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12. They Called It LISP for a Reason: List
Processing
Lists play an important role in Lisp--for reasons both historical and practical. Historically, lists
were Lisp's original composite data type, though it has been decades since they were its only
such data type. These days, a Common Lisp programmer is as likely to use a vector, a hash table,
or a user-defined class or structure as to use a list.

Practically speaking, lists remain in the language because they're an excellent solution to certain
problems. One such problem--how to represent code as data in order to support code-
transforming and code-generating macros--is particular to Lisp, which may explain why other
languages don't feel the lack of Lisp-style lists. More generally, lists are an excellent data
structure for representing any kind of heterogeneous and/or hierarchical data. They're also quite
lightweight and support a functional style of programming that's another important part of Lisp's
heritage.

Thus, you need to understand lists on their own terms; as you gain a better understanding of how
lists work, you'll be in a better position to appreciate when you should and shouldn't use them.

"There Is No List"
Spoon Boy: Do not try and bend the list. That's impossible. Instead . . . only try to realize the
truth.

Neo: What truth?

Spoon Boy: There is no list.

Neo: There is no list?

Spoon Boy: Then you'll see that it is not the list that bends; it is only yourself.1

The key to understanding lists is to understand that they're largely an illusion built on top of
objects that are instances of a more primitive data type. Those simpler objects are pairs of values
called cons cells, after the function CONS used to create them.

CONS takes two arguments and returns a new cons cell containing the two values.2 These values
can be references to any kind of object. Unless the second value is NIL or another cons cell, a
cons is printed as the two values in parentheses separated by a dot, a so-called dotted pair.



(cons 1 2) ==> (1 . 2)

The two values in a cons cell are called the CAR and the CDR after the names of the functions
used to access them. At the dawn of time, these names were mnemonic, at least to the folks
implementing the first Lisp on an IBM 704. But even then they were just lifted from the
assembly mnemonics used to implement the operations. However, it's not all bad that these
names are somewhat meaningless--when considering individual cons cells, it's best to think of
them simply as an arbitrary pair of values without any particular semantics. Thus:

(car (cons 1 2)) ==> 1 
(cdr (cons 1 2)) ==> 2

Both CAR and CDR are also SETFable places--given an existing cons cell, it's possible to assign
a new value to either of its values.3

(defparameter *cons* (cons 1 2)) 
*cons*                 ==> (1 . 2) 
(setf (car *cons*) 10) ==> 10 
*cons*                 ==> (10 . 2) 
(setf (cdr *cons*) 20) ==> 20 
*cons*                 ==> (10 . 20)

Because the values in a cons cell can be references to any kind of object, you can build larger
structures out of cons cells by linking them together. Lists are built by linking together cons cells
in a chain. The elements of the list are held in the CARs of the cons cells while the links to
subsequent cons cells are held in the CDRs. The last cell in the chain has a CDR of NIL, which--
as I mentioned in Chapter 4--represents the empty list as well as the boolean value false.

This arrangement is by no means unique to Lisp; it's called a singly linked list. However, few
languages outside the Lisp family provide such extensive support for this humble data type.

So when I say a particular value is a list, what I really mean is it's either NIL or a reference to a
cons cell. The CAR of the cons cell is the first item of the list, and the CDR is a reference to
another list, that is, another cons cell or NIL, containing the remaining elements. The Lisp
printer understands this convention and prints such chains of cons cells as parenthesized lists
rather than as dotted pairs.

(cons 1 nil)                   ==> (1) 
(cons 1 (cons 2 nil))          ==> (1 2) 
(cons 1 (cons 2 (cons 3 nil))) ==> (1 2 3)

When talking about structures built out of cons cells, a few diagrams can be a big help. Box-and-
arrow diagrams represent cons cells as a pair of boxes like this:

The box on the left represents the CAR, and the box on the right is the CDR. The values stored in
a particular cons cell are either drawn in the appropriate box or represented by an arrow from the



box to a representation of the referenced value.4 For instance, the list (1 2 3), which consists
of three cons cells linked together by their CDRs, would be diagrammed like this:

However, most of the time you work with lists you won't have to deal with individual cons cells-
-the functions that create and manipulate lists take care of that for you. For example, the LIST
function builds a cons cells under the covers for you and links them together; the following
LIST expressions are equivalent to the previous CONS expressions:

(list 1)     ==> (1) 
(list 1 2)   ==> (1 2) 
(list 1 2 3) ==> (1 2 3)

Similarly, when you're thinking in terms of lists, you don't have to use the meaningless names
CAR and CDR; FIRST and REST are synonyms for CAR and CDR that you should use when
you're dealing with cons cells as lists.

(defparameter *list* (list 1 2 3 4)) 
(first *list*)        ==> 1 
(rest *list*)         ==> (2 3 4) 
(first (rest *list*)) ==> 2

Because cons cells can hold any kind of values, so can lists. And a single list can hold objects of
different types.

(list "foo" (list 1 2) 10) ==> ("foo" (1 2) 10)

The structure of that list would look like this:

Because lists can have other lists as elements, you can also use them to represent trees of
arbitrary depth and complexity. As such, they make excellent representations for any
heterogeneous, hierarchical data. Lisp-based XML processors, for instance, usually represent
XML documents internally as lists. Another obvious example of tree-structured data is Lisp code
itself. In Chapters 30 and 31 you'll write an HTML generation library that uses lists of lists to
represent the HTML to be generated. I'll talk more next chapter about using cons cells to
represent other data structures.

Common Lisp provides quite a large library of functions for manipulating lists. In the sections
"List-Manipulation Functions" and "Mapping," you'll look at some of the more important of
these functions. However, they will be easier to understand in the context of a few ideas
borrowed from functional programming.

Functional Programming and Lists



The essence of functional programming is that programs are built entirely of functions with no
side effects that compute their results based solely on the values of their arguments. The
advantage of the functional style is that it makes programs easier to understand. Eliminating side
effects eliminates almost all possibilities for action at a distance. And since the result of a
function is determined only by the values of its arguments, its behavior is easier to understand
and test. For instance, when you see an expression such as (+ 3 4), you know the result is
uniquely determined by the definition of the + function and the values 3 and 4. You don't have
to worry about what may have happened earlier in the execution of the program since there's
nothing that can change the result of evaluating that expression.

Functions that deal with numbers are naturally functional since numbers are immutable. A list,
on the other hand, can be mutated, as you've just seen, by SETFing the CARs and CDRs of the
cons cells that make up its backbone. However, lists can be treated as a functional data type if
you consider their value to be determined by the elements they contain. Thus, any list of the
form (1 2 3 4) is functionally equivalent to any other list containing those four values,
regardless of what cons cells are actually used to represent the list. And any function that takes a
list as an argument and returns a value based solely on the contents of the list can likewise be
considered functional. For instance, the REVERSE sequence function, given the list
(1 2 3 4), always returns a list (4 3 2 1). Different calls to REVERSE with functionally
equivalent lists as the argument will return functionally equivalent result lists. Another aspect of
functional programming, which I'll discuss in the section "Mapping," is the use of higher-order
functions: functions that treat other functions as data, taking them as arguments or returning
them as results.

Most of Common Lisp's list-manipulation functions are written in a functional style. I'll discuss
later how to mix functional and other coding styles, but first you should understand a few
subtleties of the functional style as applied to lists.

The reason most list functions are written functionally is it allows them to return results that
share cons cells with their arguments. To take a concrete example, the function APPEND takes
any number of list arguments and returns a new list containing the elements of all its arguments.
For instance:

(append (list 1 2) (list 3 4)) ==> (1 2 3 4)

From a functional point of view, APPEND's job is to return the list (1 2 3 4) without
modifying any of the cons cells in the lists (1 2) and (3 4). One obvious way to achieve that
goal is to create a completely new list consisting of four new cons cells. However, that's more
work than is necessary. Instead, APPEND actually makes only two new cons cells to hold the
values 1 and 2, linking them together and pointing the CDR of the second cons cell at the head of
the last argument, the list (3 4). It then returns the cons cell containing the 1. None of the
original cons cells has been modified, and the result is indeed the list (1 2 3 4). The only



wrinkle is that the list returned by APPEND shares some cons cells with the list (3 4). The
resulting structure looks like this:

In general, APPEND must copy all but its last argument, but it can always return a result that
shares structure with the last argument.

Other functions take similar advantage of lists' ability to share structure. Some, like APPEND,
are specified to always return results that share structure in a particular way. Others are simply
allowed to return shared structure at the discretion of the implementation.

"Destructive" Operations

If Common Lisp were a purely functional language, that would be the end of the story. However,
because it's possible to modify a cons cell after it has been created by SETFing its CAR or CDR,
you need to think a bit about how side effects and structure sharing mix.

Because of Lisp's functional heritage, operations that modify existing objects are called
destructive--in functional programming, changing an object's state "destroys" it since it no
longer represents the same value. However, using the same term to describe all state-modifying
operations leads to a certain amount of confusion since there are two very different kinds of
destructive operations, for-side-effect operations and recycling operations.5

For-side-effect operations are those used specifically for their side effects. All uses of SETF are
destructive in this sense, as are functions that use SETF under the covers to change the state of
an existing object such as VECTOR-PUSH or VECTOR-POP. But it's a bit unfair to describe
these operations as destructive--they're not intended to be used in code written in a functional
style, so they shouldn't be described using functional terminology. However, if you mix
nonfunctional, for-side-effect operations with functions that return structure-sharing results, then
you need to be careful not to inadvertently modify the shared structure. For instance, consider
these three definitions:

(defparameter *list-1* (list 1 2)) 
(defparameter *list-2* (list 3 4)) 
(defparameter *list-3* (append *list-1* *list-2*))

After evaluating these forms, you have three lists, but *list-3* and *list-2* share
structure just like the lists in the previous diagram.

*list-1*                  ==> (1 2) 
*list-2*                  ==> (3 4) 
*list-3*                  ==> (1 2 3 4)



Now consider what happens when you modify *list-2*.

(setf (first *list-2*) 0) ==> 0 
*list-2*                  ==> (0 4)     ; as expected 
*list-3*                  ==> (1 2 0 4) ; maybe not what you wanted

The change to *list-2* also changes *list-3* because of the shared structure: the first
cons cell in *list-2* is also the third cons cell in *list-3*. SETFing the FIRST of
*list-2* changes the value in the CAR of that cons cell, affecting both lists.

On the other hand, the other kind of destructive operations, recycling operations, are intended to
be used in functional code. They use side effects only as an optimization. In particular, they
reuse certain cons cells from their arguments when building their result. However, unlike
functions such as APPEND that reuse cons cells by including them, unmodified, in the list they
return, recycling functions reuse cons cells as raw material, modifying the CAR and CDR as
necessary to build the desired result. Thus, recycling functions can be used safely only when the
original lists aren't going to be needed after the call to the recycling function.

To see how a recycling function works, let's compare REVERSE, the nondestructive function that
returns a reversed version of a sequence, to NREVERSE, a recycling version of the same
function. Because REVERSE doesn't modify its argument, it must allocate a new cons cell for
each element in the list being reversed. But suppose you write something like this:

(setf *list* (reverse *list*))

By assigning the result of REVERSE back to *list*, you've removed the reference to the
original value of *list*. Assuming the cons cells in the original list aren't referenced
anywhere else, they're now eligible to be garbage collected. However, in many Lisp
implementations it'd be more efficient to immediately reuse the existing cons cells rather than
allocating new ones and letting the old ones become garbage.

NREVERSE allows you to do exactly that. The N stands for non-consing, meaning it doesn't need
to allocate any new cons cells. The exact side effects of NREVERSE are intentionally not
specified--it's allowed to modify any CAR or CDR of any cons cell in the list--but a typical
implementation might walk down the list changing the CDR of each cons cell to point to the
previous cons cell, eventually returning the cons cell that was previously the last cons cell in the
old list and is now the head of the reversed list. No new cons cells need to be allocated, and no
garbage is created.

Most recycling functions, like NREVERSE, have nondestructive counterparts that compute the
same result. In general, the recycling functions have names that are the same as their non-
destructive counterparts except with a leading N. However, not all do, including several of the
more commonly used recycling functions such as NCONC, the recycling version of APPEND, and
DELETE, DELETE-IF, DELETE-IF-NOT, and DELETE-DUPLICATES, the recycling
versions of the REMOVE family of sequence functions.



In general, you use recycling functions in the same way you use their nondestructive
counterparts except it's safe to use them only when you know the arguments aren't going to be
used after the function returns. The side effects of most recycling functions aren't specified
tightly enough to be relied upon.

However, the waters are further muddied by a handful of recycling functions with specified side
effects that can be relied upon. They are NCONC, the recycling version of APPEND, and
NSUBSTITUTE and its -IF and -IF-NOT variants, the recycling versions of the sequence
functions SUBSTITUTE and friends.

Like APPEND, NCONC returns a concatenation of its list arguments, but it builds its result in the
following way: for each nonempty list it's passed, NCONC sets the CDR of the list's last cons cell
to point to the first cons cell of the next nonempty list. It then returns the first list, which is now
the head of the spliced-together result. Thus:

(defparameter *x* (list 1 2 3)) 
 
(nconc *x* (list 4 5 6)) ==> (1 2 3 4 5 6) 
 
*x* ==> (1 2 3 4 5 6)

NSUBSTITUTE and variants can be relied on to walk down the list structure of the list argument
and to SETF the CARs of any cons cells holding the old value to the new value and to otherwise
leave the list intact. It then returns the original list, which now has the same value as would've
been computed by SUBSTITUTE. 6

The key thing to remember about NCONC and NSUBSTITUTE is that they're the exceptions to
the rule that you can't rely on the side effects of recycling functions. It's perfectly acceptable--
and arguably good style--to ignore the reliability of their side effects and use them, like any other
recycling function, only for the value they return.

Combining Recycling with Shared Structure

Although you can use recycling functions whenever the arguments to the recycling function
won't be used after the function call, it's worth noting that each recycling function is a loaded
gun pointed footward: if you accidentally use a recycling function on an argument that is used
later, you're liable to lose some toes.

To make matters worse, shared structure and recycling functions tend to work at cross-purposes.
Nondestructive list functions return lists that share structure under the assumption that cons cells
are never modified, but recycling functions work by violating that assumption. Or, put another
way, sharing structure is based on the premise that you don't care exactly what cons cells make
up a list while using recycling functions requires that you know exactly what cons cells are
referenced from where.



In practice, recycling functions tend to be used in a few idiomatic ways. By far the most
common recycling idiom is to build up a list to be returned from a function by "consing" onto
the front of a list, usually by PUSHing elements onto a list stored in a local variable and then
returning the result of NREVERSEing it.7

This is an efficient way to build a list because each PUSH has to create only one cons cell and
modify a local variable and the NREVERSE just has to zip down the list reassigning the CDRs.
Because the list is created entirely within the function, there's no danger any code outside the
function has a reference to any of its cons cells. Here's a function that uses this idiom to build a
list of the first n numbers, starting at zero:8

(defun upto (max) 
  (let ((result nil)) 
    (dotimes (i max) 
      (push i result)) 
    (nreverse result))) 
 
(upto 10) ==> (0 1 2 3 4 5 6 7 8 9)

The next most common recycling idiom9 is to immediately reassign the value returned by the
recycling function back to the place containing the potentially recycled value. For instance,
you'll often see expressions like the following, using DELETE, the recycling version of
REMOVE:

(setf foo (delete nil foo))

This sets the value of foo to its old value except with all the NILs removed. However, even this
idiom must be used with some care--if foo shares structure with lists referenced elsewhere,
using DELETE instead of REMOVE can destroy the structure of those other lists. For example,
consider the two lists *list-2* and *list-3* from earlier that share their last two cons
cells.

*list-2* ==> (0 4) 
*list-3* ==> (1 2 0 4)

You can delete 4 from *list-3* like this:

(setf *list-3* (delete 4 *list-3*)) ==> (1 2 0)

However, DELETE will likely perform the necessary deletion by setting the CDR of the third
cons cell to NIL, disconnecting the fourth cons cell, the one holding the 4, from the list. Because
the third cons cell of *list-3* is also the first cons cell in *list-2*, the following modifies
*list-2* as well:

*list-2* ==> (0)

If you had used REMOVE instead of DELETE, it would've built a list containing the values 1, 2,
and 0, creating new cons cells as necessary rather than modifying any of the cons cells in
*list-3*. In that case, *list-2* wouldn't have been affected.



The PUSH/NREVERSE and SETF/DELETE idioms probably account for 80 percent of the uses
of recycling functions. Other uses are possible but require keeping careful track of which
functions return shared structure and which do not.

In general, when manipulating lists, it's best to write your own code in a functional style--your
functions should depend only on the contents of their list arguments and shouldn't modify them.
Following that rule will, of course, rule out using any destructive functions, recycling or
otherwise. Once you have your code working, if profiling shows you need to optimize, you can
replace nondestructive list operations with their recycling counterparts but only if you're certain
the argument lists aren't referenced from anywhere else.

One last gotcha to watch out for is that the sorting functions SORT, STABLE-SORT, and
MERGE mentioned in Chapter 11 are also recycling functions when applied to lists.10 However,
these functions don't have nondestructive counterparts, so if you need to sort a list without
destroying it, you need to pass the sorting function a copy made with COPY-LIST. In either
case you need to be sure to save the result of the sorting function because the original argument
is likely to be in tatters. For instance:

CL-USER> (defparameter *list* (list 4 3 2 1)) 
*LIST* 
CL-USER> (sort *list* #'<) 
(1 2 3 4)                      ; looks good 
CL-USER> *list* 
(4)                            ; whoops!

List-Manipulation Functions

With that background out of the way, you're ready to look at the library of functions Common
Lisp provides for manipulating lists.

You've already seen the basic functions for getting at the elements of a list: FIRST and REST.
Although you can get at any element of a list by combining enough calls to REST (to move
down the list) with a FIRST (to extract the element), that can be a bit tedious. So Common Lisp
provides functions named for the other ordinals from SECOND to TENTH that return the
appropriate element. More generally, the function NTH takes two arguments, an index and a list,
and returns the nth (zero-based) element of the list. Similarly, NTHCDR takes an index and a list
and returns the result of calling CDR n times. (Thus, (nthcdr 0 ...) simply returns the
original list, and (nthcdr 1 ...) is equivalent to REST.) Note, however, that none of these
functions is any more efficient, in terms of work done by the computer, than the equivalent
combinations of FIRSTs and RESTs--there's no way to get to the nth element of a list without
following n CDR references.11

The 28 composite CAR/CDR functions are another family of functions you may see used from
time to time. Each function is named by placing a sequence of up to four As and Ds between a C
and R, with each A representing a call to CAR and each D a call to CDR. Thus:



(caar list) === (car (car list)) 
(cadr list) === (car (cdr list)) 
(cadadr list) === (car (cdr (car (cdr list))))

Note, however, that many of these functions make sense only when applied to lists that contain
other lists. For instance, CAAR extracts the CAR of the CAR of the list it's given; thus, the list it's
passed must contain another list as its first element. In other words, these are really functions on
trees rather than lists:

(caar (list 1 2 3))                  ==> error 
(caar (list (list 1 2) 3))           ==> 1 
(cadr (list (list 1 2) (list 3 4)))  ==> (3 4) 
(caadr (list (list 1 2) (list 3 4))) ==> 3

These functions aren't used as often now as in the old days. And even the most die-hard old-
school Lisp hackers tend to avoid the longer combinations. However, they're used quite a bit in
older Lisp code, so it's worth at least understanding how they work.12

The FIRST-TENTH and CAR, CADR, and so on, functions can also be used as SETFable places
if you're using lists nonfunctionally.

Table 12-1 summarizes some other list functions that I won't cover in detail.

Table 12-1. Other List Functions

Function Description
LAST Returns the last cons cell in a list. With an integer, argument returns the last n cons cells.

BUTLAST
Returns a copy of the list, excluding the last cons cell. With an integer argument, excludes the
last n cells.

NBUTLAST
The recycling version of BUTLAST; may modify and return the argument list but has no reliable
side effects.

LDIFF Returns a copy of a list up to a given cons cell.
TAILP Returns true if a given object is a cons cell that's part of the structure of a list.

LIST*
Builds a list to hold all but the last of its arguments and then makes the last argument the CDR
of the last cell in the list. In other words, a cross between LIST and APPEND.

MAKE-LIST
Builds an n item list. The initial elements of the list are NIL or the value specified with the
:initial-element keyword argument.

REVAPPEND
Combination of REVERSE and APPEND; reverses first argument as with REVERSE and then
appends the second argument.

NRECONC
Recycling version of REVAPPEND; reverses first argument as if by NREVERSE and then appends
the second argument. No reliable side effects.

CONSP Predicate to test whether an object is a cons cell.
ATOM Predicate to test whether an object is not a cons cell.
LISTP Predicate to test whether an object is either a cons cell or NIL.

NULL
Predicate to test whether an object is NIL. Functionally equivalent to NOT but stylistically
preferable when testing for an empty list as opposed to boolean false.

Mapping

Another important aspect of the functional style is the use of higher-order functions, functions
that take other functions as arguments or return functions as values. You saw several examples of
higher-order functions, such as MAP, in the previous chapter. Although MAP can be used with



both lists and vectors (that is, with any kind of sequence), Common Lisp also provides six
mapping functions specifically for lists. The differences between the six functions have to do
with how they build up their result and whether they apply the function to the elements of the list
or to the cons cells of the list structure.

MAPCAR is the function most like MAP. Because it always returns a list, it doesn't require the
result-type argument MAP does. Instead, its first argument is the function to apply, and
subsequent arguments are the lists whose elements will provide the arguments to the function.
Otherwise, it behaves like MAP: the function is applied to successive elements of the list
arguments, taking one element from each list per application of the function. The results of each
function call are collected into a new list. For example:

(mapcar #'(lambda (x) (* 2 x)) (list 1 2 3)) ==> (2 4 6) 
(mapcar #'+ (list 1 2 3) (list 10 20 30)) ==> (11 22 33)

MAPLIST is just like MAPCAR except instead of passing the elements of the list to the function,
it passes the actual cons cells.13 Thus, the function has access not only to the value of each
element of the list (via the CAR of the cons cell) but also to the rest of the list (via the CDR).

MAPCAN and MAPCON work like MAPCAR and MAPLIST except for the way they build up their
result. While MAPCAR and MAPLIST build a completely new list to hold the results of the
function calls, MAPCAN and MAPCON build their result by splicing together the results--which
must be lists--as if by NCONC. Thus, each function invocation can provide any number of
elements to be included in the result.14 MAPCAN, like MAPCAR, passes the elements of the list to
the mapped function while MAPCON, like MAPLIST, passes the cons cells.

Finally, the functions MAPC and MAPL are control constructs disguised as functions--they simply
return their first list argument, so they're useful only when the side effects of the mapped
function do something interesting. MAPC is the cousin of MAPCAR and MAPCAN while MAPL is
in the MAPLIST/MAPCON family.

Other Structures

While cons cells and lists are typically considered to be synonymous, that's not quite right--as I
mentioned earlier, you can use lists of lists to represent trees. Just as the functions discussed in
this chapter allow you to treat structures built out of cons cells as lists, other functions allow you
to use cons cells to represent trees, sets, and two kinds of key/value maps. I'll discuss some of
those functions in the next chapter.

1Adapted from The Matrix (http://us.imdb.com/Quotes?0133093)

2CONS was originally short for the verb construct.



3When the place given to SETF is a CAR or CDR, it expands into a call to the function RPLACA or RPLACD; some old-school
Lispers--the same ones who still use SETQ--will still use RPLACA and RPLACD directly, but modern style is to use SETF of CAR
or CDR.

4Typically, simple objects such as numbers are drawn within the appropriate box, and more complex objects will be drawn outside
the box with an arrow from the box indicating the reference. This actually corresponds well with how many Common Lisp
implementations work--although all objects are conceptually stored by reference, certain simple immutable objects can be stored
directly in a cons cell.

5The phrase for-side-effect is used in the language standard, but recycling is my own invention; most Lisp literature simply uses
the term destructive for both kinds of operations, leading to the confusion I'm trying to dispel.

6The string functions NSTRING-CAPITALIZE, NSTRING-DOWNCASE, and NSTRING-UPCASE are similar--they return the
same results as their N-less counterparts but are specified to modify their string argument in place.

7For example, in an examination of all uses of recycling functions in the Common Lisp Open Code Collection (CLOCC), a diverse
set of libraries written by various authors, instances of the PUSH/NREVERSE idiom accounted for nearly half of all uses of
recycling functions.

8There are, of course, other ways to do this same thing. The extended LOOP macro, for instance, makes it particularly easy and
likely generates code that's even more efficient than the PUSH/ NREVERSE version.

9This idiom accounts for 30 percent of uses of recycling in the CLOCC code base.

10SORT and STABLE-SORT can be used as for-side-effect operations on vectors, but since they still return the sorted vector, you
should ignore that fact and use them for return values for the sake of consistency.

11NTH is roughly equivalent to the sequence function ELT but works only with lists. Also, confusingly, NTH takes the index as the
first argument, the opposite of ELT. Another difference is that ELT will signal an error if you try to access an element at an index
greater than or equal to the length of the list, but NTH will return NIL.

12In particular, they used to be used to extract the various parts of expressions passed to macros before the invention of
destructuring parameter lists. For example, you could take apart the following expression:

(when (> x 10) (print x))

Like this:

;; the condition 
(cadr '(when (> x 10) (print x))) ==> (> X 10)

;; the body, as a list 
(cddr '(when (> x 10) (print x))) ==> ((PRINT X))

13Thus, MAPLIST is the more primitive of the two functions--if you had only MAPLIST, you could build MAPCAR on top of it,
but you couldn't build MAPLIST on top of MAPCAR.

14In Lisp dialects that didn't have filtering functions like REMOVE, the idiomatic way to filter a list was with MAPCAN.

(mapcan #'(lambda (x) (if (= x 10) nil (list x)))  list) === (remove 10 list)


