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ABSTRACT
Parallel, multithreaded C and C++ programs such as web servers,
database managers, news servers, and scientific applications are be-
coming increasingly prevalent. For these applications, the memory
allocator is often a bottleneck that severely limits program perfor-
mance and scalability on multiprocessor systems. Previous alloca-
tors suffer from problems that include poor performance and scal-
ability, and heap organizations that introduce false sharing. Worse,
many allocators exhibit a dramatic increase in memory consump-
tion when confronted with a producer-consumer pattern of object
allocation and freeing. This increase in memory consumption can
range from a factor ofP (the number of processors) to unbounded
memory consumption.

This paper introduces Hoard, a fast, highly scalable allocator
that largely avoids false sharing and is memory efficient. Hoard
is the first allocator to simultaneously solve the above problems.
Hoard combines one global heap and per-processor heaps with a
novel discipline that provably bounds memory consumption and
has very low synchronization costs in the common case. Our re-
sults on eleven programs demonstrate that Hoard yields low aver-
age fragmentation and improves overall program performance over
the standard Solaris allocator by up to a factor of 60 on 14 proces-
sors, and up to a factor of 18 over the next best allocator we tested.

1. Introduction
Parallel, multithreaded programs are becoming increasingly preva-
lent. These applications include web servers [35], database man-
agers [27], news servers [3], as well as more traditional parallel
applications such as scientific applications [7]. For these applica-
tions, high performance is critical. They are generally written in C
or C++ to run efficiently on modern shared-memory multiprocessor
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servers. Many of these applications make intensive use of dynamic
memory allocation. Unfortunately, the memory allocator is often a
bottleneck that severely limits program scalability on multiproces-
sor systems [21]. Existing serial memory allocators do not scale
well for multithreaded applications, and existing concurrent allo-
cators do not provide one or more of the following features, all of
which are needed in order to attain scalable and memory-efficient
allocator performance:

Speed.A memory allocator should perform memory operations
(i.e., malloc andfree) about as fast as a state-of-the-art se-
rial memory allocator. This feature guarantees good allocator
performance even when a multithreaded program executes
on a single processor.

Scalability. As the number of processors in the system grows, the
performance of the allocator must scale linearly with the num-
ber of processors to ensure scalable application performance.

False sharing avoidance.The allocator should not introduce false
sharing of cache lines in which threads on distinct processors
inadvertently share data on the same cache line.

Low fragmentation. We definefragmentationas the maximum
amount of memory allocated from the operating system di-
vided by the maximum amount of memory required by the
application. Excessive fragmentation can degrade perfor-
mance by causing poor data locality, leading to paging.

Certain classes of memory allocators (described in Section 6)
exhibit a special kind of fragmentation that we callblowup. In-
tuitively, blowup is the increase in memory consumption caused
when a concurrent allocator reclaims memory freed by the pro-
gram but fails to use it to satisfy future memory requests. We define
blowup as the maximum amount of memory allocated by a given al-
locator divided by the maximum amount of memory allocated by an
ideal uniprocessor allocator. As we show in Section 2.2, the com-
mon producer-consumer programming idiom can cause blowup. In
many allocators, blowup ranges from a factor ofP (the number
of processors) to unbounded memory consumption (the longer the
program runs, the more memory it consumes). Such a pathological
increase in memory consumption can be catastrophic, resulting in
premature application termination due to exhaustion of swap space.

The contribution of this paper is to introduce the Hoard allocator
and show that it enables parallel multithreaded programs to achieve
scalable performance on shared-memory multiprocessors. Hoard
achieves this result by simultaneously solving all of the above prob-
lems. In particular, Hoard solves the blowup and false sharing prob-
lems, which, as far as we know, have never been addressed in the
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literature. As we demonstrate, Hoard also achieves nearly zero syn-
chronization costs in practice.

Hoard maintains per-processor heaps and one global heap. When
a per-processor heap’s usage drops below a certain fraction, Hoard
transfers a large fixed-size chunk of its memory from the per-processor
heap to the global heap, where it is then available for reuse by an-
other processor. We show that this algorithm bounds blowup and
synchronization costs to a constant factor. This algorithm avoids
false sharing by ensuring that the same processor almost always
reuses (i.e., repeatedlymallocs) from a given cache line. Results
on eleven programs demonstrate that Hoard scales linearly as the
number of processors grows and that its fragmentation costs are
low. On 14 processors, Hoard improves performance over the stan-
dard Solaris allocator by up to a factor of 60 and a factor of 18
over the next best allocator we tested. These features have led to its
incorporation in a number of high-performance commercial appli-
cations, including the Twister, Typhoon, Breeze and Cyclone chat
and USENET servers [3] and BEMSolver, a high-performance sci-
entific code [7].

The rest of this paper is organized as follows. In Section 2, we
explain in detail the issues of blowup and allocator-induced false
sharing. In Section 3, we motivate and describe in detail the algo-
rithms used by Hoard to simultaneously solve these problems. We
sketch proofs of the bounds on blowup and contention in Section 4.
We demonstrate Hoard’s speed, scalability, false sharing avoidance,
and low fragmentation empirically in Section 5, including compar-
isons with serial and concurrent memory allocators. We also show
that Hoard is robust with respect to changes to its key parameter.
We classify previous work into a taxonomy of memory allocators
in Section 6, focusing on speed, scalability, false sharing and frag-
mentation problems described above. Finally, we discuss future
directions for this research in Section 7, and conclude in Section 8.

2. Motivation
In this section, we focus special attention on the issues of allocator-
induced false sharing of heap objects and blowup to motivate our
work. These issues must be addressed to achieve efficient memory
allocation for scalable multithreaded applications but have been ne-
glected in the memory allocation literature.

2.1 Allocator-Induced False Sharing of Heap Objects

False sharingoccurs when multiple processors share words in the
same cache line without actually sharing data and is a notorious
cause of poor performance in parallel applications [20, 15, 36]. Al-
locators can cause false sharing of heap objects by dividing cache
lines into a number of small objects that distinct processors then
write. A program may introduce false sharing by allocating a num-
ber of objects within one cache line and passing an object to a dif-
ferent thread. It is thus impossible to completely avoid false sharing
of heap objects unless the allocator pads out every memory request
to the size of a cache line. However, no allocator we know of pads
memory requests to the size of a cache line, and with good reason;
padding could cause a dramatic increase in memory consumption
(for instance, objects would be padded to a multiple of 64 bytes
on a SPARC) and could significantly degrade spatial locality and
cache utilization.

Unfortunately, an allocator canactively inducefalse sharing even
on objects that the program does not pass to different threads. Ac-
tive false sharing is due tomalloc satisfying memory requests by
different threads from the same cache line. For instance, single-
heap allocators can give many threads parts of the same cache line.
The allocator may divide a cache line into 8-byte chunks. If mul-
tiple threads request 8-byte objects, the allocator may give each
thread one 8-byte object in turn. This splitting of cache lines can

lead to false sharing.
Allocators may alsopassively inducefalse sharing. Passive false

sharing occurs whenfree allows a futuremalloc to produce false
sharing. If aprogram introduces false sharing by spreading the
pieces of a cache line across processors, the allocator may then
passively induce false sharing after afree by letting each processor
reuse pieces it freed, which can then lead to false sharing.

2.2 Blowup

Many previous allocators suffer from blowup. As we show in Sec-
tion 3.1, Hoard keeps blowup to a constant factor but many existing
concurrent allocators haveunboundedblowup (the Cilk and STL
allocators [6, 30]) (memory consumption grows without bound while
the memory required is fixed) or memory consumption can grow
linearly withP , the number of processors (Ptmalloc and LKmalloc
[9, 22]). It is important to note that these worst cases are not just
theoretical. Threads in a producer-consumer relationship, a com-
mon programming idiom, may induce this blowup. To the best of
our knowledge, papers in the literature do not address this prob-
lem. For example, consider a program in which a producer thread
repeatedly allocates a block of memory and gives it to a consumer
thread which frees it. If the memory freed by the consumer is un-
available to the producer, the program consumes more and more
memory as it runs.

This unbounded memory consumption is plainly unacceptable,
but aP -fold increase in memory consumption is also cause for con-
cern. The scheduling of multithreaded programs can cause them to
requiremuchmore memory when run on multiple processors than
when run on one processor [6, 28]. Consider a program withP
threads. Each thread callsx=malloc(s); free(x). If these threads
are serialized, the total memory required iss. However, if they
execute onP processors, each call tomalloc may run in paral-
lel, increasing the memory requirement toP ∗ s. If the allocator
multiplies this consumption by another factor ofP , then memory
consumption increases toP 2 ∗ s.

3. The Hoard Memory Allocator
This section describes Hoard in detail. Hoard can be viewed as
an allocator that generally avoids false sharing and that trades in-
creased (but bounded) memory consumption for reduced synchro-
nization costs.

Hoard augments per-processor heaps with aglobal heapthat ev-
ery thread may access (similar to Vee and Hsu [37]). Each thread
can access only its heap and the global heap. We designate heap
0 as the global heap and heaps 1 throughP as the per-processor
heaps. In the implementation we actually use2P heaps (without
altering our analytical results) in order to decrease the probability
that concurrently-executing threads use the same heap; we use a
simple hash function to map thread id’s to per-processor heaps that
can result in collisions. We need such a mapping function because
in general there is not a one-to-one correspondence between threads
and processors, and threads can be reassigned to other processors.
On Solaris, however, we are able to avoid collisions of heap assign-
ments to threads by hashing on the light-weight process (LWP) id.
The number of LWP’s is usually set to the number of processors
[24, 33], so each heap is generally used by no more than one LWP.

Hoard maintainsusage statisticsfor each heap. These statistics
areui, the amount of memory in use (“live”) in heapi, andai, the
amount of memory allocated by Hoard from the operating system
held in heapi.

Hoard allocates memory from the system in chunks we callsu-
perblocks. Each superblock is an array of some number of blocks
(objects) and contains a free list of its available blocks maintained
in LIFO order to improve locality. All superblocks are the same
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Figure 1: Allocation and freeing in Hoard. See Section 3.2 for
details.

size (S), a multiple of the system page size. Objects larger than
half the size of a superblock are managed directly using the virtual
memory system (i.e., they are allocated viammap and freed using
munmap). All of the blocks in a superblock are in the same size
class. By using size classes that are a power ofb apart (whereb
is greater than 1) and rounding the requested size up to the near-
est size class, we bound worst-caseinternal fragmentation within
a block to a factor ofb. In order to reduceexternalfragmentation,
we recyclecompletely empty superblocks for re-use by any size
class. For clarity of exposition, we assume a single size class in the
discussion below.

3.1 Bounding Blowup

Each heap “owns” a number of superblocks. When there is no
memory available in any superblock on a thread’s heap, Hoard
obtains a superblock from the global heap if one is available. If
the global heap is also empty, Hoard creates a new superblock
by requesting virtual memory from the operating system and adds
it to the thread’s heap. Hoard does not currently return empty
superblocks to the operating system. It instead makes these su-
perblocks available for reuse.

Hoard moves superblocks from a per-processor heap to the global
heap when the per-processor heap crosses theemptiness thresh-
old: more thanf , theempty fraction, of its blocks are not in use
(ui < (1 − f)ai), and there are more than some numberK of su-
perblocks’ worth of free memory on the heap (ui < ai −K ∗ S).
As long as a heap is not more thanf empty, and hasK or fewer su-
perblocks, Hoard will not move superblocks from a per-processor
heap to the global heap. Whenever a per-processor heap does cross
the emptiness threshold, Hoard transfers one of its superblocks that
is at leastf empty to the global heap. Always removing such
a superblock whenever we cross the emptiness threshold main-

tains the following invariant on the per-processor heaps:(ui ≥
ai −K ∗ S) ∧ (ui ≥ (1− f)ai). When we remove a superblock,
we reduceui by at most(1− f)S but reduceai by S, thus restor-
ing the invariant. Maintaining this invariant bounds blowup to a
constant factor, as we show in Section 4.

Hoard findsf -empty superblocks in constant time by dividing
superblocks into a number of bins that we call “fullness groups”.
Each bin contains a doubly-linked list of superblocks that are in a
given fullness range (e.g., all superblocks that are between3/4 and
completely empty are in the same bin). Hoard moves superblocks
from one group to another when appropriate, and always allocates
from nearly-full superblocks. To improve locality, we order the
superblocks within a fullness group using a move-to-front heuristic.
Whenever we free a block in a superblock, we move the superblock
to the front of its fullness group. If we then need to allocate a block,
we will be likely to reuse a superblock that is already in memory;
because we maintain the free blocks in LIFO order, we are also
likely to reuse a block that is already in cache.

3.2 Example

Figure 1 illustrates, in simplified form, how Hoard manages su-
perblocks. For simplicity, we assume there are two threads and
heaps (threadi maps to heapi). In this example (which reads from
top left to top right, then bottom left to bottom right), the empty
fraction f is 1/4 andK is 0. Thread 1 executes code written on
the left-hand side of each diagram (prefixed by “t1:”) and thread 2
executes code on the right-hand side (prefixed by “t2:”). Initially,
the global heap is empty, heap 1 has two superblocks (one partially
full, one empty), and heap 2 has a completely-full superblock.

The top left diagram shows the heaps after thread 1 allocatesx9
from heap 1. Hoard selects the fullest superblock in heap 1 for
allocation. Next, in the top right diagram, thread 1 freesy4 , which
is in a superblock that heap 2 owns. Because heap 2 is still more
than1/4 full, Hoard does not remove a superblock from it. In the
bottom left diagram, thread 2 freesx2 , which is in a superblock
owned by heap 1. This free does not cause heap 1 to cross the
emptiness threshold, but the next free (ofx9 ) does. Hoard then
moves the completely-free superblock from heap 1 to the global
heap.

3.3 Avoiding False Sharing

Hoard uses the combination of superblocks and multiple-heaps de-
scribed above to avoid most active and passive false sharing. Only
one thread may allocate from a given superblock since a superblock
is owned by exactly one heap at any time. When multiple threads
make simultaneous requests for memory, the requests will always
be satisfied from different superblocks, avoiding actively induced
false sharing. When a program deallocates a block of memory,
Hoard returns the block to its superblock. This coalescing prevents
multiple threads from reusing pieces of cache lines that were passed
to these threads by a user program, avoiding passively-induced
false sharing.

While this strategy can greatly reduce allocator-induced false
sharing, it does not completely avoid it. Because Hoard may move
superblocks from one heap to another, it is possible for two heaps
to share cache lines. Fortunately, superblock transfer is a relatively
infrequent event (occurring only when a per-processor heap has
dropped below the emptiness threshold). Further, we have observed
that in practice, superblocks released to the global heap are often
completely empty, eliminating the possibility of false sharing. Re-
leased superblocks are guaranteed to be at leastf empty, so the
opportunity for false sharing of lines in each superblock is reduced.

Figure 1 also shows how Hoard generally avoids false sharing.
Notice that when thread 1 freesy4 , Hoard returns this memory to
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malloc (sz)
1. If sz> S/2, allocate the superblock from the OS

andreturn it.
2. i← hash(the current thread).
3. Lock heapi.
4. Scan heapi’s list of superblocks from most full to least

(for the size class corresponding to sz).
5. If there is no superblock with free space,
6. Check heap 0 (the global heap) for a superblock.
7. If there is none,
8. AllocateS bytes as superblocks

and set the owner to heapi.
9. Else,
10. Transfer the superblocks to heapi.
11. u0 ← u0 − s.u
12. ui ← ui + s.u
13. a0 ← a0 − S
14. ai ← ai + S
15. ui ← ui + sz.
16. s.u← s.u+ sz.
17. Unlock heapi.
18. Return a block from the superblock.

free (ptr)
1. If the block is “large”,
2. Free the superblock to the operating system andreturn.
3. Find the superblocks this block comes from and lock it.
4. Lock heapi, the superblock’s owner.
5. Deallocate the block from the superblock.
6. ui ← ui − block size.
7. s.u← s.u− block size.
8. If i = 0, unlock heapi and the superblock

andreturn.
9. If ui < ai −K ∗ S andui < (1− f) ∗ ai,
10. Transfer a mostly-empty superblocks1

to heap 0 (the global heap).
11. u0 ← u0 + s1.u, ui ← ui − s1.u
12. a0 ← a0 + S, ai ← ai − S
13. Unlock heapi and the superblock.

Figure 2: Pseudo-code for Hoard’smalloc and free.

y4 ’s superblock and not to thread 1’s heap. Since Hoard always
uses heapi to satisfy memory allocation requests from threadi,
only thread 2 can reuse that memory. Hoard thus avoids both active
and passive false sharing in these superblocks.

3.4 Algorithms

In this section, we describe Hoard’s memory allocation and deallo-
cation algorithms in more detail. We present the pseudo-code for
these algorithms in Figure 2. For clarity of exposition, we omit
discussion of the management of fullness groups and superblock
recycling.

Allocation

Hoard directly allocates “large” objects (size> S/2) via the virtual
memory system. When a thread on processori calls malloc for
small objects, Hoard locks heapi and gets a block of a superblock
with free space, if there is one on that heap (line 4). If there is not,
Hoard checks the global heap (heap 0) for a superblock. If there
is one, Hoard transfers it to heapi, adding the number of bytes in
use in the superblocks.u to ui, and the total number of bytes in

the superblockS to ai (lines 10–14). If there are no superblocks
in either heapi or heap 0, Hoard allocates a new superblock and
inserts it into heapi (line 8). Hoard then chooses a single block
from a superblock with free space, marks it as allocated, and returns
a pointer to that block.

Deallocation

Each superblock has an “owner” (the processor whose heap it’s
in). When a processor frees a block, Hoard finds its superblock
(through a pointer in the block’s header). (If this block is “large”,
Hoard immediately frees the superblock to the operating system.)
It first locks the superblock and then locks the owner’s heap. Hoard
then returns the block to the superblock and decrementsui. If the
heap is too empty (ui < ai − K ∗ S or ui < (1 − f)ai), Hoard
transfers a superblock that is at leastf empty to the global heap
(lines 10-12). Finally, Hoard unlocks heapi and the superblock.

4. Analytical Results
In this section, we sketch the proofs of bounds on blowup and syn-
chronization. We first define some useful notation. We number the
heaps from 0 toP : 0 is the global heap, and1 throughP are the
per-processor heaps. We adopt the following convention: capital
letters denote maxima and lower-case letters denote current values.
Let A(t) andU(t) denote themaximumamount of memory allo-
cated and in use by the program (“live memory”) after memory
operationt. Let a(t) andu(t) denote thecurrentamount of mem-
ory allocated and in use by the program after memory operationt.
We add a subscript for a particular heap (e.g.,ui(t)) and add a caret
(e.g.,â(t)) to denote the sum for all heapsexceptthe global heap.

4.1 Bounds on Blowup

We now formally define the blowup for an allocator as its worst-
case memory consumption divided by the ideal worst-case memory
consumption for a serial memory allocator (a constant factor times
its maximum memory required [29]):

DEFINITION 1. blowup= O(A(t)/U(t)).

We first prove the following theorem that bounds Hoard’s worst-
case memory consumption:A(t) = O(U(t) + P ). We can show
that the maximum amount of memory in the global and the per-
processor heaps (A(t)) is the same as the maximum allocated into
the per-processor heaps (Â(t)). We make use of this lemma, whose
proof is straightforward but somewhat lengthy (the proof may be
found in our technical report [4]).

LEMMA 1. A(t) = Â(t).

Intuitively, this lemma holds because these quantities are max-
ima; any memory in the global heap was originally allocated into a
per-processor heap. Now we prove the bounded memory consump-
tion theorem:

THEOREM 1. A(t) = O(U(t) + P ).
PROOF. We restate the invariant from Section 3.1 that we main-

tain over all the per-processor heaps:(ai(t) −K ∗ S ≤ ui(t)) ∧
((1− f)ai(t) ≤ ui(t)).

The first inequality is sufficient to prove the theorem. Summing
over allP per-processor heaps gives us

Â(t) ≤
PP
i=1 ui(t) + P ∗K ∗ S . def. ofÂ(t)

≤ Û(t) + P ∗K ∗ S . def. ofÛ(t)

≤ U(t) + P ∗K ∗ S. . Û(t) ≤ U(t)
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Since by the above lemmaA(t) = Â(t), we haveA(t) =
O(U(t) + P ).

Because the number of size classes is constant, this theorem
holds over all size classes. By the definition of blowup above,
and assuming thatP << U(t), Hoard’s blowup isO((U(t) +
P )/U(t)) = O(1). This result shows that Hoard’s worst case
memory consumption is at worst a constant factor overhead that
does not grow with the amount of memory required by the pro-
gram.

Our discipline for using the empty fraction (f ) enables this proof,
so it is clearly a key parameter for Hoard. For reasons we describe
and validate with experimental results in Section 5.5, Hoard’s per-
formance is robust with respect to the choice off .

4.2 Bounds on Synchronization

In this section, we analyze Hoard’s worst-case and discuss expected
synchronization costs. Synchronization costs come in two flavors:
contention for a per-processor heap and acquisition of the global
heap lock. We argue that the first form of contention is not a scal-
ability concern, and that the second form is rare. Further, for com-
mon program behavior, the synchronization costs are low over most
of the program’s lifetime.

Per-processor Heap Contention

While the worst-case contention for Hoard arises when one thread
allocates memory from the heap and a number of other threads free
it (thus all contending for the same heap lock), this case is not par-
ticularly interesting. If an application allocates memory in such
a manner and the amount of work between allocations is so low
that heap contention is an issue, then the application itself is fun-
damentally unscalable. Even if heap access were to be completely
independent, the application itself could only achieve a two-fold
speedup, no matter how many processors are available.

Since we are concerned with providing a scalable allocator for
scalable applications, we can bound Hoard’s worst case for such ap-
plications, which occurs when pairs of threads exhibit the producer-
consumer behavior described above. Eachmalloc and eachfree
will be serialized. Modulo context-switch costs, this pattern results
in at most a two-fold slowdown. This slowdown is not desirable
but it is scalable as it does not grow with the number of processors
(as it does for allocators with one heap protected by a single lock).

It is difficult to establish an expected case for per-processor heap
contention. Since most multithreaded applications use dynamically-
allocated memory for the exclusive use of the allocating thread and
only a small fraction of allocated memory is freed by another thread
[22], we expect per-processor heap contention to be quite low.

Global Heap Contention

Global heap contention arises when superblocks are first created,
when superblocks are transferred to and from the global heap, and
when blocks are freed from superblocks held by the global heap.
We simply count the number of times the global heap’s lock is ac-
quired by each thread, which is an upper-bound on contention. We
analyze two cases: a growing phase and a shrinking phase. We
show that worst-case synchronization for the growing phases is in-
versely proportional to the superblock size and the empty fraction
but we show that the worst-case for the shrinking phase is expen-
sive but only for a pathological case that is unlikely to occur in
practice. Empirical evidence from Section 5 suggests that for most
programs, Hoard will incur low synchronization costs for most of
the program’s execution.

Two key parameters control the worst-case global heap contention
while a per-processor heap is growing:f , the empty fraction, and

S, the size of a superblock. When a per-processor heap is grow-
ing, a thread can acquire the global heap lock at mostk/(f ∗ S/s)
times fork memory operations, wheref is the empty fraction,S
is the superblock size, ands is the object size. Whenever the per-
processor heap is empty, the thread will lock the global heap and
obtain a superblock with at leastf ∗ S/s free blocks. If the thread
then callsmalloc k times, it will exhaust its heap and acquire the
global heap lock at mostk/(f ∗ S/s) times.

When a per-processor heap is shrinking, a thread will first ac-
quire the global heap lock when the release threshold is crossed.
The release threshold could then be crossed on every single call
to free if every superblock is exactlyf empty. Completely freeing
each superblock in turn will cause the superblock to first be released
to the global heap and every subsequentfree to a block in that su-
perblock will therefore acquire the global heap lock. Luckily, this
pathological case is highly unlikely to occur since it requires an
improbable sequence of operations: the program must systemati-
cally free(1 − f) of each superblock and then free every block in
a superblock one at a time.

For the common case, Hoard will incurvery lowcontention costs
for any memory operation. This situation holds when the amount
of live memory remains within the empty fraction of the maximum
amount of memory allocated (and when allfrees are local). John-
stone and Stefanović show in their empirical studies of allocation
behavior that for nearly every program they analyzed, the memory
in use tends to vary within a range that is within a fraction of total
memory currently in use, and this amount often grows steadily [18,
32]. Thus, in the steady state case, Hoard incurs no contention, and
in gradual growth, Hoard incurs low contention.

5. Experimental Results
In this section, we describe our experimental results. We performed
experiments on uniprocessors and multiprocessors to demonstrate
Hoard’s speed, scalability, false sharing avoidance, and low frag-
mentation. We also show that these results are robust with respect
to the choice of the empty fraction. The platform used is a ded-
icated 14-processor Sun Enterprise 5000 with 2GB of RAM and
400MHz UltraSparcs with 4 MB of level 2 cache, running Solaris
7. Except for the Barnes-Hut benchmark, all programs (including
the allocators) were compiled using the GNU C++ compiler at the
highest possible optimization level (-O6). We used GNU C++ in-
stead of the vendor compiler (Sun Workshop compiler version 5.0)
because we encountered errors when we used high optimization
levels. In the experiments cited below, the size of a superblockS is
8K, the empty fractionf is 1/4, the number of superblocksK that
must be free for superblocks to be released is 4, and the base of the
exponential for size classesb is 1.2 (bounding internal fragmenta-
tion to 1.2).

We compare Hoard (version 2.0.2) to the following single and
multiple-heap memory allocators:Solaris, the default allocator pro-
vided with Solaris 7,Ptmalloc[9], the Linux allocator included in
the GNU C library that extends a traditional allocator to use multi-
ple heaps, andMTmalloc, a multiple heap allocator included with
Solaris 7 for use with multithreaded parallel applications. (Sec-
tion 6 includes extensive discussion ofPtmalloc, MTmalloc, and
other concurrent allocators.) The latter two are the only publicly-
available concurrent allocators of which we are aware for the So-
laris platform (for example,LKmalloc is Microsoft proprietary).
We use the Solaris allocator as the baseline for calculating speedups.

We use the single-threaded applications from Wilson and John-
stone, and Grunwald and Zorn [12, 19]:espresso, an optimizer for
programmable logic arrays;Ghostscript, a PostScript interpreter;
LRUsim, a locality analyzer, andp2c, a Pascal-to-C translator. We
chose these programs because they are allocation-intensive and have
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single-threaded benchmarks[12, 19]
espresso optimizer for programmable logic arrays
Ghostscript PostScript interpreter
LRUsim locality analyzer
p2c Pascal-to-C translator

multithreaded benchmarks
threadtest each thread repeatedly allocates

and then deallocates 100,000/P objects
shbench [26] each thread allocates and randomly frees

random-sized objects
Larson [22] simulates a server: each thread allocates

and deallocates objects, and then transfers
some objects to other threads to be freed

active-false tests active false sharing avoidance
passive-false tests passive false sharing avoidance
BEMengine [7] object-oriented PDE solver
Barnes-Hut [1, 2] n-body particle solver

Table 1: Single- and multithreaded benchmarks used in this
paper.

widely varying memory usage patterns. We used the same inputs
for these programs as Wilson and Johnstone [19].

There is as yet no standard suite of benchmarks for evaluating
multithreaded allocators. We know of no benchmarks that specif-
ically stress multithreaded performance of server applications like
web servers1 and database managers. We chose benchmarks de-
scribed in other papers and otherwise published (theLarsonbench-
mark from Larson and Krishnan [22] and theshbenchbenchmark
from MicroQuill, Inc. [26]), two multithreaded applications which
include benchmarks (BEMengine[7] and barnes-hut[1, 2]), and
wrote some microbenchmarks of our own to stress different as-
pects of memory allocation performance (threadtest, active-false,
passive-false). Table 1 describes all of the benchmarks used in this
paper. Table 4 includes their allocation behavior: fragmentation,
maximum memory in use (U ) and allocated (A), total memory re-
quested, number of objects requested, and average object size.

5.1 Speed

Table 2 lists the uniprocessor runtimes for our applications when
linked with Hoard and the Solaris allocator (each is the average
of three runs; the variation between runs was negligible). On av-
erage, Hoard causes a slight increase in the runtime of these ap-
plications (6.2%), but this loss is primarily due to its performance
on shbench. Hoard performs poorly onshbenchbecauseshbench
uses a wide range of size classes but allocates very little memory
(see Section 5.4 for more details). The longest-running application,
LRUsim, runs almost 3% faster with Hoard. Hoard also performs
well on BEMengine(10.3% faster than with the Solaris allocator),
which allocates more memory than any of our other benchmarks
(nearly 600MB).

5.2 Scalability

In this section, we present our experiments to measure scalability.
We measurespeedupwith respect to the Solaris allocator. These
applications vigorously exercise the allocators as revealed by the

1Memory allocation becomes a bottleneck when most pages served
are dynamically generated (Jim Davidson, personal communica-
tion). Unfortunately, the SPECweb99 benchmark [31] performs
very few requests for completely dynamically-generated pages
(0.5%), and most web servers exercise dynamic memory allocation
only when generating dynamic content.

program runtime (sec) change
Solaris Hoard

single-threaded benchmarks
espresso 6.806 7.887 +15.9%
Ghostscript 3.610 3.993 +10.6%
LRUsim 1615.413 1570.488 -2.9%
p2c 1.504 1.586 +5.5%

multithreaded benchmarks
threadtest 16.549 15.599 -6.1%
shbench 12.730 18.995 +49.2%
active-false 18.844 18.959 +0.6%
passive-false 18.898 18.955 +0.3%
BEMengine 678.30 614.94 -10.3%
Barnes-Hut 192.51 190.66 -1.0%
average +6.2%

Table 2: Uniprocessor runtimes for single- and multithreaded
benchmarks.

large difference between the maximum in use and the total memory
requested (see Table 4).

Figure 3 shows that Hoard matches or outperforms all of the
allocators we tested. The Solaris allocator performs poorly over-
all because serial single heap allocators do not scale.MTmalloc
often suffers from a centralized bottleneck.Ptmallocscales well
only when memory operations are fairly infrequent (theBarnes-
Hutbenchmark in Figure 3(d)); otherwise, its scaling peaks at around
6 processors. We now discuss each benchmark in turn.

In threadtest, t threads do nothing but repeatedly allocate and
deallocate100, 000/t 8-byte objects (the threads do not synchro-
nize or share objects). As seen in Figure 3(a), Hoard exhibits linear
speedup, while the Solaris andMTmallocallocators exhibit severe
slowdown. For 14 processors, the Hoard version runs 278% faster
than thePtmallocversion. UnlikePtmalloc, which uses a linked-
list of heaps, Hoard does not suffer from a scalability bottleneck
caused by a centralized data structure.

The shbenchbenchmark is available on MicroQuill’s website
and is shipped with the SmartHeap SMP product [26]. This bench-
mark is essentially a “stress test” rather than a realistic simulation
of application behavior. Each thread repeatedly allocates and frees
a number of randomly-sized blocks in random order, for a total of
50 million allocated blocks. The graphs in Figure 3(b) show that
Hoard scales quite well, approaching linear speedup as the number
of threads increases. The slope of the speedup line is less than ideal
because the large number of different size classes hurts Hoard’s
raw performance. For 14 processors, the Hoard version runs 85%
faster than the next best allocator (Ptmalloc). Memory usage in
shbenchremains within the empty fraction during the entire run so
that Hoard incurs very low synchronization costs, whilePtmalloc
again runs into its scalability bottleneck.

The intent of theLarsonbenchmark, due to Larson and Krishnan
[22], is to simulate a workload for a server. A number of threads
are repeatedly spawned to allocate and free 10,000 blocks rang-
ing from 10 to 100 bytes in a random order. Further, a number
of blocks are left to be freed by a subsequent thread. Larson and
Krishnan observe this behavior (which they call “bleeding”) in ac-
tual server applications, and their benchmark simulates this effect.
The benchmark runs for 30 seconds and then reports the number
of memory operations per second. Figure 3(c) shows that Hoard
scales linearly, attaining nearly ideal speedup. For 14 processors,
the Hoard version runs 18 times faster than the next best alloca-
tor, thePtmallocversion. After an initial start-up phase,Larson
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(a) The Threadtest benchmark.
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(b) The SmartHeap benchmark (shbench).
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(c) Speedup using the Larson benchmark.
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(d) Barnes-Hut speedup.
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(e) BEMenginespeedup. Linking withMTmalloc
caused an exception to be raised.
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(f) BEMenginespeedup for the system solver only.

Figure 3: Speedup graphs.
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remains within its empty fraction for most of the rest of its run
(dropping below only a few times over a 30-second run and over
27 million mallocs) so that Hoard incurs very low synchronization
costs. Despite the fact thatLarsontransfers many objects from one
thread to another, Hoard performs quite well. All of the other allo-
cators fail to scale at all, running slower on 14 processors than on
one processor.

Barnes-Hutis a hierarchicaln-body particle solver included with
the Hood user-level multiprocessor threads library [1, 2], run on
32,768 particles for 20 rounds. This application performs a small
amount of dynamic memory allocation during the tree-building phase.
With 14 processors, all of the multiple-heap allocators provide a
10% performance improvement, increasing the speedup of the ap-
plication from less than 10 to just above 12 (see Figure 3(d)). Hoard
performs only slightly better thanPtmalloc in this case because
this program does not exercise the allocator much. Hoard’s per-
formance is probably somewhat better simply becauseBarnes-Hut
never drops below its empty fraction during its execution.

TheBEMenginebenchmark uses the solver engine from Coyote
Systems’ BEMSolver [7], a 2D/3D field solver that can solve elec-
trostatic, magnetostatic and thermal systems. We report speedup
for the three mostly-parallel parts of this code (equation registra-
tion, preconditioner creation, and the solver). Figure 3(e) shows
that Hoard provides a significant runtime advantage overPtmalloc
and the Solaris allocator (MTmalloccaused the application to raise
a fatal exception). During the first two phases of the program, the
program’s memory usage dropped below the empty fraction only
25 times over 50 seconds, leading to low synchronization overhead.
This application causesPtmalloc to exhibit pathological behavior
that we do not understand, although we suspect that it derives from
false sharing. During the execution of the solver phase of the com-
putation, as seen in Figure 3(f), contention in the allocator is not
an issue, and both Hoard and the Solaris allocator perform equally
well.

5.3 False sharing avoidance

The active-falsebenchmark tests whether an allocator avoids ac-
tively inducing false sharing. Each thread allocates one small ob-
ject, writes on it a number of times, and thenfrees it. The rate of
memory allocation is low compared to the amount of work done,
so this benchmark only tests contention caused by the cache co-
herence mechanism (cache ping-ponging) and not allocator con-
tention. While Hoard scales linearly, showing that it avoids actively
inducing false sharing, bothPtmallocandMTmalloconly scale up
to about 4 processors because they actively induce some false shar-
ing. The Solaris allocator does not scale at all because it actively
induces false sharing for nearly every cache line.

The passive-falsebenchmark tests whether an allocator avoids
both passive and active false sharing by allocating a number of
small objects and giving one to each thread, which immediately
frees the object. The benchmark then continues in the same way as
the active-falsebenchmark. If the allocator does not coalesce the
pieces of the cache line initially distributed to the various threads,
it passively induces false sharing. Figure 4(b) shows that Hoard
scales nearly linearly; the gradual slowdown after 12 processors is
due to program-induced bus traffic. NeitherPtmallocnor MTmal-
loc avoid false sharing here, but the cause could be either active or
passive false sharing.

In Table 3, we present measurements for our multithreaded bench-
marks of the number of objects that could have been responsible
for allocator-induced false sharing (i.e., those objects already in a
superblock acquired from the global heap). In every case, when
the per-processor heap acquired superblocks from the global heap,

program falsely-shared objects
threadtest 0
shbench 0
Larson 0
BEMengine 0
Barnes-Hut 0

Table 3: Possible falsely-shared objects on 14 processors.

the superblocks were empty. These results demonstrate that Hoard
successfully avoids allocator-induced false sharing.

5.4 Fragmentation

We showed in Section 3.1 that Hoard has bounded blowup. In
this section, we measure Hoard’s average case fragmentation. We
use a number of single- and multithreaded applications to evaluate
Hoard’s average-case fragmentation.

Collecting fragmentation information for multithreaded applica-
tions is problematic because fragmentation is a global property.
Updating the maximum memory in use and the maximum memory
allocated would serialize all memory operations and thus seriously
perturb allocation behavior. We cannot simply use the maximum
memory in use for a serial execution because a parallel execution
of a program may lead it to require much more memory than a se-
rial execution.

We solve this problem by collecting traces of memory opera-
tions and processing these traces off-line. We modified Hoard so
that (when collecting traces) each per-processor heap records every
memory operation along with a timestamp (using the SPARC high-
resolution timers viagethrtime()) into a memory-mapped buffer
and writes this trace to disk upon program termination. We then
merge the traces in timestamp order to build a complete trace of
memory operations and process the resulting trace to compute max-
imum memory allocated and required. Collecting these traces re-
sults in nearly a threefold slowdown in memory operations but does
not excessively disturb their parallelism, so we believe that these
traces are a faithful representation of the fragmentation induced by
Hoard.

Single-threaded Applications

We measured fragmentation for the single-threaded benchmarks.
We follow Wilson and Johnstone [19] and report memory allocated
without counting overhead (like per-object headers) to focus on the
allocationpolicyrather than themechanism. Hoard’s fragmentation
for these applications is between 1.05 and 1.2, except forespresso,
which consumes 46% more memory than it requires.Espressois
an unusual program since it uses a large number of different size
classes for a small amount of memory required (less than 300K),
and this behavior leads Hoard to waste space within each 8K su-
perblock.

Multithreaded Applications

Table 4 shows that the fragmentation results for the multithreaded
benchmarks are generally quite good, ranging from nearly no frag-
mentation (1.02) forBEMengineto 1.24 forthreadtest. The anomaly
is shbench. This benchmark uses a large range of object sizes, ran-
domly chosen from 8 to 100, and many objects remain live for the
duration of the program (470K of its maximum 550K objects re-
main in use at the end of the run cited here). These unfreed objects
are randomly scattered across superblocks, making it impossible to
recycle them for different size classes. This extremely random be-
havior is not likely to be representative of real programs [19] but it
does show that Hoard’s method of maintaining one size class per
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(a) Speedup for theactive-falsebenchmark, which fails
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Figure 4: Speedup graphs that exhibit the effect of allocator-induced false sharing.

Benchmark Hoard fragmentation max in use (U ) max allocated (A) total memory # objects average
applications (A/U ) requested requested object size

single-threaded benchmarks
espresso 1.47 284,520 417,032 110,143,200 1,675,493 65.7378
Ghostscript 1.15 1,171,408 1,342,240 52,194,664 566,542 92.1285
LRUsim 1.05 1,571,176 1,645,856 1,588,320 39,109 40.6126
p2c 1.20 441,432 531,912 5,483,168 199,361 27.5037

multithreaded benchmarks
threadtest 1.24 1,068,864 1,324,848 80,391,016 9,998,831 8.04
shbench 3.17 556,112 1,761,200 1,650,564,600 12,503,613 132.00
Larson 1.22 8,162,600 9,928,760 1,618,188,592 27,881,924 58.04
BEMengine 1.02 599,145,176 613,935,296 4,146,087,144 18,366,795 225.74
Barnes-Hut 1.18 11,959,960 14,114,040 46,004,408 1,172,624 39.23

Table 4: Hoard fragmentation results and application memory statistics. We report fragmentation statistics for 14-processor runs of
the multithreaded programs. All units are in bytes.

superblock can yield poor memory efficiency for certain behaviors,
although Hoard still attains good scalable performance for this ap-
plication (see Figure 3(b)).

5.5 Sensitivity Study

We also examined the effect of changing the empty fraction on run-
time and fragmentation for the multithreaded benchmarks. Because
superblocks are returned to the global heap (for reuse by other
threads) when the heap crosses the emptiness threshold, the empty
fraction affects both synchronization and fragmentation. We var-
ied the empty fraction from1/8 to 1/2 and saw very little change
in runtime and fragmentation. We chose this range to exercise the
tension between increased (worst-case) fragmentation and synchro-
nization costs. The only benchmark which is substantially affected
by these changes in the empty fraction is theLarsonbenchmark,
whose fragmentation increases from 1.22 to 1.61 for an empty frac-
tion of 1/2. Table 5 presents the runtime for these programs on 14
processors (we report the number of memory operations per second
for the Larson benchmark, which runs for 30 seconds), and Table 6
presents the fragmentation results. Hoard’s runtime is robust with
respect to changes in the empty fraction because programs tend to
reach a steady state in memory usage and stay within even as small

program runtime (sec)
f = 1/8 f = 1/4 f = 1/2

threadtest 1.27 1.28 1.19
shbench 1.45 1.50 1.44
BEMengine 86.85 87.49 88.03
Barnes-Hut 16.52 16.13 16.41

throughput (memory ops/sec)
Larson 4,407,654 4,416,303 4,352,163

Table 5: Runtime on 14 processors using Hoard with different
empty fractions.

an empty fraction as1/8, as described in Section 4.2.

6. Related Work
While dynamic storage allocation is one of the most studied topics
in computer science, there has been relatively little work on con-
current memory allocators. In this section, we place past work into
a taxonomy of memory allocator algorithms and compare each to
Hoard. We address the blowup and allocator-induced false sharing
characteristics of each of these allocator algorithms and compare
them to Hoard.
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program fragmentation
f = 1/8 f = 1/4 f = 1/2

threadtest 1.22 1.24 1.22
shbench 3.17 3.17 3.16
Larson 1.22 1.22 1.61
BEMengine 1.02 1.02 1.02
Barnes-Hut 1.18 1.18 1.18

Table 6: Fragmentation on 14 processors using Hoard with dif-
ferent empty fractions.

6.1 Taxonomy of Memory Allocator Algorithms

Our taxonomy consists of the following five categories:

Serial single heap.Only one processor may access the heap at a
time (Solaris, Windows NT/2000 [21]).

Concurrent single heap. Many processors may simultaneously op-
erate on one shared heap ([5, 16, 17, 13, 14]).

Pure private heaps. Each processor has its own heap (STL [30],
Cilk [6]).

Private heaps with ownership. Each processor has its own heap,
but memory is always returned to its “owner” processor (MT-
malloc, Ptmalloc[9], LKmalloc[22]).

Private heaps with thresholds.Each processor has its own heap
which can hold a limited amount of free memory (DYNIX
kernel allocator [25], Vee and Hsu [37], Hoard).

Below we discuss these single and multiple-heap algorithms, fo-
cusing on the false sharing and blowup characteristics of each.

Single Heap Allocation

Serial single heapallocators often exhibit extremely low fragmen-
tation over a wide range of real programs [19] and are quite fast
[23]. Since they typically protect the heap with a single lock which
serializes memory operations and introduces contention, they are
inappropriate for use with most parallel multithreaded programs.
In multithreaded programs, contention for the lock prevents alloca-
tor performance from scaling with the number of processors. Most
modern operating systems provide such memory allocators in the
default library, including Solaris and IRIX. Windows NT/2000 uses
64-bit atomic operations on freelists rather than locks [21] which is
also unscalable because the head of each freelist is a central bottle-
neck2. These allocators all actively induce false sharing.

Concurrent single heapallocation implements the heap as a
concurrent data structure, such as a concurrent B-tree [10, 11, 13,
14, 16, 17] or a freelist with locks on each free block [5, 8, 34].
This approach reduces to a serial single heap in the common case
when most allocations are from a small number of object sizes.
Johnstone and Wilson show that for every program they examined,
the vast majority of objects allocated are of only a few sizes [18].
Each memory operation on these structures requires either time lin-
ear in the number of free blocks orO(logC) time, whereC is the
number ofsize classesof allocated objects. A size class is a range
of object sizes that are grouped together (e.g., all objects between
32 and 36 bytes are treated as 36-byte objects). Like serial sin-
gle heaps, these allocators actively induce false sharing. Another
problem with these allocators is that they make use of many locks

2The Windows 2000 allocator and some of Iyengar’s allocators use
one freelist for each object size or range of sizes [13, 14, 21]

or atomic update operations (e.g.,compare-and-swap), which are
quite expensive.

State-of-the-art serial allocators are so well engineered that most
memory operations involve only a handful of instructions [23]. An
uncontendedlock acquire and release accounts for about half of the
total runtime of these memory operations. In order to be competi-
tive, a memory allocator can only acquire and release at most two
locks in the common case, or incur three atomic operations. Hoard
requires only one lock for eachmalloc and two for eachfree and
each memory operation takes constant (amortized) time (see Sec-
tion 3.4).

Multiple-Heap Allocation

We describe three categories of allocators which all use multiple-
heaps. The allocators assign threads to heaps either by assigning
one heap to every thread (using thread-specific data) [30], by using
a currently unused heap from a collection of heaps [9], round-robin
heap assignment (as inMTmalloc, provided with Solaris 7 as a re-
placement allocator for multithreaded applications), or by provid-
ing a mapping function that maps threads onto a collection of heaps
(LKmalloc [22], Hoard). For simplicity of exposition, we assume
that there is exactly one thread bound to each processor and one
heap for each of these threads.

STL’s (Standard Template Library)pthreadalloc, Cilk 4.1, and
many ad hoc allocators usepure private heapsallocation [6, 30].
Each processor has its own per-processor heap that it uses for every
memory operation (the allocatormallocs from its heap andfrees to
its heap). Each per-processor heap is “purely private” because each
processor never accesses any other heap for any memory operation.
After one thread allocates an object, a second thread can free it; in
pure private heaps allocators, this memory is placed in the second
thread’s heap. Since parts of the same cache line may be placed on
multiple heaps, pure private-heaps allocators passively induce false
sharing. Worse, pure private-heaps allocators exhibit unbounded
memory consumption given a producer-consumer allocation pat-
tern, as described in Section 2.2. Hoard avoids this problem by
returning freed blocks to the heap that owns the superblocks they
belong to.

Private heaps with ownershipreturns free blocks to the heap that
allocated them. This algorithm, used byMTmalloc, Ptmalloc [9]
andLKmalloc[22], yieldsO(P ) blowup, whereas Hoard hasO(1)
blowup. Consider a round-robin style producer-consumer program:
each processori allocatesK blocks and processor(i + 1)modP
frees them. The program requires onlyK blocks but the alloca-
tor will allocateP ∗ K blocks (K on allP heaps).Ptmallocand
MTmalloccan actively induce false sharing (different threads may
allocate from the same heap).LKmalloc’s permanent assignment
of large regions of memory to processors and its immediate return
of freed blocks to these regions, while leading toO(P ) blowup,
should have the advantage of eliminating allocator-induced false
sharing, although the authors did not explicitly address this issue.
Hoard explicitly takes steps to reduce false sharing, although it can-
not avoid it altogether, while maintainingO(1) blowup.

BothPtmallocandMTmallocalso suffer from scalability bottle-
necks. InPtmalloc, eachmalloc chooses the first heap that is not
currently in use (caching the resulting choice for the next attempt).
This heap selection strategy causes substantial bus traffic which
limits Ptmalloc’s scalability to about 6 processors, as we show in
Section 5. MTmalloc performs round-robin heap assignment by
maintaining a “nextHeap” global variable that is updated by every
call to malloc. This variable is a source of contention that makes
MTmallocunscalable and actively induces false sharing. Hoard has
no centralized bottlenecks except for the global heap, which is not a
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Allocator algorithm fast? scalable? avoids blowup
false sharing?

serial single heap yes no no O(1)
concurrent single heap no maybe no O(1)
pure private heaps yes yes no unbounded
private heaps w/ownership

Ptmalloc[9] yes yes no O(P )
MTmalloc yes no no O(P )

LKmalloc[22] yes yes yes O(P )
private heaps w/thresholds
Vee and Hsu, DYNIX[25, 37] yes yes no O(1)

Hoard yes yes yes O(1)

Table 7: A taxonomy of memory allocation algorithms discussed in this paper.

frequent source of contention for reasons described in Section 4.2.
The DYNIX kernel memory allocator by McKenney and Sling-

wine [25] and the single object-size allocator by Vee and Hsu [37]
employ aprivate heaps with thresholdsalgorithm. These allo-
cators are efficient and scalable because they move large blocks
of memory between a hierarchy of per-processor heaps and heaps
shared by multiple processors. When a per-processor heap has
more than a certain amount of free memory (the threshold), some
portion of the free memory is moved to a shared heap. This strat-
egy also bounds blowup to a constant factor, since no heap may
hold more than some fixed amount of free memory. The mecha-
nisms that control this motion and the units of memory moved by
the DYNIX and Vee and Hsu allocators differ significantly from
those used by Hoard. Unlike Hoard, both of these allocators pas-
sively induce false sharing by making it very easy for pieces of
the same cache line to be recycled. As long as the amount of free
memory does not exceed the threshold, pieces of the same cache
line spread across processors will be repeatedly reused to satisfy
memory requests. Also, these allocators are forced to synchronize
every time the threshold amount of memory is allocated or freed,
while Hoard can avoid synchronization altogether while the empti-
ness of per-processor heaps is within the empty fraction. On the
other hand, these allocators do avoid the two-fold slowdown that
can occur in the worst-case described for Hoard in Section 4.2.

Table 7 presents a summary of the above allocator algorithms,
along with their speed, scalability, false sharing and blowup char-
acteristics. As can be seen from the table, the algorithms closest
to Hoard are Vee and Hsu, DYNIX, andLKmalloc. The first two
fail to avoid passively-induced false sharing and are forced to syn-
chronize with a global heap after each threshold amount of memory
is consumed or freed, while Hoard avoids false sharing and is not
required to synchronize until the emptiness threshold is crossed or
when a heap does not have sufficient memory.LKmallochas simi-
lar synchronization behavior to Hoard and avoids allocator-induced
false sharing, but hasO(P ) blowup.

7. Future Work
Although the hashing method that we use has so far proven to be
an effective mechanism for assigning threads to heaps, we plan to
develop an efficient method that can adapt to the situation when
two concurrently-executing threads map to the same heap.

While we believe that Hoard improves program locality in var-
ious ways, we have yet to quantitatively measure this effect. We
plan to use both cache and page-level measurement tools to evalu-
ate and improve Hoard’s effect on program-level locality.

We are also looking at ways to remove the one size class per
superblock restriction. This restriction is responsible for increased
fragmentation and a decline in performance for programs which

allocate objects from a wide range of size classes, likeespresso
andshbench.

Finally, we are investigating ways of improving performance of
Hoard on cc/NUMA architectures. Because the unit of cache coher-
ence on these architectures is an entire page, Hoard’s mechanism
of coalescing to page-sized superblocks appears to be very impor-
tant for scalability. Our preliminary results on an SGI Origin 2000
show that Hoard scales to a substantially larger number of proces-
sors, and we plan to report these results in the future.

8. Conclusion
In this paper, we have introduced the Hoard memory allocator.
Hoard improves on previous memory allocators by simultaneously
providing four features that are important for scalable application
performance: speed, scalability, false sharing avoidance, and low
fragmentation. Hoard’s novel organization of per-processor and
global heaps along with its discipline for moving superblocks across
heaps enables Hoard to achieve these features and is the key con-
tribution of this work. Our analysis shows that Hoard has provably
bounded blowup and low expected case synchronization. Our ex-
perimental results on eleven programs demonstrate that in practice
Hoard has low fragmentation, avoids false sharing, and scales very
well. In addition, we show that Hoard’s performance and fragmen-
tation are robust with respect to its primary parameter, the empty
fraction. Since scalable application performance clearly requires
scalable architecture and runtime system support, Hoard thus takes
a key step in this direction.
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