
A simple totally ordered broadcast protocol

Benjamin Reed
Yahoo! Research

Santa Clara, CA - USA
breed@yahoo-inc.com

Flavio P. Junqueira
Yahoo! Research

Barcelona, Catalunya - Spain
fpj@yahoo-inc.com

ABSTRACT
This is a short overview of a totally ordered broadcast pro-
tocol used by ZooKeeper, called Zab. It is conceptually
easy to understand, is easy to implement, and gives high
performance. In this paper we present the requirements
ZooKeeper makes on Zab, we show how the protocol is used,
and we give an overview of how the protocol works.

1. INTRODUCTION
At Yahoo! we have developed a high-performance highly-

available coordination service called ZooKeeper [9] that al-
lows large scale applications to perform coordination tasks
such as leader election, status propagation, and rendezvous.
This service implements a hierarchical space of data nodes,
called znodes, that clients use to implement their coordina-
tion tasks. We have found the service to be flexible with per-
formance that easily meets the production demands of the
web-scale, mission critical applications we have at Yahoo!.
ZooKeeper foregoes locks and instead implements wait-free
shared data objects with strong guarantees on the order of
operations over these objects. Client libraries take advan-
tage of these guarantees to implement their coordination
tasks. In general, one of the main premises of ZooKeeper
is that order of updates is more important to applications
than other typical coordination techniques such as blocking.

Embedded into ZooKeeper is a totally ordered broadcast
protocol: Zab. Ordered broadcast is crucial when imple-
menting our client guarantees; it is also necessary to main-
tain replicas of the ZooKeeper state at each ZooKeeper server.
These replicas stay consistent using our totally ordered broad-
cast protocol, such as with replicated state-machines [13].
This paper focuses on the requirements ZooKeeper makes
on this broadcast protocol and an overview of its implemen-
tation.

A ZooKeeper service usually consists of three to seven ma-
chines. Our implementation supports more machines, but
three to seven machines provide more than enough perfor-
mance and resilience. A client connects to any of the ma-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

chines providing the service and always has a consistent view
of the ZooKeeper state. The service tolerates up to f crash
failures, and it requires at least 2f + 1 servers.

Applications use ZooKeeper extensively and have tens
to thousands of clients accessing it concurrently, so we re-
quire high throughput. We have designed ZooKeeper for
workloads with ratios of read to write operations that are
higher than 2:1; however, we have found that ZooKeeper’s
high write throughput allows it to be used for some write
dominant workloads as well. ZooKeeper provides high read
throughput by servicing the reads from the local replica of
the ZooKeeper state at each server. As a consequence, both
fault tolerance and read throughput scales by adding servers
to the service. Write throughput does not scale by adding
servers; instead it is limited by the throughput of the broad-
cast protocol, thus we need a broadcast protocol with high-
throughput.

Request
Processor

Atomic
Broadcast

Replicated
Database

Write
Request

Response

ZooKeeper Service

txn

txn

Read
Request

Figure 1: The logical components of the ZooKeeper
service.

Figure 1 shows the logical makeup of the ZooKeeper ser-
vice. Read requests are serviced from the local database
containing the ZooKeeper state. Write requests are trans-
formed from ZooKeeper requests to idempotent transactions
and sent through Zab before a response is generated. Many
ZooKeeper write requests are conditional in nature: a zn-
ode can only be deleted if it does not have any children; a
znode can be created with a name and a sequence number
appended to it; a change to data will only be applied if it
is at an expected version. Even the non-conditional write
requests modify meta data, such as version numbers, in a
ways that are not idempotent.

By sending all updates through a single server, referred
to as the leader, we transform non-idempotent requests into
idempotent transactions. We use the term transaction to
denote the idempotent version of a request throughout this
paper. The leader can perform the transformation because
it has a perfect view of the future state of the replicated

database and can calculate the state of the new record.
The idempotent transaction is a record of this new state.
ZooKeeper takes advantage of the idempotent transactions
in many ways that are out of the scope of this paper, but
the idempotent nature of our transactions also allows us to
relax an ordering requirement of our broadcast protocol dur-
ing recovery.

2. REQUIREMENTS
We assume a set of processes that both implement the

atomic broadcast protocol and use it. To guarantee the cor-
rect transformation into idempotent requests in ZooKeeper,
it is necessary that there is a single leader at a time, so we
we enforce that there is one such a process through the pro-
tocol implementation. We discuss it more when we present
more detail of the protocol.

ZooKeeper makes the following requirements on the broad-
cast protocol:

Reliable delivery If a message, m, is delivered by one
server, then it will be eventually delivered by all cor-
rect servers.

Total order If message a is delivered before message b by
one server, then every server that delivers a and b de-
livers a before b.

Causal order If message a causally precedes message b and
both messages are delivered, then a must be ordered
before b.

For correctness, ZooKeeper additionally requires the fol-
lowing prefix property:

Prefix property: If m is the last message delivered for a
leader L, any message proposed before m by L must
also be delivered;

Note that a process might be elected multiple times. Each
time, however, counts as a different leader for the purposes
of this prefix property.

With these three guarantees we can maintain correct repli-
cas of the ZooKeeper database:

1. The reliability and total order guarantees ensure that
all of the replicas have a consistent state;

2. The causal order ensures that the replicas have state
correct from the perspective of the application using
Zab;

3. The leader proposes updates to the database based on
requests received.

It is important to observe that there are two types of
causal relationships taken into account by Zab:

1. If two messages, a and b, are sent by the same server
and a is proposed before b, we say that a causally pre-
cedes b;

2. Zab assumes a single leader server at a time that can
commit proposals. If a leader changes, any previously
proposed messages causally precede messages proposed
by the new leader.

Causal violation example.
To show the problems caused by violating the sec-
ond dimension of our causal relationship consider
the following scenario:

• A ZooKeeper client C1 requests to set a zn-
ode /a to 1 which will be transformed into
a message, w1, that contains (“/a”, “1”, 1),
where the tuple represents path, value, and
resulting version of the znode.

• C1 then requests to set /a to 2 which will be
transformed into a message, w2, that contains
(“/a”, “2”, 2);

• L1 proposes and delivers w1, but it is only
able to issue w2 to itself before failing;

• A new leader L2 takes over.

• A client C2 requests to set /a to 3 condi-
tioned on a being at version 1, which will be
transformed into a message, w3, that contains
(“/a”, “3”, 2);

• L2 proposes and delivers w3.

In this scenario, the client receives a successful re-
sponse to w1, but an error for w2 because of the
leader failure. If eventually L1 recovers, regains
leadership, and attempts to deliver the proposal for
w2, the causal ordering of the client requests will be
violated and the replicated state will be incorrect.

Our failure model is crash-fail with stateful recovery. We
do not assume synchronized clocks, but we do assume that
servers perceive time pass at approximately the same rate.
(We use timeouts to detect failures.) The processes that
make up Zab have persistent state, so processes can restart
after a failure and recover using the persistent state. This
means a process can have state that is partially valid such
as missing more recent transactions or, more problematic,
the process may have transactions that were never delivered
earlier and now must be skipped.

We provision to handle f failures, but we also need to han-
dle correlated recoverable failures, for example power out-
ages. To recover from these failures we require that messages
are recorded on the disk media of a quorum of disks be-
fore a message is delivered. (Very non-technical, pragmatic,
operations-oriented reasons prevent us from incorporating
devices like UPS devices, redundant/dedicated networking
devices, and NVRAMs into our design.)

Although we do not assume Byzantine failures, we do de-
tect data corruption using digests. We also add extra meta-
data to protocol packets and use them for sanity checks.
We abort the server process if we detect data corruption or
sanity checks fail.

Practical issues of independent implementations of operat-
ing environments and of the protocols themselves make the
realization of fully Byzantine tolerant systems impractical
for our application. It has also been shown that achieving
truly reliable independent implementations requires more
than just programming resources [11]. To date, most of
our production problems have been either the result of im-
plementation bugs that affect all replicas or problems that

are outside the implementation scope of Zab, but affect Zab,
such as network misconfiguration.

ZooKeeper uses an in-memory database and stores trans-
action logs and periodic snapshots on disk. Zab’s trans-
action log doubles as the database write-ahead transaction
log so that a transaction will only be written to the disk
once. Since the database is in-memory and we use gigabit
interface cards, the bottleneck is the disk I/O on the writes.
To mitigate the disk I/O bottleneck we write transactions
in batches so that we can record multiple transactions in a
single write to the disk. This batching happens at the repli-
cas not at the the protocol level, so the implementation is
much closer to group commits [4, 6] from databases than
message packing [5]. We chose to not use message packing
to minimize latency, while still getting most of the benefits
of packing through batched I/O to the disk.

Our crash-fail with stateful recovery model means that
when a server recovers, it is going to read in its snapshot
and replay all delivered transactions after that snapshot.
Thus, during recovery the atomic broadcast does not need
to guarantee at most once delivery. Our use of idempotent
transactions means that multiple delivery of a transaction
is fine as long as on restart order is preserved. This is a
relaxation of the total order requirement. Specifically, if a is
delivered before b and after a failure a is redelivered, b will
also be redelivered after a.

Other performance requirements we have are:
Low latency: ZooKeeper is used extensively by applica-

tions and our users expect low response times.
Bursty high throughput: Applications using ZooKeeper

usually have read-dominant workloads, but occasion-
ally radical reconfigurations occur that cause large spikes
in write throughput.

Smooth failure handling: If a server fails that is not the
leader and there is still a quorum of correct servers,
there should be no service interruption.

3. WHY ANOTHER PROTOCOL
Reliable broadcast protocols can present different seman-

tics depending on the application requirements. For exam-
ple, Birman and Joseph propose two primitives, ABCAST
and CBCAST, that satisfy total order and causal order, re-
spectively [2]. Zab also provides causal and total ordering
guarantees.

A good protocol candidate in our case is Paxos [12]. Paxos
has a number of important properties, such as guarantee-
ing safety despite the number of process failures, allowing
processes to crash and recover, and enabling operations to
commit within three communication steps under realistic as-
sumptions. We observe that there are a couple of realistic
assumptions we can make that enable us to simplify Paxos
and obtain high throughput. First, Paxos tolerates message
losses and reordering of messages. By using TCP to commu-
nicate between pairs of servers, we can guarantee that deliv-
ered messages are delivered in FIFO order, which enables us
to satisfy per proposer causality even when server processes
have multiple outstanding proposed messages. Paxos, how-
ever, does not directly guarantee causality because it does
not require FIFO channels.

Proposers are the agents proposing values for the differ-
ent instances in Paxos. To guarantee progress, there must be
a single proposer proposing, otherwise proposers may con-
tend forever on a given instance. Such an active proposer

is a leader. When Paxos recovers from a leader failure, the
new leader makes sure all partially delivered messages are
fully delivered and then resumes proposals from the instance
number the old leader left off. Because multiple leaders can
propose a value for a given instance two problems arise.
First, proposals can conflict. Paxos uses ballots to detect
and resolve conflicting proposals. Second, it is not enough
to know that a given instance number has been commit-
ted, processes must also be able to figure out which value
has been committed. Zab avoids both of these problems
by ensuring that there is only one message proposal for a
given proposal number. This obviates the need for ballots
and simplifies recovery. In Paxos, if a server believes it is
a leader, it will use a higher ballot to take over leadership
from a previous leader. However, in Zab a new leader can-
not take over leadership until a quorum of servers abandon
the previous leader.

An alternative way of obtaining high throughput is by lim-
iting the protocol message complexity per broadcast mes-
sage such as with the Fixed-Sequencer Ring (FSR) proto-
col [8]. Throughput does not decrease with FSR as the
system grows, but latency does increase with the number
of processes, which is inconvenient in our environment. Vir-
tual synchrony also enables high throughput when groups
are stable for long enough [1]. However, any server failure
triggers a reconfiguration of the service, thus causing brief
service interruptions during such reconfigurations. More-
over, a failure detector in such systems has to monitor all
servers. The reliability of such a failure detector is crucial
for the stability and speed of reconfiguration. Leader-based
protocols also rely upon failure detectors for liveness, but
such a failure detector only monitors one server at a time,
which is the leader. As we discuss in the next section, we
do not use fixed quorums or groups for writes and maintain
the service availability as long as the leader does not fail.

Our protocol has a fixed sequencer, according to the clas-
sification of Defago et al. [3], that we call the leader. Such
a leader is elected through a leader election algorithm and
synchronized with a quorum of other servers, called follow-
ers. Since the leader has to manage messages to all the
followers this decision of a fixed sequencer distributes load
unevenly across the servers that compose the system with
respect to the broadcast protocol. We have taken this ap-
proach, though, for the following reasons:

• Clients can connect to any server, and servers have to
serve read operations locally and maintain information
about the session of a client. This extra load of a
follower process (a process that is not a leader) makes
the load more evenly distributed;

• The number of servers involved is small. This means
that the network communication overhead does not
become the bottleneck that can affect fixed sequencer
protocols;

• Implementing more complex approaches was not nec-
essary as this simple one provides enough performance.

Having a moving sequencer, for example, increases the
complexity of the implementation as we have to handle prob-
lems such as losing the token. Also, we opted to move
away from models based on communication history, such
as sender-based ones, to avoid the quadratic message com-
plexity of such protocols. Destination agreement protocols
suffer from a similar problem [8].

Using a leader requires that we recover from leader failures

to guarantee progress. We use techniques related to view
changes such as in the protocol of Keidar and Dolev [10].
Different from their protocol, we do not operate using group
communication. If a new server joins or leaves (perhaps by
crashing), then we do no cause a view change, unless such
an event corresponds to the leader crashing.

4. PROTOCOL
Zab’s protocol consists of two modes: recovery and broad-

cast. When the service starts or after a leader failure, Zab
transitions to recovery mode. Recovery mode ends when a
leader emerges and a quorum of servers have synchronized
their state with the leader. Synchronizing their state con-
sists of guaranteeing that the leader and new server have the
same state.

Once a leader has a quorum of synchronized followers,
it can begin to broadcast messages. As we mentioned in
the introduction, the ZooKeeper service itself uses a leader
to process requests. The leader is the server that executes
a broadcast by initiating the broadcast protocol, and any
server other than the leader that needs to broadcast a mes-
sage first forwards it to the leader. By using the leader that
emerges from the recovery mode as both the leader to pro-
cess write requests and to coordinate the broadcast protocol,
we eliminate the network latency of forwarding messages to
broadcast from the write request leader to the broadcast
protocol leader.

Once a leader has synchronized with a quorum of follow-
ers, it begins to broadcast messages. If a Zab server comes
online while a leader is actively broadcasting messages, the
server will start in recovery mode, discover and synchro-
nize with the leader, and start participating in the message
broadcasts. The service remains in broadcast mode until the
leader fails or it no longer has a quorum of followers. Any
quorum of followers are sufficient for a leader and the ser-
vice to stay active. For example, a Zab service made up of
three servers where one is a leader and the two other servers
are followers will move to broadcast mode. If one of the fol-
lowers die, there will be no interruption in service since the
leader will still have a quorum. If the follower recovers and
the other dies, there will still be no service interruption.

Figure 2: The protocol for message delivery. Mul-
tiple instances of this protocol can be running con-
currently. The message is delivered once the leader
issues the COMMIT.

4.1 Broadcast
The protocol we use while the atomic broadcast service

is operational, called broadcast mode, resembles a simple a

two-phase commit [7]: a leader proposes a request, collects
votes, and finally commits. Figure 2 illustrates the flow of
messages with our protocol. We are able to simplify the
two-phase commit protocol because we do not have aborts;
followers either acknowledge the leader’s proposal or they
abandon the leader. The lack of aborts also mean that we
can commit once a quorum of servers ack the proposal rather
than waiting for all servers to respond. This simplified two-
phase commit by itself cannot handle leader failures, so we
will add recovery mode to handle leader failures.

The broadcast protocol uses FIFO (TCP) channels for all
communications. By using FIFO channels, preserving the
ordering guarantees becomes very easy. Messages are deliv-
ered in order through FIFO channels; as long as messages
are processed as they are received, order is preserved.

The leader broadcasts a proposal for a message to be deliv-
ered. Before proposing a message the leader assigns a mono-
tonically increasing unique id, called the zxid. Because Zab
preserves causal ordering, the delivered messages will also be
ordered by their zxids. Broadcasting consists of putting the
proposal with the message attached into the outgoing queue
for each follower to be sent through the FIFO channel to the
follower. When a follower receives a proposal, it writes it to
disk, batching when it can, and sends an acknowledgement
to the leader as soon as the proposal is on the disk media.
When a leader receives ACKs from a quorum, the leader will
broadcast a COMMIT and deliver the message locally. Fol-
lowers deliver the message when they receive the COMMIT
from the leader.

Note that the leader does not have to send the COM-
MIT if the followers broadcast the ACKs to each other.
Not only does this modification increases the amount of net-
work traffic, but it also requires a complete communication
graph rather than the simple star topology, which is easier
to manage from the point of view of starting TCP connec-
tions. Maintaining this graph and tracking the ACKs at the
clients was also deemed an unacceptable complication in our
implementation.

4.2 Recovery
This simple broadcast protocol works great until the leader

fails or loses a quorum of followers. To guarantee progress,
a recovery procedure is necessary to elect a new leader and
bring all servers to a correct state. For leader election we
need an algorithm that succeeds with high probability to
guarantee liveness. The leader election protocol enables not
only the leader to learn that it is the leader, but also a
quorum to agree upon this decision. If the election phase
completes erroneously, servers will not make progress, they
eventually timeout, and restart the leader election. In our
implementation we have two different implementations of
leader election. The fastest completes leader election in just
a few hundreds of milliseconds if there is a quorum of correct
servers.

Part of the complication of the recovery procedure is the
sheer number of proposals that can be in flight at a given
time. The maximum number of in-flight proposals is a con-
figurable option, but the default is one thousand. To enable
such a protocol to work despite failures of the leader there
are two specific guarantees we need to make: we must never
forget delivered messages and we need to let go of messages
that are skipped.

A message that gets delivered on one machine must be

Figure 3: An example of a message that cannot be
forgotten. Server 1 is the leader. It fails, and it was
the only only server to see the COMMIT of message
2. The broadcast protocol must ensure that message
2 gets committed on all correct servers.

Figure 4: An example of a message that must be
skipped. Server 1 has a proposal for message 3 that
was not committed. Since later proposals have been
committed message 3 must be forgotten.

delivered on all even if that machine fails. This situation
can easily occur if the leader commits a message and then
fails before the COMMIT reaches any other server as shown
in Figure 3. Because the leader committed the message, a
client could have seen the result of the transaction in the
message, so the transaction must be delivered to all other
servers eventually so that the client sees a consistent view
of the service.

Conversely, a skipped message must remain skipped. Again,
this situation can easily occur if a proposal gets generated
by a leader and the leader fails before anyone else sees the
proposal. For example, in Figure 3 no other server saw pro-
posal number 3, so in Figure 4 when server 1 comes back
up it needs to be sure to throw away proposal number 3
when it reintegrates with the system. If server 1 became a
new leader and committed 3 after messages 100000001 and
100000002 have been delivered, we would violate our order-
ing guarantees.

The problem of remembering delivered messages is han-
dled with a simple tweak of the leader election protocol. If
the leader election protocol guarantees that the new leader
has the highest proposal number in a quorum of servers, a
newly elected leader will also have all committed messages.
Before proposing any new messages a newly elected leader
first makes sure that all messages that are in its transac-
tion log have been proposed to and committed by a quo-
rum of followers. Note that having the new leader being
a server process with highest zxid is an optimization as a
newly elected leader in this case does not need to find out
from a group of followers which one contains the highest zxid
and fetch missing transactions.

All servers that are operating correctly will either be a
leader or be following a leader. The leader ensures that
its followers have seen all the proposals and have delivered
all that have been committed. It accomplishes this task by
queuing to a newly connected follower any PROPOSAL it
has that the follower has not seen, and then queuing a COM-
MIT for all such proposals up to the last message committed.
After all such messages have been queued, the leader adds
the follower to the broadcast list for future PROPOSALs
and ACKs.

Skipping messages that have been proposed but never de-
livered is also simple to handle. In our implementation the
zxid is a 64-bit number with the lower 32-bits used as a
simple counter. Each proposal increments the counter. The
high order 32-bit is the epoch. Each time a new leader takes
over it will get the epoch of the highest zxid it has in its
log, increment the epoch, and using a zxid with the epoch
bits set to this new epoch and the counter set to zero. Us-
ing epochs to mark leadership changes and requiring that a
quorum of servers recognize a server as the leader for that
epoch, we avoid the possibility of multiple leaders issuing
different proposals with the same zxid. One advantage of
this scheme is that we can skip instances upon a leader fail-
ure, thus speeding up and simplifying the recovery process.
If a server that has been down is restarted with a proposal
that was never delivered from a previous epoch, it is not able
to be a new leader since every possible quorum of servers has
a server with a proposal from a newer epoch and therefore
a higher zxid. When this server connects as a follower, the
leader checks the last committed proposal for the epoch of
the follower’s latest proposal and tell the follower to trun-
cate its transaction log (i.e., forget) to the last committed

proposal for that epoch. In Figure 4 when server 1 connects
to the leader, the leader tells it to purge proposal 3 from its
transaction log.

5. FINAL REMARKS
We were able to implement this protocol quickly and it

has proven to be robust in production. Most important,
we met our goals of high throughput and low latency. On
a non-saturated system, latencies are measured in millisec-
onds since the typical latencies will correspond to 4 times
the packet transmission latency irrespective of the number
of servers. Bursty loads are also handled gracefully since
messages are committed when a quorum ack proposals. A
slow server will not affect bursty throughput since fast quo-
rums of servers that do not contain the slow server can ack
the messages. Finally, since the leader will commit mes-
sages as soon as any quorum acks a proposal followers that
fail do not affect the availability or even the throughput of
the service as long as there is a quorum of correct servers.

As result of using efficient implementations of these proto-
cols, we have an implementation of the system that reaches
tens to hundreds of thousands of operations per second for
workload mixes of 2:1 read-to-write ratios and higher. This
system is currently in production use, and it is used by large
applications such as the Yahoo! crawler and the Yahoo! ad-
vertisement system.

Acknowledgements
We would to thank both of our reviewers for useful com-
ments, and Robbert van Renesse for a very nice offline dis-
cussion on Zab which helped us to clarify several points.

6. REFERENCES
[1] K. Birman and T. Joseph. Exploiting virtual

synchrony in distributed systems. SIGOPS Oper. Syst.
Rev., 21(5):123–138, 1987.

[2] K. P. Birman and T. A. Joseph. Reliable
communication in the presence of failures. ACM
Trans. Comput. Syst., 5(1):47–76, 1987.

[3] X. Défago, A. Schiper, and P. Urbán. Total order
broadcast and multicast algorithms: Taxonomy and
survey. ACM Comput. Surv., 36(4):372–421, 2004.

[4] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro,
M. R. Stonebraker, and D. Wood. Implementation
techniques for main memory database systems.
SIGMOD Rec., 14(2):1–8, 1984.

[5] R. Friedman and R. van Renesse. Packing messages as
a tool for boosting the performance of total ordering
protocols. In HPDC, pages 233–242, 1997.

[6] D. Gawlick and D. Kinkade. Varieties of concurrency
control in ims/vs fast path. IEEE Database Eng.
Bull., 8(2):3–10, 1985.

[7] J. Gray. Notes on data base operating systems. In
Operating Systems, An Advanced Course, pages
393–481, London, UK, 1978. Springer-Verlag.

[8] R. Guerraoui, R. R. Levy, B. Pochon, and V. Quema.
High throughput total order broadcast for cluster
environments. In DSN ’06: Proceedings of the
International Conference on Dependable Systems and
Networks, pages 549–557, Washington, DC, USA,
2006. IEEE Computer Society.

[9] http://hadoop.apache.org/zookeeper. Zookeeper
project page, 2008.

[10] I. Keidar and D. Dolev. Totally ordered broadcast in
the face of network partitions. In D. R. Avresky,
editor, Dependable Network Computing, chapter 3,
pages 51–75. Kluwer Academic, 2000.

[11] J. C. Knight and N. G. Leveson. An experimental
evaluation of the assumption of independence in
multiversion programming. IEEE Trans. Softw. Eng.,
12(1):96–109, 1986.

[12] L. Lamport. The part-time parliament. ACM Trans.
Comput. Syst., 16(2):133–169, 1998.

[13] F. B. Schneider. Implementing fault-tolerant services
using the state machine approach: a tutorial. ACM
Comput. Surv., 22(4):299–319, 1990.

