
Copyright © 2003-2005, Peter Seibel

14. Files and File I/O
Common Lisp provides a rich library of functionality for dealing with files. In this chapter I'll
focus on a few basic file-related tasks: reading and writing files and listing files in the file
system. For these basic tasks, Common Lisp's I/O facilities are similar to those in other
languages. Common Lisp provides a stream abstraction for reading and writing data and an
abstraction, called pathnames, for manipulating filenames in an operating system-independent
way. Additionally, Common Lisp provides other bits of functionality unique to Lisp such as the
ability to read and write s-expressions.

Reading File Data
The most basic file I/O task is to read the contents of a file. You obtain a stream from which you
can read a file's contents with the OPEN function. By default OPEN returns a character-based
input stream you can pass to a variety of functions that read one or more characters of text:
READ-CHAR reads a single character; READ-LINE reads a line of text, returning it as a string
with the end-of-line character(s) removed; and READ reads a single s-expression, returning a
Lisp object. When you're done with the stream, you can close it with the CLOSE function.

The only required argument to OPEN is the name of the file to read. As you'll see in the section
"Filenames," Common Lisp provides a couple of ways to represent a filename, but the simplest
is to use a string containing the name in the local file-naming syntax. So assuming that
/some/file/name.txt is a file, you can open it like this:

(open "/some/file/name.txt")

You can use the object returned as the first argument to any of the read functions. For instance,
to print the first line of the file, you can combine OPEN, READ-LINE, and CLOSE as follows:

(let ((in (open "/some/file/name.txt")))
 (format t "~a~%" (read-line in))
 (close in))

Of course, a number of things can go wrong while trying to open and read from a file. The file
may not exist. Or you may unexpectedly hit the end of the file while reading. By default OPEN
and the READ-* functions will signal an error in these situations. In Chapter 19, I'll discuss how
to recover from such errors. For now, however, there's a lighter-weight solution: each of these
functions accepts arguments that modify its behavior in these exceptional situations.

If you want to open a possibly nonexistent file without OPEN signaling an error, you can use the
keyword argument :if-does-not-exist to specify a different behavior. The three possible
values are :error, the default; :create, which tells it to go ahead and create the file and
then proceed as if it had already existed; and NIL, which tells it to return NIL instead of a
stream. Thus, you can change the previous example to deal with the possibility that the file may
not exist.

(let ((in (open "/some/file/name.txt" :if-does-not-exist nil)))
 (when in
 (format t "~a~%" (read-line in))
 (close in)))

The reading functions--READ-CHAR, READ-LINE, and READ--all take an optional argument,
which defaults to true, that specifies whether they should signal an error if they're called at the
end of the file. If that argument is NIL, they instead return the value of their third argument,
which defaults to NIL. Thus, you could print all the lines in a file like this:

(let ((in (open "/some/file/name.txt" :if-does-not-exist nil)))
 (when in
 (loop for line = (read-line in nil)
 while line do (format t "~a~%" line))
 (close in)))

Of the three text-reading functions, READ is unique to Lisp. This is the same function that
provides the R in the REPL and that's used to read Lisp source code. Each time it's called, it
reads a single s-expression, skipping whitespace and comments, and returns the Lisp object
denoted by the s-expression. For instance, suppose /some/file/name.txt has the
following contents:

(1 2 3)
456
"a string" ; this is a comment
((a b)
 (c d))

In other words, it contains four s-expressions: a list of numbers, a number, a string, and a list of
lists. You can read those expressions like this:

CL-USER> (defparameter *s* (open "/some/file/name.txt"))
S
CL-USER> (read *s*)
(1 2 3)
CL-USER> (read *s*)
456
CL-USER> (read *s*)
"a string"
CL-USER> (read *s*)
((A B) (C D))
CL-USER> (close *s*)
T

As you saw in Chapter 3, you can use PRINT to print Lisp objects in "readable" form. Thus,
whenever you need to store a bit of data in a file, PRINT and READ provide an easy way to do it
without having to design a data format or write a parser. They even--as the previous example

demonstrated--give you comments for free. And because s-expressions were designed to be
human editable, it's also a fine format for things like configuration files.1

Reading Binary Data

By default OPEN returns character streams, which translate the underlying bytes to characters
according to a particular character-encoding scheme.2 To read the raw bytes, you need to pass
OPEN an :element-type argument of '(unsigned-byte 8).3 You can pass the
resulting stream to the function READ-BYTE, which will return an integer between 0 and 255
each time it's called. READ-BYTE, like the character-reading functions, also accepts optional
arguments to specify whether it should signal an error if called at the end of the file and what
value to return if not. In Chapter 24 you'll build a library that allows you to conveniently read
structured binary data using READ-BYTE.4

Bulk Reads

One last reading function, READ-SEQUENCE, works with both character and binary streams.
You pass it a sequence (typically a vector) and a stream, and it attempts to fill the sequence with
data from the stream. It returns the index of the first element of the sequence that wasn't filled or
the length of the sequence if it was able to completely fill it. You can also pass :start and
:end keyword arguments to specify a subsequence that should be filled instead. The sequence
argument must be a type that can hold elements of the stream's element type. Since most
operating systems support some form of block I/O, READ-SEQUENCE is likely to be quite a bit
more efficient than filling a sequence by repeatedly calling READ-BYTE or READ-CHAR.

File Output
To write data to a file, you need an output stream, which you obtain by calling OPEN with a
:direction keyword argument of :output. When opening a file for output, OPEN assumes
the file shouldn't already exist and will signal an error if it does. However, you can change that
behavior with the :if-exists keyword argument. Passing the value :supersede tells
OPEN to replace the existing file. Passing :append causes OPEN to open the existing file such
that new data will be written at the end of the file, while :overwrite returns a stream that will
overwrite existing data starting from the beginning of the file. And passing NIL will cause
OPEN to return NIL instead of a stream if the file already exists. A typical use of OPEN for
output looks like this:

(open "/some/file/name.txt" :direction :output :if-exists :supersede)

Common Lisp also provides several functions for writing data: WRITE-CHAR writes a single
character to the stream. WRITE-LINE writes a string followed by a newline, which will be
output as the appropriate end-of-line character or characters for the platform. Another function,

WRITE-STRING, writes a string without adding any end-of-line characters. Two different
functions can print just a newline: TERPRI--short for "terminate print"--unconditionally prints a
newline character, and FRESH-LINE prints a newline character unless the stream is at the
beginning of a line. FRESH-LINE is handy when you want to avoid spurious blank lines in
textual output generated by different functions called in sequence. For example, suppose you
have one function that generates output that should always be followed by a line break and
another that should start on a new line. But assume that if the functions are called one after the
other, you don't want a blank line between the two bits of output. If you use FRESH-LINE at
the beginning of the second function, its output will always start on a new line, but if it's called
right after the first, it won't emit an extra line break.

Several functions output Lisp data as s-expressions: PRINT prints an s-expression preceded by
an end-of-line and followed by a space. PRIN1 prints just the s-expression. And the function
PPRINT prints s-expressions like PRINT and PRIN1 but using the "pretty printer," which tries
to print its output in an aesthetically pleasing way.

However, not all objects can be printed in a form that READ will understand. The variable
PRINT-READABLY controls what happens if you try to print such an object with PRINT,
PRIN1, or PPRINT. When it's NIL, these functions will print the object in a special syntax
that's guaranteed to cause READ to signal an error if it tries to read it; otherwise they will signal
an error rather than print the object.

Another function, PRINC, also prints Lisp objects, but in a way designed for human
consumption. For instance, PRINC prints strings without quotation marks. You can generate
more elaborate text output with the incredibly flexible if somewhat arcane FORMAT function. I'll
discuss some of the more important details of FORMAT, which essentially defines a mini-
language for emitting formatted output, in Chapter 18.

To write binary data to a file, you have to OPEN the file with the same :element-type
argument as you did to read it: '(unsigned-byte 8). You can then write individual bytes
to the stream with WRITE-BYTE.

The bulk output function WRITE-SEQUENCE accepts both binary and character streams as long
as all the elements of the sequence are of an appropriate type for the stream, either characters or
bytes. As with READ-SEQUENCE, this function is likely to be quite a bit more efficient than
writing the elements of the sequence one at a time.

Closing Files

As anyone who has written code that deals with lots of files knows, it's important to close files
when you're done with them, because file handles tend to be a scarce resource. If you open files
and don't close them, you'll soon discover you can't open any more files.5 It might seem

straightforward enough to just be sure every OPEN has a matching CLOSE. For instance, you
could always structure your file using code like this:

(let ((stream (open "/some/file/name.txt")))
 ;; do stuff with stream
 (close stream))

However, this approach suffers from two problems. One is simply that it's error prone--if you
forget the CLOSE, the code will leak a file handle every time it runs. The other--and more
significant--problem is that there's no guarantee you'll get to the CLOSE. For instance, if the
code prior to the CLOSE contains a RETURN or RETURN-FROM, you could leave the LET
without closing the stream. Or, as you'll see in Chapter 19, if any of the code before the CLOSE
signals an error, control may jump out of the LET to an error handler and never come back to
close the stream.

Common Lisp provides a general solution to the problem of how to ensure that certain code
always runs: the special operator UNWIND-PROTECT, which I'll discuss in Chapter 20.
However, because the pattern of opening a file, doing something with the resulting stream, and
then closing the stream is so common, Common Lisp provides a macro, WITH-OPEN-FILE,
built on top of UNWIND-PROTECT, to encapsulate this pattern. This is the basic form:

(with-open-file (stream-var open-argument*)
 body-form*)

The forms in body-forms are evaluated with stream-var bound to a file stream opened by a call
to OPEN with open-arguments as its arguments. WITH-OPEN-FILE then ensures the stream in
stream-var is closed before the WITH-OPEN-FILE form returns. Thus, you can write this to
read a line from a file:

(with-open-file (stream "/some/file/name.txt")
 (format t "~a~%" (read-line stream)))

To create a new file, you can write something like this:

(with-open-file (stream "/some/file/name.txt" :direction :output)
 (format stream "Some text."))

You'll probably use WITH-OPEN-FILE for 90-99 percent of the file I/O you do--the only time
you need to use raw OPEN and CLOSE calls is if you need to open a file in a function and keep
the stream around after the function returns. In that case, you must take care to eventually close
the stream yourself, or you'll leak file descriptors and may eventually end up unable to open any
more files.

Filenames

So far you've used strings to represent filenames. However, using strings as filenames ties your
code to a particular operating system and file system. Likewise, if you programmatically

construct names according to the rules of a particular naming scheme (separating directories
with /, say), you also tie your code to a particular file system.

To avoid this kind of nonportability, Common Lisp provides another representation of filenames:
pathname objects. Pathnames represent filenames in a structured way that makes them easy to
manipulate without tying them to a particular filename syntax. And the burden of translating
back and forth between strings in the local syntax--called namestrings--and pathnames is placed
on the Lisp implementation.

Unfortunately, as with many abstractions designed to hide the details of fundamentally different
underlying systems, the pathname abstraction introduces its own complications. When
pathnames were designed, the set of file systems in general use was quite a bit more variegated
than those in common use today. Consequently, some nooks and crannies of the pathname
abstraction make little sense if all you're concerned about is representing Unix or Windows
filenames. However, once you understand which parts of the pathname abstraction you can
ignore as artifacts of pathnames' evolutionary history, they do provide a convenient way to
manipulate filenames.6

Most places a filename is called for, you can use either a namestring or a pathname. Which to
use depends mostly on where the name originated. Filenames provided by the user--for example,
as arguments or as values in configuration files--will typically be namestrings, since the user
knows what operating system they're running on and shouldn't be expected to care about the
details of how Lisp represents filenames. But programmatically generated filenames will be
pathnames because you can create them portably. A stream returned by OPEN also represents a
filename, namely, the filename that was originally used to open the stream. Together these three
types are collectively referred to as pathname designators. All the built-in functions that expect a
filename argument accept all three types of pathname designator. For instance, all the places in
the previous section where you used a string to represent a filename, you could also have passed
a pathname object or a stream.

How We Got Here

The historical diversity of file systems in existence during the 70s and 80s can be easy to forget. Kent
Pitman, one of the principal technical editors of the Common Lisp standard, described the situation once in
comp.lang.lisp (Message-ID: sfwzo74np6w.fsf@world.std.com) thusly:

The dominant file systems at the time the design [of Common Lisp] was done were TOPS-10, TENEX,
TOPS-20, VAX VMS, AT&T Unix, MIT Multics, MIT ITS, not to mention a bunch of mainframe [OSs].
Some were uppercase only, some mixed, some were case-sensitive but case- translating (like CL).
Some had dirs as files, some not. Some had quote chars for funny file chars, some not. Some had
wildcards, some didn't. Some had :up in relative pathnames, some didn't. Some had namable root dirs,
some didn't. There were file systems with no directories, file systems with non-hierarchical directories,
file systems with no file types, file systems with no versions, file systems with no devices, and so on.

If you look at the pathname abstraction from the point of view of any single file system, it seems baroque.
However, if you take even two such similar file systems as Windows and Unix, you can already begin to see
differences the pathname system can help abstract away--Windows filenames contain a drive letter, for
instance, while Unix filenames don't. The other advantage of having the pathname abstraction designed to

handle the wide variety of file systems that existed in the past is that it's more likely to be able to handle file
systems that may exist in the future. If, say, versioning file systems come back into vogue, Common Lisp will
be ready.

How Pathnames Represent Filenames

A pathname is a structured object that represents a filename using six components: host, device,
directory, name, type, and version. Most of these components take on atomic values, usually
strings; only the directory component is further structured, containing a list of directory names
(as strings) prefaced with the keyword :absolute or :relative. However, not all
pathname components are needed on all platforms--this is one of the reasons pathnames strike
many new Lispers as gratuitously complex. On the other hand, you don't really need to worry
about which components may or may not be used to represent names on a particular file system
unless you need to create a new pathname object from scratch, which you'll almost never need to
do. Instead, you'll usually get hold of pathname objects either by letting the implementation
parse a file system-specific namestring into a pathname object or by creating a new pathname
that takes most of its components from an existing pathname.

For instance, to translate a namestring to a pathname, you use the PATHNAME function. It takes a
pathname designator and returns an equivalent pathname object. When the designator is already
a pathname, it's simply returned. When it's a stream, the original filename is extracted and
returned. When the designator is a namestring, however, it's parsed according to the local
filename syntax. The language standard, as a platform-neutral document, doesn't specify any
particular mapping from namestring to pathname, but most implementations follow the same
conventions on a given operating system.

On Unix file systems, only the directory, name, and type components are typically used. On
Windows, one more component--usually the device or host--holds the drive letter. On these
platforms, a namestring is parsed by first splitting it into elements on the path separator--a slash
on Unix and a slash or backslash on Windows. The drive letter on Windows will be placed into
either the device or the host component. All but the last of the other name elements are placed in
a list starting with :absolute or :relative depending on whether the name (ignoring the
drive letter, if any) began with a path separator. This list becomes the directory component of the
pathname. The last element is then split on the rightmost dot, if any, and the two parts put into
the name and type components of the pathname.7

You can examine these individual components of a pathname with the functions
PATHNAME-DIRECTORY, PATHNAME-NAME, and PATHNAME-TYPE.

(pathname-directory (pathname "/foo/bar/baz.txt")) ==> (:ABSOLUTE "foo" "bar")
(pathname-name (pathname "/foo/bar/baz.txt")) ==> "baz"
(pathname-type (pathname "/foo/bar/baz.txt")) ==> "txt"

Three other functions--PATHNAME-HOST, PATHNAME-DEVICE, and PATHNAME-VERSION-
-allow you to get at the other three pathname components, though they're unlikely to have
interesting values on Unix. On Windows either PATHNAME-HOST or PATHNAME-DEVICE
will return the drive letter.

Like many other built-in objects, pathnames have their own read syntax, #p followed by a
double-quoted string. This allows you to print and read back s-expressions containing pathname
objects, but because the syntax depends on the namestring parsing algorithm, such data isn't
necessarily portable between operating systems.

(pathname "/foo/bar/baz.txt") ==> #p"/foo/bar/baz.txt"

To translate a pathname back to a namestring--for instance, to present to the user--you can use
the function NAMESTRING, which takes a pathname designator and returns a namestring. Two
other functions, DIRECTORY-NAMESTRING and FILE-NAMESTRING, return a partial
namestring. DIRECTORY-NAMESTRING combines the elements of the directory component
into a local directory name, and FILE-NAMESTRING combines the name and type
components.8

(namestring #p"/foo/bar/baz.txt") ==> "/foo/bar/baz.txt"
(directory-namestring #p"/foo/bar/baz.txt") ==> "/foo/bar/"
(file-namestring #p"/foo/bar/baz.txt") ==> "baz.txt"

Constructing New Pathnames

You can construct arbitrary pathnames using the MAKE-PATHNAME function. It takes one
keyword argument for each pathname component and returns a pathname with any supplied
components filled in and the rest NIL.9

(make-pathname
 :directory '(:absolute "foo" "bar")
 :name "baz"
 :type "txt") ==> #p"/foo/bar/baz.txt"

However, if you want your programs to be portable, you probably don't want to make pathnames
completely from scratch: even though the pathname abstraction protects you from unportable
filename syntax, filenames can be unportable in other ways. For instance, the filename
/home/peter/foo.txt is no good on an OS X box where /home/ is called /Users/.

Another reason not to make pathnames completely from scratch is that different implementations
use the pathname components slightly differently. For instance, as mentioned previously, some
Windows-based Lisp implementations store the drive letter in the device component while others
store it in the host component. If you write code like this:

(make-pathname :device "c" :directory '(:absolute "foo" "bar") :name "baz")

it will be correct on some implementations but not on others.

Rather than making names from scratch, you can build a new pathname based on an existing
pathname with MAKE-PATHNAME's keyword parameter :defaults. With this parameter you
can provide a pathname designator, which will supply the values for any components not
specified by other arguments. For example, the following expression creates a pathname with an
.html extension and all other components the same as the pathname in the variable
input-file:

(make-pathname :type "html" :defaults input-file)

Assuming the value in input-file was a user-provided name, this code will be robust in the
face of operating system and implementation differences such as whether filenames have drive
letters in them and where they're stored in a pathname if they do.10

You can use the same technique to create a pathname with a different directory component.

(make-pathname :directory '(:relative "backups") :defaults input-file)

However, this will create a pathname whose whole directory component is the relative directory
backups/, regardless of any directory component input-file may have had. For example:

(make-pathname :directory '(:relative "backups")
 :defaults #p"/foo/bar/baz.txt") ==> #p"backups/baz.txt"

Sometimes, though, you want to combine two pathnames, at least one of which has a relative
directory component, by combining their directory components. For instance, suppose you have
a relative pathname such as #p"foo/bar.html" that you want to combine with an absolute
pathname such as #p"/www/html/" to get #p"/www/html/foo/bar.html". In that
case, MAKE-PATHNAME won't do; instead, you want MERGE-PATHNAMES.

MERGE-PATHNAMES takes two pathnames and merges them, filling in any NIL components in
the first pathname with the corresponding value from the second pathname, much like
MAKE-PATHNAME fills in any unspecified components with components from the :defaults
argument. However, MERGE-PATHNAMES treats the directory component specially: if the first
pathname's directory is relative, the directory component of the resulting pathname will be the
first pathname's directory relative to the second pathname's directory. Thus:

(merge-pathnames #p"foo/bar.html" #p"/www/html/") ==> #p"/www/html/foo/bar.html"

The second pathname can also be relative, in which case the resulting pathname will also be
relative.

(merge-pathnames #p"foo/bar.html" #p"html/") ==> #p"html/foo/bar.html"

To reverse this process and obtain a filename relative to a particular root directory, you can use
the handy function ENOUGH-NAMESTRING.

(enough-namestring #p"/www/html/foo/bar.html" #p"/www/") ==> "html/foo/bar.html"

You can then combine ENOUGH-NAMESTRING with MERGE-PATHNAMES to create a
pathname representing the same name but in a different root.

(merge-pathnames
 (enough-namestring #p"/www/html/foo/bar/baz.html" #p"/www/")
 #p"/www-backups/") ==> #p"/www-backups/html/foo/bar/baz.html"

MERGE-PATHNAMES is also used internally by the standard functions that actually access files
in the file system to fill in incomplete pathnames. For instance, suppose you make a pathname
with just a name and a type.

(make-pathname :name "foo" :type "txt") ==> #p"foo.txt"

If you try to use this pathname as an argument to OPEN, the missing components, such as the
directory, must be filled in before Lisp will be able to translate the pathname to an actual
filename. Common Lisp will obtain values for the missing components by merging the given
pathname with the value of the variable *DEFAULT-PATHNAME-DEFAULTS*. The initial
value of this variable is determined by the implementation but is usually a pathname with a
directory component representing the directory where Lisp was started and appropriate values
for the host and device components, if needed. If invoked with just one argument,
MERGE-PATHNAMES will merge the argument with the value of
DEFAULT-PATHNAME-DEFAULTS. For instance, if
DEFAULT-PATHNAME-DEFAULTS is #p"/home/peter/", then you'd get the
following:

(merge-pathnames #p"foo.txt") ==> #p"/home/peter/foo.txt"

Two Representations of Directory Names

When dealing with pathnames that name directories, you need to be aware of one wrinkle.
Pathnames separate the directory and name components, but Unix and Windows consider
directories just another kind of file. Thus, on those systems, every directory has two different
pathname representations.

One representation, which I'll call file form, treats a directory like any other file and puts the last
element of the namestring into the name and type components. The other representation,
directory form, places all the elements of the name in the directory component, leaving the name
and type components NIL. If /foo/bar/ is a directory, then both of the following pathnames
name it.

(make-pathname :directory '(:absolute "foo") :name "bar") ; file form
(make-pathname :directory '(:absolute "foo" "bar")) ; directory form

When you create pathnames with MAKE-PATHNAME, you can control which form you get, but
you need to be careful when dealing with namestrings. All current implementations create file
form pathnames unless the namestring ends with a path separator. But you can't rely on user-

supplied namestrings necessarily being in one form or another. For instance, suppose you've
prompted the user for a directory to save a file in and they entered "/home/peter". If you
pass that value as the :defaults argument of MAKE-PATHNAME like this:

(make-pathname :name "foo" :type "txt" :defaults user-supplied-name)

you'll end up saving the file in /home/foo.txt rather than the intended
/home/peter/foo.txt because the "peter" in the namestring will be placed in the name
component when user-supplied-name is converted to a pathname. In the pathname
portability library I'll discuss in the next chapter, you'll write a function called
pathname-as-directory that converts a pathname to directory form. With that function
you can reliably save the file in the directory indicated by the user.

(make-pathname
 :name "foo" :type "txt" :defaults (pathname-as-directory user-supplied-name))

Interacting with the File System

While the most common interaction with the file system is probably OPENing files for reading
and writing, you'll also occasionally want to test whether a file exists, list the contents of a
directory, delete and rename files, create directories, and get information about a file such as
who owns it, when it was last modified, and its length. This is where the generality of the
pathname abstraction begins to cause a bit of pain: because the language standard doesn't specify
how functions that interact with the file system map to any specific file system, implementers are
left with a fair bit of leeway.

That said, most of the functions that interact with the file system are still pretty straightforward.
I'll discuss the standard functions here and point out the ones that suffer from nonportability
between implementations. In the next chapter you'll develop a pathname portability library to
smooth over some of those nonportability issues.

To test whether a file exists in the file system corresponding to a pathname designator--a
pathname, namestring, or file stream--you can use the function PROBE-FILE. If the file named
by the pathname designator exists, PROBE-FILE returns the file's truename, a pathname with
any file system-level translations such as resolving symbolic links performed. Otherwise, it
returns NIL. However, not all implementations support using this function to test whether a
directory exists. Also, Common Lisp doesn't provide a portable way to test whether a given file
that exists is a regular file or a directory. In the next chapter you'll wrap PROBE-FILE with a
new function, file-exists-p, that can both test whether a directory exists and tell you
whether a given name is the name of a file or directory.

Similarly, the standard function for listing files in the file system, DIRECTORY, works fine for
simple cases, but the differences between implementations make it tricky to use portably. In the

next chapter you'll define a list-directory function that smoothes over some of these
differences.

DELETE-FILE and RENAME-FILE do what their names suggest. DELETE-FILE takes a
pathname designator and deletes the named file, returning true if it succeeds. Otherwise it signals
a FILE-ERROR.11

RENAME-FILE takes two pathname designators and renames the file named by the first name to
the second name.

You can create directories with the function ENSURE-DIRECTORIES-EXIST. It takes a
pathname designator and ensures that all the elements of the directory component exist and are
directories, creating them as necessary. It returns the pathname it was passed, which makes it
convenient to use inline.

(with-open-file (out (ensure-directories-exist name) :direction :output)
 ...
)

Note that if you pass ENSURE-DIRECTORIES-EXIST a directory name, it should be in
directory form, or the leaf directory won't be created.

The functions FILE-WRITE-DATE and FILE-AUTHOR both take a pathname designator.
FILE-WRITE-DATE returns the time in number of seconds since midnight January 1, 1900,
Greenwich mean time (GMT), that the file was last written, and FILE-AUTHOR returns, on
Unix and Windows, the file owner.12

To find the length of a file, you can use the function FILE-LENGTH. For historical reasons
FILE-LENGTH takes a stream as an argument rather than a pathname. In theory this allows
FILE-LENGTH to return the length in terms of the element type of the stream. However, since
on most present-day operating systems, the only information available about the length of a file,
short of actually reading the whole file to measure it, is its length in bytes, that's what most
implementations return, even when FILE-LENGTH is passed a character stream. However, the
standard doesn't require this behavior, so for predictable results, the best way to get the length of
a file is to use a binary stream.13

(with-open-file (in filename :element-type '(unsigned-byte 8))
 (file-length in))

A related function that also takes an open file stream as its argument is FILE-POSITION.
When called with just a stream, this function returns the current position in the file--the number
of elements that have been read from or written to the stream. When called with two arguments,
the stream and a position designator, it sets the position of the stream to the designated position.
The position designator must be the keyword :start, the keyword :end, or a non-negative
integer. The two keywords set the position of the stream to the start or end of the file while an

integer moves to the indicated position in the file. With a binary stream the position is simply a
byte offset into the file. However, for character streams things are a bit more complicated
because of character-encoding issues. Your best bet, if you need to jump around within a file of
textual data, is to only ever pass, as a second argument to the two-argument version of
FILE-POSITION, a value previously returned by the one-argument version of
FILE-POSITION with the same stream argument.

Other Kinds of I/O

In addition to file streams, Common Lisp supports other kinds of streams, which can also be
used with the various reading, writing, and printing I/O functions. For instance, you can read
data from, or write data to, a string using STRING-STREAMs, which you can create with the
functions MAKE-STRING-INPUT-STREAM and MAKE-STRING-OUTPUT-STREAM.

MAKE-STRING-INPUT-STREAM takes a string and optional start and end indices to bound the
area of the string from which data should be read and returns a character stream that you can
pass to any of the character-based input functions such as READ-CHAR, READ-LINE, or READ.
For example, if you have a string containing a floating-point literal in Common Lisp's syntax,
you can convert it to a float like this:

(let ((s (make-string-input-stream "1.23")))
 (unwind-protect (read s)
 (close s)))

Similarly, MAKE-STRING-OUTPUT-STREAM creates a stream you can use with FORMAT,
PRINT, WRITE-CHAR, WRITE-LINE, and so on. It takes no arguments. Whatever you write, a
string output stream will be accumulated into a string that can then be obtained with the function
GET-OUTPUT-STREAM-STRING. Each time you call GET-OUTPUT-STREAM-STRING, the
stream's internal string is cleared so you can reuse an existing string output stream.

However, you'll rarely use these functions directly, because the macros
WITH-INPUT-FROM-STRING and WITH-OUTPUT-TO-STRING provide a more convenient
interface. WITH-INPUT-FROM-STRING is similar to WITH-OPEN-FILE--it creates a string
input stream from a given string and then executes the forms in its body with the stream bound
to the variable you provide. For instance, instead of the LET form with the explicit
UNWIND-PROTECT, you'd probably write this:

(with-input-from-string (s "1.23")
 (read s))

The WITH-OUTPUT-TO-STRING macro is similar: it binds a newly created string output
stream to a variable you name and then executes its body. After all the body forms have been
executed, WITH-OUTPUT-TO-STRING returns the value that would be returned by
GET-OUTPUT-STREAM-STRING.

CL-USER> (with-output-to-string (out)
 (format out "hello, world ")
 (format out "~s" (list 1 2 3)))
"hello, world (1 2 3)"

The other kinds of streams defined in the language standard provide various kinds of stream
"plumbing," allowing you to plug together streams in almost any configuration. A
BROADCAST-STREAM is an output stream that sends any data written to it to a set of output
streams provided as arguments to its constructor function, MAKE-BROADCAST-STREAM.14

Conversely, a CONCATENATED-STREAM is an input stream that takes its input from a set of
input streams, moving from stream to stream as it hits the end of each stream.
CONCATENATED-STREAMs are constructed with the function
MAKE-CONCATENATED-STREAM, which takes any number of input streams as arguments.

Two kinds of bidirectional streams that can plug together streams in a couple ways are
TWO-WAY-STREAM and ECHO-STREAM. Their constructor functions,
MAKE-TWO-WAY-STREAM and MAKE-ECHO-STREAM, both take two arguments, an input
stream and an output stream, and return a stream of the appropriate type, which you can use with
both input and output functions.

In a TWO-WAY-STREAM every read you perform will return data read from the underlying input
stream, and every write will send data to the underlying output stream. An ECHO-STREAM
works essentially the same way except that all the data read from the underlying input stream is
also echoed to the output stream. Thus, the output stream of an ECHO-STREAM stream will
contain a transcript of both sides of the conversation.

Using these five kinds of streams, you can build almost any topology of stream plumbing you
want.

Finally, although the Common Lisp standard doesn't say anything about networking APIs, most
implementations support socket programming and typically implement sockets as another kind
of stream, so you can use all the regular I/O functions with them.15

Now you're ready to move on to building a library that smoothes over some of the differences
between how the basic pathname functions behave in different Common Lisp implementations.

1Note, however, that while the Lisp reader knows how to skip comments, it completely skips them. Thus, if you use READ to read
in a configuration file containing comments and then use PRINT to save changes to the data, you'll lose the comments.

2By default OPEN uses the default character encoding for the operating system, but it also accepts a keyword parameter,
:external-format, that can pass implementation-defined values that specify a different encoding. Character streams also
translate the platform-specific end-of-line sequence to the single character #\Newline.

3The type (unsigned-byte 8) indicates an 8-bit byte; Common Lisp "byte" types aren't a fixed size since Lisp has run at
various times on architectures with byte sizes from 6 to 9 bits, to say nothing of the PDP-10, which had individually addressable
variable-length bit fields of 1 to 36 bits.

4In general, a stream is either a character stream or a binary stream, so you can't mix calls to READ-BYTE and READ-CHAR or
other character-based read functions. However, some implementations, such as Allegro, support so-called bivalent streams, which
support both character and binary I/O.

5Some folks expect this wouldn't be a problem in a garbage-collected language such as Lisp. It is the case in most Lisp
implementations that a stream that becomes garbage will automatically be closed. However, this isn't something to rely on--the
problem is that garbage collectors usually run only when memory is low; they don't know about other scarce resources such as file
handles. If there's plenty of memory available, it's easy to run out of file handles long before the garbage collector runs.

6Another reason the pathname system is considered somewhat baroque is because of the inclusion of logical pathnames. However,
you can use the rest of the pathname system perfectly well without knowing anything more about logical pathnames than that you
can safely ignore them. Briefly, logical pathnames allow Common Lisp programs to contain references to pathnames without
naming specific files. Logical pathnames could then be mapped to specific locations in an actual file system when the program was
installed by defining a "logical pathname translation" that translates logical pathnames matching certain wildcards to pathnames
representing files in the file system, so-called physical pathnames. They have their uses in certain situations, but you can get pretty
far without worrying about them.

7Many Unix-based implementations treat filenames whose last element starts with a dot and don't contain any other dots specially,
putting the whole element, with the dot, in the name component and leaving the type component NIL.

(pathname-name (pathname "/foo/.emacs")) ==> ".emacs"
(pathname-type (pathname "/foo/.emacs")) ==> NIL

However, not all implementations follow this convention; some will create a pathname with "" as the name and emacs as the type.

8The name returned by FILE-NAMESTRING also includes the version component on file systems that use it.

9The host component may not default to NIL, but if not, it will be an opaque implementation-defined value.

10For absolutely maximum portability, you should really write this:

(make-pathname :type "html" :version :newest :defaults input-file)

Without the :version argument, on a file system with built-in versioning, the output pathname would inherit its version number
from the input file which isn't likely to be right--if the input file has been saved many times it will have a much higher version
number than the generated HTML file. On implementations without file versioning, the :version argument should be ignored.
It's up to you if you care that much about portability.

11See Chapter 19 for more on handling errors.

12For applications that need access to other file attributes on a particular operating system or file system, libraries provide bindings
to underlying C system calls. The Osicat library at http://common-lisp.net/project/osicat/ provides a simple API
built using the Universal Foreign Function Interface (UFFI), which should run on most Common Lisps that run on a POSIX
operating system.

13The number of bytes and characters in a file can differ even if you're not using a multibyte character encoding. Because
character streams also translate platform-specific line endings to a single #\Newline character, on Windows (which uses CRLF
as its line ending) the number of characters will typically be smaller than the number of bytes. If you really have to know the
number of characters in a file, you have to bite the bullet and write something like this:

(with-open-file (in filename)
 (loop while (read-char in nil) count t))

or maybe something more efficient like this:

(with-open-file (in filename)
 (let ((scratch (make-string 4096)))
 (loop for read = (read-sequence scratch in)
 while (plusp read) sum read)))

14MAKE-BROADCAST-STREAM can make a data black hole by calling it with no arguments.

15The biggest missing piece in Common Lisp's standard I/O facilities is a way for users to define new stream classes. There are,
however, two de facto standards for user-defined streams. During the Common Lisp standardization, David Gray of Texas
Instruments wrote a draft proposal for an API to allow users to define new stream classes. Unfortunately, there wasn't time to work
out all the issues raised by his draft to include it in the language standard. However, many implementations support some form of
so-called Gray Streams, basing their API on Gray's draft proposal. Another, newer API, called Simple Streams, has been
developed by Franz and included in Allegro Common Lisp. It was designed to improve the performance of user-defined streams
relative to Gray Streams and has been adopted by some of the open-source Common Lisp implementations.

