
Copyright © 2003-2005, Peter Seibel

15. Practical: A Portable Pathname
Library
As I discussed in the previous chapter, Common Lisp provides an
abstraction, the pathname,
that's supposed to insulate you from the
details of how different operating systems and file
systems name
files. Pathnames provide a useful API for manipulating names as names,
but when
it comes to the functions that actually interact with the
file system, things get a bit hairy.

The root of the problem, as I mentioned, is that the pathname
abstraction was designed to
represent filenames on a much wider
variety of file systems than are commonly used now.
Unfortunately, by
making pathnames abstract enough to account for a wide variety of
file
systems, Common Lisp's designers left implementers with a fair
number of choices to make
about how exactly to map the pathname
abstraction onto any particular file system.
Consequently, different
implementers, each implementing the pathname abstraction for the same
file system, just by making different choices at a few key junctions,
could end up with
conforming implementations that nonetheless provide
different behavior for several of the main
pathname-related
functions.

However, one way or another, all implementations provide the same
basic functionality, so it's
not too hard to write a library that
provides a consistent interface for the most common
operations across
different implementations. That's your task for this chapter. In
addition to
giving you several useful functions that you'll use in
future chapters, writing this library will
give you a chance to learn
how to write code that deals with differences between
implementations.

The API
The basic operations the library will support will be getting a list
of files in a directory and
determining whether a file or directory
with a given name exists. You'll also write a function for
recursively walking a directory hierarchy, calling a given function
for each pathname in the tree.

In theory, these directory listing and file existence operations are
already provided by the
standard functions DIRECTORY and
PROBE-FILE. However, as you'll see, there are enough
different
ways to implement these functions--all within the bounds of valid
interpretations of the
language standard--that you'll want to write
new functions that provide a consistent behavior
across
implementations.

FEATURES and Read-Time Conditionalization
Before you can implement this API in a library that will run
correctly on multiple Common Lisp
implementations, I need to show you
the mechanism for writing implementation-specific code.

While most of the code you write can be "portable" in the sense that
it will run the same on any
conforming Common Lisp implementation,
you may occasionally need to rely on
implementation-specific
functionality or to write slightly different bits of code for
different
implementations. To allow you to do so without totally
destroying the portability of your code,
Common Lisp provides a
mechanism, called read-time conditionalization, that allows you
to
conditionally include code based on various features such as what
implementation it's being run
in.

The mechanism consists of a variable *FEATURES* and two extra
bits of syntax understood by
the Lisp reader. *FEATURES* is a
list of symbols; each symbol represents a "feature" that's
present in
the implementation or on the underlying platform. These symbols are
then used in
feature expressions that evaluate to true or false
depending on whether the symbols in the
expression are present in
FEATURES. The simplest feature expression is a single symbol;
the
expression is true if the symbol is in *FEATURES* and false
if it isn't. Other feature expressions
are boolean expressions built
out of NOT, AND, and OR operators. For instance, if
you wanted to
conditionalize some code to be included only if the
features foo and bar were present, you
could write the
feature expression (and foo bar).

The reader uses feature expressions in conjunction with two bits of
syntax, #+ and #-. When the
reader sees either of these
bits of syntax, it first reads a feature expression and then
evaluates it
as I just described. When a feature expression following
a #+ is true, the reader reads the next
expression normally.
Otherwise it skips the next expression, treating it as whitespace.
#- works
the same way except it reads the form if the feature
expression is false and skips it if it's true.

The initial value of *FEATURES* is implementation dependent, and
what functionality is
implied by the presence of any given symbol is
likewise defined by the implementation.
However, all implementations
include at least one symbol that indicates what implementation it
is.
For instance, Allegro Common Lisp includes the symbol
:allegro, CLISP includes
:clisp, SBCL includes
:sbcl, and CMUCL includes :cmu. To avoid dependencies
on
packages that may or may not exist in different implementations,
the symbols in *FEATURES*
are usually keywords, and the reader
binds *PACKAGE* to the KEYWORD package while
reading
feature expressions. Thus, a name with no package qualification will
be read as a
keyword symbol. So, you could write a function that
behaves slightly differently in each of the
implementations just
mentioned like this:

(defun foo ()

 #+allegro (do-one-thing)

 #+sbcl (do-another-thing)

 #+clisp (something-else)

 #+cmu (yet-another-version)

 #-(or allegro sbcl clisp cmu) (error "Not implemented"))

In Allegro that code will be read as if it had been written like
this:

(defun foo ()

 (do-one-thing))

while in SBCL the reader will read this:

(defun foo ()

 (do-another-thing))

while in an implementation other than one of the ones specifically
conditionalized, it will read
this:

(defun foo ()

 (error "Not implemented"))

Because the conditionalization happens in the reader, the compiler
doesn't even see expressions
that are skipped.1 This means you pay no runtime cost for having different
versions for different
implementations. Also, when the reader skips
conditionalized expressions, it doesn't bother
interning symbols, so
the skipped expressions can safely contain symbols from packages that
may not exist in other implementations.

Packaging the Library

Speaking of packages, if you download the complete code for
this library, you'll see that it's defined in a new
package,
com.gigamonkeys.pathnames. I'll discuss the details of
defining and using packages in
Chapter 21. For now you should note
that some implementations provide their own packages that contain
functions with some of the same names as the ones you'll define in
this chapter and make those names
available in the CL-USER package.
Thus, if you try to define the functions from this library while in
the CL-
USER package, you may get errors or warnings about clobbering
existing definitions. To avoid this
possibility, you can create a
file called packages.lisp with the following contents:

(in-package :cl-user)

(defpackage :com.gigamonkeys.pathnames

 (:use :common-lisp)

 (:export

 :list-directory

 :file-exists-p

 :directory-pathname-p

 :file-pathname-p

 :pathname-as-directory

 :pathname-as-file

 :walk-directory

 :directory-p

 :file-p))

and LOAD it. Then at the REPL or at the top of the file where
you type the definitions from this chapter, type
the following
expression:

(in-package :com.gigamonkeys.pathnames)

In addition to avoiding name conflicts with symbols already available
in CL-USER, packaging the library this
way also makes it
easier to use in other code, as you'll see in several future
chapters.

Listing a Directory
You can implement the function for listing a single directory,
list-directory, as a thin
wrapper around the standard function
DIRECTORY. DIRECTORY takes a special kind of
pathname,
called a wild pathname, that has one or more components
containing the special value
:wild and returns a list of
pathnames representing files in the file system that match the wild
pathname.2 The matching algorithm--like most
things having to do with the interaction between
Lisp and a
particular file system--isn't defined by the language standard, but
most
implementations on Unix and Windows follow the same basic
scheme.

The DIRECTORY function has two problems that you need to address
with
list-directory. The main one is that certain aspects of
its behavior differ fairly
significantly between different Common
Lisp implementations, even on the same operating
system. The other is
that while DIRECTORY provides a powerful interface for listing
files, to
use it properly requires understanding some rather subtle
points about the pathname abstraction.
Between these subtleties and
the idiosyncrasies of different implementations, actually writing
portable code that uses DIRECTORY to do something as simple as
listing all the files and
subdirectories in a single directory can be
a frustrating experience. You can deal with those
subtleties and
idiosyncrasies once and for all, by writing list-directory,
and forget them
thereafter.

One subtlety I discussed in Chapter 14 is the two ways to represent
the name of a directory as a
pathname: directory form and file form.

To get DIRECTORY to return a list of files in
/home/peter/, you need to pass it a wild
pathname whose
directory component is the directory you want to list and whose name
and type
components are :wild. Thus, to get a listing of the
files in /home/peter/, it might seem
you could write this:

(directory (make-pathname :name :wild :type :wild :defaults home-dir))

where home-dir is a pathname representing /home/peter/.
This would work if
home-dir were in directory form. But if it
were in file form--for example, if it had been
created by parsing the
namestring "/home/peter"--then that same expression would list
all
the files in /home since the name component "peter"
would be replaced with :wild.

To avoid having to worry about explicitly converting between
representations, you can define
list-directory to accept a
nonwild pathname in either form, which it will then convert to
the
appropriate wild pathname.

To help with this, you should define a few helper functions. One,
component-present-p,
will test whether a given component of a
pathname is "present," meaning neither NIL nor the
special value
:unspecific.3 Another, directory-pathname-p,
tests whether a

pathname is already in directory form, and the third,
pathname-as-directory, converts
any pathname to a directory
form pathname.

(defun component-present-p (value)

 (and value (not (eql value :unspecific))))

(defun directory-pathname-p (p)

 (and

 (not (component-present-p (pathname-name p)))

 (not (component-present-p (pathname-type p)))

 p))

(defun pathname-as-directory (name)

 (let ((pathname (pathname name)))

 (when (wild-pathname-p pathname)

 (error "Can't reliably convert wild pathnames."))

 (if (not (directory-pathname-p name))

 (make-pathname

 :directory (append (or (pathname-directory pathname) (list :relative))

 (list (file-namestring pathname)))

 :name nil

 :type nil

 :defaults pathname)

 pathname)))

Now it seems you could generate a wild pathname to pass to
DIRECTORY by calling
MAKE-PATHNAME with a directory form
name returned by pathname-as-directory.
Unfortunately, it's
not quite that simple, thanks to a quirk in CLISP's implementation of
DIRECTORY. In CLISP, DIRECTORY won't return files with no
extension unless the type
component of the wildcard is NIL
rather than :wild. So you can define a function,
directory-wildcard, that takes a pathname in either directory
or file form and returns a
proper wildcard for the given
implementation using read-time conditionalization to make a
pathname
with a :wild type component in all implementations except for
CLISP and NIL in
CLISP.

(defun directory-wildcard (dirname)

 (make-pathname

 :name :wild

 :type #-clisp :wild #+clisp nil

 :defaults (pathname-as-directory dirname)))

Note how each read-time conditional operates at the level of a single
expression After
#-clisp, the expression :wild is
either read or skipped; likewise, after #+clisp, the NIL
is read or skipped.

Now you can take a first crack at the list-directory function.

(defun list-directory (dirname)

 (when (wild-pathname-p dirname)

 (error "Can only list concrete directory names."))

 (directory (directory-wildcard dirname)))

As it stands, this function would work in SBCL, CMUCL, and LispWorks.
Unfortunately, a
couple more implementation differences remain to be
smoothed over. One is that not all
implementations will return
subdirectories of the given directory. Allegro, SBCL, CMUCL, and

LispWorks do. OpenMCL doesn't by default but will if you pass
DIRECTORY a true value via
the implementation-specific keyword
argument :directories. CLISP's DIRECTORY returns
subdirectories only when it's passed a wildcard pathname with
:wild as the last element of the
directory component and
NIL name and type components. In this case, it returns only
subdirectories, so you'll need to call DIRECTORY twice with
different wildcards and combine
the results.

Once you get all the implementations returning directories, you'll
discover they can also differ in
whether they return the names of
directories in directory or file form. You want
list-directory
to always return directory names in directory form so you can
differentiate
subdirectories from regular files based on just the
name. Except for Allegro, all the
implementations this library will
support do that. Allegro, on the other hand, requires you to pass
DIRECTORY the implementation-specific keyword argument
:directories-are-files
NIL to get it to return
directories in file form.

Once you know how to make each implementation do what you want,
actually writing
list-directory is simply a matter of
combining the different versions using read-time
conditionals.

(defun list-directory (dirname)

 (when (wild-pathname-p dirname)

 (error "Can only list concrete directory names."))

 (let ((wildcard (directory-wildcard dirname)))

 #+(or sbcl cmu lispworks)

 (directory wildcard)

 #+openmcl

 (directory wildcard :directories t)

 #+allegro

 (directory wildcard :directories-are-files nil)

 #+clisp

 (nconc

 (directory wildcard)

 (directory (clisp-subdirectories-wildcard wildcard)))

 #-(or sbcl cmu lispworks openmcl allegro clisp)

 (error "list-directory not implemented")))

The function clisp-subdirectories-wildcard isn't actually
specific to CLISP, but
since it isn't needed by any other
implementation, you can guard its definition with a read-time
conditional. In this case, since the expression following the
#+ is the whole DEFUN, the whole
function definition will
be included or not, depending on whether clisp is present in
FEATURES.

#+clisp

(defun clisp-subdirectories-wildcard (wildcard)

 (make-pathname

 :directory (append (pathname-directory wildcard) (list :wild))

 :name nil

 :type nil

 :defaults wildcard))

Testing a File's Existence
To replace PROBE-FILE, you can define a function called
file-exists-p. It should accept
a pathname and return an
equivalent pathname if the file exists and NIL if it doesn't. It
should be
able to accept the name of a directory in either directory
or file form but should always return a
directory form pathname if
the file exists and is a directory. This will allow you to use
file-exists-p, along with directory-pathname-p, to test
whether an arbitrary name
is the name of a file or directory.

In theory, file-exists-p is quite similar to the standard
function PROBE-FILE; indeed, in
several implementations--SBCL,
LispWorks, and OpenMCL--PROBE-FILE already gives you
the
behavior you want for file-exists-p. But not all
implementations of PROBE-FILE
behave quite the same.

Allegro and CMUCL's PROBE-FILE functions are close to what you
need--they will accept the
name of a directory in either form but,
instead of returning a directory form name, simply return
the name in
the same form as the argument it was passed. Luckily, if passed the
name of a
nondirectory in directory form, they return NIL. So
with those implementations you can get the
behavior you want by first
passing the name to PROBE-FILE in directory form--if the file
exists and is a directory, it will return the directory form name. If
that call returns NIL, then you
try again with a file form name.

CLISP, on the other hand, once again has its own way of doing things.
Its PROBE-FILE
immediately signals an error if passed a name in
directory form, regardless of whether a file or
directory exists with
that name. It also signals an error if passed a name in file form
that's
actually the name of a directory. For testing whether a
directory exists, CLISP provides its own
function:
probe-directory (in the ext package). This is almost
the mirror image of
PROBE-FILE: it signals an error if passed a
name in file form or if passed a name in directory
form that happens
to name a file. The only difference is it returns T rather than
a pathname when
the named directory exists.

But even in CLISP you can implement the desired semantics by wrapping
the calls to
PROBE-FILE and probe-directory in
IGNORE-ERRORS.4

(defun file-exists-p (pathname)

 #+(or sbcl lispworks openmcl)

 (probe-file pathname)

 #+(or allegro cmu)

 (or (probe-file (pathname-as-directory pathname))

 (probe-file pathname))

 #+clisp

 (or (ignore-errors

 (probe-file (pathname-as-file pathname)))

 (ignore-errors

 (let ((directory-form (pathname-as-directory pathname)))

 (when (ext:probe-directory directory-form)

 directory-form))))

 #-(or sbcl cmu lispworks openmcl allegro clisp)

 (error "file-exists-p not implemented"))

The function pathname-as-file that you need for the CLISP
implementation of
file-exists-p is the inverse of the
previously defined pathname-as-directory,
returning a pathname
that's the file form equivalent of its argument. This function,
despite being
needed here only by CLISP, is generally useful, so
define it for all implementations and make it
part of the library.

(defun pathname-as-file (name)

 (let ((pathname (pathname name)))

 (when (wild-pathname-p pathname)

 (error "Can't reliably convert wild pathnames."))

 (if (directory-pathname-p name)

 (let* ((directory (pathname-directory pathname))

 (name-and-type (pathname (first (last directory)))))

 (make-pathname

 :directory (butlast directory)

 :name (pathname-name name-and-type)

 :type (pathname-type name-and-type)

 :defaults pathname))

 pathname)))

Walking a Directory Tree

Finally, to round out this library, you can implement a function
called walk-directory.
Unlike the functions defined
previously, this function doesn't need to do much of anything to
smooth over implementation differences; it just needs to use the
functions you've already
defined. However, it's quite handy, and
you'll use it several times in subsequent chapters. It will
take the
name of a directory and a function and call the function on the
pathnames of all the files
under the directory, recursively. It will
also take two keyword arguments: :directories and
:test. When :directories is true, it will call the
function on the pathnames of directories
as well as regular files.
The :test argument, if provided, specifies another function
that's
invoked on each pathname before the main function is; the main
function will be called only if
the test function returns true.

(defun walk-directory (dirname fn &key directories (test (constantly t)))

 (labels

 ((walk (name)

 (cond

 ((directory-pathname-p name)

 (when (and directories (funcall test name))

 (funcall fn name))

 (dolist (x (list-directory name)) (walk x)))

 ((funcall test name) (funcall fn name)))))

 (walk (pathname-as-directory dirname))))

Now you have a useful library of functions for dealing with
pathnames. As I mentioned, these
functions will come in handy in
later chapters, particularly Chapters 23 and 27, where you'll use
walk-directory to crawl through directory trees containing
spam messages and MP3 files.

But before we get to that, though, I
need to talk about object orientation, the topic of the next
two
chapters.

1One slightly
annoying consequence of the way read-time conditionalization works is
that there's no easy way to write a fall-
through case. For example,
if you add support for another implementation to foo by adding
another expression guarded with #+,
you need to remember to
also add the same feature to the or feature expression after
the #- or the ERROR form will be evaluated
after your new
code runs.

2Another special value, :wild-inferiors, can
appear as part of the directory component of a wild pathname, but you
won't
need it in this chapter.

3Implementations are allowed to return
:unspecific instead of NIL as the value of pathname
components in certain situations
such as when the component isn't
used by that implementation.

4This is slightly broken in the sense that if
PROBE-FILE signals an error for some other reason, this code
will interpret it
incorrectly. Unfortunately, the CLISP documentation
doesn't specify what errors might be signaled by PROBE-FILE and
probe-directory, and experimentation seems to show that they
signal simple-file-errors in most erroneous
situations.

