
 Introduction
Java: an Overview
James Gosling, February 1995
jag@sun.com

Introduction JAVA† is a programming language and environment that was designed to solve

a number of problems in modern programming practice. It started as a part of a

larger project to develop advanced software for consumer electronics. These are

small reliable portable distributed real-time embedded systems. When we

started the project, we intended to use C++, but we encountered a number of

problems. Initially these were just compiler technology problems, but as time

passed we encountered a set of problems that were best solved by changing the

language.

This document contains a lot of technical words and acronyms that may be

unfamiliar. You may want to look at the glossary on page 8.

There is a companion paper to this, WEBRUNNER an Overview, that describes a very

powerful application that exploits JAVA.

JAVA JAVA: A simple, object oriented, distributed, interpreted, robust, secure,

architecture neutral, portable, high performance, multithreaded,

dynamic language.

One way to characterize a system is with a set of buzzwords. We use a standard

set of them in describing JAVA. The rest of this section is an explanation of what

we mean by those buzzwords and the problems that we were trying to solve.

❧ Archimedes Inc. is a fictitious software company that produces software to
teach about basic physics.This software is designed to interact with the
user, providing not only text and illustrations in the manner of a
traditional textbook, but also providing a set of software lab benches on
which experiments can be set up and their behavior simulated. For
example, the most basic one allows students to put together levers and
pulleys and see how they act. A narrative of their trials and tribulations is
used to provide examples of the concepts presented.

Simple We wanted to build a system that could be programmed easily without a lot of

esoteric training and which leveraged today’s standard practice. Most

programmers working these days use C, and most doing object-oriented

† The internal development name for this project was “Oak” . JAVA is the new official product
name..
1



JAVA
programming use C++. So even though we found that C++ was unsuitable, we

tried to stick as close as possible to C++ in order to make the system more

comprehensible.

JAVA omits many rarely used, poorly understood, confusing features of C++ that

in our experience bring more grief than benefit. This primarily consists of

operator overloading (although it does have method overloading), multiple

inheritance, and extensive automatic coercions.

Paradoxically, we were able to simplify the programming task by making the

system somewhat more complicated. A good example of a common source of

complexity in many C and C++ applications is storage management: the

allocation and freeing of memory. JAVA does automatic garbage collection —this

not only makes the programming task easier, it also dramatically cuts down on

bugs.

❧ The folks at Archimedes wanted to spend their time thinking about levers
and pulleys, but instead spent a lot of time on mundane programming
tasks. Their central expertise was teaching, not programming. One of the
most complicated of these programming tasks was figuring out where
memory was being wasted across their 20K lines of code.

Another aspect of simple is small. One of the goals of JAVA is to enable the

construction of software that can run stand-alone in small machines. The size of

the basic interpreter and class support is about 30K bytes, adding the basic

standard libraries and thread support (essentially a self-contained microkernel)

brings it up to about 120K.

Object-Oriented This is, unfortunately, one of the most overused buzzwords in the industry. But

object-oriented design is still very powerful since it facilitates the clean

definition of interfaces and makes it possible to provide reusable “software

ICs”.

A simple definition of object oriented design is that it is a technique that focuses

design on the data (=objects) and on the interfaces to it. To make an analogy

with carpentry, an “object oriented” carpenter would be mostly concerned with

the chair he was building, and secondarily with the tools used to make it; a

“non-OO” carpenter would think primarily of his tools. This is also the

mechanism for defining how modules “plug&play”.

The object-oriented facilities of JAVA are essentially those of C++, with

extensions for more dynamic method resolution that came from Objective C.

❧ The folks at Archimedes had lots of kinds of things in their simulation.
Among them, ropes and elastic bands. In their initial C version of the
product, they ended up with a pretty big system because they had to write
separate software for describing ropes versus elastic bands. When they re-
wrote their application in an object oriented style, they found they could
define one basic object that represented the common aspects of ropes and
elastic bands, and then ropes and elastic bands were defined as variations
(subclasses) of the basic type. When it came time to add chains, it was a
2 of 10



JAVA
snap because they could build on what had been written before, rather
than writing a whole new object simulation.

Distributed At one time networking was integrated into the language and runtime system

and was (almost) transparent. Objects could be remote: when an application

had a pointer to an object, that object could exist on the same machine, or some

other machine on the network. Method invocations on remote objects were

turned into RPCs (Remote Procedure Calls).

A distributed application looked very much like a non-distributed one. Both

cases used an essentially similar programming model. The distributed case did,

however, require that applications paid some attention to the consequences of

network failures. The system dealt with much of it automatically, but some of it

did need to be dealt with on a case-by-case basis.

Since then, that model has mostly disappeared: a concession to the pragmatics

of living within the context of existing networks. Primarily the Internet.

Consequently, JAVA now has a very extensive library of routines for easily

coping with TCP/IP protocols like http and ftp. JAVA applications can open and

access objects across the net via URLs with the same ease the programmers are

used to accessing a local file system.

❧ The folks at Archimedes initially built their stuff for CD ROM. But they
had some ideas for interactive learning games that they’d like to try out for
their next product. For example, they wanted to allow students on
different computers to cooperate in building a machine to be simulated.
But all the networking systems they’d seen were complicated and required
esoteric software specialists. So they gave up.

Robust JAVA is intended for writing programs that need to be reliable in a variety of

ways. There is a lot of emphasis on early checking for possible problems, later

dynamic (runtime) checking, and on eliminating situations which are error

prone.

One of the advantages of a strongly typed language (like C++) is that it allows

extensive compile-time checking so bugs can be found early. Unfortunately,

C++ inherits a number of loopholes in this checking from C, which was

relatively lax (the major issue is method/procedure declarations). In JAVA, we

require declarations and do not support C style implicit declarations.

The linker understands the type system and repeats many of the type checks

done by the compiler to guard against version mismatch problems.

A mentioned before, automatic garbage collection avoids storage allocation

bugs.

The single biggest difference between JAVA and C/C++ is that JAVA has a pointer

model that eliminates the possibility of overwriting memory and corrupting

data. Rather than having pointer arithmetic, JAVA has true arrays. This allows

subscript checking to be performed. And it is not possible to turn an arbitrary

integer into a pointer by casting.
3



JAVA
❧ The folks at Archimedes had their application basically working in C
pretty quickly. But their schedule kept slipping because of all the small
bugs that kept slipping through. They had lots of trouble with memory
corruption, versions out-of-sync and interface mismatches. What they
gained because C let them pull strange tricks in their code, they paid for in
Quality Assurance time. They also had to reissue their software after the
first release because of all the bugs that slipped through.

While JAVA doesn’t pretend to make the QA problem go away, it does make it

significantly easier.

Very dynamic languages like Lisp, TCL and Smalltalk are often used for

prototyping. One of the reasons for their success at this is that they are very

robust: you don’t have to worry about freeing or corrupting memory.

Programmers can be relatively fearless about dealing with memory because

they don’t have to worry about it getting messed up. JAVA has this property and

it has been found to be very liberating. Another reason given for these

languages being good for prototyping is that they don’t require you to pin

down decisions early on. JAVA has exactly the opposite property: it forces you to

make choices explicitly. Along with these choices come a lot of assistance: you

can write method invocations and if you get something wrong, you get told

about it early, without waiting until you’re deep into executing the program.

You can also get a lot of flexibility by using interfaces instead of classes.

Secure JAVA is intended to be used in networked/distributed situations. Toward that

end a lot of emphasis has been placed on security. JAVA enables the construction

of virus-free, tamper-free systems. The authentication techniques are based on

public-key encryption.

There is a strong interplay between “robust” and “secure”. For example, the

changes to the semantics of pointers make it impossible for applications to forge

access to data structures or to access private data in objects that they do have

access to. This closes the door on most activities of viruses.

Not included in release 0.1
or 0.2.

There is a mechanism for defining approval seals for software modules and

interface access. For example, it is possible for a system built on JAVA to say

“only software with a certain seal of approval is allowed to be loaded” and it is

possible for individual modules to say “only software with a certain seal of

approval is allowed to access my interface”. These approval seals cannot be

forged since they are based on public-key encryption.

❧ Someone wrote an interesting “patch” to the PC version of the
Archimedes system. They posted this patch to one of the major bulletin
boards. Since it was easily available and added some interesting features to
the system, lots of people downloaded it. It hadn’t been checked out by the
folks at Archimedes, but it seemed to work. Until the next April first when
thousands of folks discovered rude pictures popping up in their children’s
lessons. Needless to say, even though they were in no way responsible for
the incident, the folks at Archimedes still had a lot of damage to control.
4 of 10



JAVA
Architecture Neutral JAVA was designed to support applications on networks. In general, networks

are composed of a variety of systems with a variety of CPU and operating

system architectures. In order for an JAVA application to be able to execute

anywhere on the network, the compiler generates an architecture neutral object

file format — the compiled code is executable on many processors, given the

presence of the JAVA runtime.

This is useful not only for networks but also for single system software

distribution. In the present personal computer market, application writers have

to produce versions of their application that are compatible with the IBM PC

and with the Apple Macintosh. With the PC market (through Windows/NT)

diversifying into many CPU architectures, and Apple moving off the 68000

towards the PowerPC, this makes the production of software that runs on all

platforms almost impossible. With JAVA, the same version of the application

runs on all platforms.

The JAVA compiler does this by generating bytecode instructions which have

nothing to do with a particular computer architecture. Rather, they are designed

to be both easy to interpret on any machine and easily translated into native

machine code on the fly.

❧ Archimedes is a small company. They started out producing their software
for the PC since that was the largest market. After a while, they were a
large enough company that they could afford to do a port to the
Macintosh, but it was a pretty big effort and didn’t really pay off. They
couldn’t afford to port to the PowerPC Mac or MIPS NT machine. They
couldn’t “catch the new wave” as it was happening, and a competitor
jumped in...

Portable Being architecture neutral is a big chunk of being portable, but there’s more to it

than just that. Unlike C and C++ there are no “implementation dependent”

aspects of the specification. The sizes of the primitive data types are specified,

as is the behaviour of arithmetic on them. For example, “int” always means a

signed twos complement 32 bit integer, and “float” always means a 32 bit IEEE

754 floating point number. Making these choices is feasable in this day and age

because essentially all interesting CPUs share these characteristics.

The libraries that are a part of the system define portable interfaces. For

example, there is an abstract Window class and implementations of it for Unix,

Windows and the Mac†.

The JAVA system itself is quite portable. The new compiler is written in JAVA and

the runtime is written in ANSI C with a clean portability boundary. The

portability boundary is essentially POSIX.

Interpreted The JAVA interpreter can execute JAVA bytecodes directly on any machine to

which the interpreter has been ported. And since linking is a more incremental

† The Windows and Mac versions aren’t complete yet.
5



JAVA
& lightweight process, the development process can be much more rapid and

exploratory.

As a part of the bytecode stream, more compile-time information is carried over

and available at runtime. This is what the linker’s type checks are based on, and

what the RPC protocol derivation is based on. It also makes programs more

amenable to debugging.

❧ The programmers at Archimedes spent a lot of time waiting for programs
to compile and link. They also spent a lot of time tracking down senseless
bugs because some changed source files didn’t get compiled (despite using
a fancy “make” facility), which caused version mismatches; and they had
to track down procedures that were declared inconsistently in various
parts of their programs. Another couple of months lost in the schedule.

High Performance While the performance of interpreted bytecodes is usually more than adequate,

there are situations where higher performance is required. The byte code can be

translated on the fly (at runtime) into machine code for the particular CPU the

application is running on. For those used to the normal design of a compiler

and dynamic loader, this is somewhat like putting the final machine code

generator in the dynamic loader.

The byte code format was designed with this in mind, so the actual process of

generating machine code is generally simple. Reasonably good code is

produced: it does automatic register allocation and the compiler does some

optimization when it produces the bytecode.

In interpreted code we’re getting about 300,000 method calls per second on an

SS10. The performance of bytecodes converted to machine code is almost

indistinguishable from native C or C++.

❧ When Archimedes was starting up, they did a prototype in SmallTalk.
This impressed the investors enough that they got funded, but it didn’t
really help them produce their product: in order to make their simulations
fast enough and the system small enough, it had to be rewritten in C.

Multithreaded There are many things going on at the same time in the world around us.

Multithreading is a way of building applications that are built out of multiple

threads†. Unfortunately, writing programs that deal with many things

happening at once can be much more difficult that writing in the conventional

single-threaded C and C++ style.

JAVA has a sophisticated set of synchronization primitives that are based on the

widely used monitor and condition variable paradigm that was introduced by

C.A.R.Hoare‡. By integrating these concepts into the language they become

† Threads are sometimes also called lightweight processes or execution contexts.

‡ 1974. Hoare, C.A.R. Monitors: An Operating System Structuring Concept, Comm. ACM 17,
10:549-557 (October)
6 of 10



JAVA
much more easy to use and robust. Much of the style of this integration came

from Xerox’s Cedar/Mesa system.

Other benefits are better interactive responsiveness and realtime behaviour.

This is limited, however, by the underlying platform: stand-alone JAVA runtime

environemnts have good realtime behaviour. Running on top of other systems

like Unix, Windows, the Mac or NT limits the realtime responsivness to that of

the underlying system.

❧ Lots of things were going on at once in their simulations. Ropes were
being pulled, wheels were turning, levers were rocking, and input from the
user was being tracked. Because they had to write this all in a single
threaded form, all the things that happen at the same time, even though
they had nothing to do with each other, had to be manually intermixed.
Using an “event loop” made things a little cleaner, but it was still a mess.
The system became fragile and hard to understand.

❧ They were pulling in data from all over the net. But originally they were
doing it one chunk at a time. This serialized network communication was
very slow. When they converted to a multithreaded style, it was trivial to
overlap all of their network communication.

Dynamic In a number of ways, JAVA is a more dynamic language than C or C++. It was

designed to adapt to an evolving environment.

For example, one of the big problems with using C++ in a production

environment is a side-effect of the way that it is always implemented. If

company A produces a class library (a library of plug&play components) and

company B buys it and uses it in their product, then if A changes it’s library and

distributes a new release then B will almost certainly have to recompile and

redistribute their software. In an environment where the end user gets A and

B’s software independently (say A is an OS vendor and B is an application

vendor) then if A distributes an upgrade to its libraries then all of the users

software from B will break. It is possible to avoid this problem in C++, but it is

extraordinarily difficult and it effectively means not using any of the language’s

OO features directly.

❧ Archimedes built their product using the object oriented graphics library
from 3DPC Inc. 3DPC released a new version of the graphics library
which several computer manufacturers bundled with their new machines.
Customers of Archimedes that bought these new machines discovered to
their dismay that their old software no longer worked. [In real life, this
only happens on Unix systems. In the PC world, 3DPC would never have
released such a library: their ability to change their product and use C++’s
object oriented features is severely hindered]

By making these interconnections between modules later, JAVA completely

avoids these problems and makes the use of the OO paradigm much more

straightforward. Libraries can freely add new methods and instance variables

without any effect on their clients.
7



 Glossary
JAVA understands the concept of an interface. An interface is a concept borrowed

from Objective C and is similar to a class. An interface is simply a specification

of a set of methods that an object responds to. It does not include any instance

variables or implementation. Interfaces can be multiply-inherited (unlike

classes) and they can be used in a more flexible way than the usual rigid class

inheritance structure.

Classes have a runtime representation: there is a class named Class, instances of

which contain runtime class definitions. From an object you can find out what

class it belongs to. If, in a C or C++ program, you have a pointer to an object but

you don’t know what type of object it is, there is no way to find out. In JAVA,

finding out based on the runtime type information is straightforward. For

example, type conversions (casts) are checked at runtime in JAVA, whereas in C

and C++, the compiler just trusts that you’re doing the right thing.

It is also possible to lookup the definition of a class given a string containing its

name. This means that you can compute a data type name and have it trivially

dynamically linked into the running system.

❧ To expand their revenue stream, the folks at Archimedes wanted to
architect their product so that new aftermarket plug-in modules could be
added to extend the system. This was possible on the PC, but just barely.
They had to hire a couple of new programmers because it was so
complicated. This also added terrible problems when debugging.

Glossary This paper is filled with all sorts of words and TLAs that my be hard to

decipher. Here are the definitions of a few:

API Application Programmer Interface. The specification of how a programming

writing an application accesses the facilities of some object. Interfaces can be

specified in JAVA and C++ using classes. JAVA also has a special interface syntax

that allows interfaces that are more flexible than classes.

FTP The basic internet File Transfer Protocol. It enables the fetching and storing of

files between hosts on the internet. It is based on TCP/IP.

HTML HyperText Markup Language. This is a file format, based on SGML, for

hypertext documents on the internet. It is very simple and allows for the

imbedding of images, sounds, video streams, form fields and simple text

formatting. References to other objects are imbedded using URLs.

HTTP Hypertext Transfer Protocol. This is the internet protocol used to fetch

hypertext objects from remote hosts. It is based on TCP/IP.
8 of 10



 Glossary
Internet An enormous network consisting of literally millions of hosts from many

organizations and countries around the world. It is physically put together from

many smaller networks and is held together by a common set of protocols.

IP Internet Protocol. The basic protocol of the internet. It enables the unreliable

delivery of individual packets from one host to another. It makes no guarantees

about whether or not the packet will be delivered, how long it will take, or if

multiple packets will arrive in the order they were sent. Protocols built on top of

this add the notions of connection and reliability.

JPEG Joint Photographic Experts Group. An image file compression standard

established by this group. It achieves tremendous compression at the cost of

introducing distortions into the image which are almost always imperceptible.

Mosaic A program that provides a simple GUI that enables easy access to the data

stored on the internet. These may be simple files, or hypertext documents.

RPC Remote Procedure Call. Executing what looks like a normal procedure call (or

method invocation) by sending network packets to some remote host.

SGML Standardized, Generalized Markup Language. An ISO/ANSI/ECMA standard

that specifies a way to annotate text documents with information about types of

sections of a document. For example “this is a paragraph” or “this is a title”.

TCP/IP Transmission Control Protocol based on IP. This is an internet protocol that

provides for the reliable delivery of streams of data from one host to another.

TLA Three Letter Acronym.

URL Uniform Resource Locator. A standard for writing a textual reference to an

arbitrary piece of data in the WWW. A URL looks like “protocol://host/localinfo”

where protocol specifies a protocol to use to fetch the object (like HTTP or FTP),

host specifies the internet name of the host on which to find it, and localinfo is a

string (often a file name) passed to the protocol handler on the remote host.

WWW World Wide Web. The web of systems and the data in them that is the internet.
9



 Glossary
10 of 10


