
Predicate Dispatching:A Uni�ed Theory of DispatchMichael Ernst, Craig Kaplan, and Craig ChambersDepartment of Computer Science and EngineeringUniversity of WashingtonSeattle, WA, USA 98195-2350fmernst;csk;chambersg@cs.washington.eduhttp://www.cs.washington.edu/research/projects/cecil/
This paper appears in ECOOP '98, the 12th European Conference on Object-Oriented Programming, Brussels, Belgium, July 20-24, 1998, pp. 186-211.

Abstract. Predicate dispatching generalizes previous method dispatchmechanisms by permitting arbitrary predicates to control method ap-plicability and by using logical implication between predicates as theoverriding relationship. The method selected to handle a message sendcan depend not just on the classes of the arguments, as in ordinaryobject-oriented dispatch, but also on the classes of subcomponents, onan argument's state, and on relationships between objects. This simplemechanism subsumes and extends object-oriented single and multipledispatch, ML-style pattern matching, predicate classes, and classi�ers,which can all be regarded as syntactic sugar for predicate dispatching.This paper introduces predicate dispatching, gives motivating examples,and presents its static and dynamic semantics. An implementation ofpredicate dispatching is available.1 IntroductionMany programming languages support some mechanism for dividing the bodyof a procedure into a set of cases, with a declarative mechanism for selecting theright case for each dynamic invocation of the procedure. Case selection can bebroken down into tests for applicability (a case is a candidate for invocation ifits guard is satis�ed) and overriding (which selects one of the applicable casesfor invocation).Object-oriented languages use overloaded methods as the cases and genericfunctions (implicit or explicit) as the procedures. A method is applicable if therun-time class of the receiver argument is the same as or a subclass of theclass on which the receiver is specialized. Multiple dispatching [BKK+86,Cha92]enables testing the classes of all of the arguments. One method overrides anotherif its specializer classes are subclasses of the other's, using either lexicographic(CLOS [Ste90]) or pointwise (Cecil [Cha93a]) ordering.Predicate classes [Cha93b] automatically classify an object of class A as aninstance of virtual subclass B (a subclass of A) whenever B's predicate (an ar-bitrary expression typically testing the runtime state of an object) is true. Thiscreation of virtual class hierarchies makes method dispatching applicable even186

in cases where the e�ective class of an object may change over time. Classi-�ers [HHM90b] and modes [Tai93] are similar mechanisms for reclassifying anobject into one of a number of subclasses based on a case-statement-like test ofarbitrary boolean conditions.Pattern matching (as in ML [MTH90]) bases applicability tests on the run-time datatype constructor tags of the arguments and their subcomponents. Aswith classi�ers and modes, textual ordering determines overriding. Some lan-guages, such as Haskell [HJW+92], allow arbitrary boolean guards to accom-pany patterns, restricting applicability. Views [Wad87] extend pattern matchingto abstract data types by enabling them to o�er interfaces like various concretedatatypes.Predicate dispatching integrates, generalizes, and provides a uniform inter-face to these similar but previously incomparable mechanisms. A method dec-laration speci�es its applicability via a predicate expression, which is a logicalformula over class tests (i.e., tests that an object is of a particular class or oneof its subclasses) and arbitrary boolean-valued expressions from the underlyingprogramming language. A method is applicable when its predicate expressionevaluates to true. Method m1 overrides method m2 when m1's predicate logi-cally implies that of m2; this relationship is computed at compile time. Statictypechecking veri�es that, for all possible combinations of arguments to a genericfunction, there is always a single most-speci�c applicable method. This ensuresthat there are no \message not understood" errors (called \match not exhaus-tive" in ML) or \message ambiguous" errors at run-time.Predicate expressions capture the basic primitive mechanisms underlying awide range of declarative dispatching mechanisms. Combining these primitivesin an orthogonal and general manner enables new sorts of dispatching that arenot expressible by previous dispatch mechanisms. Predicate dispatching pre-serves several desirable properties from its object-oriented heritage, includingthat methods can be declared in any order and that new methods can be addedto existing generic functions without modifying the existing methods or clients;these properties are not shared by pattern-matching-based mechanisms.Section 2 introduces the syntax, semantics, and use of predicate dispatchingthrough a series of examples. Section 3 de�nes its dynamic and static semanticsformally. Section 4 discusses predicate tautology testing, which is the key mech-anism required by the dynamic and static semantics. Section 5 surveys relatedwork. Section 6 concludes with a discussion of future directions for research.2 OverviewThis section demonstrates some of the capabilities of predicate dispatching byway of a series of examples. We incrementally present a high-level syntax whichappears in full in Fig. 6; Fig. 1 lists supporting syntactic domains. Words andsymbols in boldface represent terminals. Angle brackets denote zero or morecomma-separated repetitions of an item. Square brackets contain optional ex-pressions. 187

E 2 expr The set of expressions in the underlying programming languageBody 2method-body The set of method bodies in the underlying programming languageT 2 type The set of types in the underlying programming languagec 2 class-id The namespace of classesm 2method-id The namespace of methods and �eldsf 2 �eld-id The namespace of methods and �eldsp 2 pred-id The namespace of predicate abstractionsv;w 2 var-id The namespace of variablesFig. 1. Syntactic domains and variables. Method and �eld names appear in the samenamespace; the method-id or �eld-id name is chosen for clarity in the text.Predicate dispatching is parameterized by the syntax and semantics of thehost programming language in which predicate dispatching is embedded. Theideas of predicate dispatching are independent of the host language; this paperspeci�es only a predicate dispatching sublanguage, with expr the generic nonter-minal for expressions in the host language. Types and signatures are used whenthe host language is statically typed and omitted when it is dynamically typed.2.1 Dynamic dispatchEach method implementation has a predicate expression which speci�es whenthe method is applicable. Class tests are predicate expressions, as are negations,conjunctions, and disjunctions of predicate expressions.method-sig ::= signature method-id (h type i) : typemethod-decl ::= method method-id (h formal-pattern i)[when pred-expr] method-bodyformal-pattern ::= var-idpred-expr ::= expr @ class-id succeeds if expr evaluates to an instanceof class-id or one of its subclassesj not pred-expr negationj pred-expr and pred-expr conjunction (short-circuited)j pred-expr or pred-expr disjunction (short-circuited)Predicate expressions are evaluated in an environment with the method's for-mal arguments bound (see Sect. 3 for details). An omittedwhen clause indicatesthat the method handles all (type-correct) arguments.Method signature declarations give the type signature shared by a familyof method implementations in a generic function. A message send expressionneed examine only the corresponding method signature declaration to determineits type-correctness, while a set of overloaded method implementations mustcompletely and unambiguously implement the corresponding signature in orderto be type-correct.Predicate dispatching can simulate both singly- and multiply-dispatchedmeth-ods by specializing formal parameters on a class (via the \@class-id" syntax).188

Specialization limits the applicability of a method to objects that are instancesof the given class or one of its subclasses. More generally, predicate dispatchingsupports the construction of arbitrary conjunctions, disjunctions, and negationsof class tests. The following example uses predicate dispatching to implementthe Zip function which converts a pair of lists into a list of pairs:1type List;class Cons subtypes List { head:Any, tail:List };class Nil subtypes List;signature Zip(List, List):List;method Zip(l1, l2) when l1@Cons and l2@Cons {return Cons(Pair(l1.head, l2.head), Zip(l1.tail, l2.tail)); }method Zip(l1, l2) when l1@Nil or l2@Nil { return Nil; }The �rst Zip method applies when both of its arguments are instances ofCons (or some subclass). The second Zipmethod uses disjunction to test whethereither argument is an instance of Nil (or some subclass). The type checker canverify statically that the two implementations of Zip are mutually exclusive andexhaustive over all possible arguments that match the signature, ensuring thatthere will be no \message not understood" or \message ambiguous" errors atrun-time, without requiring the cases to be put in any particular order.There are several unsatisfactory alternatives to the use of implication to de-termine overriding relationships. ML-style pattern matching requires all cases tobe written in one place and put in a particular total order, resolving ambiguitiesin favor of the �rst successfully matching pattern. Likewise, a lexicographic or-dering for multimethods [Ste90] is error-prone and unnatural, and programmersare not warned of potential ambiguities. In a traditional (singly- or multiply-dispatched) object-oriented language without the ability to order cases, eitherthe base case of Zip must be written as the default case for all pairs of List ob-jects (unnaturally, and unsafely in the face of future additions of new subclassesof List), or three separate but identical base methods must be written: one forNil�Any, one for Any�Nil, and a third for Nil�Nil to resolve the ambiguitybetween the �rst two. In our experience with object-oriented languages (using apointwise, not lexicographic, ordering), these triplicate base methods for binarymessages occur frequently.As a syntactic convenience, class tests can be written in the formal argumentlist: formal-pattern ::= [var-id] [@ class-id] like var-id@ class-id in pred-exprThe class name can be omitted if the argument is not dispatched upon, andthe formal name can be omitted if the argument is not used elsewhere in thepredicate or method body.The �rst Zip method above could then be rewritten as1 Any is the top class, subclassed by all other classes, and Pair returns an objectcontaining its two arguments. 189

method Zip(l1@Cons, l2@Cons) {return Cons(Pair(l1.head, l2.head), Zip(l1.tail, l2.tail)); }This form uses an implicit conjunction of class tests, like a multimethod.2.2 Pattern matchingPredicates can test the run-time classes of components of an argument, just aspattern matching can query substructures, by su�xing the @class test with arecord-like list of �eld names and corresponding class tests; names can be boundto �eld contents at the same time.pred-expr ::= . . .j expr @ specializerspecializer ::= class-id [f h �eld-pat i g]�eld-pat ::= �eld-id [= var-id] [@ specializer]A specializer succeeds if all of the speci�ed �elds (or results of invoking methodsnamed by �eld-id) satisfy their own specializers, in which case the var-ids arebound to the �eld values or method results. As with formal-pattern, the formalname or specializer may be omitted.Our syntax for pattern matching on records is analogous to that for creatinga record: { x := 7, y := 22 } creates a two-component record, binding the x�eld to 7 and the y �eld to 22, while { x = xval } pattern-matches against arecord containing an x �eld, binding the new variable xval to the contents of that�eld and ignoring any other �elds that might be present. The similarity betweenthe record construction and matching syntaxes follows ML. Our presentationsyntax also uses curly braces in two other places: for record type speci�ers (asin the declaration of the Cons class, above) and to delimit code blocks (as in thede�nitions of the Zip methods, above).The following example, adapted from our implementation of an optimizingcompiler, shows how a ConstantFold method can dispatch for binary operatorswhose arguments are constants and whose operator is integer addition:type Expr;signature ConstantFold(Expr):Expr;-- default constant-fold optimization: do nothingmethod ConstantFold(e) { return e; }type AtomicExpr subtypes Expr;class VarRef subtypes AtomicExpr { ... };class IntConst subtypes AtomicExpr { value:int };... -- other atomic expressions heretype Binop;class IntPlus subtypes Binop { ... };class IntMul subtypes Binop { ... };... -- other binary operators here 190

class BinopExpr subtypes Expr { op:Binop, arg1:Expr, arg2:Expr, ... };-- override default to constant-fold binops with constant argumentsmethod ConstantFold(e@BinopExpr{ op@IntPlus, arg1@IntConst, arg2@IntConst }) {return new IntConst{ value := e.arg1.value + e.arg2.value }; }... -- more similarly expressed cases for other binary and unary operators hereThe ability in pattern matching to test for constants of built-in types is asimple extension of class tests. In a prototype-based language, @ operates overobjects as well as classes, as in \answer @ 42".As with pattern matching, testing the representation of components of anobject makes sense when the object and the tested components together imple-ment a single abstraction. We do not advocate using pattern matching to testcomponents of objects in a way that crosses natural abstraction boundaries.2.3 Boolean expressionsTo increase the expressiveness of predicate dispatching, predicates may test arbi-trary boolean expressions from the underlying programming language. Addition-ally, names may be bound to values, for use later in the predicate expressionsand in the method body. Expressions from the underlying programming lan-guage that appear in predicate expressions should have no externally observableside e�ects.2pred-expr ::= . . .j test expr succeeds if expr evaluates to truej let var-id := expr evaluate expr and bind var-id to its value;always succeedsThe following extension to the ConstantFold example illustrates these fea-tures. Recall that in { value=v }, the left-hand side is a �eld name and theright-hand side is a variable being bound.-- Handle case of adding zero to anything (but don't be ambiguous-- with existing method for zero plus a constant).method ConstantFold(e@BinopExpr{ op@IntPlus, arg1@IntConst{ value=v }, arg2=a2 })when test(v == 0) and not(a2@IntConst) {return a2; }method ConstantFold(e@BinopExpr{ op@IntPlus, arg1=a1, arg2@IntConst{ value=v } })when test(v == 0) and not(a1@IntConst) {return a1; }... -- other special cases for operations on 0,1 here2 We do not presently enforce this restriction, but there is no guarantee regarding inwhat order or how many times predicate expressions are evaluated.191

2.4 Predicate abstractionsNamed predicate abstractions can factor out recurring tests and give names tosemantically meaningful concepts in the application domain. Named predicatesabstract over both tests and variable bindings|the two capabilities of inlinepredicate expressions|by both succeeding or failing and returning a record-like set of bindings. These bindings resemble the �elds of a record or class, andsimilar support is given to pattern matching against a subset of the results ofa named predicate invocation. Predicate abstractions thus can act like viewsor virtual subclasses of some object (or tuple of objects), with the results ofpredicate abstractions acting like the virtual �elds of the virtual class. If theproperties of an object tested by a collection of predicates are mutable, theobject may be given di�erent virtual subclass bindings at di�erent times in itslife, providing the bene�ts of using classes to organize code even in situationswhere an object's \class" is not �xed.pred-sig ::= predsignature pred-id (h type i)[return f h �eld-id : type i g]pred-decl ::= predicate pred-id (h formal-pattern i)[when pred-expr] [return f h �eld-id := expr i g]pred-expr ::= . . .j pred-id (h expr i) [=> f h �eld-pat i g]test predicate abstractionspecializer ::= class-spec [f h �eld-pat i g]class-spec ::= class-id expr@ class-id is a class testj pred-id expr@ pred-id [f : : :g] is alternate syntaxfor pred-id(expr) [=>f : : : g]A predicate abstraction takes a list of arguments and succeeds or fails asdetermined by its own predicate expression. A succeeding predicate abstractioninvocation can expose bindings of names to values it computed during its evalu-ation, and the caller can retrieve any subset of the predicate abstraction's resultbindings. Predicate signatures specify the type interface used in typecheckingpredicate abstraction callers and implementations. In this presentation, we pro-hibit recursive predicates.Simple predicate abstractions can be used just like ordinary classes:predicate on_x_axis(p@point)when (p@cartesianPoint and test(p.y == 0))or (p@polarPoint and (test(p.theta == 0) or test(p.theta == pi)));method draw(p@point) { ... } -- draw the pointmethod draw(p@on_x_axis) { ... } -- use a contrasting color so point is visibleIn the following example, taken from our compiler implementation,CFG_2succis a control
ow graph (CFG) node with two successors. Each successor is markedwith whether it is a loop exit (information which, in our implementation, is dy-namicallymaintained when the CFG is modi�ed) and the innermost loop it does192

not exit. It is advantageous for an iterative data
ow algorithm to propagate val-ues along the loop exit only after reaching a �xed point within the loop; such analgorithm would dispatch on the LoopExit predicate. Similarly, the algorithmcould switch from iterative to non-iterative mode when exiting the outermostloop, as indicated by TopLevelLoopExit.predsignature LoopExit(CFGnode)return { loop:CFGloop };predicate LoopExit(n@CFG_2succ{ next_true = t, next_false = f })when test(t.is_loop_exit) or test(f.is_loop_exit)return { loop := outermost(t.containing_loop, f.containing_loop) };predicate TopLevelLoopExit(n@LoopExit{ loop@TopLevelScope });Only one de�nition per predicate abstraction is permitted; App. B relaxesthis restriction.Because object identity is not a�ected by these di�erent views on an object,named predicate abstractions are more
exible than coercions in environmentswith side-e�ects. Additionally, a single object can be classi�ed in multiple in-dependent ways by di�erent predicate abstractions without being forced to de-�ne all the possible conjunctions of independent predicates as explicit classes,relieving some of the problems associated with a mix-in style of class organiza-tion [HHM90b,HHM90a].2.5 Classi�ersClassi�ers [HHM90b] are a convenient syntax for imposing a linear ordering on acollection of predicates, ensuring mutual exclusion. They combine the state test-ing of predicate classes and the total ordering of pattern matching. An optionalotherwise case, which executes if none of the predicates in the classi�er eval-uates to true, adds the guarantee of complete coverage. Multiple independentclassi�cations of a particular class or object do not interfere with one another.classi�er-decl ::= classify (h formal-pattern i)h as pred-id when pred-expr [return f h �eld-id := expr i g] i[as pred-id otherwise [return f h �eld-id := expr i g]]Here is an example of the use of classi�ers:class Window { ... }classify(w@Window)as Iconified when test(w.iconified)as FullScreen when test(w.area() == RootWindow.area())as Big when test(w.area() > RootWindow.area()/2)as Small otherwise;method move(w@FullScreen, x@int, y@int) { } -- nothing to domethod move(w@Big, x@int, y@int) { ... } -- move a wireframe outlinemethod move(w@Small, x@int, y@int) { ... } -- move an opaque windowmethod move(w@Iconified, x@int, y@int) { ... } -- modify icon coordinates-- resize, maximize, and iconify similarly test these predicates193

method-sig ::= signature method-id (h type i) : typemethod-decl ::= methodmethod-id (h var-id i) when pred-expr method-bodypred-sig ::= predsignature pred-id (h type i) return f h �eld-id : type i gpred-decl ::= predicate pred-id (h var-id i) when pred-exprreturn f h �eld-id := expr i gP;Q 2 pred-expr ::= var-id@ class-id succeeds if var-id is an instanceof class-id or a subclassj test var-id succeeds if var-id's value is truej let var-id := expr evaluate expr and bind var-idto that value; always succeedsj pred-id (h var-id i) => f h �eld-id = var-id i gtest predicate abstractionj true always succeedsj notpred-expr negationj pred-expr and pred-expr conjunction (short-circuited)j pred-expr or pred-expr disjunction (short-circuited)Fig. 2. Abstract syntax of the core language. Words and symbols in boldface representterminals. Angle brackets denote zero or more comma-separated repetitions of an item.Square brackets contain optional expressions. The text uses parentheses around pred-exprs to indicate order of operations. Each predicate may be de�ned only once (App. Brelaxes this restriction), and recursive predicates are forbidden.Classi�ers introduce no new primitives, but provide syntactic support for acommonprogramming idiom.To force the classi�cation to be mutually exclusive,each case is transformed into a predicate which includes the negation of thedisjunction of all previous predicates (for details, see App. A). Therefore, anobject is classi�ed by some case only when it cannot be classi�ed by any earliercase.3 Dynamic and static semanticsThe rest of this paper formalizes the dynamic and static semantics of a corepredicate dispatching sublanguage. Figure 2 presents the abstract syntax of thecore sublanguage which is used throughout this section. Appendix A de�nesdesugaring rules that translate the high-level syntax of Fig. 6 into the coresyntax.In the remainder of this paper, we assume that all variable names are distinctso that the semantic rules can ignore the details of avoiding variable capture.3.1 Dynamic semanticsThis section explains how to select the most-speci�c applicable method at eachmessage send. This selection relies on two key tests on predicated methods:whether a method is applicable to a call, and whether one method overridesanother. 194

�; � 2 value Values in the underlying programming languageb 2 ftrue; falseg Mathematical booleansK 2 (var-id ! value)[(pred-id ! pred-decl) Environments mapping variables to valuesand predicate names to predicate declarationslookup(v;K)! � Look up variable v in environment K, returning the value �.K[v := �]! K 0 Bind name v to value � in environment K, resulting in the newenvironment K 0. Any existing binding for v is overridden.eval(E;K)! � Evaluate expression E in environment K, returning the value �.instanceof(�; c)! b Determine whether value � is an instance of c or a subclass of c.accept(�)! b Coerce arbitrary program values to true or false, for use with test.Fig. 3. Dynamic semantics domains and helper functions. Evaluation rules appear inFig. 4. The host programming language supplies functions eval, instanceof, and accept.A method is applicable if its predicate evaluates to true. Predicate evaluationalso provides an extended environment in which the method's body is executed.Bindings created via let in a predicate may be used in a method body, predicatereturn clause, or the second conjunct of a conjunction whose �rst conjunctcreated the binding. Such bindings permit reuse of values without recomputation,as well as simplifyingand clarifying the code. Figures 3 and 4 de�ne the executionmodel of predicate evaluation.Predicate dispatching considers one method m1 to override another methodm2 exactly when m1's predicate implies m2's predicate and not vice versa. Sec-tion 4 describes how to compute the overriding relation, which can be performedat compile time.Given the evaluation model for predicate expressions and the ability to com-pare predicate expressions for overriding, the execution of generic function invo-cations is straightforward. Suppose that generic function m is de�ned with thefollowing cases: methodm(v1, : : : , vn) whenP1 Body1methodm(v1, : : : , vn) whenP2 Body2...methodm(v1, : : : , vn) whenPk BodykTo evaluate the invocation m(E1, : : : ,En) in the environment K, �rst obtain�i = eval(Ei;K) for all i = 1; : : : ; n. Then, for j = 1; : : : ; k, obtain a truthvalue bj and a new environment Kj through hPj;K[v1 := �1; : : : ; vn := �n]i)hbj;Kji, as in the predicate invocation rules of Fig. 4.3Now let I be the set of integers i such that bi = true, and �nd i0 2 I suchthat Pi0 overrides all others in fPigi2I . The result of evaluating m(E1; : : : ; En)3 Since we assume that all variable names are distinct and disallow lexically nestedpredicate abstractions, we can safely use the dynamic environment at the call siteinstead of preserving the static environment at the predicate abstraction's de�nitionpoint. 195

htrue;Ki) htrue;Kilookup(v;K) = � instanceof(�; c) = bhv@ c;Ki) hb;Kilookup(v;K) = � accept(�) = bhtest v;Ki) hb; Kieval(E;K) = � K[v := �] = K 0hlet v := E;Ki) htrue; K 0i8i 2 f1; : : : ; ng lookup(vi;K) = �ilookup(p;K) = predicate p(v01; : : : ; v0n)when P return ff1 := w01, : : : , fm := w0m, : : :ghP;K[v01 := �1; : : : ; v0n := �n]i) hfalse;K 0ihp(v1, : : : , vn) => ff1 = w1, : : : , fm = wmg; Ki) hfalse;Ki8i 2 f1; : : : ; ng lookup(vi;K) = �ilookup(p;K) = predicate p(v01; : : : ; v0n)when P return ff1 := w01, : : : , fm := w0m, : : :ghP;K[v01 := �1; : : : ; v0n := �n] i) htrue;K 0i8i 2 f1; : : : ; mg lookup(w0i;K 0) = �iK[w1 := �1; : : : ; wm := �m] = K 00 (�)hp(v1, : : : , vn) => ff1= w1, : : : , fm = wmg;Ki) htrue;K 00ihP;Ki) hb;K 0ihnotP;Ki) h:b;KihP;Ki) hfalse;K 0ihP andQ;Ki) hfalse;KihP;Ki) htrue;K 0i hQ;K 0i) hfalse;K 00ihP andQ;Ki) hfalse;KihP;Ki) htrue;K 0i hQ;K 0i) htrue; K 00ihP andQ;Ki) htrue;K 00ihP;Ki) htrue;K 0ihP or Q;Ki) htrue;KihP;Ki) hfalse;K 0i hQ;Ki) htrue;K 00ihP or Q;Ki) htrue;KihP;Ki) hfalse;K 0i hQ;Ki) hfalse;K 00ihP orQ;Ki) hfalse;KiFig. 4. Dynamic semantics evaluation rules. Domains and helper functions appear inFig. 3. We say hP;Ki) hb; K 0i when the predicate P evaluates in the environmentK to the boolean result b, producing the new environment K 0. If the result b is false,then the resulting environment K 0 is ignored. Bindings do not escape from not or orconstructs; App. B relaxes the latter restriction. The starred hypothesis uses K, notK 0, to construct the result environment K 00 because only the bindings speci�ed in thereturn clause, not all bindings in the predicate's when clause, are exposed at the callsite. 196

is then the result of evaluating Body i0 in the environment Ki0 , so that variablesbound in the predicate can be referred to in the body. If no such i0 exists, thenan exception is raised: a \message not understood" error if I is empty, or a\message ambiguous" error if there is no unique most speci�c element of I.An implementation can make a number of improvements to this base algo-rithm. Here we brie
y mention just a few such optimizations. First, commonsubexpression elimination over predicate expressions can limit the computationdone in evaluating guards. Second, precomputed implication relationships canprevent the necessity for evaluating every predicate expression. If a more spe-ci�c one is true, then the less speci�c one is certain to be satis�ed; however, suchsatisfaction is irrelevant since the more speci�c predicate will be chosen. Third,clauses and methods can be reordered to succeed or fail more quickly, as in someProlog implementations [Zel93].3.2 Static semantics and typecheckingThe operational model of predicate dispatch described in Sect. 3.1 can raisea run-time exception at a message send if no method is applicable or if noapplicable method overrides all the others. We extend the typechecking rules ofthe underlying language to guarantee that no such exception occurs.Figure 5 presents the static semantic domains, helper functions, and type-checking rules for the core predicate dispatching sublanguage. The return typefor a predicate invocation is an unordered record. Bindings do not escape fromnot or or constructs (App. B makes bindings on both sides of a or disjunctvisible outside the disjunct).We can separate typechecking into two parts: client-side, which handlesall checking of expressions in the underlying language and uses method sig-natures to typecheck message sends, and implementation-side, which checksmethod and predicate implementations against their corresponding signatures.Only implementation-side checking is a�ected by predicate dispatching.Implementation-side typechecking must guarantee completeness and unique-ness. Completeness guarantees that no \message not understood" error is raised:for every possible set of arguments at each call site, some method is applicable.Let Pm be the disjunction of the predicates of all of m's implementations, andlet Ps be a predicate expressing the set of argument classes that conform to thetypes in the method signature. (See below for the details of predicate Ps; a classc conforms to a type T if every object which is an instance of that class has typeT or a subtype of T .) If Ps implies Pm, then some method is always applicable.Uniqueness guarantees that no \message ambiguous" error is raised: for no pos-sible set of arguments at any call site are there multiple most-speci�c methods.Uniqueness is guaranteed if, for each pair of predicates P and Q attached to twodi�erent implementations, either P and Q are disjoint (so their associated meth-ods can never be simultaneously applicable) or one of the predicates implies theother (so one of the methods overrides the other). Section 4 presents implicationand disjointness tests over predicate expressions.197

T � T 0 Type T is a subtype of T 0.conformant-type(T; c) Return the most-speci�c (with respect to the subtyping partialorder) type T 0 such that every subclass c0 of c that conformsto T also conforms to T 0. This helper function is supplied bythe underlying programming language.� + � 0 = � 00 Overriding extension of typing environments. For each v 2dom(� 0), if � 0 j= v : T 0, then � 00 j= v : T 0; for eachv 2 dom(�) n dom(� 0), if � j= v : T , then � 00 j= v : T .� ` signature m(T1, : : : , Tn) : Tr) � + fm : (T1; : : : ; Tn) ! Trg� j=m : (T1; : : : ; Tn)! Tr� + fv1 : T1; : : : ; vn : Tng ` P) � 0 � 0 j= Body : Tb Tb � Tr� `method m(v1, : : : , vn) when P Body) �h�;predsignature p(T1, : : : ,Tn) return ff1 : T r1 , : : : , fm : T rmgi) � + fp : (T1; : : : ; Tn)! ff1 : T r1 ; : : : ; fm : T rmg g� j= p : (T1; : : : ; Tn) ! ff1 : T r1 ; : : : ; fm : T rm; : : :g� + fv1 : T1; : : : ; vn : Tng ` P) � 08i 2 f1; : : : ;mg � 0 j= v0i : T 0i ^ T 0i � T ri� ` predicate p(v1, : : : , vn) when P return ff1 := v01, : : : , fm := v0mg) �� ` true) �� j= v : T conformant-type(c; T) = T 0� ` v@ c) � + fv : T 0g� j= v : Bool� ` test v) �� j= expr : T� ` let v := expr) � + fv : Tg� j= p : (T1; : : : ; Tn) ! ff1 : T r1 ; : : : ; fm : T rm; : : :g� j= v1 : T 01 : : : � j= vn : T 0n T 01 � T1 : : : T 0n � Tn� ` p(v1, : : : , vn) => ff1 = v01, : : : , fm = v0mg) � + fv01 : T r1 ; : : : ; v0m : T rmg� ` P) � 0� ` notP) �� ` P1) � 0 � 0 ` P2) � 00� ` P1 and P2) � 00� ` P1) � 0 � ` P2) � 00� ` P1 or P2) �Fig. 5. Typechecking rules. The hypothesis � j= E : T indicates that typecheckingin typing environment � assigns type T to expression E. The judgment � ` P)� 0 represents extension of typechecking environments: given type environment � , Ptypechecks and produces new typechecking environment � 0.198

Completeness checking requires a predicate Ps that expresses the set of tuplesof values v1; : : : ; vn conforming to some signature's argument types T1; : : : ; Tn;this predicate depends on the host language's model of classes and typing. Ifclasses and types are the same, and all classes are concrete, then the corre-sponding predicate is simply v1@T1 and : : :andvn@Tn. If abstract classes areallowed, then each vi @ Ti is replaced with vi @ Ti1 or : : : or vi @ Tim, wherethe Tij are the top concrete subclasses of Ti. If inheritance and subtyping areseparate notions, then the predicates become more complex.Our typechecking need not test that methods conform to signatures, unlikeprevious work on typechecking multimethods [CL95]. In predicate dispatching,a method's formal argument has two distinct types: the \external" type derivedfrom the signature declaration, and the possibly �ner \internal" type guaranteedby successful evaluation of the method's predicate. The individual@ tests narrowthe type of the tested value to the most-speci�c type to which all classes passingthe test conform, in a host-language-speci�c manner, using conformant-type.The conformant-type function replaces the more complicated conformance testof earlier work.4 Comparing predicate expressionsThe static and dynamic semantics of predicate dispatching require compile-timetests of implication between predicates to determine the method overriding re-lationship. The static semantics also requires tests of completeness and unique-ness to ensure the absence of \message not understood" errors and \messageambiguous" errors, respectively. All of these tests reduce to tautology tests overpredicates. Method m1 with predicate p1 overrides method m2 with predicate p2i� p1 implies p2|that is, if (notp1) or p2 is true. A set of methods is completeif the disjunction of their predicates is true. Uniqueness for a set of methods re-quires that for any pair of methods, either one's predicate overrides the other's,or the two predicates are logically exclusive. Two formulas are mutually exclusiveexactly if one implies the negation of the other.Section 4.1 presents a tautology test over predicate expressions which is sim-ple, sound, and complete up to equivalence of arbitrary program expressionsin test constructs, which we treat as black boxes. Because determining logi-cal tautology is NP-complete, in the worst case an algorithm takes exponentialtime in the size of the predicate expressions. For object-oriented dispatch, thisis the number of arguments to a method (a small constant). Simple optimiza-tions (Sect. 4.2) make the tests fast in many practical situations. This cost isincurred only at compile time; at run time, precomputed overriding relationsamong methods are simply looked up.We treat expressions from the underlying programming language as blackboxes (but do identify those whose canonicalizations are structurally identical).Tests involving the run-time values of arbitrary host language expressions areundecidable. The algorithm presented here also does not address recursive pred-199

icates. While we have a set of heuristics that succeed in many common, practicalcases, we do not yet have a complete, sound, and e�cient algorithm.4.1 The base algorithmThe base algorithm for testing predicate tautology has three components. First,the predicate expression is canonicalized to macro-expand predicate abstrac-tions, eliminate variable bindings, and use canonical names for formal arguments.This transformation prevents di�erent names for the same value from being con-sidered distinct. Second, implication relations are computed among the atomicpredicates (for instance, x @ int implies x @ num). Finally, the canonicalizedpredicate is tested for every assignment of atomic predicates to truth valueswhich is consistent with the atomic predicate implications. The predicate is atautology i� evaluating it in every consistent truth assignment yields true.Canonicalization Canonicalization performs the following transformations:{ Expand predicate calls inline, replacing the => clause by a series of letbindings.{ Replace let-bound variables by the expressions to which they are bound,and replace let expressions by true.{ Canonically rename formal parameters according to their position in theformal list.After canonicalization, each predicate expression is a logical formula over thefollowing atoms with connectives and, or, and not.pred-atom ::= truej test exprj expr@ class-idCanonicalized predicates are a compile-time construct used only for predicatecomparison; they are never executed. Canonicalized predicates bind no variables,and they use only global variables and formal parameters.In the worst case, canonicalization exponentially blows up expression sizes.For instance, inletx1 = x+x andletx2 = x1+x1 andletx3 = x2+x2 and : : :andtest xn = y ;the �nal xn is replaced by an expression containing 2n instances of x. Inlineexpansion of predicate abstractions similarly contributes to this blowup. As withML typechecking [KM89], which is exponential in the worst case but linear inpractice, we anticipate that predicates leading to exponential behavior will berare.In what follows, we consider two expressions identical if, after canonicaliza-tion, they have the same abstract syntax tree.Omitting the canonicalization step prevents some equivalent expressions frombeing recognized as such, but does not prevent the remainder of the algorithmfrom succeeding when results are named and reused rather than the computationrepeated. 200

Truth assignment checking We present a simple exponential-time algorithmto check logical tautology; because the problem is NP-complete, any algorithmtakes exponential time in the worst case. Let there be n distinct predicate atomsin the predicate; there are 2n di�erent truth assignments for those atoms. Notall of those truth assignments are consistent with the implications over predicateatoms: for instance, it is not sensible to set a @ int to true but a @ num tofalse, because a @ int implies a @ num. If every consistent truth assignmentsatis�es the predicate, then the predicate is a tautology. Each check of a singletruth assignment takes time linear in the size of the predicate expression, for atotal time of O(n2n).The following rules specify implication over (possibly negated) canonicalpredicate atoms.E1 @ c1) E2 @ c2 i� (E1 � E2) and (c1 is a subclass of c2)E1@ c1) not(E2@ c2) i� (E1 � E2) and (c1 is disjoint from c2)a1) a2 i� nota2) nota1a1) nota2 i� a2) nota1Two classes are disjoint if they have no common descendant, and notnota = a.4.2 OptimizationsThe worst-case exponential-time cost to check predicate tautology need not pre-vent its use in practice. Satis�ability is checked only at compile time. Whencomputing overriding relationships, the predicates tend to be small (linear inthe number of arguments to a method). We present heuristics that reduce thecosts even further.Logical simpli�cation|such as eliminating uses of true, false, aandnota,and a or nota, and replacing notnota by a|can be performed as part ofcanonicalization to reduce the size of predicate expressions.Unrelated atomic predicates can be treated separately. To determine whethermethod m1(f1@c1; f2@c2)f:::g overrides method m1(f1@c3; f2@c4)f:::g it issu�cient to independently determine the relationship between c1 and c3 andthat between c2 and c4. Two tests with a smaller exponent replace one with alarger one, substantially reducing the overall cost. This technique always solvesordinary single and multiple dispatching overriding in time constant and linearin the number of formals, respectively, by examining each formal position inde-pendently. The technique also applies to more complicated cases, by examiningsubsets of formal parameters which appear together in tests from the underlyingprogramming language.It is not always necessary to completely expand predicate abstraction callsas part of canonicalization. If relations between predicate abstractions or otherpredicate expressions are known, then the tautology test can use them directly.As one example, di�erent cases of a classi�er are mutually exclusive by de�nition.The side conditions on atomic predicate values (their implication relation-ships) usually prevent the need to check all 2n di�erent truth assignments for201

a predicate containing n atomic predicates. When a @ int is set to true, thenall truth assignments which set a @ num to false can be skipped without furtherconsideration.Finally, it may be possible to achieve faster results in some cases by recastingthe tautology test. Rather than attempting to prove that every truth assignmentsatis�es a predicate expression, it may be advantageous to search for a singletruth assignment that satis�es its negation.5 Related work5.1 Object-oriented approachesIn the model of predicate dispatching, traditional object-oriented dispatchingtranslates to either a single class test on the receiver argument or, for multi-ple dispatching, a conjunction of class tests over several arguments. Full predi-cate dispatching additionally enables testing arbitrary boolean expressions fromthe underlying language, accessing and naming subcomponents of the argu-ments, performing tests over multiple arguments, and arbitrarily combiningtests via conjunction, disjunction, and negation. Also, named predicate ab-stractions e�ectively introduce new virtual classes and corresponding subclass-ing links into the program inheritance hierarchy. Predicate dispatching pre-serves the ability in object-oriented languages to statically determine whenone method overrides another and when no message lookup error can occur.Singly-dispatched object-oriented languages have e�cient method lookup algo-rithms and separate typechecking, which depend crucially on the absence ofany separate modules that dispatch on other argument positions. Multiply-dispatched object-oriented languages have more challenging problems in imple-mentation [KR89,CTK94,AGS94] and typechecking [CL95], and predicate dis-patching in its unrestricted form shares these challenges.Predicate classes [Cha93b] are an earlier extension of object-oriented dis-patching to include arbitrary boolean predicates. A predicate class which in-herits from class A and has an associated predicate expression guard would bemodeled as a named predicate abstraction that tests @A and guard . Predicatedispatching is more general, for example by being able to de�ne predicates overmultiple arguments. Predicate dispatching exploits the structure of and, or, andnot to automatically determine when no message lookup error can occur, whiletypechecking of predicate classes relies on uncheckable user assertions about therelations between the predicate classes' guard expressions.Classi�ers in Kea [HHM90b,HHM90a,MHH91] let an instance of a class bedynamically reclassi�ed as being of a subclass. A classi�er for a class is com-posed of a sequence of predicate/subclass pairs, with an object of the input classautomatically classi�ed as being of the subclass with the �rst successful predi-cate. Because the sequence of predicates is totally ordered and the �rst successfulpredicate takes precedence over all later predicates, a classi�er provides a concisesyntax for a set of mutually exclusive, exhaustive predicate abstractions. Predi-cate abstractions are more general than classi�ers in many of the ways discussed202

above, but they also provide syntactic support for this important idiom. Kea is apurely functional language, so classi�ers do not need to consider the semantics ofreclassifying objects when the values of predicates change; predicate dispatchingaddresses this issue by (conceptually) performing reclassi�cation as needed aspart of message dispatching.Modes [Tai93] are another mechanism for adding dynamic reclassi�cation of aclass into a subclass. Unlike predicate classes and classi�ers, the modes of a classare not �rst-class subclasses but rather internal components of a class that cannotbe extended externally and that cannot exploit inheritance to factor shared code.Mode reselection can be done either explicitly at the end of each method orimplicitly after each assignment using a declaratively speci�ed classi�cation.5.2 Pattern matching approachesPredicate dispatching supports many of the facilities found in pattern matchingas in ML [MTH90] and Haskell [HJW+92], including tests over arbitrary nestedstructure, binding of names to subcomponents, and arbitrary boolean guard ex-pressions. Predicate dispatching additionally supports inheritance (its class testsare more general than datatype constructor patterns), disjunctions and negationsof tests and conjunctions of tests on the same object, and named predicate ab-stractions to factor out common patterns of tests and to o�er conditional viewsof objects extended with virtual �elds. The patterns in a function are totallyordered, while predicate dispatching computes a partial order over predicatesand warns when two patterns might be ambiguous. Finally, new methods can beadded to existing generic functions without changing any existing code, whilenew patterns can be added to a function only by modifying it.Views [Wad87] extend pattern matching to abstract data types by allowingan abstract data type to o�er a number of views of itself as a concrete datatype,over which pattern matching is de�ned. Predicate dispatching supports \patternmatching" over the results of methods (by let-binding their results to names andthen testing those names, just as �eld contents are bound and tested), and thosemethods can serve as accessor functions to a virtual view of the object, forinstance rho and theta methods presenting a polar view of a cartesian point.Views must be isomorphisms, which enables equational reasoning over them; bycontrast, named predicate abstractions provide conditional views of an objectwithout requiring the presence of both in and out views.Pizza [OW97] supports both algebraic datatypes (and associated patternmatching) and object-oriented dispatching, but the two mechanisms are largelydistinct. The authors argue that datatypes are good for �xed numbers of rep-resentations with extensible operations, while classes are good for a �xed set ofoperations with extensible representations. By integrating pattern matching anddispatching, includingmultimethods, predicate dispatching achieves extensibilityin both dimensions along with the syntactic convenience of pattern matching.Predicate dispatching faces more di�cult implementation and separate type-checking challenges with the shift to multimethod-like dispatching.203

6 ConclusionsMany language features express the concept of selecting a most-speci�c applica-ble method from a collection of candidates, including object-oriented dispatch,pattern matching, views, predicate classes, and classi�ers. Predicate dispatchingintegrates and generalizes these mechanisms in a single framework, based on acore language of boolean expressions over class tests and arbitrary expressions,explicit binding forms to generalize features of pattern matching, and namedpredicate abstractions with result bindings. By providing a single integratedmechanism, programs can take advantage of various styles of dispatch and evencombine them to create applicability conditions that were previously either im-possible or inconvenient to express.We have implemented predicate dispatching in the context of Dubious, asimple core multiply-dispatched object-oriented programming language. Theimplementation supports all the examples presented in this paper, althoughfor clarity this paper uses a slightly di�erent presentation syntax. The imple-mentation supports the full core language of Sect. 3 and many of the syn-tactic sugars of App. A. This implementation was helpful in verifying ourbase design. We expect that it will also provide insight into the advantagesand disadvantages of programming with predicate dispatching, as well as helpus to evaluate optimization strategies. The implementation is available fromhttp://www.cs.washington.edu/research/projects/cecil/www/Gud/.So far, we have focused on developing the static and dynamic semantics forpredicate dispatching. Two unresolved practical issues that we will address inthe future are e�cient implementation techniques and separate typecheckingsupport for predicate dispatching. We anticipate that e�cient implementationsof unrestricted predicate dispatching will build upon work on e�cient implemen-tation of multimethod dispatching and on predicate classes. In addition, staticanalyses that factor a collection of predicates to avoid redundant tests and side-e�ect analyses that determine when predicates need not be re-evaluated appearto be promising lines for future research. Similarly, separate typechecking of col-lections of predicated methods will build upon current work to develop modularand incremental methods for typechecking multimethods [CL95].AcknowledgmentsToddMillstein, Vassily Litvinov,Wilson Hsieh, David Grove, and the anonymousreferees made helpful comments on a draft of this paper. This research is sup-ported in part by an NSF grant (number CCR-9503741), an NSF Young Investi-gator Award (number CCR-9457767), a grant from the O�ce of Naval Research(contract number N00014-94-1-1136), an IBM graduate fellowship, an FCARgraduate scholarship, and gifts from Sun Microsystems, IBM, Xerox PARC, PureSoftware, and Edison Design Group. 204

References[AGS94] Eric Amiel, Olivier Gruber, and Eric Simon. Optimizing multi-method dis-patch using compressed dispatch tables. In Proceedings OOPSLA '94, pages244{258, Portland, OR, October 1994.[BKK+86] Daniel G. Bobrow, Ken Kahn, Gregor Kiczales, Larry Masinter, Mark Ste-�k, and Frank Zdybel. Commonloops: Merging lisp and object-orientedprogramming. In Proceedings OOPSLA '86, pages 17{29, November 1986.Published as ACM SIGPLAN Notices, volume 21, number 11.[Cha92] Craig Chambers. Object-oriented multi-methods in Cecil. In O. LehrmannMadsen, editor, Proceedings ECOOP '92, LNCS 615, pages 33{56, Utrecht,The Netherlands, June 1992. Springer-Verlag.[Cha93a] Craig Chambers. The Cecil language: Speci�cation and rationale. TechnicalReport UW-CSE-93-03-05, Department of Computer Science and Engineer-ing. University of Washington, March 1993.[Cha93b] Craig Chambers. Predicate classes. In O. Nierstrasz, editor, ProceedingsECOOP '93, LNCS 707, pages 268{296, Kaiserslautern, Germany, July1993. Springer-Verlag.[CL95] Craig Chambers and Gary T. Leavens. Typechecking and modules formulti-methods. ACM Transactions on Programming Languages and Sys-tems, 17(6):805{843, November 1995.[CTK94] Weimin Chen, Volker Turau, and Wolfgang Klas. E�cient dynamic look-up strategy for multi-methods. In M. Tokoro and R. Pareschi, editors,Proceedings ECOOP '94, LNCS 821, pages 408{431, Bologna, Italy, July1994. Springer-Verlag.[HHM90a] J. Hamer, J.G. Hosking, and W.B. Mugridge. Amethod for integrating clas-si�cation within an object-oriented environment. Technical Report Auck-land Computer Science Report No. 48, Department of Computer Science,University of Auckland, October 1990.[HHM90b] J.G. Hosking, J. Hamer, and W.B. Mugridge. Integrating functional andobject-oriented programming. In Technology of Object-Oriented Languagesand Systems TOOLS 3, pages 345{355, Sydney, 1990.[HJW+92] Paul Hudak, Simon Peyton Jones, Philip Wadler, Brian Boutel, JonFairbairn, Joseph Fasel, Maria Guzman, Kevin Hammond, John Hughes,Thomas Johnsson, Dick Kieburtz, Rishiyur Nikhil, Will Partain, and JohnPeterson. Report on the programming language Haskell, version 1.2. SIG-PLAN Notices, 27(5), May 1992.[KM89] Paris C. Kanellakis and John C. Mitchell. Polymorphic uni�cation and MLtyping. In ACM-SIGPLAN ACM-SIGACT, editor, Conference Record ofthe 16th Annual ACM Symposium on Principles of Programming Languages(POPL '89), pages 105{115, Austin, TX, USA, January 1989. ACM Press.[KR89] Gregor Kiczales and Luis Rodriguez. E�cient method dispatch in PCL.Technical Report SSL 89-95, Xerox PARC Systems Sciences Laboratory,1989.[MHH91] Warwick B. Mugridge, John Hamer, and John G. Hosking. Multi-methods ina statically-typed programming language. In P. America, editor, ProceedingsECOOP '91, LNCS 512, pages 307{324, Geneva, Switzerland, July 15-191991. Springer-Verlag.[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The De�nition of StandardML. MIT Press, 1990. 205

[OW97] Martin Odersky and Philip Wadler. Pizza into Java: Translating theory intopractice. In Conference Record of the 24th ACM SIGPLAN-SIGACT Sym-posium on Principles of Programming Languages, pages 146{159, January1997.[Ste90] Guy L. Steele Jr. Common Lisp: The Language. Digital Press, Bedford,MA, 1990. Second edition.[Tai93] Antero Taivalsaari. Object-oriented programming with modes. Journal ofObject-Oriented Programming, pages 25{32, June 1993.[Wad87] Philip Wadler. Views: A way for pattern matching to cohabit with dataabstraction. In Proceedings of the Fourteenth Annual ACM Symposium onPrinciples of Programming Languages, pages 307{313, Munich, Germany,January 1987.[Zel93] John M. Zelle. Learning search-control heuristics for logic programs: Ap-plications tospeed-up learning and languageacquisitions. Technical ReportAI93-200, University of Texas, Austin, May 1, 1993.A Desugaring rulesThe following rewrite rules desugar the high-level syntax of Fig. 6 into the coreabstract syntax of Fig. 2. The rules are grouped by their intention, such asproviding names for arbitrary expressions or breaking down compound predicateabstractions.For brevity, we omit the rewrite rules which introduce defaults for omittedoptional program fragments: dummyvariables for pattern variables, \@Any" spe-cializers, empty �eld pattern sets in specializers, and \when true" and \returnf g" clauses. Additional rules may be introduced to simplify the resulting for-mula, such as converting \v@ Any" to \true" and performing logical simpli�ca-tion.For brevity, we use Vni=1 fPig to stand for the conjunction of the terms:P1 and : : : andPn. When n = 0, Vni=1 fPig stands for true. Variables v0 and v0iare new variables which do not appear elsewhere in the program. Ceiling bracesd�e surround (potentially) sugared expressions; application of the rewrite ruleseliminates those braces.A.1 DeclarationsThese rules move specializers from formal lists into when clauses.dmethod m(v1@ S1, : : : , vn @ Sn) when P Bodye=)method m(v1, : : : , vn) when Vni=1 fdvi @ Sieg and dPe Bodydpredicate p(v1@ S1, : : : , vn @ Sn) when P return ff1 := E1, : : : , fm := Emge=) predicate p(v1, : : : , vn)when Vni=1 fdvi @ Sieg and dPe dreturn ff1 := E1, : : : , fm := Emge206

method-sig ::= signature method-id (h type i) : typemethod-decl ::= method method-id (h formal-pattern i)[when pred-expr] method-bodypred-sig ::= predsignature pred-id (h type i)[return f h �eld-id : type i g]pred-decl ::= predicate pred-id (h formal-pattern i) [when pred-expr][return f h �eld-id := expr i g]classi�er-decl ::= classify (h formal-pattern i)h as pred-id when pred-expr [return f h �eld-id := expr i g] i[as pred-id otherwise [return f h �eld-id := expr i g]]P;Q 2 pred-expr ::= expr @ specializer succeeds if expr evaluates to a valuethat satis�es specializerj test expr succeeds if expr evaluates to truej let var-id := expr evaluate expr and bind var-idto its value; always succeedsj pred-id (h expr i) [=> f h �eld-pat i g]test predicate abstractionj true always succeedsj false never succeedsj not pred-expr negationj pred-expr and pred-expr conjunction (short-circuited)j pred-expr or pred-expr disjunction (short-circuited)formal-pattern ::= [var-id] [@ specializer] like var-id@specializer in pred-exprF 2 �eld-pat ::= �eld-id [= var-id] [@ specializer]S 2 specializer ::= class-spec [f h �eld-pat i g]C 2 class-spec ::= class-id expr@ class-id is a class testj pred-id expr@ pred-id [f : : :g] is sugarfor pred-id(expr) [=>f : : :g]j not class-spec succeeds if class-spec does notj class-spec & class-spec succeeds if both class-specs doj class-spec j class-spec succeeds if either class-spec doesFig. 6. Full extended abstract syntax for predicate dispatching. The syntax is as pre-sented incrementally in Sect. 2, with the addition of the true and false predicateexpressions and the not, &, and j class specializers. Words and symbols in boldfacerepresent terminals. Angle brackets denote zero or more comma-separated repetitionsof an item. Square brackets contain optional expressions. Each predicate may be de�nedonly once (App. B relaxes this restriction), and recursive predicates are forbidden.A.2 Naming of non-variable expressionsThe core language permits arbitrary expressions only in let bindings and usesvariable references elsewhere. These rules introduce let bindings and are intendedto �re only once (alternately, only if one of the E expressions is not a merevariable reference), lest the @ and predicate application rules cause an in�niteloop in desugaring.dE @ Se =) let v0 := E and �v0 @ S�207

dtest Ee =) let v0 := E and test v0dp(E1, : : : ,En) => fF1, : : : ,Fmge=) Vni=1 flet v0i := Eig and dp(v01, : : : , v0n) => fF1, : : : ,Fmgedreturn ff1 := E1, : : : , fm := Emge=) andVmi=1 flet v0i := Eig return ff1 := v01, : : : , fm := v0mgA.3 Compound predicate expressionsThese rules show how to desugar false and compound predicate expressions.dfalsee =) not truednotPe =) not dPedP1 and P2e =) dP1e and dP2edP1 or P2e =) dP1e or dP2eA.4 Field bindingsPattern matching permits arbitrarily nested tests and simultaneous matchingon �elds of objects, �elds of predicate results, and results of arbitrary methodinvocations. These rules separate these varieties of record patterns and
attentests.We introduce the concept of a class specializer generating a �eld. A classname generates the �elds in the class; a predicate name generates the �elds inthe predicate's return clause; a conjunction generates the �elds generated byeither of its conjuncts; and a disjunction generates the �elds generated by bothof its disjuncts.If Fi is generated by C 6= c for 1 � i � m < n:dv@ C fF1, : : : ,Fm, : : : ,Fnge=) dv@ C fF1, : : : ,Fmge and dv@ Any fFm+1, : : : ,Fngedv@ c ff1 = v1@ S1, : : : , fn = vn @ Snge=) v@ c and Vni=1 flet vi := v:fi and dvi @ Siegdv@ p ff1 = v1 @ S1, : : : , fn = vn @ Snge=) p(v) => ff1 = v1, : : : , fn = vng and Vni=1 fdv0 @ SiegA.5 Compound predicate abstractionsThese rules simplify compound predicate abstractions.dv@ notCfF1, : : : ,Fmge =) not dv@ CfF1, : : : ,FmgeIf Fi, m+ 1 � i � n, is generated by C2 (& rule only):dv@ C1& C2fF1, : : : ,Fm, : : : ,Fnge =) dv@ C1fF1, : : : ,Fmgeand dv@ C2fFm+1, : : : ,Fngedv@ C1 j C2fF1, : : : ,Fmge =) dv@ C1fF1, : : : ,Fmgeor dv@ C2fF1, : : : ,Fmge208

A.6 Classi�ersSequential ordering over classi�er cases is enforced by creating extra predicatesdi such that di is true if any cj, j � i, is true. Each ci is true only if di�1 is not(that is, no previous conjunct was true).26666666 classify(v1 @ S1, : : : , vm @ Sm)as c1 when P1 return ff1;1 := v01;1, : : : , f1;m1 := v01;m1g...as cn when Pn return ffn;1 := v0n;1, : : : , fn;mn := v0n;mngas cn+1 otherwise return ffn+1;1 := v0n+1;1, : : : , fn+1;mn+1 := v0n+1;mn+1g37777777=) �predicate c1(v1@ S1, : : : , vm @ Sm) whenP1return ff1;1 := v01;1, : : : , f1;m1 := v01;m1g; �dpredicate d1(v1 @ S1, : : : , vm @ Sm) when P1;e�predicate c2(v1@ S1, : : : , vm @ Sm) whenP2 and not d1(v1, : : : , vm)return ff2;1 := v02;1, : : : , f2;m2 := v02;m2g; �dpredicate d2(v1 @ S1, : : : , vm @ Sm) when d1(v1, : : : , vm) or P2;e...�predicate cn(v1@ S1, : : : , vm @ Sm) when Pn and not dn�1(v1, : : : , vm)return ffn;1 := v0n;1, : : : , fn;mn := v0n;mng; �dpredicate dn(v1 @ S1, : : : , vm @ Sm) when dn�1(v1, : : : , vm) or Pn;e�predicate cn+1(v1 @ S1, : : : , vm @ Sm) when notdn(v1, : : : , vm)return ffn+1;1 := v0n+1;1, : : : , fn+1;mn+1 := v0n+1;mn+1g; �B Bindings escaping \or"In the static and dynamic semantics presented in Sect. 3, bindings never escapefrom or predicate expressions. Relaxing this constraint provides extra conve-nience to the programmer and permits more values to be reused rather thanrecomputed. It is also equivalent to permitting overloaded predicates or mul-tiple predicate de�nitions|so far we have permitted only a single de�nitionof each predicate. With appropriate variable renaming, multiple predicate def-initions that rely on a dispatching-like mechanism to select the most speci�capplicable method can be converted into uses of or, and vice versa.For example, the two ConstantFold methods of Sect. 2.3 can be combinedinto a single method. Eliminating code duplication is a prime goal of object-oriented programming, but the previous version repeated the body twice. Use ofa helper method would unnecessarily separate the dispatching conditions fromthe code being executed, though a helper predicate could reduce code duplicationin the predicate expression. 209

-- handle case of adding zero to a non-constantmethod ConstantFold(e@BinopExpr{ op@IntPlus, arg1=a1, arg2=a2 })when (a1@IntConst{ value=v } and test(v == 0)and not(a2@IntConst) and let res := a2)or (a2@IntConst{ value=v } and test(v == 0)and not(a1@IntConst) and let res := a1) {... -- increment counter, or do other common work herereturn res; }As another example, the LoopExit example of Sect. 2.4 can be extendedto present a view which indicates which branch of the CFG_2succ is the loopexit and which the backward branch. When performing iterative data
ow, thisis the only information of interest, and in our current implementation (whichuses predicate classes [Cha93b]) we generally recompute this information afterdiscovering that an object is a LoopExit. Presenting a view which includes thisinformation directly would improve the code's readability and e�ciency.predsignature LoopExit(CFGnode)return { loop:CFGloop, next_loop:CFGedge, next_exit:CFGedge };predicate LoopExit(n@CFG_2succ{ next_true: t, next_false: f })when (test(t.is_loop_exit) and let nl := t and let ne := f)or (test(f.is_loop_exit) and let nl := f and let ne := t)return { loop := nl.containing_loop, next_loop := nl, next_exit := ne };Permitting bindings which appear on both sides of or to escape requiresthe following changes to the dynamic semantics of Fig. 4. (The third rule isunchanged from Fig. 4 but included here for completeness.)hP;Ki) htrue;K 0ihP orQ;Ki) htrue;K 0ihP;Ki) hfalse;K 0i hQ;Ki) htrue;K00ihP orQ;Ki) htrue;K 00ihP;Ki) hfalse;K 0i hQ;Ki) hfalse;K00ihP orQ;Ki) hfalse;KiThese execution rules do not re
ect that only the bindings appearing on bothsides, not all those appearing on the succeeding side, should escape; however,the typechecking rules below guarantee that only the appropriate variables arereferenced.The static semantics of Fig. 5 are modi�ed to add two helper functions andreplace a typechecking rule:T t T 0 = T 00 Least upper bound over types. T 00 is the least commonsupertype of T and T 0.tenv(�; � 0) = � 00 Pointwise lub over typing environments. For each v 2dom(� 00) = dom(�) \ dom(� 0), if � j= v : T and� 0 j= v : T 0, then � 00 j= v : T t T 0.210

� ` P1) � 0 � ` P2) � 00 tenv (� 0; � 00) = � 000� ` P1 or P2) � 000Finally, canonicalization must account for the new semantics of or. In orderto permit replacement of variables by their values, we introduce a new compile-time-only ternary conditional operator ?: for each variable bound on both sidesof the predicate. The �rst argument is the predicate expression on the left-handside of the or expression; the second and third arguments are the variable'svalues on each side of the or.Canonicalizing this new ?: expression requires ordering the tests canonically;any ordering will do. This may necessitate duplication of some expressions, suchas transforming b ? e1 : (a ? e2 : e3) into a ? (b ? e1 : e2) : (b ? e1 : e3) so that thosetwo expressions are not considered distinct. With these two modi�cations, thetautology test is once again sound and complete.

211

