
Ranking Relevance in Yahoo Search

Dawei Yin†, Yuening Hu†, Jiliang Tang†, Tim Daly Jr., Mianwei Zhou, Hua Ouyang, Jianhui Chen,
Changsung Kang, Hongbo Deng, Chikashi Nobata, Jean-Marc Langlois, Yi Chang†

Relevance Science, Yahoo! Inc.
†{daweiy,ynhu,jlt,yichang}@yahoo-inc.com

ABSTRACT
Search engines play a crucial role in our daily lives. Relevance is
the core problem of a commercial search engine. It has attracted
thousands of researchers from both academia and industry and has
been studied for decades. Relevance in a modern search engine
has gone far beyond text matching, and now involves tremendous
challenges. The semantic gap between queries and URLs is the
main barrier for improving base relevance. Clicks help provide
hints to improve relevance, but unfortunately for most tail queries,
the click information is too sparse, noisy, or missing entirely. For
comprehensive relevance, the recency and location sensitivity of
results is also critical.

In this paper, we give an overview of the solutions for relevance
in the Yahoo search engine. We introduce three key techniques
for base relevance – ranking functions, semantic matching features
and query rewriting. We also describe solutions for recency sen-
sitive relevance and location sensitive relevance. This work builds
upon 20 years of existing efforts on Yahoo search, summarizes the
most recent advances and provides a series of practical relevance
solutions. The reported performance is based on Yahoo’s commer-
cial search engine, where tens of billions of URLs are indexed and
served by the ranking system.

Keywords
learning to rank; query rewriting; semantic matching; deep learning

1. INTRODUCTION
The continuing growth of the web consistently expands the in-

formation pool available to us and we must increasingly rely on
search engines to find useful web documents. Indeed, search en-
gines play an ever more crucial role in information consumption in
our daily lives. Meanwhile, search engines are one of the most suc-
cessful businesses in industry, where the sponsored search model is
a predominant form of online advertising.

Ranking relevance has been the most critical problem since the
birth of web search. As web content was explosively generated,
modern search engines have been required to efficiently and effec-
tively retrieve the relevant URLs from a prohibitively large corpus.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’16, August 13-17, 2016, San Francisco, CA, USA

c� 2016 ACM. ISBN 978-1-4503-4232-2/16/08. . . $15.00
DOI: http://dx.doi.org/10.1145/2939672.2939677

This raises tremendous challenges for both industrial and academic
researchers. Early works on search relevance concentrated on text
matching between queries and web documents such as BM25 [28],
probabilistic retrieval model [22], and vector space model [22].
Subsequently, user behavior demonstrated great potential for rel-
evance improvement in the industrial setting, and user behavior
modeling has been extensively explored for improving search rele-
vance, e.g., click modeling [9, 20, 19, 31, 26].

The advancing state of the art for search engines presents new
relevance challenges, which drives us to think beyond direct text
matching and click modeling. First, the semantic gap between
queries and web documents is a major barrier for improving base
relevance [24]. Query language is usually different from document
language. For instance, for the query “how much tesla”, relevant
documents may contain the term “price” rather than “how much”,
so direct text matching methods do not work well. Second, search
queries follow a long tail distribution and the majority of queries
are tail queries that have very low frequency or are completely new
to the search engine. As a result, user behavioral information (e.g.,
clicks) is often not available so click modeling is not applicable to
these queries. Third, users tend to treat search engines as general
Q&A systems where they can locate useful information directly;
thus an increasing number of queries are in the style of natural lan-
guage, which presents obstacles to many aspects of search technol-
ogy such as query understanding and semantic matching.

In addition to base relevance, comprehensive relevance includes
both temporal and spatial dimensions. First, many queries are best
served with up-to-date information, requiring search engines to take
freshness into account. For example, for the the query “safest cars”,
users prefer information about the latest tests for recent car models.
It would be a poor user experience if a search engine returned a
page stating “the safest car is the 1998 toyota celica”. Second, with
the increasing use of mobile search, more queries are location sen-
sitive, such as “walmart” and “restaurant”, requiring search engines
to consider location information in relevance.

This paper focuses on sharing our experiences in tackling these
relevance issues and introduces a series of practical techniques that
have been successfully implemented and deployed to power the Ya-
hoo search engine. We first revisit the state of the art ranking func-
tions on both offline static evaluation data and the Yahoo search
engine. We reveal the key factor leading to the performance dif-
ference of ranking functions in these two scenarios, which moti-
vates us to design an effective ranking function for a real web-scale
search engine. Second, to bridge the semantic gap between queries
and web documents, we take full advantage of users’ behavior data
in various ways, and develop three types of semantic matching fea-
tures to transfer click information from head queries to tail queries.
Finally, we present a rewriting system that remarkably boosts rel-

evance performance, especially for tail queries. The three compo-
nents together significantly enhance the Yahoo search engine. In
addition, we provide solutions for recency sensitive relevance and
location sensitive relevance. The key contributions include,

• Designing a novel learning to rank algorithm for core ranking
and a framework of contextual reranking algorithms.

• Developing semantic matching features including click simi-
larity, deep semantic matching, and translated text matching.

• Building an innovative framework to understand user queries
with query rewriting and its ranking strategy.

• Proposing solutions to recency sensitive ranking and location
sensitive ranking.

2. BACKGROUND

2.1 Overview of Architecture
The Yahoo search engine can retrieve the most relevant docu-

ments from a corpus of billions within a fraction of a second. It
achieves this by (1) parallelizing the work for one query across
many servers; and (2) repeatedly taking the best candidate docu-
ments from a cheaper ranking function and reranking them using a
better one. The corpus is segmented into equal-sized shards which
are served by index servers. Documents are assigned to a shard
based upon the MD5 of their URL. Each query is processed by one
complete set of shards, each of which returns its best candidate doc-
uments. These are then merged and reranked to produce the final
result set.

Within a shard, the first step is to find all documents that match
the query. This is called recall. Typically, document sets for each
query term are intersected to obtain documents containing all terms.
These documents are then sorted by the first round, a lightweight
function that scores each document. Here uniquing is then applied,
enforcing simple diversity constraints such as a limit on the num-
ber of documents from a single host or domain. In addition, query-
dependent features are extracted from the top candidates, which are
then ranked using a much more expensive second round function,
also named Core Ranking Function [33].

To build a core ranking function, the model performance strongly
depends on the distribution and the number of labeled samples in
the training set. Obtaining labeled samples is very expensive and
time-consuming, and active learning plays an important role in se-
lecting informative and representative samples with limited budget
as suggested by previous works [21].

2.2 Ranking Features
There are several major groups of features in traditional search

engines, which, when taken together, comprise thousands of fea-
tures [6]. The ranking functions are built on top of these features.
Web graph: This type of feature tries to determine the quality or
the popularity of a document based on its connectivity in the web
graph. A famous example is PageRank [25]. Other features in-
clude distance or propagation of a score from known good or bad
documents [12, 18]. Document statistics: These features com-
pute some basic statistics of the document such as the number of
words in various fields. Document classifier: Various classifiers
are applied to the document, such as spam, adult, language, main
topic, quality, type of page (e.g., navigational destination vs infor-
mational). Query Features: which help in characterizing the query
type: number of terms, frequency of the query and of its terms,
click-through rate of the query. Text match: Basic text matching

features are computed from different sections of the document (ti-
tle, body, abstract, keywords) as well as from the anchor text and
the URL. These features are then aggregated to form new compos-
ite features. The match score can be as simple as a count or can be
more complex such as BM25 [28]. There are also proximity fea-
tures which try to quantify how far in the document are the query
terms (the closer the better) [23]. Topical matching: This type of
feature tries to go beyond similarity at the word level and compute
similarity at the topic level. In the context of contextual advertising,
details can be found in [2]. Click: These features try to incorpo-
rate user feedback, most importantly the clicked results [1]. They
are derived either from the search or the toolbar logs. For a given
query and document, different click probabilities can be computed:
probability of click, first click, last click, long dwell time click or
only click. Time For time-sensitive queries, the freshness of a page
is important. There are several features which measure the age of
a document as well as the one of its inlinks and outlinks. More
information on such features can be found in [7].

2.3 Evaluation of Search Relevance
There are several ways to evaluate search results, including hu-

man labeling (e.g., professional editor’s judgment) and user be-
havioral metrics (e.g., click-through rate, query reformulation rate,
dwell time). Usually, user behavioral metrics are complicated, since
they may be affected by other factors, such as presentation (e.g.,
fonts, bold, size, abstract summary etc.) and result diversity. In
this paper, we focus on base relevance, which is the most impor-
tant aspect of search results. Good, relevant URLs are a necessary
foundation for impacting behavioral metrics.

To assess base relevance, we leverage professional editors’ judg-
ment. Editors manually judge each query-URL pair, assigning one
of five grades: Perfect, Excellent, Good, Fair or Bad. We then use
Discounted Cumulative Gain (DCG) as the metric to evaluate the
search relevance performance. DCG has been widely used to as-
sess relevance in the context of search engines [15]. For a ranked
list of N documents, we use the following variation of DCG,

DCGN =

NX

i=1

Gi

log2(i+ 1)

where Gi represents the weight assigned to the label of the doc-
ument at position i. Higher degrees of relevance correspond to
higher values of the weight. We use the symbol DCG to indi-
cate the average of this value over a set of test queries in our ex-
periments. DCG will be reported only when absolute relevance
judgments are available. In the following sections, we will report
DCG1, DCG3, DCG5 with N in {1,3,5}, respectively. For signifi-
cance, we employ the Wilcoxon T-test to report p-value.

We sample 2,000 queries from a one year query log as our test
queries and evaluate their search results in the Yahoo search engine
by capturing the results (query-URL pairs) real time and asking
editors to judge them. According to the popularity of the query,
the evaluation query set is split into three parts: top, torso and tail.
Top queries have very high impressions and, in terms of relevance,
they are relatively easy, since lots of click information provides
hints for ranking. For torso queries, the click information is very
limited and sparse because torso queries occur only a few times in
a year. Tail queries generally recur less than once a year, so click
information is not available. Tail and torso queries are relatively
hard queries for search relevance [8]. Lots of efforts on tail and
torso queries have been made [32, 34, 14]. In this paper, we mainly
focus on performance of torso and tail queries and introduce the
practical solutions in Yahoo’s web search engine, where we have
taken implementation and efficiency into consideration.

3. MACHINE LEARNED RANKING
In a realistic scenario such as a commercial search engine, given

a query, there is a seeming infinity of irrelevant documents which
may dominate the relevant results. However, it is infeasible to use
only negatives to train the model, and negative results in training
data usually cannot cover all aspects of irrelevancy. As a result,
at run time, the percentage of bad results is often higher than we
expect. The percentage of bad results is also very important – when
users see embarrassing results at top positions, they may abandon
the current search engine and switch to its competitors.

Search can be treated as a binary problem. In our experiments,
we observe that gradient boosting trees (GBDT) with logistic loss
usually are able to reduce the bad URLs at top positions. It finds
the decision boundary between relevant and irrelevant URLs for a
given query. However, this binary classification cannot rank URLs
perfectly. We here introduce a unified method for web search which
is based on logistic loss and incorporates the Perfect, Excellent and
Good information into the model though scaling the gradient for
GBDT. Online evaluation of the Yahoo search engine shows that
this framework decreases the percent of bad URLs by 40% and in-
creases relevance by 5% in terms of DCG5, compared to the lead-
ing ranking algorithms [33, 4].

3.1 Core Ranking
We adopt GBDT (Gradient Boosting Decision Tree) [10] into

the framework. Based on the gradient boosting framework, we first
introduce logistic loss at the core ranking where we aim to reduce
bad/fair URLs in top results. We first flat the labels “Perfect”, “Ex-
cellent” and “Good” to “Positive” (+1) and “Fair”, “Bad” to “Neg-
ative” (-1). The log likelihood (loss) is

L(y, F) = log(1 + exp(�yF)), y 2 {1,�1} (1)

Then the pseudo-response of stage m is

�gm(xi) = �

@L(yi, F (xi))

@F (xi)

�

F (x)=Fm�1(x)

(2)

= yi/(1 + exp(yiFm�1(xi)) (3)

Logistic loss targets on binary classification, which can decrease
the number of bad URLs for top retrieved results. Logistic loss is
not limited to classification, and it can provide reasonable ranking,
comparing to other classification loss such as hinge loss since it al-
ways places the force on positive/negative towards positive/negative
infinite. For the samples far from the decision boundary (e.g., ‘Per-
fect” samples are usually far apart from decision boundary), it is
highly likely that the predicted values have larger absolute values
(very positive/negative). However, only simple binary classifica-
tion is insufficient for ranking. To bring the orders of “Perfect”,
“Excellent” and “Good” back to the model, we introduce gradient
scale for GBDT. According to the gradient of logistic loss, given
a Perfect/Excellent/Good sample, we know that the gradient is al-
ways positive, while for Fair/Bad URLs, the gradient of logistic
loss is always negative. To distinguish Perfect/Excellent/Good, we
scale the gradient, (which is also known as the pseudo-response of
stage i), in different levels (e.g., 3 for Perfect, 2 for Excellent, and
1 for Good). As a result, Perfect data samples get relatively higher
forces to positive infinite than Excellent ones, which are higher than
the Good ones. The pseudo-response of stage m will become

pseudo_response(x) = �gm(xi)⇥ scale(label)

where scale(label) can be empirically set scale(Perfect) = 3,
scale(Excellent) = 2 and scale(Good/Fair/Bad) = 1 to dis-
tinguish Perfect/Excellent/Good. This loss function takes advan-

query methods DCG1 DCG3 DCG5

all LogisticRank 4.31 7.74 9.78
GBRank 4.26 (-1.19%) 7.52 (-2.81%)* 9.51 (-2.81%)*

LambdaMart 4.24 (-1.60%) 7.36 (-4.84%)* 9.21 (-5.83%)*

top LogisticRank 5.69 9.67 12.08
GBRank 5.56 (-2.22%) 9.25 (-4.29%)* 11.51 (-4.67%)*

LambdaMart 5.59 (-1.72%) 9.08 (-6.04%)* 11.02 (-8.75%)*

torso LogisticRank 3.88 7.23 9.26
GBRank 3.88 (-1.77%) 7.065 (-2.30%)* 9.08 (-2.03%)*

LambdaMart 3.81 (-1.88%) 6.97 (-3.64%)† 8.92 (-3.64%)*

tail LogisticRank 2.91 5.65 7.16
GBRank 2.99 (3.06%) 5.65 (0.01%) 7.19 (0.37%)

LambdaMart 2.88 (-0.71%) 5.42 (-4.15%)† 6.91 (-2.78%)†

Table 1: Performance comparison of models using different learn-
ing algorithms. * denotes p-value<=0.01; † denotes p-value<=0.05.

tage of both gradient boosting and logistic loss. It not only is a
binary classification but also has ability to distinguish the different
positive samples. For Fair and Bad samples, since their gradients
are always negative, we needn’t make any modification/scale for
each pseudo-response. This method is actually equivalent to adding
different weights on loss for different labels, but it is different from
adding sample weights, which actually affect the tree growth of
each stage m but do not change pseudo-response.

We name our learning algorithm LogisticRank and compare with
the leading ranking algorithms: GBRank [33] and LambdaMart [4]
in the Yahoo search engine. All three methods share the same train-
ing data, which is collected through active learning and editor la-
bels and includes about 2 million query-URL pairs. The parame-
ters are carefully tuned on a validation query set. The results are
shown in Table 1. Interestingly, the overall performance of Lo-
gisticRank is the best and significantly better than GBRank and
LambdaMart. Especially, on top queries, we obtain the largest im-
provement through LogisticRank. GBRank, which mixes pairwise
loss and pointwise loss, performs consistently better than Lamb-
daMart, which is a listwise loss function and only learns relative
orders. In tail queries, GBRank is able to generate similar perfor-
mance (no significance) as LogisticRank. On the other aspect, the
percentage of bad/embarrassing results is reduced by 40% through
LogisticRank. We observe that the improvement of LogisticRank
is mainly from bad results removal.

We tried to further understand the above results by performing
experiments on an offline dataset—the learning to rank challenge
data set (LTR) [6]. The results of LambdaMart and GBRank are
consistent with [6], where LambdaMart is around 2% better than
GBRank in terms of DCG5. However, we find that both Lamb-
daMart and GBRank are better than LogisticRank on this task:
LambdaMart is 2.6% better than LogisticRank while GBRank is
0.6% better than LogisticRank in terms of DCG5. The main differ-
ence between LTR data and a real search engine is the data distri-
bution. In static LTR data, there are 27% “Bad” query-URL pairs,
compared to >99% “Bad” query-URL pairs in the real search en-
gine, since for a given query, there are usually only tens of relevant
URLs among tens of billions of indexed URLs. The performance
on the static LTR data set is not matched by real search engine per-
formance due to this big difference in data distribution. Unfortu-
nately, it is prohibitively expensive to generate a static data set with
editorial labels which has the same distribution as the real search
engine.

In the remaining sections of this paper, we use LogisticRank
with the existing features described in Section 2 as our base model,
which is referred to as ‘base’.

query methods DCG1 DCG3 DCG5

all base 4.31 7.74 9.78
base+reranking 4.34 (0.79%) 7.78 (0.52%) 9.91 (1.30%)*

top base 5.69 9.67 12.08
base+reranking 5.72 (0.60%) 9.75 (0.88%) 12.24 (1.33%)†

torso base 3.88 7.23 9.26
base+reranking 3.88 (-0.18%) 7.27 (0.49%) 9.38 (1.23%)

tail base 2.91 5.65 7.16
base+reranking 3.00 (3.40%) 5.63 (-0.34%) 7.26 (1.38%)

Table 2: Performance of systems with and without contextual
reranking. * denotes p-value<=0.01; † denotes p-value<=0.05.

3.2 Contextual Reranking
The core ranking only considers query-URL pair features, while

ignoring contextual information from other candidate results for the
same query. There are practical reasons – the result set at this point
is very large, and it is distributed over hundreds of machines, hence
calculating even a very simple feature like the average popularity
of all candidate documents would be prohibitively slow.

The reranking phase is applied after the results from the core-
ranking phase have been sorted, aggregated on one machine, and
trimmed down to the best tens of results, e.g., 30. That allows us to
extract features capturing contextual information about the entire
result set, which turn out to be the most important features in the
model.

Based on the top tens of results (e.g., 30) of a given query, we
extract following contextual features for specific existing features
– (1) Rank: sorting URLs by the feature value in ascending order
to get the ranks of specific URLs. (2) Mean: calculating the mean
of the feature values of top 30 URLs. (3) Variance: calculating
the variance of the feature values of top 30 URLs. (4) Normalized

feature: normalizing the feature by using mean and standard devia-
tion. (5) Topic model feature: aggregating the topical distributions
of 30 URLs to create a query topic model vector, and calculating
similarity with each individual result.

Beside contextual features, another advantage of reranking is
that the training data for this phase is less prone to sample selection
bias, since it is possible to label a complete set of candidate docu-
ments for a given query. By contrast, for the core ranking phase,
this is infeasible since the candidate set could consist of hundreds
of thousands of documents. In practice, we found that it is more
robust to use the ranks of the results as a feature instead of directly
using the core-ranking function’s scores. Though the core-ranking
phase score is more informative than the rank, its value can drift
as the index refreshes, degrading third phase performance. Since
the reranking function is running on top 30 results, its main pur-
pose is to further distinguish relevant results (“Perfect”, “Excel-
lent”, “Good”) rather than to identify and remove bad results. The
impact is shown in Table 2. We see that the overall performance is
significantly and consistently improved by reranking.

3.3 Implementation and deployment
The core ranking function is run on the index serving nodes. This

allows it to run in parallel on billions of documents, and to have
local access to posting lists and document properties for quick fea-
ture generation. By contrast, the third phase ranking function must
be run on a single blending node, after merging and sorting the
top results from each index serving node, in order to calculate the
contextual features. To support this, we have added the ability to
export features from the index serving nodes. When processing the
query, we augment it with the list of primitive features that are used

to calculate contextual features. Each index serving node includes
the requested features of its top-k documents in its response. This
approach is feasible because the reranking phase also has access to
the rank and ranking score of each document in core-ranking phase,
so it typically requires only between 30 and 50 primitive features,
keeping communication overhead to a minimum.

4. SEMANTIC MATCHING FEATURES
The features described in Section 2 have some failings. For tail

queries, the user behavior features do not work well due to sparsity
and noise. The documents relevant to tail queries are often lacking
anchor text. Text matching features suffer from the vocabulary gap
between queries and documents [24]. To overcome these issues,
we introduce three novel features: click similarity, translated text
matching and deep semantic matching, which are calculated from
click logs in different ways and complement each other.

4.1 Click Similarity
From the click log, we can extract a bipartite click graph to con-

nect queries and documents by gross judgments from users. A
vector propagation framework is developed on this graph to learn
vector representations for both queries and documents in a shared
space. Based on these vectors, relevance scores can be calculated.
Traditional content-based models such as VSM [30] represent queries
and documents in a vector space by merging their vocabularies.
One weakness of such models is the mismatch between query vo-
cabulary and document vocabulary [24]. To bridge this gap, the
proposed model represents both queries and documents using terms
in query vocabulary.

Edges in the bipartite click graph link queries and their corre-
spondingly clicked documents. They are weighted by the number
of clicks since more clicks could imply more confidence in poten-
tial relevance. We extract terms from co-clicked queries to repre-
sent documents. Terms that are from more co-clicked queries are
likely to be more representative of documents. In such a space,
the more queries two documents share, the “closer” they are. Sim-
ilarly, queries that share many co-clicked documents are likely to
share similar intent that should also be reflected by the query vec-
tors. Thus we in turn propagate terms in document vectors to their
co-clicked queries so that related queries can share high similarity
in this vector space as desired.

With aforementioned assumptions, a vector propagation algo-
rithm is proposed in this section. We first construct the bipartite
click graph G with nodes V = D [Q, where D and Q are the sets
of documents and queries, respectively. For a document d 2 D
and a query q 2 Q, an edge is formed between them if there are
co-clicks between them. The weight of the edge is indicated by the
number of co-clicks. We use E to denote the set of edges and C to
represent the adjacency matrix of G. An example of the bipartite
click graph is shown in Figure 1. QV

n is a |Q|⇥ V matrix where
the i-th row QV

n
i is the query vector of qi at iteration n and V is

the vocabulary size. Likewise, DV is a |D|⇥V matrix where each
row is a document vector.

We initialize the representation of each query by its terms with
weights proportional to their frequencies in the query. Each vector
is normalized to 1. The initial matrix for the queries is QV

0. In the
n-th iteration, we compute document vectors DV

n by aggregating
their co-clicked queries. Formally, DV

n
j of dj is calculated as:

DV

n
j =

1

||P|Q|
i=1 Cij ·QV

n
i ||2

X|Q|

i=1
Ci,j ·QV

n
i (4)

where DV

n
j is normalized by `2 norm. Then the query vectors in

q1: cvs pharmacy

q2: cvs

q3: cvs photo

d1: www.cvs.com

d2: www.cvsphoto.com

3
5

1
4

Figure 1: An example of click-through bipartite graph.

QV

n+1 are updated with their co-clicked document vectors:

QV

n+1
i =

1

||P|D|
j Ci,j ·DV

n
j ||2

X|D|

j=1
Ci,j ·DV

n
j (5)

During the propagation process, queries are enriched with new
and relevant terms. The propagation also re-learns the weights
to indicate term importance that helps distinguish the informative
terms, and is especially helpful for short queries. Document vectors
are enriched with terms in queries and adjusted in a similar man-
ner. In this way, query and document vectors mutually enhance
each other towards a better representation that reveals more reli-
able query-document relevance. More details about the proposed
framework can be found in [16].

In practice, we use a sparse representation by only considering
terms with non-zero weights. The set of non-zero terms could be
still quite large. If we use their weights to rank the terms in a vector,
we can observe – the first few terms have large weights and the rest
are very small. We find that we can keep the top K terms with
the highest weight for both query and document vectors in each
iteration without losing much accuracy. This optimization is vital
for very large click logs. In addition, we have noted that this simple
trimming speeds up the convergence of the vectors. Both query and
document vectors stay stable after a few iterations.

Evaluation Given the learned query and document vectors in
the same space, we can simply compute the inner product as a click
similarity feature between queries and documents, which is referred
as CS and evaluated in a real search engine. As shown in Table 3,
through CS feature, the overall performance obtains 2.87% rel-
ative DCG5 gain, comparing with the base model (LogisticRank
with the existing features described in Sec 2). For all query bands
(top, torso and tail), CS significantly and consistently improves the
performance, especially on the torso and tail queries where 4.18%

and 5.14% DCG5 gain respectively. This improvement shows that
this vector propagation algorithm successfully reduces the vocab-
ulary gap between queries and documents, and also introduces re-
lated terms to learn better representations for both queries and doc-
uments. We also study the importance of features and the proposed
CS feature is ranked as the top one feature among thousands.

Implementation and deployment We have created a pipeline
that refreshes the query and document vectors monthly to include
the latest click log data. This pipeline automatically constructs the
click graph from the click log and generates the query and docu-
ment vectors, which are further quantized to bytes to save space.
The quantized document vectors are stored in the forward index
on the index serving nodes, and the quantized query vectors are
maintained in a table on a blending node. At run time, the similar-
ity between the query and the document is computed as a ranking
feature, which is used in the ranking models.

4.2 Translated Text Matching
The click similarity feature, although very effective, cannot be

directly calculated for queries and documents that have never been
observed in the click log. Statistical machine translation—translating

query methods DCG1 DCG3 DCG5

all base 4.31 7.74 9.78
base+CS 4.39 (1.97%)† 7.91 (2.18%)* 10.06 (2.87%)*

base+TTM 4.36 (1.31%)† 7.84 (1.36%)* 9.96 (1.79%)*
base+DSM 4.37 (1.46%)† 7.87 (1.77%)* 9.95 (1.69%)*

top base 5.69 9.67 12.08
base+CS 5.66 (-0.40%) 9.75 (0.84%)† 12.20 (0.98%)†

base+TTM 5.68 (-0.01%) 9.86 (1.99%)* 12.34 (2.14%)*
base+DSM 5.70 (0.31%) 9.86 (2.01%)* 12.31 (1.94%)*

torso base 3.88 7.23 9.26
base+CS 4.02 (3.54%)† 7.47 (3.33%)* 9.65 (4.18%)*

base+TTM 3.98 (2.34%)† 7.35 (1.57%)† 9.41 (1.55%)*
base+DSM 3.94 (1.33%)† 7.36 (1.84%)† 9.37 (1.18%)†

tail base 2.91 5.65 7.16
base+CS 3.07 (5.75%) 5.84 (3.40%)† 7.53 (5.14%)*

base+TTM 3.00 (3.10%) 5.61 (-0.73%) 7.26 (1.40%)
base+DSM 3.05 (5.15%)† 5.71 (1.01%)* 7.31 (2.15%)*

Table 3: Performance of models with and without new features. *
denotes p-value<=0.01; † denotes p-value<=0.05.

CONFIDENTIAL & PROPRIETARY

Translated Text Matching

42

StaFsFcal$
Machine$
TranslaFon

Query

Translated Query1

Translated Query2

Translated Query3

Translated Query10

Doc(Title)…

Score$1

Score$2

Score$3

Score$10

…

MAX

Translated Text Feature

Figure 2: Translated Text Matching (TTM) feature.

queries to documents or reverse—provides an intuitive method to
reduce the vocabulary gap, and it can be applied to all queries and
documents. We harness the power of machine translation by intro-
ducing a set of new features, named “Translated Text Matching”
(TTM).

The TTM features are constructed as shown in Figure 2. We first
create a translation model, using clicked (query, document title)
pairs as the bitext. 1 We use this model to translate each query q

into k alternate queries {q1w, . . . , qkw}, which are in document title
space. Given a document d, we then compute a cosine similarity
si between the i-th alternate query q

i
w and the document title as

the similarity between q

i
w and d. The final similarity score S(q, d)

between the original query q and the document d is computed as:
S(q, d) = F ({s1, s2, . . . , sk}) where F denotes a function to ag-
gregate scores in {s1, s2, . . . , sk} e.g., max, average, median, etc.

In our experiments, we consider various strategies to construct
the translation features and we choose k = 10 written candidates.
Due to space limits, we omit the details and only report the suc-
cessful features: EXT_Q_TLM1 is the maximum cosine similarity
scores {t_qlmi}10i=1 between the rewritten queries and document
titles, where the rewritten queries are obtained using a translation
model and a language model based on document titles; AGG_Q_TLM
is obtained by computing the cosine similarity between the rewrit-
ten queries (of the original query) using a title language model and
the set of the 10 rewritten titles (of the document) using a query
language model.

1The details of translation model are presented in Section 5.

Query Features Doc+ Features

Hidden Layer 0

Hidden Layer 1

Softmax Loss

Doc0
- Features Doc1

- Features Doc9
- Features

Cosine

……

Emb_Query Emb_Doc+ Emb_Doc0- Emb_Doc9-……

Figure 3: Network structure of the proposed model.

Evaluation We combine the proposed features EXT_Q_TLM1

and AGG_Q_TLM with existing features described in Section 2 to
train a ranking function and evaluate the test data by DCG scores.
The results are reported in Table 3, which show that the proposed
TTM features significantly and consistently improve the relevance
performance, compared with the baseline (LogisticRank with the
existing features described in Sec 2). We also evaluate the fea-
ture importance, and the proposed two features EXT_Q_TLM1 and
AGG_Q_TLM are ranked 7th and 10th respectively. These results
show that the proposed translation features contain valuable dis-
criminative information for the core relevance modeling task.

Implementation and deployment The implementation of the
TTM features is based on a caching strategy which is described in
more depth in Section 5. For cache misses, we use a pruned version
of the translation model to keep latency low.

4.3 Deep Semantic Matching
Top queries are relatively easier in machine learning based rank-

ing, since many text or click-through features can be used. It may
face challenges for torso and tail queries since they occurred only
few times in users’ historic log. The aforementioned CS and TTM
features to some extent mitigate the problem: the CS feature smooths
the click information and removes the noise of clicks, while the
TTM features are the soft version of query rewriting and record the
equivalence of n-grams. However, both methods stay on the word
level. To further improve the ranking results, we need to deeply
understand the semantic information and users’ intentions behind
them. Deep learning techniques can help extract semantic and con-
textual information from top queries, and then we can generalize
such information for torso and tail queries.

The rareness of torso and tail queries are mainly caused by mis-
spelling, synonyms, abbreviations, long or descriptive queries. Gen-
erally speaking, tail queries tend to be substantially longer than top
ones. For example, tail queries on average have four to five words.
Longer queries are harder to be matched with the title or content of
a web page. However, it might contain more semantic information,
compared against shorter queries with one or two words.

We adopted a feed-forward neural network following the work
of DSSM [13] as our ranking model. The structure of our network
is illustrated in Figure 3. The queries Q and their candidate docu-
ments D± are fed as inputs, and the embedded vectors VQ and VD±
are used to calculate the likelihood function of a clicked document
D+, given by the following softmax:

L(D+|Q) =

exp(�cos(VQ, VD+))P
D±

exp(�cos(VQ, VD±))

(6)

For the training purpose, we collected one year of users’ query
logs of Yahoo’s desktop search (US market), from May 1st 2014 to

May 1st 2015. We removed spamming queries using simple rules,
e.g., whether the number of displayed results per page is larger than
100. A query session is generated by aggregating logs which have
the same key of “browser_cookie+time_stamp+view_id”. We then
aggregated all query sessions based on the query text. We discarded
all abandoned sessions, where users did not click on any of the
displayed documents. After aggregation, we obtained more than
20 billion unique query-document pairs.

To generate a list of positive and negative documents for train-
ing, we use a 10-slot window and slide it down from the top ranked
document. The document in the first slot of this window is a pos-
itive D+, and the following ones are regarded as negative D�.
As a result, we generate a large training set of 3 billion query-10-
documents samples. The input feature representation is crucial in
this model. For documents, we include both document titles and
domain names as inputs. As discussed in section 4.2, title is the
most informative and representative content about the document,
but in a deep understanding model, domain provides another im-
portant signal for specific queries, e.g., wiki, weather, imdb, etc.
To reduce the vocabulary size, we use 3-letter shingling of words as
proposed in DSSM [13], and normalized bag-of-words vectors of
dimension 30, 000 are used as input features. The neural network
is then trained on a GPU cluster. After training the deep neural
network, at runtime, the top level neurons will generate the em-
beddings of queries and URLs. Then the deep semantic matching
(DSM) value is calculated by the inner product of the embeddings
of queries and URLs.

Evaluation We evaluate the proposed DSM in our ranking frame-
work on the Yahoo search engine. As shown in Table 3, DSM
obtains 1.69% relative DCG5 gain. It shows significant DCG im-
provement on all three query bands (top, torso and tail). We also
study the importance of features and the proposed DSM ranked as
the eighth feature among thousands of features.

Implementation and deployment Deploying the deep neural
network model is an engineering challenge. Latent vector embed-
dings of document titles and domain names are pre-computed via
forward propagation and stored on index servers. In order to re-
duce memory footprint, we have to utilize vector quantization to
further compress the features represented as vectors of single pre-
cision floats. At runtime, we only need to obtain the embedded
vector VQ for the query on the fly. The dot product between VQ

and the embedded document vector VD is used as the deep learn-
ing feature, which is then fed to the GBDT model to calculate the
final relevance scores.

5. QUERY REWRITING
Online users play two roles in commercial search engines. Users

are information creators that generate web documents and they are
also information consumers that retrieve documents for their infor-
mation needs. Hence web documents and queries often use differ-
ent language styles and vocabularies; consequently search engines
could be unable to retrieve documents matching queries even when
queries can perfectly describe users’ information needs. For exam-
ple, a user forms a query “ how much tesla”, but web documents
in search engines use the expression “price tesla”. In previous sec-
tions, semantic matching features try to solve this issue in a soft
way that is mainly focused on improving precision. However, in
a commercial web-scale search engine, to boost efficiency, before
feeding the query-URL pairs into the ranking function, some steps,
e.g., filtering, preselection, are performed. For instance, typically
only URLs which contain all query terms are allowed to pass the
preselection phase. This results in a recall problem. Query rewrit-
ing (QRW) is the task of altering a given query so that it will get

better results and, more importantly, to help solve the recall prob-
lem. Query rewriting has been proven to be effective in improving
search performance [27, 11]. In this section, we will describe the
techniques and deployment of QRW in the Yahoo search engine.

5.1 Methodology
We treat query rewriting as a machine translation (MT) problem

which translates from a source language of user queries S into a tar-
get language of web documents T . In other words, we use QRW to
bridge the language gap between queries and documents for search
engines. The proposed framework consists of two phases – (1) the
learning phase that learns phrase-level translations from queries to
documents; and (2) the decoding phase that generates candidates
for a given query. Next we detail each phase.

The Learning Phase: The immediate challenge for the learn-
ing phase is to obtain a large parallel training data with queries and
the corresponding rewritten queries that improve relevance. It is
difficult, if not impossible, to use human labeling for the training
data because (a) a good translation model requires a prohibitively
large bitext; and (b) editors are not very effective at choosing which
query will improve relevance. To tackle this challenge, we make
use of click graphs. A click graph is a bipartite weighted graph
where queries and documents are nodes, edges indicate the co-click
between queries and documents and weights are co-click numbers.
Typically titles of documents are very informative and representa-
tive while queries are usually very short. Titles are more similar to
queries than body texts, which suggests that we consider titles of
documents as rewritten queries. These observations motivate us to
extract query-title pairs from click graphs. Since it is highly pos-
sible for us to collect a click graph with millions of queries and
titles, we can prepare a very large-scale parallel training data for
the learning phase. With query-title pairs, we follow the common
steps for a typical phrase-based machine translation framework to
learn phrase-level translations – word alignment, phrase extraction
and phrase scoring. Note that titles are usually longer than queries;
hence we need to adjust the null-word alignment probability to rel-
ative large values (say 0.9) to filter out noisy alignments.

The Decoding Phase: Given a query q, there could be many
ways to segment it into phrases, and each phrase could then have
many translations, leading to hundreds of candidates. The decoding
phase should generate the most confident candidate qw. Typically
each candidate qc is scored via a linear combination of m feature
functions and the decoding is formally defined as:

qw = argmax

qc

Xm

i=1
�ihi(qc, q)

where hi(qc, q) is the i-th feature function and �i controls the con-
tribution of hi(qc, q). �i can be either manually tuned or learned
through a defined loss function. We here adopt widely used fea-
ture functions in traditional statistical machine translation systems
including translation scores provided by the learning phase, lan-
guage model of original queries, word penalty, phrase penalty and
distortion. We also develop feature functions specific to the QRW
problem that aim to improve search relevance performance. For
each pair (qc, q), we can build three groups of feature functions:

Query feature functions: h1-number of words in q, h2-number
of stop words in q, h3-language model score of the query q, h4-
query frequency of q, h5-average length of words in q;

Rewrite query feature functions: h6-number of words in qc,
h7-number of stop words in qc, h8-language model score of the
query rewrite qc, h9-query frequencies of the query rewrite qc, h10-
average length of words in qc and

Pair feature functions: h11-Jaccard similarity of URLs shared

by q and qc in the query-URL graph, h12-difference between the
frequencies of the original query q and the rewrite candidate qc,
h13-word-level cosine similarity between q and qc, h14-difference
between the number of words between q and qc, h15-number of
common words in q and qc, h16-difference of language model scores
between q and qc, h17-difference between the number of stop words
between q and qc, h18-difference between the average length of
words in q and qc.

From our empirical study, we found that h11, h12, h13 are the
top three most influential feature functions.

5.2 Ranking Strategy
As mentioned earlier, it is difficult to prepare training data for

QRW by human labeling. It is also challenging to assess the perfor-
mance of QRW by comparing original queries and rewritten queries
directly via editors. For example, it is hard for editors to reach an
agreement about the quality of “how much tesla” vs. “price tesla”
as queries. Intuitively a good QRW should lead to an improve-
ment in search performance. Given the original query and rewritten
query, we have two options for ranking strategies. Intuitively, we
can replace the original query with the rewritten query. However,
our empirical finding is that direct replacement is risky, since some-
times some poor rewrites will hurt relevance significantly. Hence
we evaluate the quality of QRW in a blending mode, which is able
to overcome most poor rewrites: (1) Suppose that q and qw are the
original and rewritten queries, respectively. We use q and qw to re-
trieve top-N documents from a search engine separately. Assume
that O = {Di, Si}Ni=1 is the set of documents and their corre-
sponding scores (which is from the ranking function described in
Section 3) for q and R = {Dw

j , S
w
j }Nj=1 for qw; (2) We join O and

R – if a document D appears in both, i.e., (D,Si) and (D,S

w
j),

max(Si, S
w
j) is the ranking score of D after joining; and (3) We

rank documents in the union according to their ranking scores in a
descending order and choose the Top-N documents as final results
for the original query q.

The DCG improvement over the set of queries is demonstrated
in Table 4. Note that QRW is the blending mode while QRW-RE
is using the rewritten queries to replace original queries for rank-
ing. Both QRW and QRW-RE are able to significantly improve
relevance especially for tail queries, and over 5% DCG5 gain is
obtained through QRW. Since rewritten queries may change the in-
tent of original queries, the performance of QRW-RE is worse than
QRW.

Implementation and deployment The main issue that needs to
be handled before deploying statistical machine translation-based
QRW is the latency impact of running the decoder. To minimize
latency, we cache the best translation candidate for each query af-
ter decoding it. Since the rewrites generated by a given model are
constant, the cache entries only expire when a new model is de-
ployed. In addition, we preload the cache with rewrites of the most
frequent 100 million queries. For cache misses, there is still some
latency impact, however, we are able to keep it within our limit by
pruning the phrase table before deployment, limiting beam width
in the decoder, and simply abandoning the rewrite in the few cases
where it is too slow.

6. COMPREHENSIVE EXPERIMENTS
We here report on the performance of all of the proposed tech-

niques when used together. Performance numbers are shown in
Table 5. “GBRank” is the GBRank loss function with the baseline
features, essentially a snapshot of Yahoo Search in 2010 [6]; “base”
is the LogisticRank with the baseline features; “base+feat” is the
LogisticRank with both baseline features and the three types of se-

Query DCG1 DCG3 DCG5
QRW QRW-RE QRW QRW-RE QRW QRW-RE

Top +0.82% -0.51% +2.22% +0.77% +1.58% +0.07%
Torso +2.82% +2.55% +2.79% +1.42% +2.12% +0.88%
Tail +10.42% +9.15% +7.03% +4.58% +5.56% +3.13%

Table 4: The relative DCG performance improvement for QRW.

query methods DCG1 DCG3 DCG5

all base 4.31 7.74 9.78
GBRank 4.26 (-1.19%) 7.52 (-2.81%)* 9.51 (-2.81%)*

base+feat 4.41 (2.34%)† 7.95 (2.74%)* 10.06 (2.89%)*
base+all 4.44 (%)* 8.05 (4.09%)* 10.20 (4.25%)*

top base 5.69 9.67 12.08
GBRank 5.56 (-2.22%) 9.25 (-4.29%)* 11.51 (-4.67%)*

base+feat 5.72 (0.65%) 9.82 (1.58%)† 12.22 (1.16%)
base+all 5.73 (0.83%) 9.89 (2.32%)* 12.27 (1.62%)

torso base 3.88 7.23 9.26
GBRank 3.88 (-1.77%) 7.065 (-2.30%)* 9.08 (-2.03%)*

base+feat 3.96 (1.98%) 7.47 (3.33%)* 9.59 (3.53%)*
base+all 4.02 (3.42%) 7.58 (4.87%)* 9.75 (5.21%)*

tail base 2.91 5.65 7.16
GBRank 2.99 (3.06%) 5.65 (0.01%) 7.19 (0.37%)

base+feat 3.14 (8.14%)† 5.91 (4.59%)* 7.60 (6.09%)*
base+all 3.18 (9.48%)* 6.06 (7.20%)* 7.81 (9.09%)*

Table 5: Performance comparison of models with and without
the proposed components. “feat” includes CS, TTM and DSM;
“all” includes feat, query rewriting and logistic rank. * denotes
p-value<=0.01; † denotes p-value<=0.05.

mantic matching features (CS, TTM and DSM); and “base+all”
combines all techniques, including proposed ranking functions, se-
mantic matching features and query rewriting. All relative perfor-
mance numbers are calculated with respect to “base”.

The combination of all new features “base+feat” significantly
and consistently outperforms the baseline “base” on all the three
DCG scores and all three query groups. The semantic matching
features together also perform better than each individual semantic
matching feature. This confirms that the three semantic matching
features are complementary to each other. When we combine QRW
models described in Section 5 with the new features in “base+all”,
the results are further improved. Comparing with “GBRank”, the
proposed framework improves the performance by 7% in terms of
DCG5. For tail queries, it achieves 9% improvement in DCG5. As
Table 6 shows, with the help of the proposed ranking function, new
semantic features and the query writing, our search engine signifi-
cantly improves the ranking result for query “how much tesla”.

So far, we have discussed only base relevance issues, the most
fundamental aspect of a commercial search engine. In the follow-
ing sections, we discuss the solutions for recency sensitive ranking
and location sensitive ranking in Yahoo Search.

7. RECENCY-SENSITIVE RANKING
In this section, we discuss how to improve ranking quality for

recency-sensitive queries, which covers a large portion of users’
daily search activities. For such queries, users need the search re-
sults to be not only relevant, but also fresh. For example, for the
query “safest cars”, users prefer information about latest tests for
recent car models; for “superbowl”, it is likely that users search for
the last or next superbowl. If a search engine were to return a page
that said “the next superbowl will be in 1989” or “the safest car is
the 1988 toyota celica”, it could lead to poor user experience.

In order to jointly optimize the relevance and freshness of rank-
ing results for recency-sensitive queries, we define a metric called
recency-demoted relevance to integrate both relevance and recency
scores. Specifically, for each document, we characterize its recency
with a five-level label:“very fresh (VF)”, “fresh (F)”, “slightly out-
dated (SO)”, “stale (S)” and “non-time-sensitive (NT)”, and adjust
its relevance as follows,

VF F SO S NT
Perfect Perfect Perfect Excellent Good Perfect
Excellent Perfect Excellent Good Fair Excellent
Good Good Good Fair Bad Good
Fair Fair Fair Bad Bad Fair
Bad Bad Bad Bad Bad Bad

As the table shows, we keep or promote a document’s relevance
score when it is a very fresh, fresh, or non-time-sensitive document,
and demote its score when its slightly outdated or stale. Our goal
is to optimize the DCG metric defined based on the relevance score
after adjustment, i.e., recency-demoted DCG.

To build such a new ranker with distinct goal, the challenge lies
in the cost of collecting training data. It is not possible to have as
many recency labels as relevance labels, because the recency labels
quickly go stale. We must somehow leverage both a large rele-
vance dataset without recency labels and a small recency dataset
for building the recency ranker.

We create the recency-sensitive ranker upon the base relevance
ranker by learning an additive freshness component to adjust doc-
ument score based on its freshness. The freshness component is
trained based on the recency dataset. We use a time-sensitive clas-
sifier to decide whether the component should be added, which
prevents changing the score of non-recency queries and non-time-
sensitive documents. The new recency ranker f(x) for query-URL
feature vector x is formally defined as,

f(x) =

(
frel(x) + rfresh(x) if cts(x) > 0

frel(x) elsewise.

where frel(x) represents the base ranker trained from general rele-
vance labels, rfresh(x) denotes the freshness component and cts de-
notes the time-sensitivity classifier . rfresh(x) is added only when
cts shows that x is time-sensitive query-URL pair.

Based on the equation, the problem boils down to training time-
sensitivity classifier cts(x) and freshness component rfresh(x). To
train cts(x), we use the recency dataset and transform the freshness
labels into binary labels, i.e., “non-time-sensitive (NT)” to negative
and other labels to positive and train a binary classifier. To build
rfresh(x), we use frel(x) as the base ranker, and add more trees to
optimize the goal of recency-demoted relevance – the newly added
trees become cts(x).

We compare the performance of recency ranker f(x) with base
ranker frel(x) on 500 recency-sensitive queries, which are also sam-
pled and selected from the whole year query log. We compute three
different metrics: 1) DCG to measure the result relevance; 2) DCR,
which uses the same formula with DCG but replaces the relevance
label with a freshness label, to measure result freshness; 3) RD-
DCG (Recency-demoted DCG) to measure overall quality consid-
ering both relevance and freshness.

The result in Table 7 shows consistent improvement by the re-
cency ranker on relevance and freshness metrics for recency-sensitive
queries, verifying the effectiveness of our proposed method. Table
8 compares the recency ranking example of a newsy query “holly
bobo”, which shows that our algorithm helps boost fresher results
to the top. The deployment of recency ranking is relatively easy,
since it shares the same framework with the core ranking function.
Note that this recency ranker is only triggered when the query is

ranking GBRank base+all

1 Title TSLA News: How Much Does a Tesla P85D Cost? | InvestorPlace Tesla Cars: 2016 Tesla Prices, Reviews, Specs
URL http://investorplace.com/2014/1... http://www.autoguide.com/new-cars/tesla/

2 Title Here’s How Much Tesla Is Worth - NASDAQ.com New 2015 Tesla Prices w/ MSRP & Invoice
URL http://www.nasdaq.com/article/... https://www.truecar.com/prices-new/tesla/

3 Title How much Mercedes is in a Tesla? | Forums | Tesla Motors 2013 Model S Price Increase | Tesla Motors
URL http://www.teslamotors.com/foru... https://www.teslamotors.com/blog/2013-mo...

Table 6: Compare the ranking results of query “how much tesla”.

methods DCG5 DCR5 RDDCG5

Base Ranker 9.175 11.549 7.875
Recency Ranker 9.334 (+1.74%) 12.355 (+6.98%) 8.264 (4.94%)

Table 7: Performance comparison: recency ranker v.s. base ranker.

classified as a recency-sensitive query by a run time recency clas-
sifier.

8. LOCATION-SENSITIVE RANKING
Web search results typically are identical for all users. How-

ever, for some queries, contextualized search results are more use-
ful for users. In this section, we will discuss location sensitive rank-
ing. For example, given the query “restaurants”, users want to find
the pages of restaurants which are near to their current locations.
We refer to such queries that are closely related with locations as
location-sensitive queries. Queries with specific location names
(e.g., “restaurants Boston”) are referred to as explicit local queries,
and queries without locations but with location-sensitive intention
(e.g., “restaurants”) are referred to as implicit local queries.

To improve the ranking for location-sensitive queries, a straight-
forward way is to treat the distance d(QUERY, URL) between the
query and the URL as an extra feature in the learning-to-rank frame-
work [3, 5]. However, typically the text-matching features [29]
and the click-based features [17] dominate learning-to-rank mod-
els, thus this distance feature is likely to be buried due to the its
coverage. To overcome this problem, we propose a novel loca-
tion boosting ranking model to improve the ranking for location-
sensitive queries.

To compute the distance between queries and web pages, we first
need to extract the locations from both sides. We parse the location
from the explicit local queries and use users’ locations as the query
locations for implicit local queries. The locations of web pages are
extracted based on the query-URL click graph from search logs.
Given a URL, we parse the locations from the queries that this URL
is connected to, and use these locations to describe the URL. We
keep all the locations as a location vector weighted by the clicks.
In addition, we also parse the locations from URLs directly.

Once we have the locations for both queries and URLs, we can
easily compute the distance d(QUERY, URL), which is further nor-
malized to the range of [0, 1], denoted as ˆ

d(QUERY, URL). Note
that when d(QUERY, URL) = 0, ˆ

d(QUERY, URL) = 1. The query-
URL relevance is measured by the existing base ranking function

denoted as fb(x), where x 2 Rn is the input feature vector. We as-
sume fb(x) is already available (trained by learning-to-rank meth-
ods [3, 5]). We then introduce the logistic function to combine the
two conditions and define the ranking function f(x) for location-
sensitive queries as follows:

f(x) = fb(x) + w

1

1 + e

↵fb(x)+�
ˆ

d(QUERY, URL) (7)

The idea is similar to recency ranking. Here, the logistic function
controls the distance boosting based on the base relevance score
fb(x) – if the URL is close to user and the content well matches

the query, the boosting term (second term in Equation 7) is more
positive, thus the total ranking score f(x) for this URL is larger
and the ranking for this URL is boosted; however, if the URL is
very close to the user but is not relevant to the query, or if the URL
matches the query well but it is too far from the user, the boosting
term is close to 0, thus the ranking score is only decided by the base
ranking function and the ranking for this URL is not boosted.

The parameters w, ↵ and � are trained using pair-wise data by
minimizing:

X
(pi,pj)2P

max(0, 1� f(xi) + f(xj))
2 (8)

where P = {(pi, pj) | pi � pj} is a set of preference URL pairs
to the same query, obtained by human experts; pi � pj denotes
that pi is more preferred than pj . We solve the above optimization
problem by a standard gradient descent approach.

Evaluation We compare the search relevance of our new ranking
function f(x) and the base ranking function fb(x) on 500 location-
sensitive queries, which are sampled from query logs. The URLs
are judged by human experts. The new ranking function improves
DCG5 compared to the base ranking function by +6.92%. We also
conduct online experiments to observe how users interact with the
new ranking function. We perform “bucket tests” in a certain period
to compare the base ranking function and the new ranking function
in the Yahoo search engine. We use click-through rate (CTR) as
our user experience metric to compare the two functions. Higher
CTR implies a better user experience. The bucket test result shows
that our new ranking function improves CTR by +4.78% compared
to the base ranking function. This result is consistent with the of-
fline experimental results (DCG) and shows that the new ranking
function outperforms the base ranking function due to the effec-
tive location features. Table 9 compares the search results for a
query “cvs” from a user in “Sunnyvale, CA”. While the baseline
ranks URLs with no specific location context on top (Note that cvs
is a chain business that has many locations), the proposed distance
boosting function ranks local results relatively higher.

Implementation and deployment To implement this location
boosting model at run time, we extract the URL locations offline
and store them in the forward index. The model parameters w, ↵
and � are learned offline and stored in a dictionary. At run time,
the implementation is similar to the core ranking function intro-
duced in Sec 3. The distance between queries and URLs and the
location boosting scores are computed in parallel on distributed
index serving nodes. Then the boosting scores are added to the
base ranking function to get the final ranking score. For URLs
that are not labeled with a location, the distance is set to be zero,
ˆ

d(QUERY, URL) = 0, thus only the base ranking function is used
for ranking. Note that this location boosting module is only trig-
gered when the query is classified as a location-sensitive query by
a run time classifier.

9. CONCLUSION
In this paper, we introduce the comprehensive relevance solu-

tions of Yahoo search. The proposed solutions are effective, prac-

ranking baseline recency ranking

1 Title Murder of Holly Bobo - Wikipedia, the free encyclopedia Murder of Holly Bobo - Wikipedia, the free encyclopedia
URL https://en.wikipedia.org/wiki/Murder_of_... https://en.wikipedia.org/wiki/Murder_of_...

2 Title Holly Bobo News, Photos and Videos - ABC News Status hearing in Holly Bobo case... (published on 11/18/2015)
URL http://abcnews.go.com/topics/news/holly-... http://wkrn.com/2015/11/18/status-hearing-...

3 Title Man granted immunity in Holly ... (published on 02/24/2015) Defense attorney in Holly Bobo cas... (published on 02/03/2016)
URL http://www.cnn.com/2015/02/24/us/holly-... http://www.jacksonsun.com/story/news/crim...

Table 8: Compare the ranking results of query “holly bobo” with and without recency ranking.

ranking baseline with location boosting

1 Title CVS pharmacy - Online Pharmacy - Shop for Wellness and Beauty CVS pharmacy - Online Pharmacy - Shop for Wellness and Beauty
URL http://www.cvs.com http://www.cvs.com

2 Title CVS Pharmacy - Wikipedia, the free encyclopedia CVS | Facebook
URL http://en.wikipedia.org/wiki/CVS_Pharmacy https://www.facebook.com/CVS

3 Title CVS/pharmacy (CVS_Extra) | Twitter CVS/Pharmacy - Sunnyvale, CA | Yelp
URL https://twitter.com/cvs_extra http://www.yelp.com/biz/cvs-pharmacy-sunnyvale-3

Table 9: Compare the ranking results of query “cvs” with and without location boosting.

tical, and have been deployed and tested at scale in Yahoo’s com-
mercial search engine.

The proposed solutions are not limited to web search relevance,
but also can be leveraged for vertical search engines, e.g., shop-
ping, news, local, etc. We hope this work is able to provide useful
insights to the whole research community for both industry and
academia.

10. REFERENCES
[1] E. Agichtein, E. Brill, and S. Dumais. Improving web search ranking

by incorporating user behavior information. In SIGIR ’06.
[2] A. Broder, M. Fontoura, V. Josifovski, and L. Riedel. A semantic

approach to contextual advertising. In SIGIR ’07.
[3] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds,

N. Hamilton, and G. Hullender. Learning to rank using gradient
descent. In ICML ’05.

[4] C. J. C. Burges. From RankNet to LambdaRank to LambdaMART:
An overview. Technical report, Microsoft Research, 2010.

[5] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li. Learning to rank:
from pairwise approach to listwise approach. In ICML ’07.

[6] O. Chapelle and Y. Chang. Yahoo! learning to rank challenge
overview. In JMLR: Workshop and Conference Proceedings, pages
1–24, 2011.

[7] A. Dong, Y. Chang, Z. Zheng, G. Mishne, J. Bai, R. Zhang,
K. Buchner, C. Liao, and F. Diaz. Towards recency ranking in web
search. In WSDM ’10.

[8] D. Downey, S. Dumais, and E. Horvitz. Heads and tails: Studies of
web search with common and rare queries. In SIGIR ’07.

[9] G. E. Dupret and B. Piwowarski. A user browsing model to predict
search engine click data from past observations. In SIGIR ’08.

[10] J. Friedman. Greedy function approximation: a gradient boosting
machine. Annals of Statistics, 2001.

[11] J. Gao, X. He, S. Xie, and A. Ali. Learning lexicon models from
search logs for query expansion. In EMNLP-CoNLL ’12.

[12] Z. Gyöngyi, H. Garcia-Molina, and J. Pedersen. Combating web
spam with trustrank. In VLDB ’04.

[13] P.-S. Huang, X. He, J. Gao, L. Deng, A. Acero, and L. Heck.
Learning deep structured semantic models for web search using
clickthrough data. In CIKM ’13.

[14] S. Huo, M. Zhang, Y. Liu, and S. Ma. Improving tail query
performance by fusion model. In CIKM ’14.

[15] K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of ir
techniques. ACM Transactions on Information Systems,
20(4):422–446, Oct. 2002.

[16] S. Jiang, Y. Hu, C. Kang, T. Daly Jr., D. Yin, Y. Chang and C. Zhai.

Learning Query and Document Relevance from a Web-scale Click
Graph. In SIGIR ’16.

[17] T. Joachims. Optimizing search engines using clickthrough data. In
KDD ’02.

[18] A. Joshi, R. Kumar, B. Reed, and A. Tomkins. Anchor-based
proximity measures. In WWW ’07.

[19] C. Liu, F. Guo, and C. Faloutsos. Bbm: bayesian browsing model
from petabyte-scale data. In KDD ’09.

[20] C. Liu, F. Guo, and C. Faloutsos. Bayesian browsing model: Exact
inference of document relevancfe from petabyte-scale data. ACM

TKDD, 4(4):19:1–19:26, Oct. 2010.
[21] B. Long, O. Chapelle, Y. Zhang, Y. Chang, Z. Zheng, and B. Tseng.

Active learning for ranking through expected loss optimization. In
SIGIR ’10.

[22] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to

Information Retrieval. Cambridge University Press, New York, NY,
USA, 2008.

[23] D. Metzler and W. B. Croft. A markov random field model for term
dependencies. In SIGIR ’05.

[24] C. Müller and I. Gurevych. A study on the semantic relatedness of
query and document terms in information retrieval. In EMNLP ’09.

[25] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank
citation ranking: Bringing order to the web. Technical Report
1999-66, Stanford InfoLab, November 1999. Previous number =
SIDL-WP-1999-0120.

[26] M. Richardson, E. Dominowska, and R. Ragno. Predicting clicks:
estimating the click-through rate for new ads. In WWW ’07.

[27] S. Riezler and Y. Liu. Query rewriting using monolingual statistical
machine translation. Computational Linguistics, 2010.

[28] S. Robertson and H. Zaragoza. The probabilistic relevance
framework: Bm25 and beyond. Found. Trends Inf. Retr.,
3(4):333–389, Apr. 2009.

[29] S. E. Robertson, S. Walker, S. Jones, M. Hancock-Beaulieu, and
M. Gatford. Okapi at trec-3. Trec, 1994.

[30] G. Salton, A. Wong, and C.-S. Yang. A vector space model for
automatic indexing. Communications of the ACM, 18(11):613–620,
Nov. 1975.

[31] R. Srikant, S. Basu, N. Wang, and D. Pregibon. User browsing
models: relevance versus examination. In KDD ’10.

[32] I. Szpektor, A. Gionis, and Y. Maarek. Improving recommendation
for long-tail queries via templates. In WWW ’11.

[33] Z. Zheng, K. Chen, G. Sun, and H. Zha. A regression framework for
learning ranking functions using relative relevance judgments. In
SIGIR ’07.

[34] K. Zhou, X. Li, and H. Zha. Collaborative ranking: Improving the
relevance for tail queries. In CIKM ’12.

