
Copyright © 2003-2005, Peter Seibel

16. Object Reorientation: Generic
Functions
Because the invention of Lisp predated the rise of object-oriented
programming by a couple
decades,1 new Lispers are sometimes surprised to
discover what a thoroughly object-oriented
language Common Lisp is.
Common Lisp's immediate predecessors were developed at a time
when
object orientation was an exciting new idea and there were many
experiments with ways to
incorporate the ideas of object orientation,
especially as manifested in Smalltalk, into Lisp. As
part of the
Common Lisp standardization, a synthesis of several of these
experiments emerged
under the name Common Lisp Object System, or CLOS.
The ANSI standard incorporated CLOS
into the language, so it no longer
really makes sense to speak of CLOS as a separate entity.

The features CLOS contributed to Common Lisp range from those that
can hardly be avoided to
relatively esoteric manifestations of Lisp's
language-as-language-building-tool philosophy.
Complete coverage of
all these features is beyond the scope of this book, but in this
chapter and
the next I'll describe the bread-and-butter features and
give an overview of Common Lisp's
approach to objects.

You should note at the outset that Common Lisp's object system offers
a fairly different
embodiment of the principles of object orientation
than many other languages. If you have a
deep understanding of the
fundamental ideas behind object orientation, you'll likely appreciate
the particularly powerful and general way Common Lisp manifests those
ideas. On the other
hand, if your experience with object orientation
has been largely with a single language, you
may find Common Lisp's
approach somewhat foreign; you should try to avoid assuming that
there's only one way for a language to support object
orientation.2 If you have little object-
oriented
programming experience, you should have no trouble understanding the
explanations
here, though it may help to ignore the occasional
comparisons to the way other languages do
things.

Generic Functions and Classes
The fundamental idea of object orientation is that a powerful way to
organize a program is to
define data types and then associate
operations with those data types. In particular, you want to
be able
to invoke an operation and have the exact behavior determined by the
type of the object
or objects on which the operation was invoked. The
classic example used, seemingly by all
introductions to object
orientation, is an operation draw that can be applied to
objects

representing various geometric shapes. Different
implementations of the draw operation can be
provided for
drawing circles, triangles, and squares, and a call to draw
will actually result in
drawing a circle, triangle, or square,
depending on the type of the object to which the draw
operation is applied. The different implementations of draw
are defined separately, and new
versions can be defined that draw
other shapes without having to change the code of either the
caller
or any of the other draw implementations. This feature of
object orientation goes by the
fancy Greek name polymorphism,
meaning "many forms," because a single conceptual
operation, such as
drawing an object, can take many different concrete forms.

Common Lisp, like most object-oriented languages today, is
class-based; all objects are
instances of a particular
class.3 The class of an object determines its
representation--built-in
classes such as NUMBER and STRING
have opaque representations accessible only via the
standard
functions for manipulating those types, while instances of
user-defined classes, as you'll
see in the next chapter, consist of
named parts called slots.

Classes are arranged in a hierarchy, a taxonomy for all objects. A
class can be defined as a
subclass of other classes, called its
superclasses. A class inherits part of its definition from its
superclasses and instances of a class are also considered instances of
the superclasses. In
Common Lisp, the hierarchy of classes has a
single root, the class T, which is a direct or indirect
superclass of every other class. Thus, every datum in Common Lisp is
an instance of T.4

Common Lisp also supports multiple inheritance--a single class can
have multiple direct
superclasses.

Outside the Lisp family, almost all object-oriented languages follow
the basic pattern established
by Simula of having behavior associated
with classes through methods or member functions that
belong
to a particular class. In these languages, a method is invoked on a
particular object, and
the class of that object determines what code
runs. This model of method invocation is called--
after the Smalltalk
terminology--message passing. Conceptually, method invocation in
a
message-passing system starts by sending a message containing
the name of the method to run
and any arguments to the object on
which the method is being invoked. The object then uses its
class to
look up the method associated with the name in the message and runs
it. Because each
class can have its own method for a given name, the
same message, sent to different objects, can
invoke different
methods.

Early Lisp object systems worked in a similar way, providing a
special function SEND that could
be used to send a message to
a particular object. However, this wasn't entirely satisfactory, as
it
made method invocations different from normal function calls.
Syntactically method invocations
were written like this:

(send object 'foo)

rather than like this:

(foo object)

More significantly, because methods weren't functions, they couldn't
be passed as arguments to
higher-order functions such as MAPCAR;
if one wanted to call a method on all the elements of a
list with
MAPCAR, one had to write this:

(mapcar #'(lambda (object) (send object 'foo)) objects)

rather than this:

(mapcar #'foo objects)

Eventually the folks working on Lisp object systems unified methods
with functions by creating
a new kind of function called a generic
function. In addition to solving the problems just
described,
generic functions opened up new possibilities for the object system,
including many
features that simply don't make sense in a
message-passing object system.

Generic functions are the heart of Common Lisp's object system and
the topic of the rest of this
chapter. While I can't talk about
generic functions without some mention of classes, for now I'll
focus
on how to define and use generic functions. In the next chapter I'll
show you how to define
your own classes.

Generic Functions and Methods

A generic function defines an abstract operation, specifying its name
and a parameter list but no
implementation. Here, for example, is how
you might define a generic function, draw, that will
be used
to draw different kinds of shapes on the screen:

(defgeneric draw (shape)

 (:documentation "Draw the given shape on the screen."))

I'll discuss the syntax of DEFGENERIC in the next section; for
now just note that this definition
doesn't contain any actual code.

A generic function is generic in the sense that it can--at least in
theory--accept any objects as
arguments.5 However, by itself a generic function can't actually do
anything; if you just define a
generic function, no matter what
arguments you call it with, it will signal an error. The actual
implementation of a generic function is provided by methods. Each
method provides an
implementation of the generic function for
particular classes of arguments. Perhaps the biggest
difference
between a generic function-based system and a message-passing system
is that
methods don't belong to classes; they belong to the generic
function, which is responsible for
determining what method or methods
to run in response to a particular invocation.

Methods indicate what kinds of arguments they can handle by
specializing the required
parameters defined by the generic
function. For instance, on the generic function draw, you
might define one method that specializes the shape parameter
for objects that are instances of
the class circle while
another method specializes shape for objects that are
instances of the
class triangle. They would look like this,
eliding the actual drawing code:

(defmethod draw ((shape circle))

 ...)

(defmethod draw ((shape triangle))

 ...)

When a generic function is invoked, it compares the actual arguments
it was passed with the
specializers of each of its methods to find
the applicable methods--those methods whose
specializers are
compatible with the actual arguments. If you invoke draw,
passing an instance
of circle, the method that specialized
shape on the class circle is applicable, while if you
pass it a triangle, then the method that specializes
shape on the class triangle applies.
In simple cases,
only one method will be applicable, and it will handle the
invocation. In more
complex cases, there may be multiple methods that
apply; they're then combined, as I'll discuss
in the section "Method
Combination," into a single effective method that handles the
invocation.

You can specialize a parameter in two ways--usually you'll specify a
class that the argument
must be an instance of. Because instances of
a class are also considered instances of that class's
superclasses, a
method with a parameter specialized on a particular class can be
applicable
whenever the corresponding argument is a direct instance
of the specializing class or of any of
its subclasses. The other kind
of specializer is a so-called EQL specializer, which specifies a
particular object to which the method applies.

When a generic function has only methods specialized on a single
parameter and all the
specializers are class specializers, the result
of invoking a generic function is quite similar to the
result of
invoking a method in a message-passing system--the combination of the
name of the
operation and the class of the object on which it's
invoked determines what method to run.

However, reversing the order of lookup opens up possibilities not
found in message-passing
systems. Generic functions support methods
that specialize on multiple parameters, provide a
framework that
makes multiple inheritance much more manageable, and let you use
declarative
constructs to control how methods are combined into an
effective method, supporting several
common usage patterns without a
lot of boilerplate code. I'll discuss those topics in a moment.
But
first you need to look at the basics of the two macros used to define
the generic functions
DEFGENERIC and DEFMETHOD.

DEFGENERIC

To give you a feel for these macros and the various facilities they
support, I'll show you some
code you might write as part of a banking
application--or, rather, a toy banking application; the
point is to
look at a few language features, not to learn how to really write
banking software. For
instance, this code doesn't even pretend to
deal with such issues as multiple currencies let alone
audit trails
and transactional integrity.

Because I'm not going to discuss how to define new classes until the
next chapter, for now you
can just assume that certain classes
already exist: for starters, assume there's a class

bank-account and that it has two subclasses,
checking-account and
savings-account. The class
hierarchy looks like this:

The first generic function will be withdraw, which decreases
the account balance by a
specified amount. If the balance is less
than the amount, it should signal an error and leave the
balance
unchanged. You can start by defining the generic function with
DEFGENERIC.

The basic form of DEFGENERIC is similar to DEFUN except
with no body. The parameter list of
DEFGENERIC specifies the
parameters that must be accepted by all the methods that will be
defined on the generic function. In the place of the body, a
DEFGENERIC can contain various
options. One option you should
always include is :documentation, which you use to
provide a
string describing the purpose of the generic function. Because a
generic function is
purely abstract, it's important to be clear to
both users and implementers what it's for. Thus, you
might define
withdraw like this:

(defgeneric withdraw (account amount)

 (:documentation "Withdraw the specified amount from the account.

Signal an error if the current balance is less than amount."))

DEFMETHOD

Now you're ready to use DEFMETHOD to define methods that
implement withdraw.6

A method's parameter list must be congruent with its generic
function's. In this case, that means
all methods defined on
withdraw must have exactly two required parameters. More
generally,
methods must have the same number of required and optional
parameters and must be capable of
accepting any arguments
corresponding to any &rest or &key parameters specified by
the
generic function.7

Since the basics of withdrawing are the same for all accounts, you
can define a method that
specializes the account parameter on
the bank-account class. You can assume the function
balance returns the current balance of the account and can be
used with SETF--and thus with
DECF--to set the balance. The
function ERROR is a standard function used to signal an error,
which I'll discuss in greater detail in Chapter 19. Using those two
functions, you can define a
basic withdraw method that looks
like this:

(defmethod withdraw ((account bank-account) amount)

 (when (< (balance account) amount)

 (error "Account overdrawn."))

 (decf (balance account) amount))

As this code suggests, the form of DEFMETHOD is even more like
that of DEFUN than
DEFGENERIC's is. The only difference is
that the required parameters can be specialized by
replacing the
parameter name with a two-element list. The first element is the name
of the
parameter, and the second element is the specializer, either
the name of a class or an EQL
specializer, the form of which
I'll discuss in a moment. The parameter name can be anything--it
doesn't have to match the name used in the generic function, though
it often will.

This method will apply whenever the first argument to withdraw
is an instance of
bank-account. The second parameter,
amount, is implicitly specialized on T, and since all
objects are instances of T, it doesn't affect the applicability
of the method.

Now suppose all checking accounts have overdraft protection. That is,
each checking account is
linked to another bank account that's drawn
upon when the balance of the checking account itself
can't cover a
withdrawal. You can assume that the function overdraft-account
takes a
checking-account object and returns a
bank-account object representing the linked
account.

Thus, withdrawing from a checking-account object requires a
few extra steps compared to
withdrawing from a standard
bank-account object. You must first check whether the amount
being withdrawn is greater than the account's current balance and, if
it is, transfer the difference
from the overdraft account. Then you
can proceed as with a standard bank-account object.

So what you'd like to do is define a method on withdraw that
specializes on
checking-account to handle the transfer and
then lets the method specialized on
bank-account take control.
Such a method might look like this:

(defmethod withdraw ((account checking-account) amount)

 (let ((overdraft (- amount (balance account))))

 (when (plusp overdraft)

 (withdraw (overdraft-account account) overdraft)

 (incf (balance account) overdraft)))

 (call-next-method))

The function CALL-NEXT-METHOD is part of the generic function
machinery used to combine
applicable methods. It indicates that
control should be passed from this method to the method
specialized
on bank-account.8
When it's called with no arguments, as it is here, the next
method is
invoked with whatever arguments were originally passed to the generic
function. It
can also be called with arguments, which will then be
passed onto the next method.

You aren't required to invoke CALL-NEXT-METHOD in every method.
However, if you don't,
the new method is then responsible for
completely implementing the desired behavior of the
generic function.
For example, if you had a subclass of bank-account,
proxy-account,
that didn't actually keep track of its own
balance but instead delegated withdrawals to another

account, you
might write a method like this (assuming a function,
proxied-account, that
returns the proxied account):

(defmethod withdraw ((proxy proxy-account) amount)

 (withdraw (proxied-account proxy) amount))

Finally, DEFMETHOD also allows you to create methods specialized
on a particular object with
an EQL specializer. For example,
suppose the banking app is going to be deployed in a
particularly
corrupt bank. Suppose the variable *account-of-bank-president*
holds a
reference to a particular bank account that belongs--as the
name suggests--to the bank's
president. Further suppose the variable
bank represents the bank as a whole, and the function
embezzle steals money from the bank. The bank president might
ask you to "fix" withdraw
to handle his account specially.

(defmethod withdraw ((account (eql *account-of-bank-president*)) amount)

 (let ((overdraft (- amount (balance account))))

 (when (plusp overdraft)

 (incf (balance account) (embezzle *bank* overdraft)))

 (call-next-method)))

Note, however, that the form in the EQL specializer that
provides the object to specialize
on-
-*account-of-bank-president* in this case--is evaluated
once, when the DEFMETHOD
is evaluated. This method will be
specialized on the value of
account-of-bank-president at the
time the method is defined; changing the variable
later won't change
the method.

Method Combination

Outside the body of a method, CALL-NEXT-METHOD has no meaning.
Within a method, it's
given a meaning by the generic function
machinery that builds an effective method each time the
generic
function is invoked using all the methods applicable to that
particular invocation. This
notion of building an effective method by
combining applicable methods is the heart of the
generic function
concept and is the thing that allows generic functions to support
facilities not
found in message-passing systems. So it's worth taking
a closer look at what's really happening.
Folks with the
message-passing model deeply ingrained in their consciousness should
pay
particular attention because generic functions turn method
dispatching inside out compared to
message passing, making the
generic function, rather than the class, the prime mover.

Conceptually, the effective method is built in three steps: First,
the generic function builds a list
of applicable methods based on the
actual arguments it was passed. Second, the list of applicable
methods is sorted according to the specificity of their parameter
specializers. Finally, methods
are taken in order from the sorted
list and their code combined to produce the effective
method.9

To find applicable methods, the generic function compares the actual
arguments with the
corresponding parameter specializers in each of
its methods. A method is applicable if, and only
if, all the
specializers are compatible with the corresponding arguments.

When the specializer is the name of a class, it's compatible if it
names the actual class of the
argument or one of its superclasses.
(Recall that parameters without explicit specializers are
implicitly
specialized on the class T so will be compatible with any
argument.) An EQL
specializer is compatible only when the
argument is the same object as was specified in the
specializer.

Because all the arguments are checked against the corresponding
specializers, they all affect
whether a method is applicable. Methods
that explicitly specialize more than one parameter are
called
multimethods; I'll discuss them in the section "Multimethods."

After the applicable methods have been found, the generic function
machinery needs to sort
them before it can combine them into an
effective method. To order two applicable methods, the
generic
function compares their parameter specializers from left to
right,10 and the first
specializer that's different between the two
methods determines their ordering, with the method
with the more
specific specializer coming first.

Because only applicable methods are being sorted, you know all class
specializers will name
classes that the corresponding argument is
actually an instance of. In the typical case, if two
class
specializers differ, one will be a subclass of the other. In that
case, the specializer naming
the subclass is considered more
specific. This is why the method that specialized account on
checking-account was considered more specific than the method
that specialized it on
bank-account.

Multiple inheritance slightly complicates the notion of specificity
since the actual argument may
be an instance of two classes, neither
of which is a subclass of the other. If such classes are used
as
parameter specializers, the generic function can't order them using
only the rule that
subclasses are more specific than their
superclasses. In the next chapter I'll discuss how the
notion of
specificity is extended to deal with multiple inheritance. For now,
suffice it to say that
there's a deterministic algorithm for ordering
class specializers.

Finally, an EQL specializer is always more specific than any
class specializer, and because only
applicable methods are being
considered, if more than one method has an EQL specializer for a
particular parameter, they must all have the same EQL
specializer. The comparison of those
methods will thus be decided
based on other parameters.

The Standard Method Combination

Now that you understand how the applicable methods are found and
sorted, you're ready to take
a closer look at the last step--how the
sorted list of methods is combined into a single effective
method. By
default, generic functions use what's called the standard method
combination. The
standard method combination combines methods so
that CALL-NEXT-METHOD works as
you've already seen--the most
specific method runs first, and each method can pass control to the
next most specific method via CALL-NEXT-METHOD.

However, there's a bit more to it than that. The methods I've been
discussing so far are called
primary methods. Primary methods, as
their name suggests, are responsible for providing the
primary
implementation of a generic function. The standard method combination
also supports
three kinds of auxiliary methods: :before,
:after, and :around methods. An auxiliary
method
definition is written with DEFMETHOD like a primary method but
with a method
qualifier, which names the type of method, between
the name of the method and the parameter
list. For instance, a
:before method on withdraw that specializes the
account parameter
on the class bank-account would start
like this:

(defmethod withdraw :before ((account bank-account) amount) ...)

Each kind of auxiliary method is combined into the effective method
in a different way. All the
applicable :before methods--not
just the most specific--are run as part of the effective
method. They
run, as their name suggests, before the most specific primary method
and are run
in most-specific-first order. Thus, :before
methods can be used to do any preparation needed
to ensure that the
primary method can run. For instance, you could've used a
:before method
specialized on checking-account to
implement the overdraft protection on checking
accounts like this:

(defmethod withdraw :before ((account checking-account) amount)

 (let ((overdraft (- amount (balance account))))

 (when (plusp overdraft)

 (withdraw (overdraft-account account) overdraft)

 (incf (balance account) overdraft))))

This :before method has three advantages over a primary
method. One is that it makes it
immediately obvious how the method
changes the overall behavior of the withdraw function--
it's
not going to interfere with the main behavior or change the result
returned.

The next advantage is that a primary method specialized on a class
more specific than
checking-account won't interfere with this
:before method, making it easier for an
author of a subclass
of checking-account to extend the behavior of withdraw
while
keeping part of the old behavior.

Lastly, since a :before method doesn't have to call
CALL-NEXT-METHOD to pass control to
the remaining methods, it's
impossible to introduce a bug by forgetting to.

The other auxiliary methods also fit into the effective method in
ways suggested by their names.
All the :after methods run
after the primary methods in most-specific-last order, that is, the
reverse of the :before methods. Thus, the :before and
:after methods combine to create
a sort of nested wrapping
around the core functionality provided by the primary methods--each
more-specific :before method will get a chance to set things
up so the less-specific :before
methods and primary methods
can run successfully, and each more-specific :after method
will get a chance to clean up after all the primary methods and
less-specific :after methods.

Finally, :around methods are combined much like primary
methods except they're run
"around" all the other methods. That is,
the code from the most specific :around method is run
before
anything else. Within the body of an :around method,
CALL-NEXT-METHOD will lead
to the code of the next most specific
:around method or, in the least specific :around
method, to the complex of :before, primary, and :after
methods. Almost all :around
methods will contain such a call
to CALL-NEXT-METHOD because an :around method that
doesn't will completely hijack the implementation of the generic
function from all the methods
except for more-specific :around
methods.

Occasionally that kind of hijacking is called for, but typically
:around methods are used to
establish some dynamic context in
which the rest of the methods will run--to bind a dynamic
variable,
for example, or to establish an error handler (as I'll discuss in
Chapter 19). About the
only time it's appropriate for an
:around method to not call CALL-NEXT-METHOD is when it
returns a result cached from a previous call to
CALL-NEXT-METHOD. At any rate, an
:around method that
doesn't call CALL-NEXT-METHOD is responsible for correctly
implementing the semantics of the generic function for all classes of
arguments to which the
method may apply, including future subclasses.

Auxiliary methods are just a convenient way to express certain common
patterns more concisely
and concretely. They don't actually allow you
to do anything you couldn't do by combining
primary methods with
diligent adherence to a few coding conventions and some extra typing.
Perhaps their biggest benefit is that they provide a uniform
framework for extending generic
functions. Often a library will
define a generic function and provide a default primary method,
allowing users of the library to customize its behavior by defining
appropriate auxiliary methods.

Other Method Combinations

In addition to the standard method combination, the language
specifies nine other built-in
method combinations known as the
simple built-in method combinations. You can also define
custom
method combinations, though that's a fairly esoteric feature and
beyond the scope of this
book. I'll briefly cover how to use the
simple built-in combinations to give you a sense of the
possibilities.

All the simple combinations follow the same pattern: instead of
invoking the most specific
primary method and letting it invoke
less-specific primary methods via CALL-NEXT-METHOD,
the simple
method combinations produce an effective method that contains the
code of all the
primary methods, one after another, all wrapped in a
call to the function, macro, or special
operator that gives the
method combination its name. The nine combinations are named for the
operators: +, AND, OR, LIST, APPEND,
NCONC, MIN, MAX, and PROGN. The simple
combinations also support only two kinds of methods, primary methods,
which are combined as
just described, and :around methods,
which work like :around methods in the standard
method
combination.

For example, a generic function that uses the + method
combination will return the sum of all
the results returned by its
primary methods. Note that the AND and OR method
combinations
won't necessarily run all the primary methods because of
those macros' short-circuiting behavior-
-a generic function using the
AND combination will return NIL as soon as one of the
methods
does and will return the value of the last method otherwise.
Similarly, the OR combination will
return the first non-NIL
value returned by any of the methods.

To define a generic function that uses a particular method
combination, you include a
:method-combination option in the
DEFGENERIC form. The value supplied with this
option is the name
of the method combination you want to use. For example, to define a
generic
function, priority, that returns the sum of values
returned by individual methods using the +
method combination,
you might write this:

(defgeneric priority (job)

 (:documentation "Return the priority at which the job should be run.")

 (:method-combination +))

By default all these method combinations combine the primary methods
in most-specific-first
order. However, you can reverse the order by
including the keyword
:most-specific-last after the name of
the method combination in the DEFGENERIC
form. The order
probably doesn't matter if you're using the + combination unless
the methods
have side effects, but for demonstration purposes you can
change priority to use most-
specific-last order like this:

(defgeneric priority (job)

 (:documentation "Return the priority at which the job should be run.")

 (:method-combination + :most-specific-last))

The primary methods on a generic function that uses one of these
combinations must be
qualified with the name of the method
combination. Thus, a primary method defined on
priority might
look like this:

(defmethod priority + ((job express-job)) 10)

This makes it obvious when you see a method definition that it's part
of a particular kind of
generic function.

All the simple built-in method combinations also support
:around methods that work like
:around methods in the
standard method combination: the most specific :around method
runs before any other methods, and CALL-NEXT-METHOD is used to
pass control to less-and-
less-specific :around methods until
it reaches the combined primary methods. The
:most-specific-last option doesn't affect the order of
:around methods. And, as I
mentioned before, the built-in
method combinations don't support :before or :after
methods.

Like the standard method combination, these method combinations don't
allow you to do
anything you couldn't do "by hand." Rather, they
allow you to express what you want and let the
language take care
of wiring everything together for you, making your code both more
concise
and more expressive.

That said, probably 99 percent of the time, the standard method
combination will be exactly
what you want. Of the remaining 1
percent, probably 99 percent of them will be handled by one
of the
simple built-in method combinations. If you run into one of the 1
percent of 1 percent of
cases where none of the built-in combinations
suffices, you can look up
DEFINE-METHOD-COMBINATION in your
favorite Common Lisp reference.

Multimethods

Methods that explicitly specialize more than one of the generic
function's required parameters
are called multimethods.
Multimethods are where generic functions and message passing really
part ways. Multimethods don't fit into message-passing languages
because they don't belong to a
particular class; instead, each
multimethod defines a part of the implementations of a given
generic
function that applies when the generic function is invoked with
arguments that match all
the method's specialized parameters.

Multimethods vs. Method Overloading

Programmers used to statically typed message-passing
languages such as Java and C++ may think
multimethods sound similar to
a feature of those languages called method overloading. However,
these two
language features are actually quite different since
overloaded methods are chosen at compile time, based
on the
compile-time type of the arguments, not at runtime. To see how this
works, consider the following two
Java classes:

public class A {

 public void foo(A a) { System.out.println("A/A"); }

 public void foo(B b) { System.out.println("A/B"); }

}

public class B extends A {

 public void foo(A a) { System.out.println("B/A"); }

 public void foo(B b) { System.out.println("B/B"); }

}

Now consider what happens when you run the main method from
this class.

public class Main {

 public static void main(String[] argv) {

 A obj = argv[0].equals("A") ? new A() : new B();

 obj.foo(obj);

 }

}

When you tell Main to instantiate an A, it prints "A/A"
as you'd probably expect.

bash$ java com.gigamonkeys.Main A

A/A

However, if you tell Main to instantiate a B, then the
true type of obj is taken into account for only half the
dispatching.

bash$ java com.gigamonkeys.Main B

B/A

If overloaded methods worked like Common Lisp's multimethods, then
that would print "B/B" instead. It is
possible to implement multiple
dispatch by hand in message-passing languages, but this runs against
the
grain of the message-passing model since the code in a multiply
dispatched method doesn't belong to any
one class.

Multimethods are perfect for all those situations where, in a
message-passing language, you
struggle to decide to which class a
certain behavior ought to belong. Is the sound a drum makes
when it's
hit with a drumstick a function of what kind of drum it is or what
kind of stick you use
to hit it? Both, of course. To model this
situation in Common Lisp, you simply define a generic
function
beat that takes two arguments.

(defgeneric beat (drum stick)

 (:documentation

 "Produce a sound by hitting the given drum with the given stick."))

Then you can define various multimethods to implement beat for
the combinations you care
about. For example:

(defmethod beat ((drum snare-drum) (stick wooden-drumstick)) ...)

(defmethod beat ((drum snare-drum) (stick brush)) ...)

(defmethod beat ((drum snare-drum) (stick soft-mallet)) ...)

(defmethod beat ((drum tom-tom) (stick wooden-drumstick)) ...)

(defmethod beat ((drum tom-tom) (stick brush)) ...)

(defmethod beat ((drum tom-tom) (stick soft-mallet)) ...)

Multimethods don't help with the combinatorial explosion--if you need
to model five kinds of
drums and six kinds of sticks, and every
combination makes a different sound, there's no way
around it; you
need thirty different methods to implement all the combinations, with
or without
multimethods. What multimethods do save you from is having
to write a bunch of dispatching
code by letting you use the same
built-in polymorphic dispatching that's so useful when dealing
with
methods specialized on a single parameter.11

Multimethods also save you from having to tightly couple one set of
classes with the other. In
the drum/stick example, nothing requires
the implementation of the drum classes to know about
the various
classes of drumstick, and nothing requires the drumstick classes to
know anything
about the various classes of drum. The multimethods
connect the otherwise independent classes
to describe their joint
behavior without requiring any cooperation from the classes
themselves.

To Be Continued . . .

I've covered the basics--and a bit beyond--of generic functions, the
verbs of Common Lisp's
object system. In the next chapter I'll show
you how to define your own classes.

1The language now generally
considered the first object-oriented language, Simula, was invented in
the early 1960s, only a few
years after McCarthy's first Lisp.
However, object orientation didn't really take off until the 1980s
when the first widely available
version of Smalltalk was released,
followed by the release of C++ a few years later. Smalltalk took quite
a bit of inspiration from

Lisp and combined it with ideas from Simula
to produce a dynamic object-oriented language, while C++ combined
Simula with C,
another fairly static language, to yield a static
object-oriented language. This early split has led to much confusion
in the definition
of object orientation. Folks who come from the C++
tradition tend to consider certain aspects of C++, such as strict data
encapsulation, to be key characteristics of object orientation. Folks
from the Smalltalk tradition, however, consider many features
of C++
to be just that, features of C++, and not core to object orientation.
Indeed, Alan Kay, the inventor of Smalltalk, is reported
to have said,
"I invented the term object oriented, and I can tell you that C++
wasn't what I had in mind."

2There are those who reject the notion that Common
Lisp is in fact object oriented at all. In particular, folks who
consider strict
data encapsulation a key characteristic of object
orientation--usually advocates of relatively static languages such as
C++, Eiffel, or
Java--don't consider Common Lisp to be properly
object oriented. Of course, by that definition, Smalltalk, arguably
one of the
original and purest object-oriented languages, isn't
object oriented either. On the other hand, folks who consider message
passing
to be the key to object orientation will also not be happy
with the claim that Common Lisp is object oriented since Common
Lisp's
generic function orientation provides degrees of freedom not
offered by pure message passing.

3Prototype-based languages are the other style of
object-oriented language. In these languages, JavaScript being
perhaps the most
famous example, objects are created by cloning a
prototypical object. The clone can then be modified and used as a
prototype for
other objects.

4T the constant value and T the
class have no particular relationship except they happen to have the
same name. T the value is a
direct instance of the class
SYMBOL and only indirectly an instance of T the class.

5Here, as elsewhere,
object means any Lisp datum--Common Lisp doesn't distinguish, as
some languages do, between objects and
"primitive" data types; all
data in Common Lisp are objects, and every object is an instance of a
class.

6Technically you could skip the
DEFGENERIC altogether--if you define a method with
DEFMETHOD and no such generic function
has been defined, one is
automatically created. But it's good form to define generic functions
explicitly, if only because it gives
you a good place to document the
intended behavior.

7A method can "accept" &key and
&rest arguments defined in its generic function by having a
&rest parameter, by having the
same &key parameters, or by
specifying &allow-other-keys along with &key. A method can
also specify &key parameters
not found in the generic function's
parameter list--when the generic function is called, any &key
parameter specified by the
generic function or any applicable method
will be accepted.

8CALL-NEXT-METHOD is roughly
analogous to invoking a method on super in Java or using an
explicitly class-qualified
method or function name in Python or C++.

9While building the effective method sounds
time-consuming, quite a bit of the effort in developing fast Common
Lisp
implementations has gone into making it efficient. One strategy
is to cache the effective method so future calls with the same
argument types will be able to proceed directly.

10Actually, the order in which specializers are compared is
customizable via the DEFGENERIC option
:argument-precedence-order, though that option is rarely
used.

11In languages without
multimethods, you must write dispatching code yourself to implement
behavior that depends on the class
of more than one object. The
purpose of the popular Visitor design pattern is to structure a
series of singly dispatched method calls
so as to provide multiple
dispatch. However, it requires one set of classes to know about the
other. The Visitor pattern also quickly
bogs down in a combinatorial
explosion of dispatching methods if it's used to dispatch on more
than two objects.

