
Copyright © 2003-2005, Peter Seibel

12. They Called It LISP for a Reason: List
Processing
Lists play an important role in Lisp--for reasons both historical and
practical. Historically, lists
were Lisp's original composite data
type, though it has been decades since they were its only
such
data type. These days, a Common Lisp programmer is as likely to use a
vector, a hash table,
or a user-defined class or structure as to use a
list.

Practically speaking, lists remain in the language because they're an
excellent solution to certain
problems. One such problem--how to
represent code as data in order to support code-
transforming and
code-generating macros--is particular to Lisp, which may explain why
other
languages don't feel the lack of Lisp-style lists. More
generally, lists are an excellent data
structure for representing any
kind of heterogeneous and/or hierarchical data. They're also quite
lightweight and support a functional style of programming that's
another important part of Lisp's
heritage.

Thus, you need to understand lists on their own terms; as you gain a
better understanding of how
lists work, you'll be in a better
position to appreciate when you should and shouldn't use them.

"There Is No List"
Spoon Boy: Do not try and bend the list. That's impossible.
Instead . . . only try to realize the
truth.

Neo: What truth?

Spoon Boy: There is no list.

Neo: There is no list?

Spoon Boy: Then you'll see that it is not the list that bends;
it is only yourself.1

The key to understanding lists is to understand that they're largely
an illusion built on top of
objects that are instances of a more
primitive data type. Those simpler objects are pairs of values
called
cons cells, after the function CONS used to create them.

CONS takes two arguments and returns a new cons cell containing
the two values.2 These values
can be references to any kind of object.
Unless the second value is NIL or another cons cell, a
cons is
printed as the two values in parentheses separated by a dot, a
so-called dotted pair.



(cons 1 2) ==> (1 . 2)

The two values in a cons cell are called the CAR and the
CDR after the names of the functions
used to access them. At the
dawn of time, these names were mnemonic, at least to the folks
implementing the first Lisp on an IBM 704. But even then they were
just lifted from the
assembly mnemonics used to implement the
operations. However, it's not all bad that these
names are somewhat
meaningless--when considering individual cons cells, it's best to
think of
them simply as an arbitrary pair of values without any
particular semantics. Thus:

(car (cons 1 2)) ==> 1

(cdr (cons 1 2)) ==> 2

Both CAR and CDR are also SETFable places--given an
existing cons cell, it's possible to assign
a new value to either of
its values.3

(defparameter *cons* (cons 1 2))

*cons*                 ==> (1 . 2)

(setf (car *cons*) 10) ==> 10

*cons*                 ==> (10 . 2)

(setf (cdr *cons*) 20) ==> 20

*cons*                 ==> (10 . 20)

Because the values in a cons cell can be references to any kind of
object, you can build larger
structures out of cons cells by linking
them together. Lists are built by linking together cons cells
in a
chain. The elements of the list are held in the CARs of the cons
cells while the links to
subsequent cons cells are held in the
CDRs. The last cell in the chain has a CDR of NIL,
which--
as I mentioned in Chapter 4--represents the empty list as
well as the boolean value false.

This arrangement is by no means unique to Lisp; it's called a
singly linked list. However, few
languages outside the Lisp
family provide such extensive support for this humble data type.

So when I say a particular value is a list, what I really mean is
it's either NIL or a reference to a
cons cell. The CAR of
the cons cell is the first item of the list, and the CDR is a
reference to
another list, that is, another cons cell or NIL,
containing the remaining elements. The Lisp
printer understands this
convention and prints such chains of cons cells as parenthesized
lists
rather than as dotted pairs.

(cons 1 nil)                   ==> (1)

(cons 1 (cons 2 nil))          ==> (1 2)

(cons 1 (cons 2 (cons 3 nil))) ==> (1 2 3)

When talking about structures built out of cons cells, a few diagrams
can be a big help. Box-and-
arrow diagrams represent cons cells as a
pair of boxes like this:

The box on the left represents the CAR, and the box on the right
is the CDR. The values stored in
a particular cons cell are
either drawn in the appropriate box or represented by an arrow from
the



box to a representation of the referenced value.4 For instance, the
list (1 2 3), which consists
of three cons cells linked
together by their CDRs, would be diagrammed like this:

However, most of the time you work with lists you won't have to deal
with individual cons cells-
-the functions that create and manipulate
lists take care of that for you. For example, the LIST
function
builds a cons cells under the covers for you and links them together;
the following
LIST expressions are equivalent to the previous
CONS expressions:

(list 1)     ==> (1)

(list 1 2)   ==> (1 2)

(list 1 2 3) ==> (1 2 3)

Similarly, when you're thinking in terms of lists, you don't have to
use the meaningless names
CAR and CDR; FIRST and
REST are synonyms for CAR and CDR that you should use
when
you're dealing with cons cells as lists.

(defparameter *list* (list 1 2 3 4))

(first *list*)        ==> 1

(rest *list*)         ==> (2 3 4)

(first (rest *list*)) ==> 2

Because cons cells can hold any kind of values, so can lists. And a
single list can hold objects of
different types.

(list "foo" (list 1 2) 10) ==> ("foo" (1 2) 10)

The structure of that list would look like this:

Because lists can have other lists as elements, you can also use them
to represent trees of
arbitrary depth and complexity. As such, they
make excellent representations for any
heterogeneous, hierarchical
data. Lisp-based XML processors, for instance, usually represent
XML
documents internally as lists. Another obvious example of
tree-structured data is Lisp code
itself. In Chapters 30 and 31
you'll write an HTML generation library that uses lists of lists to
represent the HTML to be generated. I'll talk more next chapter about
using cons cells to
represent other data structures.

Common Lisp provides quite a large library of functions for
manipulating lists. In the sections
"List-Manipulation Functions" and
"Mapping," you'll look at some of the more important of
these
functions. However, they will be easier to understand in the context
of a few ideas
borrowed from functional programming.

Functional Programming and Lists



The essence of functional programming is that programs are built
entirely of functions with no
side effects that compute their results
based solely on the values of their arguments. The
advantage of the
functional style is that it makes programs easier to understand.
Eliminating side
effects eliminates almost all possibilities for
action at a distance. And since the result of a
function is
determined only by the values of its arguments, its behavior is
easier to understand
and test. For instance, when you see an
expression such as (+ 3 4), you know the result is
uniquely
determined by the definition of the + function and the values
3 and 4. You don't have
to worry about what may have
happened earlier in the execution of the program since there's
nothing that can change the result of evaluating that expression.

Functions that deal with numbers are naturally functional since
numbers are immutable. A list,
on the other hand, can be mutated, as
you've just seen, by SETFing the CARs and CDRs of the
cons cells that make up its backbone. However, lists can be treated
as a functional data type if
you consider their value to be
determined by the elements they contain. Thus, any list of the
form
(1 2 3 4) is functionally equivalent to any other list
containing those four values,
regardless of what cons cells are
actually used to represent the list. And any function that takes a
list as an argument and returns a value based solely on the contents
of the list can likewise be
considered functional. For instance, the
REVERSE sequence function, given the list
(1 2 3 4),
always returns a list (4 3 2 1). Different calls to
REVERSE with functionally
equivalent lists as the argument will
return functionally equivalent result lists. Another aspect of
functional programming, which I'll discuss in the section "Mapping,"
is the use of higher-order
functions: functions that treat other
functions as data, taking them as arguments or returning
them as
results.

Most of Common Lisp's list-manipulation functions are written in a
functional style. I'll discuss
later how to mix functional and other
coding styles, but first you should understand a few
subtleties of
the functional style as applied to lists.

The reason most list functions are written functionally is it allows
them to return results that
share cons cells with their arguments. To
take a concrete example, the function APPEND takes
any number of
list arguments and returns a new list containing the elements of all
its arguments.
For instance:

(append (list 1 2) (list 3 4)) ==> (1 2 3 4)

From a functional point of view, APPEND's job is to return the
list (1 2 3 4) without
modifying any of the cons cells in the
lists (1 2) and (3 4). One obvious way to achieve that
goal is to create a completely new list consisting of four new cons
cells. However, that's more
work than is necessary. Instead,
APPEND actually makes only two new cons cells to hold the
values
1 and 2, linking them together and pointing the
CDR of the second cons cell at the head of
the last argument,
the list (3 4). It then returns the cons cell containing the
1. None of the
original cons cells has been modified, and the
result is indeed the list (1 2 3 4). The only



wrinkle is that
the list returned by APPEND shares some cons cells with the list
(3 4). The
resulting structure looks like this:

In general, APPEND must copy all but its last argument, but it
can always return a result that
shares structure with the last
argument.

Other functions take similar advantage of lists' ability to share
structure. Some, like APPEND,
are specified to always return
results that share structure in a particular way. Others are simply
allowed to return shared structure at the discretion of the
implementation.

"Destructive" Operations

If Common Lisp were a purely functional language, that would be the
end of the story. However,
because it's possible to modify a cons
cell after it has been created by SETFing its CAR or
CDR,
you need to think a bit about how side effects and
structure sharing mix.

Because of Lisp's functional heritage, operations that modify
existing objects are called
destructive--in functional
programming, changing an object's state "destroys" it since it no
longer represents the same value. However, using the same term to
describe all state-modifying
operations leads to a certain amount of
confusion since there are two very different kinds of
destructive
operations, for-side-effect operations and recycling
operations.5

For-side-effect operations are those used specifically for their side
effects. All uses of SETF are
destructive in this sense, as are
functions that use SETF under the covers to change the state of
an existing object such as VECTOR-PUSH or VECTOR-POP. But
it's a bit unfair to describe
these operations as
destructive--they're not intended to be used in code written in a
functional
style, so they shouldn't be described using functional
terminology. However, if you mix
nonfunctional, for-side-effect
operations with functions that return structure-sharing results, then
you need to be careful not to inadvertently modify the shared
structure. For instance, consider
these three definitions:

(defparameter *list-1* (list 1 2))

(defparameter *list-2* (list 3 4))

(defparameter *list-3* (append *list-1* *list-2*))

After evaluating these forms, you have three lists, but
*list-3* and *list-2* share
structure just like the
lists in the previous diagram.

*list-1*                  ==> (1 2)

*list-2*                  ==> (3 4)

*list-3*                  ==> (1 2 3 4)



Now consider what happens when you modify *list-2*.

(setf (first *list-2*) 0) ==> 0

*list-2*                  ==> (0 4)     ; as expected

*list-3*                  ==> (1 2 0 4) ; maybe not what you wanted

The change to *list-2* also changes *list-3* because of
the shared structure: the first
cons cell in *list-2* is also
the third cons cell in *list-3*. SETFing the FIRST
of
*list-2* changes the value in the CAR of that cons
cell, affecting both lists.

On the other hand, the other kind of destructive operations,
recycling operations, are intended to
be used in functional code.
They use side effects only as an optimization. In particular, they
reuse certain cons cells from their arguments when building their
result. However, unlike
functions such as APPEND that reuse cons
cells by including them, unmodified, in the list they
return,
recycling functions reuse cons cells as raw material, modifying the
CAR and CDR as
necessary to build the desired result. Thus,
recycling functions can be used safely only when the
original lists
aren't going to be needed after the call to the recycling function.

To see how a recycling function works, let's compare REVERSE,
the nondestructive function that
returns a reversed version of a
sequence, to NREVERSE, a recycling version of the same
function.
Because REVERSE doesn't modify its argument, it must allocate a
new cons cell for
each element in the list being reversed. But
suppose you write something like this:

(setf *list* (reverse *list*))

By assigning the result of REVERSE back to *list*, you've
removed the reference to the
original value of *list*.
Assuming the cons cells in the original list aren't referenced
anywhere else, they're now eligible to be garbage collected. However,
in many Lisp
implementations it'd be more efficient to immediately
reuse the existing cons cells rather than
allocating new ones and
letting the old ones become garbage.

NREVERSE allows you to do exactly that. The N stands for
non-consing, meaning it doesn't need
to allocate any new cons
cells. The exact side effects of NREVERSE are intentionally not
specified--it's allowed to modify any CAR or CDR of any
cons cell in the list--but a typical
implementation might walk down
the list changing the CDR of each cons cell to point to the
previous cons cell, eventually returning the cons cell that was
previously the last cons cell in the
old list and is now the head of
the reversed list. No new cons cells need to be allocated, and no
garbage is created.

Most recycling functions, like NREVERSE, have nondestructive
counterparts that compute the
same result. In general, the recycling
functions have names that are the same as their non-
destructive
counterparts except with a leading N. However, not all do,
including several of the
more commonly used recycling functions such
as NCONC, the recycling version of APPEND, and
DELETE,
DELETE-IF, DELETE-IF-NOT, and DELETE-DUPLICATES, the
recycling
versions of the REMOVE family of sequence functions.



In general, you use recycling functions in the same way you use their
nondestructive
counterparts except it's safe to use them only when
you know the arguments aren't going to be
used after the function
returns. The side effects of most recycling functions aren't
specified
tightly enough to be relied upon.

However, the waters are further muddied by a handful of recycling
functions with specified side
effects that can be relied upon.
They are NCONC, the recycling version of APPEND, and
NSUBSTITUTE and its -IF and -IF-NOT variants, the
recycling versions of the sequence
functions SUBSTITUTE and
friends.

Like APPEND, NCONC returns a concatenation of its list
arguments, but it builds its result in the
following way: for each
nonempty list it's passed, NCONC sets the CDR of the list's
last cons cell
to point to the first cons cell of the next nonempty
list. It then returns the first list, which is now
the head of the
spliced-together result. Thus:

(defparameter *x* (list 1 2 3))



(nconc *x* (list 4 5 6)) ==> (1 2 3 4 5 6)



*x* ==> (1 2 3 4 5 6)

NSUBSTITUTE and variants can be relied on to walk down the list
structure of the list argument
and to SETF the CARs of any
cons cells holding the old value to the new value and to otherwise
leave the list intact. It then returns the original list, which now
has the same value as would've
been computed by SUBSTITUTE.
6

The key thing to remember about NCONC and NSUBSTITUTE is
that they're the exceptions to
the rule that you can't rely on the
side effects of recycling functions. It's perfectly acceptable--
and
arguably good style--to ignore the reliability of their side effects
and use them, like any other
recycling function, only for the value
they return.

Combining Recycling with Shared Structure

Although you can use recycling functions whenever the arguments to
the recycling function
won't be used after the function call, it's
worth noting that each recycling function is a loaded
gun pointed
footward: if you accidentally use a recycling function on an argument
that is used
later, you're liable to lose some toes.

To make matters worse, shared structure and recycling functions tend
to work at cross-purposes.
Nondestructive list functions return
lists that share structure under the assumption that cons cells
are
never modified, but recycling functions work by violating that
assumption. Or, put another
way, sharing structure is based on the
premise that you don't care exactly what cons cells make
up a list
while using recycling functions requires that you know exactly what
cons cells are
referenced from where.



In practice, recycling functions tend to be used in a few idiomatic
ways. By far the most
common recycling idiom is to build up a list to
be returned from a function by "consing" onto
the front of a list,
usually by PUSHing elements onto a list stored in a local
variable and then
returning the result of NREVERSEing
it.7

This is an efficient way to build a list because each PUSH has
to create only one cons cell and
modify a local variable and the
NREVERSE just has to zip down the list reassigning the
CDRs.
Because the list is created entirely within the function,
there's no danger any code outside the
function has a reference to
any of its cons cells. Here's a function that uses this idiom to
build a
list of the first n numbers, starting at zero:8

(defun upto (max)

  (let ((result nil))

    (dotimes (i max)

      (push i result))

    (nreverse result)))



(upto 10) ==> (0 1 2 3 4 5 6 7 8 9)

The next most common recycling idiom9 is to
immediately reassign the value returned by the
recycling function
back to the place containing the potentially recycled value. For
instance,
you'll often see expressions like the following, using
DELETE, the recycling version of
REMOVE:

(setf foo (delete nil foo))

This sets the value of foo to its old value except with all
the NILs removed. However, even this
idiom must be used with
some care--if foo shares structure with lists referenced
elsewhere,
using DELETE instead of REMOVE can destroy the
structure of those other lists. For example,
consider the two lists
*list-2* and *list-3* from earlier that share their
last two cons
cells.

*list-2* ==> (0 4)

*list-3* ==> (1 2 0 4)

You can delete 4 from *list-3* like this:

(setf *list-3* (delete 4 *list-3*)) ==> (1 2 0)

However, DELETE will likely perform the necessary deletion by
setting the CDR of the third
cons cell to NIL,
disconnecting the fourth cons cell, the one holding the 4,
from the list. Because
the third cons cell of *list-3* is also
the first cons cell in *list-2*, the following modifies
*list-2* as well:

*list-2* ==> (0)

If you had used REMOVE instead of DELETE, it would've built
a list containing the values 1, 2,
and 0,
creating new cons cells as necessary rather than modifying any of the
cons cells in
*list-3*. In that case, *list-2* wouldn't
have been affected.



The PUSH/NREVERSE and SETF/DELETE idioms probably
account for 80 percent of the uses
of recycling functions. Other uses
are possible but require keeping careful track of which
functions
return shared structure and which do not.

In general, when manipulating lists, it's best to write your own code
in a functional style--your
functions should depend only on the
contents of their list arguments and shouldn't modify them.
Following
that rule will, of course, rule out using any destructive functions,
recycling or
otherwise. Once you have your code working, if profiling
shows you need to optimize, you can
replace nondestructive list
operations with their recycling counterparts but only if you're
certain
the argument lists aren't referenced from anywhere else.

One last gotcha to watch out for is that the sorting functions
SORT, STABLE-SORT, and
MERGE mentioned in Chapter 11
are also recycling functions when applied to lists.10 However,
these functions don't have nondestructive
counterparts, so if you need to sort a list without
destroying it,
you need to pass the sorting function a copy made with
COPY-LIST. In either
case you need to be sure to save the result
of the sorting function because the original argument
is likely to be
in tatters. For instance:

CL-USER> (defparameter *list* (list 4 3 2 1))

*LIST*

CL-USER> (sort *list* #'<)

(1 2 3 4)                      ; looks good

CL-USER> *list*

(4)                            ; whoops!

List-Manipulation Functions

With that background out of the way, you're ready to look at the
library of functions Common
Lisp provides for manipulating lists.

You've already seen the basic functions for getting at the elements
of a list: FIRST and REST.
Although you can get at any
element of a list by combining enough calls to REST (to move
down the list) with a FIRST (to extract the element), that can
be a bit tedious. So Common Lisp
provides functions named for the
other ordinals from SECOND to TENTH that return the
appropriate element. More generally, the function NTH takes two
arguments, an index and a list,
and returns the nth (zero-based)
element of the list. Similarly, NTHCDR takes an index and a list
and returns the result of calling CDR n times. (Thus,
(nthcdr 0 ...) simply returns the
original list, and
(nthcdr 1 ...) is equivalent to REST.) Note, however,
that none of these
functions is any more efficient, in terms of work
done by the computer, than the equivalent
combinations of FIRSTs
and RESTs--there's no way to get to the nth element of a
list without
following n CDR references.11

The 28 composite CAR/CDR functions are another family of
functions you may see used from
time to time. Each function is named
by placing a sequence of up to four As and Ds between a
C
and R, with each A representing a call to
CAR and each D a call to CDR. Thus:



(caar list) === (car (car list))

(cadr list) === (car (cdr list))

(cadadr list) === (car (cdr (car (cdr list))))

Note, however, that many of these functions make sense only when
applied to lists that contain
other lists. For instance, CAAR
extracts the CAR of the CAR of the list it's given; thus,
the list it's
passed must contain another list as its first element.
In other words, these are really functions on
trees rather than
lists:

(caar (list 1 2 3))                  ==> error

(caar (list (list 1 2) 3))           ==> 1

(cadr (list (list 1 2) (list 3 4)))  ==> (3 4)

(caadr (list (list 1 2) (list 3 4))) ==> 3

These functions aren't used as often now as in the old days. And even
the most die-hard old-
school Lisp hackers tend to avoid the longer
combinations. However, they're used quite a bit in
older Lisp code,
so it's worth at least understanding how they work.12

The FIRST-TENTH and CAR, CADR, and so on,
functions can also be used as SETFable places
if you're using
lists nonfunctionally.

Table 12-1 summarizes some other list functions that I won't cover in
detail.

Table 12-1. Other List Functions

Function Description
LAST Returns the last cons cell in a list. With an integer, argument
returns the last n cons cells.

BUTLAST
Returns a copy of the list, excluding the last cons cell. With an
integer argument, excludes the
last n cells.

NBUTLAST
The recycling version of BUTLAST; may modify and return the
argument list but has no reliable
side effects.

LDIFF Returns a copy of a list up to a given cons cell.
TAILP Returns true if a given object is a cons cell that's part of the
structure of a list.

LIST*
Builds a list to hold all but the last of its arguments and then
makes the last argument the CDR
of the last cell in the list. In
other words, a cross between LIST and APPEND.

MAKE-LIST
Builds an n item list. The initial elements of the list are
NIL or the value specified with the
:initial-element
keyword argument.

REVAPPEND
Combination of REVERSE and APPEND; reverses first
argument as with REVERSE and then
appends the second argument.

NRECONC
Recycling version of REVAPPEND; reverses first argument as if
by NREVERSE and then appends
the second argument. No reliable
side effects.

CONSP Predicate to test whether an object is a cons cell.
ATOM Predicate to test whether an object is not a cons cell.
LISTP Predicate to test whether an object is either a cons cell or
NIL.

NULL
Predicate to test whether an object is NIL. Functionally
equivalent to NOT but stylistically
preferable when testing for
an empty list as opposed to boolean false.

Mapping

Another important aspect of the functional style is the use of
higher-order functions, functions
that take other functions as
arguments or return functions as values. You saw several examples of
higher-order functions, such as MAP, in the previous chapter.
Although MAP can be used with



both lists and vectors (that is,
with any kind of sequence), Common Lisp also provides six
mapping
functions specifically for lists. The differences between the six
functions have to do
with how they build up their result and whether
they apply the function to the elements of the list
or to the cons
cells of the list structure.

MAPCAR is the function most like MAP. Because it always
returns a list, it doesn't require the
result-type argument MAP
does. Instead, its first argument is the function to apply, and
subsequent arguments are the lists whose elements will provide the
arguments to the function.
Otherwise, it behaves like MAP: the
function is applied to successive elements of the list
arguments,
taking one element from each list per application of the function.
The results of each
function call are collected into a new list. For
example:

(mapcar #'(lambda (x) (* 2 x)) (list 1 2 3)) ==> (2 4 6)

(mapcar #'+ (list 1 2 3) (list 10 20 30)) ==> (11 22 33)

MAPLIST is just like MAPCAR except instead of passing the
elements of the list to the function,
it passes the actual cons
cells.13 Thus, the function has access not only to the value of
each
element of the list (via the CAR of the cons cell) but also
to the rest of the list (via the CDR).

MAPCAN and MAPCON work like MAPCAR and MAPLIST
except for the way they build up their
result. While MAPCAR and
MAPLIST build a completely new list to hold the results of the
function calls, MAPCAN and MAPCON build their result by
splicing together the results--which
must be lists--as if by
NCONC. Thus, each function invocation can provide any number of
elements to be included in the result.14 MAPCAN, like MAPCAR, passes the elements of the list to
the mapped function while MAPCON, like MAPLIST, passes the
cons cells.

Finally, the functions MAPC and MAPL are control constructs
disguised as functions--they simply
return their first list argument,
so they're useful only when the side effects of the mapped
function
do something interesting. MAPC is the cousin of MAPCAR and
MAPCAN while MAPL is
in the MAPLIST/MAPCON
family.

Other Structures

While cons cells and lists are typically considered to be synonymous,
that's not quite right--as I
mentioned earlier, you can use lists of
lists to represent trees. Just as the functions discussed in
this
chapter allow you to treat structures built out of cons cells as
lists, other functions allow you
to use cons cells to represent
trees, sets, and two kinds of key/value maps. I'll discuss some of
those functions in the next chapter.

1Adapted from The Matrix
(http://us.imdb.com/Quotes?0133093)

2CONS was originally short for the verb
construct.



3When the place given to SETF is a CAR or
CDR, it expands into a call to the function RPLACA or
RPLACD; some old-school
Lispers--the same ones who still use
SETQ--will still use RPLACA and RPLACD directly, but
modern style is to use SETF of CAR
or CDR.

4Typically,
simple objects such as numbers are drawn within the appropriate box,
and more complex objects will be drawn outside
the box with an arrow
from the box indicating the reference. This actually corresponds well
with how many Common Lisp
implementations work--although all objects
are conceptually stored by reference, certain simple immutable
objects can be stored
directly in a cons cell.

5The phrase for-side-effect is used in the
language standard, but recycling is my own invention; most Lisp
literature simply uses
the term destructive for both kinds of
operations, leading to the confusion I'm trying to dispel.

6The string functions NSTRING-CAPITALIZE,
NSTRING-DOWNCASE, and NSTRING-UPCASE are similar--they
return the
same results as their N-less counterparts but are
specified to modify their string argument in place.

7For example, in an examination of all uses of recycling
functions in the Common Lisp Open Code Collection (CLOCC), a diverse
set of libraries written by various authors, instances of the
PUSH/NREVERSE idiom accounted for nearly half of all uses
of
recycling functions.

8There
are, of course, other ways to do this same thing. The extended
LOOP macro, for instance, makes it particularly easy and
likely
generates code that's even more efficient than the PUSH/
NREVERSE version.

9This idiom accounts for 30
percent of uses of recycling in the CLOCC code base.

10SORT
and STABLE-SORT can be used as for-side-effect operations on
vectors, but since they still return the sorted vector, you
should
ignore that fact and use them for return values for the sake of
consistency.

11NTH is
roughly equivalent to the sequence function ELT but works only
with lists. Also, confusingly, NTH takes the index as the
first
argument, the opposite of ELT. Another difference is that
ELT will signal an error if you try to access an element at an
index
greater than or equal to the length of the list, but NTH
will return NIL.

12In
particular, they used to be used to extract the various parts of
expressions passed to macros before the invention of
destructuring
parameter lists. For example, you could take apart the following
expression:

(when (> x 10) (print x))

Like this:

;; the condition

(cadr '(when (> x 10) (print x))) ==> (> X 10)

;; the body, as a list

(cddr '(when (> x 10) (print x))) ==> ((PRINT X))

13Thus, MAPLIST is the more primitive of the two
functions--if you had only MAPLIST, you could build MAPCAR
on top of it,
but you couldn't build MAPLIST on top of
MAPCAR.

14In Lisp dialects that
didn't have filtering functions like REMOVE, the idiomatic way
to filter a list was with MAPCAN.

(mapcan #'(lambda (x) (if (= x 10) nil (list x)))  list) === (remove 10 list)


