one
superclass or another.

However, it's also possible to inherit different methods for the same
generic function from
different superclasses. In that case, the class
precedence list does come into play. For instance,
suppose the
banking application defined a generic function print-statement
used to

generate monthly statements. Presumably there would already
be methods for
print-statement specialized on both
checking-account and savings-account.
Both of these
methods will be applicable to instances of
money-market-account, but the
one specialized on
checking-account will be considered more specific than the one
on
savings-account because checking-account precedes
savings-account in
money-market-account's class
precedence list.

Assuming the inherited methods are all primary methods and you
haven't defined any other
methods, the method specialized on
checking-account will be used if you invoke
print-statement on money-market-account. However, that
won't necessarily give
you the behavior you want since you probably
want a money market account's statement to
contain elements of both a
checking account and a savings account statement.

You can modify the behavior of print-statement for
money-market-accounts in a
couple ways. One straightforward
way is to define a new primary method specialized on
money-market-account. This gives you the most control over the
new behavior but will
probably require more new code than some other
options I'll discuss in a moment. The problem
is that while you can
use CALL-NEXT-METHOD to call "up" to the next most specific
method,
namely, the one specialized on checking-account,
there's no way to invoke a particular
less-specific method, such as
the one specialized on savings-account. Thus, if you want to
be able to reuse the code that prints the savings-account part
of the statement, you'll need
to break that code into a separate
function, which you can then call directly from both the
money-market-account and savings-account
print-statement methods.

Another possibility is to write the primary methods of all three
classes to call
CALL-NEXT-METHOD. Then the method specialized on
money-market-account will use
CALL-NEXT-METHOD to invoke
the method specialized on checking-account. When that
method
calls CALL-NEXT-METHOD, it will result in running the
savings-account method
since it will be the next most specific
method according to money-market-account's class
precedence
list.

Of course, if you're going to rely on a coding convention--that every
method calls
CALL-NEXT-METHOD--to ensure all the applicable
methods run at some point, you should
think about using auxiliary
methods instead. In this case, instead of defining primary methods on
print-statement for checking-account and
savings-account, you can define
those methods as :after
methods, defining a single primary method on bank-account.
Then, print-statement, called on a
money-market-account, will print a basic
account statement,
output by the primary method specialized on bank-account,
followed by
details output by the :after methods specialized
on savings-account and
checking-account. And if you
want to add details specific to

money-market-accounts, you can
define an :after method specialized on
money-market-account, which will run last of all.

The advantage of using auxiliary methods is that it makes it quite
clear which methods are
primarily responsible for implementing the
generic function and which ones are only
contributing additional bits
of functionality. The disadvantage is that you don't get fine-grained
control over the order in which the auxiliary methods run--if you
wanted the
checking-account part of the statement to print
before the savings-account part,
you'd have to change the order
in which the money-market-account subclasses those
classes. But
that's a fairly dramatic change that could affect other methods and
inherited slots. In
general, if you find yourself twiddling the order
of the direct superclass list as a way of fine-
tuning the behavior of
specific methods, you probably need to step back and rethink your
approach.

On the other hand, if you don't care exactly what the order is but
want it to be consistent across
several generic functions, then using
auxiliary methods may be just the thing. For example, if in
addition
to print-statement you have a print-detailed-statement
generic
function, you can implement both functions using :after
methods on the various subclasses of
bank-account, and the
order of the parts of both a regular and a detailed statement will be
the same.

Good Object-Oriented Design

That's about it for the main features of Common Lisp's object system.
If you have lots of
experience with object-oriented programming, you
can probably see how Common Lisp's
features can be used to implement
good object-oriented designs. However, if you have less
experience
with object orientation, you may need to spend some time absorbing
the object-
oriented way of thinking. Unfortunately, that's a fairly
large topic and beyond the scope of this
book. Or, as the man page
for Perl's object system puts it, "Now you need just to go off and
buy
a book about object-oriented design methodology and bang your
forehead with it for the next six
months or so." Or you can wait for
some of the practical chapters, later in this book, where you'll
see
several examples of how these features are used in practice. For now,
however, you're ready
to take a break from all this theory of object
orientation and turn to the rather different topic of
how to make
good use of Common Lisp's powerful, but sometimes cryptic,
FORMAT function.

1Defining new methods for an
existing class may seem strange to folks used to statically typed
languages such as C++ and Java in
which all the methods of a class
must be defined as part of the class definition. But programmers with
experience in dynamically
typed object-oriented languages such as
Smalltalk and Objective C will find nothing strange about adding new
behaviors to
existing classes.

2In other object-oriented languages,
slots might be called fields, member variables, or
attributes.

3As when naming functions and variables, it's not
quite true that you can use any symbol as a class name--you can't
use names
defined by the language standard. You'll see in Chapter 21
how to avoid such name conflicts.

4The
argument to MAKE-INSTANCE can actually be either the name of the
class or a class object returned by the function
CLASS-OF or
FIND-CLASS.

5Another way to affect the values of slots is
with the :default-initargs option to DEFCLASS. This
option is used to
specify forms that will be evaluated to provide
arguments for specific initialization parameters that aren't given a
value in a
particular call to MAKE-INSTANCE. You don't need to
worry about :default-initargs for now.

6Adding an :after method to
INITIALIZE-INSTANCE is the Common Lisp analog to defining a
constructor in Java or C++
or an __init__ method in Python.

7One mistake you might make until you get used to using
auxiliary methods is to define a method on INITIALIZE-INSTANCE
but without the :after qualifier. If you do that, you'll get a
new primary method that shadows the default one. You can remove
the
unwanted primary method using the functions REMOVE-METHOD and
FIND-METHOD. Certain development environments
may provide a
graphical user interface to do the same thing.

(remove-method #'initialize-instance

 (find-method #'initialize-instance () (list (find-class 'bank-account))))

8Of course, providing an
accessor function doesn't really limit anything since other code can
still use SLOT-VALUE to get at slots
directly. Common Lisp
doesn't provide strict encapsulation of slots the way some languages
such as C++ and Java do; however, if
the author of a class provides
accessor functions and you ignore them, using SLOT-VALUE
instead, you had better know what
you're doing. It's also possible to
use the package system, which I'll discuss in Chapter 21, to make it
even more obvious that
certain slots aren't to be accessed directly,
by not exporting the names of the slots.

9One consequence of defining a SETF function--say,
(setf foo)--is that if you also define the corresponding
accessor
function, foo in this case, you can use all the
modify macros built upon SETF, such as INCF, DECF,
PUSH, and POP, on the new
kind of place.

10The
"variable" names provided by WITH-SLOTS and WITH-ACCESSORS
aren't true variables; they're implemented using a
special kind of
macro, called a symbol macro, that allows a simple name to expand
into arbitrary code. Symbol macros were
introduced into the language
to support WITH-SLOTS and WITH-ACCESSORS, but you can also
use them for your own
purposes. I'll discuss them in a bit more
detail in Chapter 20.

11The Meta Object Protocol (MOP), which isn't part of the
language standard but is supported by most Common Lisp
implementations, provides a function, class-prototype, that
returns an instance of a class that can be used to access class
slots. If you're using an implementation that supports the MOP and
happen to be translating some code from another language that
makes
heavy use of static or class fields, this may give you a way to ease
the translation. But it's not all that idiomatic.

12In other words, Common Lisp doesn't
suffer from the diamond inheritance problem the way, say, C++
does. In C++, when one
class subclasses two classes that both inherit
a member variable from a common superclass, the bottom class inherits
the member
variable twice, leading to no end of confusion.

